• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int (*threadfn)(void *);
56 	void *data;
57 	mm_segment_t oldfs;
58 	struct completion parked;
59 	struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 	struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64 
65 enum KTHREAD_BITS {
66 	KTHREAD_IS_PER_CPU = 0,
67 	KTHREAD_SHOULD_STOP,
68 	KTHREAD_SHOULD_PARK,
69 };
70 
to_kthread(struct task_struct * k)71 static inline struct kthread *to_kthread(struct task_struct *k)
72 {
73 	WARN_ON(!(k->flags & PF_KTHREAD));
74 	return (__force void *)k->set_child_tid;
75 }
76 
77 /*
78  * Variant of to_kthread() that doesn't assume @p is a kthread.
79  *
80  * Per construction; when:
81  *
82  *   (p->flags & PF_KTHREAD) && p->set_child_tid
83  *
84  * the task is both a kthread and struct kthread is persistent. However
85  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
86  * begin_new_exec()).
87  */
__to_kthread(struct task_struct * p)88 static inline struct kthread *__to_kthread(struct task_struct *p)
89 {
90 	void *kthread = (__force void *)p->set_child_tid;
91 	if (kthread && !(p->flags & PF_KTHREAD))
92 		kthread = NULL;
93 	return kthread;
94 }
95 
set_kthread_struct(struct task_struct * p)96 void set_kthread_struct(struct task_struct *p)
97 {
98 	struct kthread *kthread;
99 
100 	if (__to_kthread(p))
101 		return;
102 
103 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
104 	/*
105 	 * We abuse ->set_child_tid to avoid the new member and because it
106 	 * can't be wrongly copied by copy_process(). We also rely on fact
107 	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
108 	 */
109 	p->set_child_tid = (__force void __user *)kthread;
110 }
111 
free_kthread_struct(struct task_struct * k)112 void free_kthread_struct(struct task_struct *k)
113 {
114 	struct kthread *kthread;
115 
116 	/*
117 	 * Can be NULL if this kthread was created by kernel_thread()
118 	 * or if kmalloc() in kthread() failed.
119 	 */
120 	kthread = to_kthread(k);
121 #ifdef CONFIG_BLK_CGROUP
122 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
123 #endif
124 	kfree(kthread);
125 }
126 
127 /**
128  * kthread_should_stop - should this kthread return now?
129  *
130  * When someone calls kthread_stop() on your kthread, it will be woken
131  * and this will return true.  You should then return, and your return
132  * value will be passed through to kthread_stop().
133  */
kthread_should_stop(void)134 bool kthread_should_stop(void)
135 {
136 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
137 }
138 EXPORT_SYMBOL(kthread_should_stop);
139 
__kthread_should_park(struct task_struct * k)140 bool __kthread_should_park(struct task_struct *k)
141 {
142 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
143 }
144 EXPORT_SYMBOL_GPL(__kthread_should_park);
145 
146 /**
147  * kthread_should_park - should this kthread park now?
148  *
149  * When someone calls kthread_park() on your kthread, it will be woken
150  * and this will return true.  You should then do the necessary
151  * cleanup and call kthread_parkme()
152  *
153  * Similar to kthread_should_stop(), but this keeps the thread alive
154  * and in a park position. kthread_unpark() "restarts" the thread and
155  * calls the thread function again.
156  */
kthread_should_park(void)157 bool kthread_should_park(void)
158 {
159 	return __kthread_should_park(current);
160 }
161 EXPORT_SYMBOL_GPL(kthread_should_park);
162 
163 /**
164  * kthread_freezable_should_stop - should this freezable kthread return now?
165  * @was_frozen: optional out parameter, indicates whether %current was frozen
166  *
167  * kthread_should_stop() for freezable kthreads, which will enter
168  * refrigerator if necessary.  This function is safe from kthread_stop() /
169  * freezer deadlock and freezable kthreads should use this function instead
170  * of calling try_to_freeze() directly.
171  */
kthread_freezable_should_stop(bool * was_frozen)172 bool kthread_freezable_should_stop(bool *was_frozen)
173 {
174 	bool frozen = false;
175 
176 	might_sleep();
177 
178 	if (unlikely(freezing(current)))
179 		frozen = __refrigerator(true);
180 
181 	if (was_frozen)
182 		*was_frozen = frozen;
183 
184 	return kthread_should_stop();
185 }
186 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
187 
188 /**
189  * kthread_func - return the function specified on kthread creation
190  * @task: kthread task in question
191  *
192  * Returns NULL if the task is not a kthread.
193  */
kthread_func(struct task_struct * task)194 void *kthread_func(struct task_struct *task)
195 {
196 	struct kthread *kthread = __to_kthread(task);
197 	if (kthread)
198 		return kthread->threadfn;
199 	return NULL;
200 }
201 EXPORT_SYMBOL_GPL(kthread_func);
202 
203 /**
204  * kthread_data - return data value specified on kthread creation
205  * @task: kthread task in question
206  *
207  * Return the data value specified when kthread @task was created.
208  * The caller is responsible for ensuring the validity of @task when
209  * calling this function.
210  */
kthread_data(struct task_struct * task)211 void *kthread_data(struct task_struct *task)
212 {
213 	return to_kthread(task)->data;
214 }
215 EXPORT_SYMBOL_GPL(kthread_data);
216 
217 /**
218  * kthread_probe_data - speculative version of kthread_data()
219  * @task: possible kthread task in question
220  *
221  * @task could be a kthread task.  Return the data value specified when it
222  * was created if accessible.  If @task isn't a kthread task or its data is
223  * inaccessible for any reason, %NULL is returned.  This function requires
224  * that @task itself is safe to dereference.
225  */
kthread_probe_data(struct task_struct * task)226 void *kthread_probe_data(struct task_struct *task)
227 {
228 	struct kthread *kthread = __to_kthread(task);
229 	void *data = NULL;
230 
231 	if (kthread)
232 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
233 	return data;
234 }
235 
__kthread_parkme(struct kthread * self)236 static void __kthread_parkme(struct kthread *self)
237 {
238 	for (;;) {
239 		/*
240 		 * TASK_PARKED is a special state; we must serialize against
241 		 * possible pending wakeups to avoid store-store collisions on
242 		 * task->state.
243 		 *
244 		 * Such a collision might possibly result in the task state
245 		 * changin from TASK_PARKED and us failing the
246 		 * wait_task_inactive() in kthread_park().
247 		 */
248 		set_special_state(TASK_PARKED);
249 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
250 			break;
251 
252 		/*
253 		 * Thread is going to call schedule(), do not preempt it,
254 		 * or the caller of kthread_park() may spend more time in
255 		 * wait_task_inactive().
256 		 */
257 		preempt_disable();
258 		complete(&self->parked);
259 		schedule_preempt_disabled();
260 		preempt_enable();
261 	}
262 	__set_current_state(TASK_RUNNING);
263 }
264 
kthread_parkme(void)265 void kthread_parkme(void)
266 {
267 	__kthread_parkme(to_kthread(current));
268 }
269 EXPORT_SYMBOL_GPL(kthread_parkme);
270 
kthread(void * _create)271 static int kthread(void *_create)
272 {
273 	/* Copy data: it's on kthread's stack */
274 	struct kthread_create_info *create = _create;
275 	int (*threadfn)(void *data) = create->threadfn;
276 	void *data = create->data;
277 	struct completion *done;
278 	struct kthread *self;
279 	int ret;
280 
281 	set_kthread_struct(current);
282 	self = to_kthread(current);
283 
284 	/* If user was SIGKILLed, I release the structure. */
285 	done = xchg(&create->done, NULL);
286 	if (!done) {
287 		kfree(create);
288 		do_exit(-EINTR);
289 	}
290 
291 	if (!self) {
292 		create->result = ERR_PTR(-ENOMEM);
293 		complete(done);
294 		do_exit(-ENOMEM);
295 	}
296 
297 	self->threadfn = threadfn;
298 	self->data = data;
299 	init_completion(&self->exited);
300 	init_completion(&self->parked);
301 	current->vfork_done = &self->exited;
302 
303 	/* OK, tell user we're spawned, wait for stop or wakeup */
304 	__set_current_state(TASK_UNINTERRUPTIBLE);
305 	create->result = current;
306 	/*
307 	 * Thread is going to call schedule(), do not preempt it,
308 	 * or the creator may spend more time in wait_task_inactive().
309 	 */
310 	preempt_disable();
311 	complete(done);
312 	schedule_preempt_disabled();
313 	preempt_enable();
314 
315 	ret = -EINTR;
316 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
317 		cgroup_kthread_ready();
318 		__kthread_parkme(self);
319 		ret = threadfn(data);
320 	}
321 	do_exit(ret);
322 }
323 
324 /* called from kernel_clone() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)325 int tsk_fork_get_node(struct task_struct *tsk)
326 {
327 #ifdef CONFIG_NUMA
328 	if (tsk == kthreadd_task)
329 		return tsk->pref_node_fork;
330 #endif
331 	return NUMA_NO_NODE;
332 }
333 
create_kthread(struct kthread_create_info * create)334 static void create_kthread(struct kthread_create_info *create)
335 {
336 	int pid;
337 
338 #ifdef CONFIG_NUMA
339 	current->pref_node_fork = create->node;
340 #endif
341 	/* We want our own signal handler (we take no signals by default). */
342 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
343 	if (pid < 0) {
344 		/* If user was SIGKILLed, I release the structure. */
345 		struct completion *done = xchg(&create->done, NULL);
346 
347 		if (!done) {
348 			kfree(create);
349 			return;
350 		}
351 		create->result = ERR_PTR(pid);
352 		complete(done);
353 	}
354 }
355 
356 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)357 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
358 						    void *data, int node,
359 						    const char namefmt[],
360 						    va_list args)
361 {
362 	DECLARE_COMPLETION_ONSTACK(done);
363 	struct task_struct *task;
364 	struct kthread_create_info *create = kmalloc(sizeof(*create),
365 						     GFP_KERNEL);
366 
367 	if (!create)
368 		return ERR_PTR(-ENOMEM);
369 	create->threadfn = threadfn;
370 	create->data = data;
371 	create->node = node;
372 	create->done = &done;
373 
374 	spin_lock(&kthread_create_lock);
375 	list_add_tail(&create->list, &kthread_create_list);
376 	spin_unlock(&kthread_create_lock);
377 
378 	wake_up_process(kthreadd_task);
379 	/*
380 	 * Wait for completion in killable state, for I might be chosen by
381 	 * the OOM killer while kthreadd is trying to allocate memory for
382 	 * new kernel thread.
383 	 */
384 	if (unlikely(wait_for_completion_killable(&done))) {
385 		/*
386 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
387 		 * calls complete(), leave the cleanup of this structure to
388 		 * that thread.
389 		 */
390 		if (xchg(&create->done, NULL))
391 			return ERR_PTR(-EINTR);
392 		/*
393 		 * kthreadd (or new kernel thread) will call complete()
394 		 * shortly.
395 		 */
396 		wait_for_completion(&done);
397 	}
398 	task = create->result;
399 	if (!IS_ERR(task)) {
400 		static const struct sched_param param = { .sched_priority = 0 };
401 		char name[TASK_COMM_LEN];
402 
403 		/*
404 		 * task is already visible to other tasks, so updating
405 		 * COMM must be protected.
406 		 */
407 		vsnprintf(name, sizeof(name), namefmt, args);
408 		set_task_comm(task, name);
409 		/*
410 		 * root may have changed our (kthreadd's) priority or CPU mask.
411 		 * The kernel thread should not inherit these properties.
412 		 */
413 		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
414 		set_cpus_allowed_ptr(task,
415 				     housekeeping_cpumask(HK_FLAG_KTHREAD));
416 	}
417 	kfree(create);
418 	return task;
419 }
420 
421 /**
422  * kthread_create_on_node - create a kthread.
423  * @threadfn: the function to run until signal_pending(current).
424  * @data: data ptr for @threadfn.
425  * @node: task and thread structures for the thread are allocated on this node
426  * @namefmt: printf-style name for the thread.
427  *
428  * Description: This helper function creates and names a kernel
429  * thread.  The thread will be stopped: use wake_up_process() to start
430  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
431  * is affine to all CPUs.
432  *
433  * If thread is going to be bound on a particular cpu, give its node
434  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
435  * When woken, the thread will run @threadfn() with @data as its
436  * argument. @threadfn() can either call do_exit() directly if it is a
437  * standalone thread for which no one will call kthread_stop(), or
438  * return when 'kthread_should_stop()' is true (which means
439  * kthread_stop() has been called).  The return value should be zero
440  * or a negative error number; it will be passed to kthread_stop().
441  *
442  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
443  */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)444 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
445 					   void *data, int node,
446 					   const char namefmt[],
447 					   ...)
448 {
449 	struct task_struct *task;
450 	va_list args;
451 
452 	va_start(args, namefmt);
453 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
454 	va_end(args);
455 
456 	return task;
457 }
458 EXPORT_SYMBOL(kthread_create_on_node);
459 
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,unsigned int state)460 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
461 {
462 	unsigned long flags;
463 
464 	if (!wait_task_inactive(p, state)) {
465 		WARN_ON(1);
466 		return;
467 	}
468 
469 	/* It's safe because the task is inactive. */
470 	raw_spin_lock_irqsave(&p->pi_lock, flags);
471 	do_set_cpus_allowed(p, mask);
472 	p->flags |= PF_NO_SETAFFINITY;
473 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
474 }
475 
__kthread_bind(struct task_struct * p,unsigned int cpu,unsigned int state)476 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
477 {
478 	__kthread_bind_mask(p, cpumask_of(cpu), state);
479 }
480 
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)481 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
482 {
483 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
484 }
485 EXPORT_SYMBOL_GPL(kthread_bind_mask);
486 
487 /**
488  * kthread_bind - bind a just-created kthread to a cpu.
489  * @p: thread created by kthread_create().
490  * @cpu: cpu (might not be online, must be possible) for @k to run on.
491  *
492  * Description: This function is equivalent to set_cpus_allowed(),
493  * except that @cpu doesn't need to be online, and the thread must be
494  * stopped (i.e., just returned from kthread_create()).
495  */
kthread_bind(struct task_struct * p,unsigned int cpu)496 void kthread_bind(struct task_struct *p, unsigned int cpu)
497 {
498 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
499 }
500 EXPORT_SYMBOL(kthread_bind);
501 
502 /**
503  * kthread_create_on_cpu - Create a cpu bound kthread
504  * @threadfn: the function to run until signal_pending(current).
505  * @data: data ptr for @threadfn.
506  * @cpu: The cpu on which the thread should be bound,
507  * @namefmt: printf-style name for the thread. Format is restricted
508  *	     to "name.*%u". Code fills in cpu number.
509  *
510  * Description: This helper function creates and names a kernel thread
511  */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)512 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
513 					  void *data, unsigned int cpu,
514 					  const char *namefmt)
515 {
516 	struct task_struct *p;
517 
518 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
519 				   cpu);
520 	if (IS_ERR(p))
521 		return p;
522 	kthread_bind(p, cpu);
523 	/* CPU hotplug need to bind once again when unparking the thread. */
524 	to_kthread(p)->cpu = cpu;
525 	return p;
526 }
527 EXPORT_SYMBOL(kthread_create_on_cpu);
528 
kthread_set_per_cpu(struct task_struct * k,int cpu)529 void kthread_set_per_cpu(struct task_struct *k, int cpu)
530 {
531 	struct kthread *kthread = to_kthread(k);
532 	if (!kthread)
533 		return;
534 
535 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
536 
537 	if (cpu < 0) {
538 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
539 		return;
540 	}
541 
542 	kthread->cpu = cpu;
543 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
544 }
545 EXPORT_SYMBOL_GPL(kthread_set_per_cpu);
546 
kthread_is_per_cpu(struct task_struct * p)547 bool kthread_is_per_cpu(struct task_struct *p)
548 {
549 	struct kthread *kthread = __to_kthread(p);
550 	if (!kthread)
551 		return false;
552 
553 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
554 }
555 
556 /**
557  * kthread_unpark - unpark a thread created by kthread_create().
558  * @k:		thread created by kthread_create().
559  *
560  * Sets kthread_should_park() for @k to return false, wakes it, and
561  * waits for it to return. If the thread is marked percpu then its
562  * bound to the cpu again.
563  */
kthread_unpark(struct task_struct * k)564 void kthread_unpark(struct task_struct *k)
565 {
566 	struct kthread *kthread = to_kthread(k);
567 
568 	/*
569 	 * Newly created kthread was parked when the CPU was offline.
570 	 * The binding was lost and we need to set it again.
571 	 */
572 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
573 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
574 
575 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
576 	/*
577 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
578 	 */
579 	wake_up_state(k, TASK_PARKED);
580 }
581 EXPORT_SYMBOL_GPL(kthread_unpark);
582 
583 /**
584  * kthread_park - park a thread created by kthread_create().
585  * @k: thread created by kthread_create().
586  *
587  * Sets kthread_should_park() for @k to return true, wakes it, and
588  * waits for it to return. This can also be called after kthread_create()
589  * instead of calling wake_up_process(): the thread will park without
590  * calling threadfn().
591  *
592  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
593  * If called by the kthread itself just the park bit is set.
594  */
kthread_park(struct task_struct * k)595 int kthread_park(struct task_struct *k)
596 {
597 	struct kthread *kthread = to_kthread(k);
598 
599 	if (WARN_ON(k->flags & PF_EXITING))
600 		return -ENOSYS;
601 
602 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
603 		return -EBUSY;
604 
605 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
606 	if (k != current) {
607 		wake_up_process(k);
608 		/*
609 		 * Wait for __kthread_parkme() to complete(), this means we
610 		 * _will_ have TASK_PARKED and are about to call schedule().
611 		 */
612 		wait_for_completion(&kthread->parked);
613 		/*
614 		 * Now wait for that schedule() to complete and the task to
615 		 * get scheduled out.
616 		 */
617 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
618 	}
619 
620 	return 0;
621 }
622 EXPORT_SYMBOL_GPL(kthread_park);
623 
624 /**
625  * kthread_stop - stop a thread created by kthread_create().
626  * @k: thread created by kthread_create().
627  *
628  * Sets kthread_should_stop() for @k to return true, wakes it, and
629  * waits for it to exit. This can also be called after kthread_create()
630  * instead of calling wake_up_process(): the thread will exit without
631  * calling threadfn().
632  *
633  * If threadfn() may call do_exit() itself, the caller must ensure
634  * task_struct can't go away.
635  *
636  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
637  * was never called.
638  */
kthread_stop(struct task_struct * k)639 int kthread_stop(struct task_struct *k)
640 {
641 	struct kthread *kthread;
642 	int ret;
643 
644 	trace_sched_kthread_stop(k);
645 
646 	get_task_struct(k);
647 	kthread = to_kthread(k);
648 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
649 	kthread_unpark(k);
650 	wake_up_process(k);
651 	wait_for_completion(&kthread->exited);
652 	ret = k->exit_code;
653 	put_task_struct(k);
654 
655 	trace_sched_kthread_stop_ret(ret);
656 	return ret;
657 }
658 EXPORT_SYMBOL(kthread_stop);
659 
kthreadd(void * unused)660 int kthreadd(void *unused)
661 {
662 	struct task_struct *tsk = current;
663 
664 	/* Setup a clean context for our children to inherit. */
665 	set_task_comm(tsk, "kthreadd");
666 	ignore_signals(tsk);
667 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
668 	set_mems_allowed(node_states[N_MEMORY]);
669 
670 	current->flags |= PF_NOFREEZE;
671 	cgroup_init_kthreadd();
672 
673 	for (;;) {
674 		set_current_state(TASK_INTERRUPTIBLE);
675 		if (list_empty(&kthread_create_list))
676 			schedule();
677 		__set_current_state(TASK_RUNNING);
678 
679 		spin_lock(&kthread_create_lock);
680 		while (!list_empty(&kthread_create_list)) {
681 			struct kthread_create_info *create;
682 
683 			create = list_entry(kthread_create_list.next,
684 					    struct kthread_create_info, list);
685 			list_del_init(&create->list);
686 			spin_unlock(&kthread_create_lock);
687 
688 			create_kthread(create);
689 
690 			spin_lock(&kthread_create_lock);
691 		}
692 		spin_unlock(&kthread_create_lock);
693 	}
694 
695 	return 0;
696 }
697 
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)698 void __kthread_init_worker(struct kthread_worker *worker,
699 				const char *name,
700 				struct lock_class_key *key)
701 {
702 	memset(worker, 0, sizeof(struct kthread_worker));
703 	raw_spin_lock_init(&worker->lock);
704 	lockdep_set_class_and_name(&worker->lock, key, name);
705 	INIT_LIST_HEAD(&worker->work_list);
706 	INIT_LIST_HEAD(&worker->delayed_work_list);
707 }
708 EXPORT_SYMBOL_GPL(__kthread_init_worker);
709 
710 /**
711  * kthread_worker_fn - kthread function to process kthread_worker
712  * @worker_ptr: pointer to initialized kthread_worker
713  *
714  * This function implements the main cycle of kthread worker. It processes
715  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
716  * is empty.
717  *
718  * The works are not allowed to keep any locks, disable preemption or interrupts
719  * when they finish. There is defined a safe point for freezing when one work
720  * finishes and before a new one is started.
721  *
722  * Also the works must not be handled by more than one worker at the same time,
723  * see also kthread_queue_work().
724  */
kthread_worker_fn(void * worker_ptr)725 int kthread_worker_fn(void *worker_ptr)
726 {
727 	struct kthread_worker *worker = worker_ptr;
728 	struct kthread_work *work;
729 
730 	/*
731 	 * FIXME: Update the check and remove the assignment when all kthread
732 	 * worker users are created using kthread_create_worker*() functions.
733 	 */
734 	WARN_ON(worker->task && worker->task != current);
735 	worker->task = current;
736 
737 	if (worker->flags & KTW_FREEZABLE)
738 		set_freezable();
739 
740 repeat:
741 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
742 
743 	if (kthread_should_stop()) {
744 		__set_current_state(TASK_RUNNING);
745 		raw_spin_lock_irq(&worker->lock);
746 		worker->task = NULL;
747 		raw_spin_unlock_irq(&worker->lock);
748 		return 0;
749 	}
750 
751 	work = NULL;
752 	raw_spin_lock_irq(&worker->lock);
753 	if (!list_empty(&worker->work_list)) {
754 		work = list_first_entry(&worker->work_list,
755 					struct kthread_work, node);
756 		list_del_init(&work->node);
757 	}
758 	worker->current_work = work;
759 	raw_spin_unlock_irq(&worker->lock);
760 
761 	if (work) {
762 		kthread_work_func_t func = work->func;
763 		__set_current_state(TASK_RUNNING);
764 		trace_sched_kthread_work_execute_start(work);
765 		work->func(work);
766 		/*
767 		 * Avoid dereferencing work after this point.  The trace
768 		 * event only cares about the address.
769 		 */
770 		trace_sched_kthread_work_execute_end(work, func);
771 	} else if (!freezing(current))
772 		schedule();
773 
774 	try_to_freeze();
775 	cond_resched();
776 	goto repeat;
777 }
778 EXPORT_SYMBOL_GPL(kthread_worker_fn);
779 
780 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker(int cpu,unsigned int flags,const char namefmt[],va_list args)781 __kthread_create_worker(int cpu, unsigned int flags,
782 			const char namefmt[], va_list args)
783 {
784 	struct kthread_worker *worker;
785 	struct task_struct *task;
786 	int node = NUMA_NO_NODE;
787 
788 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
789 	if (!worker)
790 		return ERR_PTR(-ENOMEM);
791 
792 	kthread_init_worker(worker);
793 
794 	if (cpu >= 0)
795 		node = cpu_to_node(cpu);
796 
797 	task = __kthread_create_on_node(kthread_worker_fn, worker,
798 						node, namefmt, args);
799 	if (IS_ERR(task))
800 		goto fail_task;
801 
802 	if (cpu >= 0)
803 		kthread_bind(task, cpu);
804 
805 	worker->flags = flags;
806 	worker->task = task;
807 	wake_up_process(task);
808 	return worker;
809 
810 fail_task:
811 	kfree(worker);
812 	return ERR_CAST(task);
813 }
814 
815 /**
816  * kthread_create_worker - create a kthread worker
817  * @flags: flags modifying the default behavior of the worker
818  * @namefmt: printf-style name for the kthread worker (task).
819  *
820  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
821  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
822  * when the worker was SIGKILLed.
823  */
824 struct kthread_worker *
kthread_create_worker(unsigned int flags,const char namefmt[],...)825 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
826 {
827 	struct kthread_worker *worker;
828 	va_list args;
829 
830 	va_start(args, namefmt);
831 	worker = __kthread_create_worker(-1, flags, namefmt, args);
832 	va_end(args);
833 
834 	return worker;
835 }
836 EXPORT_SYMBOL(kthread_create_worker);
837 
838 /**
839  * kthread_create_worker_on_cpu - create a kthread worker and bind it
840  *	to a given CPU and the associated NUMA node.
841  * @cpu: CPU number
842  * @flags: flags modifying the default behavior of the worker
843  * @namefmt: printf-style name for the kthread worker (task).
844  *
845  * Use a valid CPU number if you want to bind the kthread worker
846  * to the given CPU and the associated NUMA node.
847  *
848  * A good practice is to add the cpu number also into the worker name.
849  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
850  *
851  * CPU hotplug:
852  * The kthread worker API is simple and generic. It just provides a way
853  * to create, use, and destroy workers.
854  *
855  * It is up to the API user how to handle CPU hotplug. They have to decide
856  * how to handle pending work items, prevent queuing new ones, and
857  * restore the functionality when the CPU goes off and on. There are a
858  * few catches:
859  *
860  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
861  *
862  *    - The worker might not exist when the CPU was off when the user
863  *      created the workers.
864  *
865  * Good practice is to implement two CPU hotplug callbacks and to
866  * destroy/create the worker when the CPU goes down/up.
867  *
868  * Return:
869  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
870  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
871  * when the worker was SIGKILLed.
872  */
873 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[],...)874 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
875 			     const char namefmt[], ...)
876 {
877 	struct kthread_worker *worker;
878 	va_list args;
879 
880 	va_start(args, namefmt);
881 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
882 	va_end(args);
883 
884 	return worker;
885 }
886 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
887 
888 /*
889  * Returns true when the work could not be queued at the moment.
890  * It happens when it is already pending in a worker list
891  * or when it is being cancelled.
892  */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)893 static inline bool queuing_blocked(struct kthread_worker *worker,
894 				   struct kthread_work *work)
895 {
896 	lockdep_assert_held(&worker->lock);
897 
898 	return !list_empty(&work->node) || work->canceling;
899 }
900 
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)901 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
902 					     struct kthread_work *work)
903 {
904 	lockdep_assert_held(&worker->lock);
905 	WARN_ON_ONCE(!list_empty(&work->node));
906 	/* Do not use a work with >1 worker, see kthread_queue_work() */
907 	WARN_ON_ONCE(work->worker && work->worker != worker);
908 }
909 
910 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)911 static void kthread_insert_work(struct kthread_worker *worker,
912 				struct kthread_work *work,
913 				struct list_head *pos)
914 {
915 	kthread_insert_work_sanity_check(worker, work);
916 
917 	trace_sched_kthread_work_queue_work(worker, work);
918 
919 	list_add_tail(&work->node, pos);
920 	work->worker = worker;
921 	if (!worker->current_work && likely(worker->task))
922 		wake_up_process(worker->task);
923 }
924 
925 /**
926  * kthread_queue_work - queue a kthread_work
927  * @worker: target kthread_worker
928  * @work: kthread_work to queue
929  *
930  * Queue @work to work processor @task for async execution.  @task
931  * must have been created with kthread_worker_create().  Returns %true
932  * if @work was successfully queued, %false if it was already pending.
933  *
934  * Reinitialize the work if it needs to be used by another worker.
935  * For example, when the worker was stopped and started again.
936  */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)937 bool kthread_queue_work(struct kthread_worker *worker,
938 			struct kthread_work *work)
939 {
940 	bool ret = false;
941 	unsigned long flags;
942 
943 	raw_spin_lock_irqsave(&worker->lock, flags);
944 	if (!queuing_blocked(worker, work)) {
945 		kthread_insert_work(worker, work, &worker->work_list);
946 		ret = true;
947 	}
948 	raw_spin_unlock_irqrestore(&worker->lock, flags);
949 	return ret;
950 }
951 EXPORT_SYMBOL_GPL(kthread_queue_work);
952 
953 /**
954  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
955  *	delayed work when the timer expires.
956  * @t: pointer to the expired timer
957  *
958  * The format of the function is defined by struct timer_list.
959  * It should have been called from irqsafe timer with irq already off.
960  */
kthread_delayed_work_timer_fn(struct timer_list * t)961 void kthread_delayed_work_timer_fn(struct timer_list *t)
962 {
963 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
964 	struct kthread_work *work = &dwork->work;
965 	struct kthread_worker *worker = work->worker;
966 	unsigned long flags;
967 
968 	/*
969 	 * This might happen when a pending work is reinitialized.
970 	 * It means that it is used a wrong way.
971 	 */
972 	if (WARN_ON_ONCE(!worker))
973 		return;
974 
975 	raw_spin_lock_irqsave(&worker->lock, flags);
976 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
977 	WARN_ON_ONCE(work->worker != worker);
978 
979 	/* Move the work from worker->delayed_work_list. */
980 	WARN_ON_ONCE(list_empty(&work->node));
981 	list_del_init(&work->node);
982 	if (!work->canceling)
983 		kthread_insert_work(worker, work, &worker->work_list);
984 
985 	raw_spin_unlock_irqrestore(&worker->lock, flags);
986 }
987 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
988 
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)989 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
990 					 struct kthread_delayed_work *dwork,
991 					 unsigned long delay)
992 {
993 	struct timer_list *timer = &dwork->timer;
994 	struct kthread_work *work = &dwork->work;
995 
996 	WARN_ON_FUNCTION_MISMATCH(timer->function,
997 				  kthread_delayed_work_timer_fn);
998 
999 	/*
1000 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1001 	 * both optimization and correctness.  The earliest @timer can
1002 	 * expire is on the closest next tick and delayed_work users depend
1003 	 * on that there's no such delay when @delay is 0.
1004 	 */
1005 	if (!delay) {
1006 		kthread_insert_work(worker, work, &worker->work_list);
1007 		return;
1008 	}
1009 
1010 	/* Be paranoid and try to detect possible races already now. */
1011 	kthread_insert_work_sanity_check(worker, work);
1012 
1013 	list_add(&work->node, &worker->delayed_work_list);
1014 	work->worker = worker;
1015 	timer->expires = jiffies + delay;
1016 	add_timer(timer);
1017 }
1018 
1019 /**
1020  * kthread_queue_delayed_work - queue the associated kthread work
1021  *	after a delay.
1022  * @worker: target kthread_worker
1023  * @dwork: kthread_delayed_work to queue
1024  * @delay: number of jiffies to wait before queuing
1025  *
1026  * If the work has not been pending it starts a timer that will queue
1027  * the work after the given @delay. If @delay is zero, it queues the
1028  * work immediately.
1029  *
1030  * Return: %false if the @work has already been pending. It means that
1031  * either the timer was running or the work was queued. It returns %true
1032  * otherwise.
1033  */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1034 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1035 				struct kthread_delayed_work *dwork,
1036 				unsigned long delay)
1037 {
1038 	struct kthread_work *work = &dwork->work;
1039 	unsigned long flags;
1040 	bool ret = false;
1041 
1042 	raw_spin_lock_irqsave(&worker->lock, flags);
1043 
1044 	if (!queuing_blocked(worker, work)) {
1045 		__kthread_queue_delayed_work(worker, dwork, delay);
1046 		ret = true;
1047 	}
1048 
1049 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1050 	return ret;
1051 }
1052 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1053 
1054 struct kthread_flush_work {
1055 	struct kthread_work	work;
1056 	struct completion	done;
1057 };
1058 
kthread_flush_work_fn(struct kthread_work * work)1059 static void kthread_flush_work_fn(struct kthread_work *work)
1060 {
1061 	struct kthread_flush_work *fwork =
1062 		container_of(work, struct kthread_flush_work, work);
1063 	complete(&fwork->done);
1064 }
1065 
1066 /**
1067  * kthread_flush_work - flush a kthread_work
1068  * @work: work to flush
1069  *
1070  * If @work is queued or executing, wait for it to finish execution.
1071  */
kthread_flush_work(struct kthread_work * work)1072 void kthread_flush_work(struct kthread_work *work)
1073 {
1074 	struct kthread_flush_work fwork = {
1075 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1076 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1077 	};
1078 	struct kthread_worker *worker;
1079 	bool noop = false;
1080 
1081 	worker = work->worker;
1082 	if (!worker)
1083 		return;
1084 
1085 	raw_spin_lock_irq(&worker->lock);
1086 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1087 	WARN_ON_ONCE(work->worker != worker);
1088 
1089 	if (!list_empty(&work->node))
1090 		kthread_insert_work(worker, &fwork.work, work->node.next);
1091 	else if (worker->current_work == work)
1092 		kthread_insert_work(worker, &fwork.work,
1093 				    worker->work_list.next);
1094 	else
1095 		noop = true;
1096 
1097 	raw_spin_unlock_irq(&worker->lock);
1098 
1099 	if (!noop)
1100 		wait_for_completion(&fwork.done);
1101 }
1102 EXPORT_SYMBOL_GPL(kthread_flush_work);
1103 
1104 /*
1105  * Make sure that the timer is neither set nor running and could
1106  * not manipulate the work list_head any longer.
1107  *
1108  * The function is called under worker->lock. The lock is temporary
1109  * released but the timer can't be set again in the meantime.
1110  */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1111 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1112 					      unsigned long *flags)
1113 {
1114 	struct kthread_delayed_work *dwork =
1115 		container_of(work, struct kthread_delayed_work, work);
1116 	struct kthread_worker *worker = work->worker;
1117 
1118 	/*
1119 	 * del_timer_sync() must be called to make sure that the timer
1120 	 * callback is not running. The lock must be temporary released
1121 	 * to avoid a deadlock with the callback. In the meantime,
1122 	 * any queuing is blocked by setting the canceling counter.
1123 	 */
1124 	work->canceling++;
1125 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1126 	del_timer_sync(&dwork->timer);
1127 	raw_spin_lock_irqsave(&worker->lock, *flags);
1128 	work->canceling--;
1129 }
1130 
1131 /*
1132  * This function removes the work from the worker queue.
1133  *
1134  * It is called under worker->lock. The caller must make sure that
1135  * the timer used by delayed work is not running, e.g. by calling
1136  * kthread_cancel_delayed_work_timer().
1137  *
1138  * The work might still be in use when this function finishes. See the
1139  * current_work proceed by the worker.
1140  *
1141  * Return: %true if @work was pending and successfully canceled,
1142  *	%false if @work was not pending
1143  */
__kthread_cancel_work(struct kthread_work * work)1144 static bool __kthread_cancel_work(struct kthread_work *work)
1145 {
1146 	/*
1147 	 * Try to remove the work from a worker list. It might either
1148 	 * be from worker->work_list or from worker->delayed_work_list.
1149 	 */
1150 	if (!list_empty(&work->node)) {
1151 		list_del_init(&work->node);
1152 		return true;
1153 	}
1154 
1155 	return false;
1156 }
1157 
1158 /**
1159  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1160  * @worker: kthread worker to use
1161  * @dwork: kthread delayed work to queue
1162  * @delay: number of jiffies to wait before queuing
1163  *
1164  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1165  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1166  * @work is guaranteed to be queued immediately.
1167  *
1168  * Return: %false if @dwork was idle and queued, %true otherwise.
1169  *
1170  * A special case is when the work is being canceled in parallel.
1171  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1172  * or yet another kthread_mod_delayed_work() call. We let the other command
1173  * win and return %true here. The return value can be used for reference
1174  * counting and the number of queued works stays the same. Anyway, the caller
1175  * is supposed to synchronize these operations a reasonable way.
1176  *
1177  * This function is safe to call from any context including IRQ handler.
1178  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1179  * for details.
1180  */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1181 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1182 			      struct kthread_delayed_work *dwork,
1183 			      unsigned long delay)
1184 {
1185 	struct kthread_work *work = &dwork->work;
1186 	unsigned long flags;
1187 	int ret;
1188 
1189 	raw_spin_lock_irqsave(&worker->lock, flags);
1190 
1191 	/* Do not bother with canceling when never queued. */
1192 	if (!work->worker) {
1193 		ret = false;
1194 		goto fast_queue;
1195 	}
1196 
1197 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1198 	WARN_ON_ONCE(work->worker != worker);
1199 
1200 	/*
1201 	 * Temporary cancel the work but do not fight with another command
1202 	 * that is canceling the work as well.
1203 	 *
1204 	 * It is a bit tricky because of possible races with another
1205 	 * mod_delayed_work() and cancel_delayed_work() callers.
1206 	 *
1207 	 * The timer must be canceled first because worker->lock is released
1208 	 * when doing so. But the work can be removed from the queue (list)
1209 	 * only when it can be queued again so that the return value can
1210 	 * be used for reference counting.
1211 	 */
1212 	kthread_cancel_delayed_work_timer(work, &flags);
1213 	if (work->canceling) {
1214 		/* The number of works in the queue does not change. */
1215 		ret = true;
1216 		goto out;
1217 	}
1218 	ret = __kthread_cancel_work(work);
1219 
1220 fast_queue:
1221 	__kthread_queue_delayed_work(worker, dwork, delay);
1222 out:
1223 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1224 	return ret;
1225 }
1226 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1227 
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1228 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1229 {
1230 	struct kthread_worker *worker = work->worker;
1231 	unsigned long flags;
1232 	int ret = false;
1233 
1234 	if (!worker)
1235 		goto out;
1236 
1237 	raw_spin_lock_irqsave(&worker->lock, flags);
1238 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1239 	WARN_ON_ONCE(work->worker != worker);
1240 
1241 	if (is_dwork)
1242 		kthread_cancel_delayed_work_timer(work, &flags);
1243 
1244 	ret = __kthread_cancel_work(work);
1245 
1246 	if (worker->current_work != work)
1247 		goto out_fast;
1248 
1249 	/*
1250 	 * The work is in progress and we need to wait with the lock released.
1251 	 * In the meantime, block any queuing by setting the canceling counter.
1252 	 */
1253 	work->canceling++;
1254 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1255 	kthread_flush_work(work);
1256 	raw_spin_lock_irqsave(&worker->lock, flags);
1257 	work->canceling--;
1258 
1259 out_fast:
1260 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1261 out:
1262 	return ret;
1263 }
1264 
1265 /**
1266  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1267  * @work: the kthread work to cancel
1268  *
1269  * Cancel @work and wait for its execution to finish.  This function
1270  * can be used even if the work re-queues itself. On return from this
1271  * function, @work is guaranteed to be not pending or executing on any CPU.
1272  *
1273  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1274  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1275  *
1276  * The caller must ensure that the worker on which @work was last
1277  * queued can't be destroyed before this function returns.
1278  *
1279  * Return: %true if @work was pending, %false otherwise.
1280  */
kthread_cancel_work_sync(struct kthread_work * work)1281 bool kthread_cancel_work_sync(struct kthread_work *work)
1282 {
1283 	return __kthread_cancel_work_sync(work, false);
1284 }
1285 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1286 
1287 /**
1288  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1289  *	wait for it to finish.
1290  * @dwork: the kthread delayed work to cancel
1291  *
1292  * This is kthread_cancel_work_sync() for delayed works.
1293  *
1294  * Return: %true if @dwork was pending, %false otherwise.
1295  */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1296 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1297 {
1298 	return __kthread_cancel_work_sync(&dwork->work, true);
1299 }
1300 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1301 
1302 /**
1303  * kthread_flush_worker - flush all current works on a kthread_worker
1304  * @worker: worker to flush
1305  *
1306  * Wait until all currently executing or pending works on @worker are
1307  * finished.
1308  */
kthread_flush_worker(struct kthread_worker * worker)1309 void kthread_flush_worker(struct kthread_worker *worker)
1310 {
1311 	struct kthread_flush_work fwork = {
1312 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1313 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1314 	};
1315 
1316 	kthread_queue_work(worker, &fwork.work);
1317 	wait_for_completion(&fwork.done);
1318 }
1319 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1320 
1321 /**
1322  * kthread_destroy_worker - destroy a kthread worker
1323  * @worker: worker to be destroyed
1324  *
1325  * Flush and destroy @worker.  The simple flush is enough because the kthread
1326  * worker API is used only in trivial scenarios.  There are no multi-step state
1327  * machines needed.
1328  */
kthread_destroy_worker(struct kthread_worker * worker)1329 void kthread_destroy_worker(struct kthread_worker *worker)
1330 {
1331 	struct task_struct *task;
1332 
1333 	task = worker->task;
1334 	if (WARN_ON(!task))
1335 		return;
1336 
1337 	kthread_flush_worker(worker);
1338 	kthread_stop(task);
1339 	WARN_ON(!list_empty(&worker->work_list));
1340 	kfree(worker);
1341 }
1342 EXPORT_SYMBOL(kthread_destroy_worker);
1343 
1344 /**
1345  * kthread_use_mm - make the calling kthread operate on an address space
1346  * @mm: address space to operate on
1347  */
kthread_use_mm(struct mm_struct * mm)1348 void kthread_use_mm(struct mm_struct *mm)
1349 {
1350 	struct mm_struct *active_mm;
1351 	struct task_struct *tsk = current;
1352 
1353 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1354 	WARN_ON_ONCE(tsk->mm);
1355 
1356 	task_lock(tsk);
1357 	/* Hold off tlb flush IPIs while switching mm's */
1358 	local_irq_disable();
1359 	active_mm = tsk->active_mm;
1360 	if (active_mm != mm) {
1361 		mmgrab(mm);
1362 		tsk->active_mm = mm;
1363 	}
1364 	tsk->mm = mm;
1365 	membarrier_update_current_mm(mm);
1366 	switch_mm_irqs_off(active_mm, mm, tsk);
1367 	local_irq_enable();
1368 	task_unlock(tsk);
1369 #ifdef finish_arch_post_lock_switch
1370 	finish_arch_post_lock_switch();
1371 #endif
1372 
1373 	/*
1374 	 * When a kthread starts operating on an address space, the loop
1375 	 * in membarrier_{private,global}_expedited() may not observe
1376 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1377 	 * memory barrier after storing to tsk->mm, before accessing
1378 	 * user-space memory. A full memory barrier for membarrier
1379 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1380 	 * mmdrop(), or explicitly with smp_mb().
1381 	 */
1382 	if (active_mm != mm)
1383 		mmdrop(active_mm);
1384 	else
1385 		smp_mb();
1386 
1387 	to_kthread(tsk)->oldfs = force_uaccess_begin();
1388 }
1389 EXPORT_SYMBOL_GPL(kthread_use_mm);
1390 
1391 /**
1392  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1393  * @mm: address space to operate on
1394  */
kthread_unuse_mm(struct mm_struct * mm)1395 void kthread_unuse_mm(struct mm_struct *mm)
1396 {
1397 	struct task_struct *tsk = current;
1398 
1399 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1400 	WARN_ON_ONCE(!tsk->mm);
1401 
1402 	force_uaccess_end(to_kthread(tsk)->oldfs);
1403 
1404 	task_lock(tsk);
1405 	/*
1406 	 * When a kthread stops operating on an address space, the loop
1407 	 * in membarrier_{private,global}_expedited() may not observe
1408 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1409 	 * memory barrier after accessing user-space memory, before
1410 	 * clearing tsk->mm.
1411 	 */
1412 	smp_mb__after_spinlock();
1413 	sync_mm_rss(mm);
1414 	local_irq_disable();
1415 	tsk->mm = NULL;
1416 	membarrier_update_current_mm(NULL);
1417 	/* active_mm is still 'mm' */
1418 	enter_lazy_tlb(mm, tsk);
1419 	local_irq_enable();
1420 	task_unlock(tsk);
1421 }
1422 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1423 
1424 #ifdef CONFIG_BLK_CGROUP
1425 /**
1426  * kthread_associate_blkcg - associate blkcg to current kthread
1427  * @css: the cgroup info
1428  *
1429  * Current thread must be a kthread. The thread is running jobs on behalf of
1430  * other threads. In some cases, we expect the jobs attach cgroup info of
1431  * original threads instead of that of current thread. This function stores
1432  * original thread's cgroup info in current kthread context for later
1433  * retrieval.
1434  */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1435 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1436 {
1437 	struct kthread *kthread;
1438 
1439 	if (!(current->flags & PF_KTHREAD))
1440 		return;
1441 	kthread = to_kthread(current);
1442 	if (!kthread)
1443 		return;
1444 
1445 	if (kthread->blkcg_css) {
1446 		css_put(kthread->blkcg_css);
1447 		kthread->blkcg_css = NULL;
1448 	}
1449 	if (css) {
1450 		css_get(css);
1451 		kthread->blkcg_css = css;
1452 	}
1453 }
1454 EXPORT_SYMBOL(kthread_associate_blkcg);
1455 
1456 /**
1457  * kthread_blkcg - get associated blkcg css of current kthread
1458  *
1459  * Current thread must be a kthread.
1460  */
kthread_blkcg(void)1461 struct cgroup_subsys_state *kthread_blkcg(void)
1462 {
1463 	struct kthread *kthread;
1464 
1465 	if (current->flags & PF_KTHREAD) {
1466 		kthread = to_kthread(current);
1467 		if (kthread)
1468 			return kthread->blkcg_css;
1469 	}
1470 	return NULL;
1471 }
1472 EXPORT_SYMBOL(kthread_blkcg);
1473 #endif
1474