• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38 
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46 
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50 
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55 
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61 
62 __initdata LIST_HEAD(huge_boot_pages);
63 
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75 
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82 
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
86 		unsigned long start, unsigned long end);
87 
subpool_is_free(struct hugepage_subpool * spool)88 static inline bool subpool_is_free(struct hugepage_subpool *spool)
89 {
90 	if (spool->count)
91 		return false;
92 	if (spool->max_hpages != -1)
93 		return spool->used_hpages == 0;
94 	if (spool->min_hpages != -1)
95 		return spool->rsv_hpages == spool->min_hpages;
96 
97 	return true;
98 }
99 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
101 						unsigned long irq_flags)
102 {
103 	spin_unlock_irqrestore(&spool->lock, irq_flags);
104 
105 	/* If no pages are used, and no other handles to the subpool
106 	 * remain, give up any reservations based on minimum size and
107 	 * free the subpool */
108 	if (subpool_is_free(spool)) {
109 		if (spool->min_hpages != -1)
110 			hugetlb_acct_memory(spool->hstate,
111 						-spool->min_hpages);
112 		kfree(spool);
113 	}
114 }
115 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)116 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
117 						long min_hpages)
118 {
119 	struct hugepage_subpool *spool;
120 
121 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
122 	if (!spool)
123 		return NULL;
124 
125 	spin_lock_init(&spool->lock);
126 	spool->count = 1;
127 	spool->max_hpages = max_hpages;
128 	spool->hstate = h;
129 	spool->min_hpages = min_hpages;
130 
131 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
132 		kfree(spool);
133 		return NULL;
134 	}
135 	spool->rsv_hpages = min_hpages;
136 
137 	return spool;
138 }
139 
hugepage_put_subpool(struct hugepage_subpool * spool)140 void hugepage_put_subpool(struct hugepage_subpool *spool)
141 {
142 	unsigned long flags;
143 
144 	spin_lock_irqsave(&spool->lock, flags);
145 	BUG_ON(!spool->count);
146 	spool->count--;
147 	unlock_or_release_subpool(spool, flags);
148 }
149 
150 /*
151  * Subpool accounting for allocating and reserving pages.
152  * Return -ENOMEM if there are not enough resources to satisfy the
153  * request.  Otherwise, return the number of pages by which the
154  * global pools must be adjusted (upward).  The returned value may
155  * only be different than the passed value (delta) in the case where
156  * a subpool minimum size must be maintained.
157  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)158 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
159 				      long delta)
160 {
161 	long ret = delta;
162 
163 	if (!spool)
164 		return ret;
165 
166 	spin_lock_irq(&spool->lock);
167 
168 	if (spool->max_hpages != -1) {		/* maximum size accounting */
169 		if ((spool->used_hpages + delta) <= spool->max_hpages)
170 			spool->used_hpages += delta;
171 		else {
172 			ret = -ENOMEM;
173 			goto unlock_ret;
174 		}
175 	}
176 
177 	/* minimum size accounting */
178 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
179 		if (delta > spool->rsv_hpages) {
180 			/*
181 			 * Asking for more reserves than those already taken on
182 			 * behalf of subpool.  Return difference.
183 			 */
184 			ret = delta - spool->rsv_hpages;
185 			spool->rsv_hpages = 0;
186 		} else {
187 			ret = 0;	/* reserves already accounted for */
188 			spool->rsv_hpages -= delta;
189 		}
190 	}
191 
192 unlock_ret:
193 	spin_unlock_irq(&spool->lock);
194 	return ret;
195 }
196 
197 /*
198  * Subpool accounting for freeing and unreserving pages.
199  * Return the number of global page reservations that must be dropped.
200  * The return value may only be different than the passed value (delta)
201  * in the case where a subpool minimum size must be maintained.
202  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)203 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
204 				       long delta)
205 {
206 	long ret = delta;
207 	unsigned long flags;
208 
209 	if (!spool)
210 		return delta;
211 
212 	spin_lock_irqsave(&spool->lock, flags);
213 
214 	if (spool->max_hpages != -1)		/* maximum size accounting */
215 		spool->used_hpages -= delta;
216 
217 	 /* minimum size accounting */
218 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
219 		if (spool->rsv_hpages + delta <= spool->min_hpages)
220 			ret = 0;
221 		else
222 			ret = spool->rsv_hpages + delta - spool->min_hpages;
223 
224 		spool->rsv_hpages += delta;
225 		if (spool->rsv_hpages > spool->min_hpages)
226 			spool->rsv_hpages = spool->min_hpages;
227 	}
228 
229 	/*
230 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
231 	 * quota reference, free it now.
232 	 */
233 	unlock_or_release_subpool(spool, flags);
234 
235 	return ret;
236 }
237 
subpool_inode(struct inode * inode)238 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
239 {
240 	return HUGETLBFS_SB(inode->i_sb)->spool;
241 }
242 
subpool_vma(struct vm_area_struct * vma)243 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
244 {
245 	return subpool_inode(file_inode(vma->vm_file));
246 }
247 
248 /* Helper that removes a struct file_region from the resv_map cache and returns
249  * it for use.
250  */
251 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)252 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
253 {
254 	struct file_region *nrg = NULL;
255 
256 	VM_BUG_ON(resv->region_cache_count <= 0);
257 
258 	resv->region_cache_count--;
259 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
260 	list_del(&nrg->link);
261 
262 	nrg->from = from;
263 	nrg->to = to;
264 
265 	return nrg;
266 }
267 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)268 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
269 					      struct file_region *rg)
270 {
271 #ifdef CONFIG_CGROUP_HUGETLB
272 	nrg->reservation_counter = rg->reservation_counter;
273 	nrg->css = rg->css;
274 	if (rg->css)
275 		css_get(rg->css);
276 #endif
277 }
278 
279 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)280 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
281 						struct hstate *h,
282 						struct resv_map *resv,
283 						struct file_region *nrg)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286 	if (h_cg) {
287 		nrg->reservation_counter =
288 			&h_cg->rsvd_hugepage[hstate_index(h)];
289 		nrg->css = &h_cg->css;
290 		/*
291 		 * The caller will hold exactly one h_cg->css reference for the
292 		 * whole contiguous reservation region. But this area might be
293 		 * scattered when there are already some file_regions reside in
294 		 * it. As a result, many file_regions may share only one css
295 		 * reference. In order to ensure that one file_region must hold
296 		 * exactly one h_cg->css reference, we should do css_get for
297 		 * each file_region and leave the reference held by caller
298 		 * untouched.
299 		 */
300 		css_get(&h_cg->css);
301 		if (!resv->pages_per_hpage)
302 			resv->pages_per_hpage = pages_per_huge_page(h);
303 		/* pages_per_hpage should be the same for all entries in
304 		 * a resv_map.
305 		 */
306 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
307 	} else {
308 		nrg->reservation_counter = NULL;
309 		nrg->css = NULL;
310 	}
311 #endif
312 }
313 
put_uncharge_info(struct file_region * rg)314 static void put_uncharge_info(struct file_region *rg)
315 {
316 #ifdef CONFIG_CGROUP_HUGETLB
317 	if (rg->css)
318 		css_put(rg->css);
319 #endif
320 }
321 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)322 static bool has_same_uncharge_info(struct file_region *rg,
323 				   struct file_region *org)
324 {
325 #ifdef CONFIG_CGROUP_HUGETLB
326 	return rg && org &&
327 	       rg->reservation_counter == org->reservation_counter &&
328 	       rg->css == org->css;
329 
330 #else
331 	return true;
332 #endif
333 }
334 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)335 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
336 {
337 	struct file_region *nrg = NULL, *prg = NULL;
338 
339 	prg = list_prev_entry(rg, link);
340 	if (&prg->link != &resv->regions && prg->to == rg->from &&
341 	    has_same_uncharge_info(prg, rg)) {
342 		prg->to = rg->to;
343 
344 		list_del(&rg->link);
345 		put_uncharge_info(rg);
346 		kfree(rg);
347 
348 		rg = prg;
349 	}
350 
351 	nrg = list_next_entry(rg, link);
352 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
353 	    has_same_uncharge_info(nrg, rg)) {
354 		nrg->from = rg->from;
355 
356 		list_del(&rg->link);
357 		put_uncharge_info(rg);
358 		kfree(rg);
359 	}
360 }
361 
362 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct file_region * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)363 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
364 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
365 		     long *regions_needed)
366 {
367 	struct file_region *nrg;
368 
369 	if (!regions_needed) {
370 		nrg = get_file_region_entry_from_cache(map, from, to);
371 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
372 		list_add(&nrg->link, rg->link.prev);
373 		coalesce_file_region(map, nrg);
374 	} else
375 		*regions_needed += 1;
376 
377 	return to - from;
378 }
379 
380 /*
381  * Must be called with resv->lock held.
382  *
383  * Calling this with regions_needed != NULL will count the number of pages
384  * to be added but will not modify the linked list. And regions_needed will
385  * indicate the number of file_regions needed in the cache to carry out to add
386  * the regions for this range.
387  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)388 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
389 				     struct hugetlb_cgroup *h_cg,
390 				     struct hstate *h, long *regions_needed)
391 {
392 	long add = 0;
393 	struct list_head *head = &resv->regions;
394 	long last_accounted_offset = f;
395 	struct file_region *rg = NULL, *trg = NULL;
396 
397 	if (regions_needed)
398 		*regions_needed = 0;
399 
400 	/* In this loop, we essentially handle an entry for the range
401 	 * [last_accounted_offset, rg->from), at every iteration, with some
402 	 * bounds checking.
403 	 */
404 	list_for_each_entry_safe(rg, trg, head, link) {
405 		/* Skip irrelevant regions that start before our range. */
406 		if (rg->from < f) {
407 			/* If this region ends after the last accounted offset,
408 			 * then we need to update last_accounted_offset.
409 			 */
410 			if (rg->to > last_accounted_offset)
411 				last_accounted_offset = rg->to;
412 			continue;
413 		}
414 
415 		/* When we find a region that starts beyond our range, we've
416 		 * finished.
417 		 */
418 		if (rg->from >= t)
419 			break;
420 
421 		/* Add an entry for last_accounted_offset -> rg->from, and
422 		 * update last_accounted_offset.
423 		 */
424 		if (rg->from > last_accounted_offset)
425 			add += hugetlb_resv_map_add(resv, rg,
426 						    last_accounted_offset,
427 						    rg->from, h, h_cg,
428 						    regions_needed);
429 
430 		last_accounted_offset = rg->to;
431 	}
432 
433 	/* Handle the case where our range extends beyond
434 	 * last_accounted_offset.
435 	 */
436 	if (last_accounted_offset < t)
437 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
438 					    t, h, h_cg, regions_needed);
439 
440 	VM_BUG_ON(add < 0);
441 	return add;
442 }
443 
444 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
445  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)446 static int allocate_file_region_entries(struct resv_map *resv,
447 					int regions_needed)
448 	__must_hold(&resv->lock)
449 {
450 	struct list_head allocated_regions;
451 	int to_allocate = 0, i = 0;
452 	struct file_region *trg = NULL, *rg = NULL;
453 
454 	VM_BUG_ON(regions_needed < 0);
455 
456 	INIT_LIST_HEAD(&allocated_regions);
457 
458 	/*
459 	 * Check for sufficient descriptors in the cache to accommodate
460 	 * the number of in progress add operations plus regions_needed.
461 	 *
462 	 * This is a while loop because when we drop the lock, some other call
463 	 * to region_add or region_del may have consumed some region_entries,
464 	 * so we keep looping here until we finally have enough entries for
465 	 * (adds_in_progress + regions_needed).
466 	 */
467 	while (resv->region_cache_count <
468 	       (resv->adds_in_progress + regions_needed)) {
469 		to_allocate = resv->adds_in_progress + regions_needed -
470 			      resv->region_cache_count;
471 
472 		/* At this point, we should have enough entries in the cache
473 		 * for all the existing adds_in_progress. We should only be
474 		 * needing to allocate for regions_needed.
475 		 */
476 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
477 
478 		spin_unlock(&resv->lock);
479 		for (i = 0; i < to_allocate; i++) {
480 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
481 			if (!trg)
482 				goto out_of_memory;
483 			list_add(&trg->link, &allocated_regions);
484 		}
485 
486 		spin_lock(&resv->lock);
487 
488 		list_splice(&allocated_regions, &resv->region_cache);
489 		resv->region_cache_count += to_allocate;
490 	}
491 
492 	return 0;
493 
494 out_of_memory:
495 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
496 		list_del(&rg->link);
497 		kfree(rg);
498 	}
499 	return -ENOMEM;
500 }
501 
502 /*
503  * Add the huge page range represented by [f, t) to the reserve
504  * map.  Regions will be taken from the cache to fill in this range.
505  * Sufficient regions should exist in the cache due to the previous
506  * call to region_chg with the same range, but in some cases the cache will not
507  * have sufficient entries due to races with other code doing region_add or
508  * region_del.  The extra needed entries will be allocated.
509  *
510  * regions_needed is the out value provided by a previous call to region_chg.
511  *
512  * Return the number of new huge pages added to the map.  This number is greater
513  * than or equal to zero.  If file_region entries needed to be allocated for
514  * this operation and we were not able to allocate, it returns -ENOMEM.
515  * region_add of regions of length 1 never allocate file_regions and cannot
516  * fail; region_chg will always allocate at least 1 entry and a region_add for
517  * 1 page will only require at most 1 entry.
518  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)519 static long region_add(struct resv_map *resv, long f, long t,
520 		       long in_regions_needed, struct hstate *h,
521 		       struct hugetlb_cgroup *h_cg)
522 {
523 	long add = 0, actual_regions_needed = 0;
524 
525 	spin_lock(&resv->lock);
526 retry:
527 
528 	/* Count how many regions are actually needed to execute this add. */
529 	add_reservation_in_range(resv, f, t, NULL, NULL,
530 				 &actual_regions_needed);
531 
532 	/*
533 	 * Check for sufficient descriptors in the cache to accommodate
534 	 * this add operation. Note that actual_regions_needed may be greater
535 	 * than in_regions_needed, as the resv_map may have been modified since
536 	 * the region_chg call. In this case, we need to make sure that we
537 	 * allocate extra entries, such that we have enough for all the
538 	 * existing adds_in_progress, plus the excess needed for this
539 	 * operation.
540 	 */
541 	if (actual_regions_needed > in_regions_needed &&
542 	    resv->region_cache_count <
543 		    resv->adds_in_progress +
544 			    (actual_regions_needed - in_regions_needed)) {
545 		/* region_add operation of range 1 should never need to
546 		 * allocate file_region entries.
547 		 */
548 		VM_BUG_ON(t - f <= 1);
549 
550 		if (allocate_file_region_entries(
551 			    resv, actual_regions_needed - in_regions_needed)) {
552 			return -ENOMEM;
553 		}
554 
555 		goto retry;
556 	}
557 
558 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
559 
560 	resv->adds_in_progress -= in_regions_needed;
561 
562 	spin_unlock(&resv->lock);
563 	return add;
564 }
565 
566 /*
567  * Examine the existing reserve map and determine how many
568  * huge pages in the specified range [f, t) are NOT currently
569  * represented.  This routine is called before a subsequent
570  * call to region_add that will actually modify the reserve
571  * map to add the specified range [f, t).  region_chg does
572  * not change the number of huge pages represented by the
573  * map.  A number of new file_region structures is added to the cache as a
574  * placeholder, for the subsequent region_add call to use. At least 1
575  * file_region structure is added.
576  *
577  * out_regions_needed is the number of regions added to the
578  * resv->adds_in_progress.  This value needs to be provided to a follow up call
579  * to region_add or region_abort for proper accounting.
580  *
581  * Returns the number of huge pages that need to be added to the existing
582  * reservation map for the range [f, t).  This number is greater or equal to
583  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
584  * is needed and can not be allocated.
585  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)586 static long region_chg(struct resv_map *resv, long f, long t,
587 		       long *out_regions_needed)
588 {
589 	long chg = 0;
590 
591 	spin_lock(&resv->lock);
592 
593 	/* Count how many hugepages in this range are NOT represented. */
594 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
595 				       out_regions_needed);
596 
597 	if (*out_regions_needed == 0)
598 		*out_regions_needed = 1;
599 
600 	if (allocate_file_region_entries(resv, *out_regions_needed))
601 		return -ENOMEM;
602 
603 	resv->adds_in_progress += *out_regions_needed;
604 
605 	spin_unlock(&resv->lock);
606 	return chg;
607 }
608 
609 /*
610  * Abort the in progress add operation.  The adds_in_progress field
611  * of the resv_map keeps track of the operations in progress between
612  * calls to region_chg and region_add.  Operations are sometimes
613  * aborted after the call to region_chg.  In such cases, region_abort
614  * is called to decrement the adds_in_progress counter. regions_needed
615  * is the value returned by the region_chg call, it is used to decrement
616  * the adds_in_progress counter.
617  *
618  * NOTE: The range arguments [f, t) are not needed or used in this
619  * routine.  They are kept to make reading the calling code easier as
620  * arguments will match the associated region_chg call.
621  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)622 static void region_abort(struct resv_map *resv, long f, long t,
623 			 long regions_needed)
624 {
625 	spin_lock(&resv->lock);
626 	VM_BUG_ON(!resv->region_cache_count);
627 	resv->adds_in_progress -= regions_needed;
628 	spin_unlock(&resv->lock);
629 }
630 
631 /*
632  * Delete the specified range [f, t) from the reserve map.  If the
633  * t parameter is LONG_MAX, this indicates that ALL regions after f
634  * should be deleted.  Locate the regions which intersect [f, t)
635  * and either trim, delete or split the existing regions.
636  *
637  * Returns the number of huge pages deleted from the reserve map.
638  * In the normal case, the return value is zero or more.  In the
639  * case where a region must be split, a new region descriptor must
640  * be allocated.  If the allocation fails, -ENOMEM will be returned.
641  * NOTE: If the parameter t == LONG_MAX, then we will never split
642  * a region and possibly return -ENOMEM.  Callers specifying
643  * t == LONG_MAX do not need to check for -ENOMEM error.
644  */
region_del(struct resv_map * resv,long f,long t)645 static long region_del(struct resv_map *resv, long f, long t)
646 {
647 	struct list_head *head = &resv->regions;
648 	struct file_region *rg, *trg;
649 	struct file_region *nrg = NULL;
650 	long del = 0;
651 
652 retry:
653 	spin_lock(&resv->lock);
654 	list_for_each_entry_safe(rg, trg, head, link) {
655 		/*
656 		 * Skip regions before the range to be deleted.  file_region
657 		 * ranges are normally of the form [from, to).  However, there
658 		 * may be a "placeholder" entry in the map which is of the form
659 		 * (from, to) with from == to.  Check for placeholder entries
660 		 * at the beginning of the range to be deleted.
661 		 */
662 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
663 			continue;
664 
665 		if (rg->from >= t)
666 			break;
667 
668 		if (f > rg->from && t < rg->to) { /* Must split region */
669 			/*
670 			 * Check for an entry in the cache before dropping
671 			 * lock and attempting allocation.
672 			 */
673 			if (!nrg &&
674 			    resv->region_cache_count > resv->adds_in_progress) {
675 				nrg = list_first_entry(&resv->region_cache,
676 							struct file_region,
677 							link);
678 				list_del(&nrg->link);
679 				resv->region_cache_count--;
680 			}
681 
682 			if (!nrg) {
683 				spin_unlock(&resv->lock);
684 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
685 				if (!nrg)
686 					return -ENOMEM;
687 				goto retry;
688 			}
689 
690 			del += t - f;
691 			hugetlb_cgroup_uncharge_file_region(
692 				resv, rg, t - f, false);
693 
694 			/* New entry for end of split region */
695 			nrg->from = t;
696 			nrg->to = rg->to;
697 
698 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
699 
700 			INIT_LIST_HEAD(&nrg->link);
701 
702 			/* Original entry is trimmed */
703 			rg->to = f;
704 
705 			list_add(&nrg->link, &rg->link);
706 			nrg = NULL;
707 			break;
708 		}
709 
710 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
711 			del += rg->to - rg->from;
712 			hugetlb_cgroup_uncharge_file_region(resv, rg,
713 							    rg->to - rg->from, true);
714 			list_del(&rg->link);
715 			kfree(rg);
716 			continue;
717 		}
718 
719 		if (f <= rg->from) {	/* Trim beginning of region */
720 			hugetlb_cgroup_uncharge_file_region(resv, rg,
721 							    t - rg->from, false);
722 
723 			del += t - rg->from;
724 			rg->from = t;
725 		} else {		/* Trim end of region */
726 			hugetlb_cgroup_uncharge_file_region(resv, rg,
727 							    rg->to - f, false);
728 
729 			del += rg->to - f;
730 			rg->to = f;
731 		}
732 	}
733 
734 	spin_unlock(&resv->lock);
735 	kfree(nrg);
736 	return del;
737 }
738 
739 /*
740  * A rare out of memory error was encountered which prevented removal of
741  * the reserve map region for a page.  The huge page itself was free'ed
742  * and removed from the page cache.  This routine will adjust the subpool
743  * usage count, and the global reserve count if needed.  By incrementing
744  * these counts, the reserve map entry which could not be deleted will
745  * appear as a "reserved" entry instead of simply dangling with incorrect
746  * counts.
747  */
hugetlb_fix_reserve_counts(struct inode * inode)748 void hugetlb_fix_reserve_counts(struct inode *inode)
749 {
750 	struct hugepage_subpool *spool = subpool_inode(inode);
751 	long rsv_adjust;
752 	bool reserved = false;
753 
754 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
755 	if (rsv_adjust > 0) {
756 		struct hstate *h = hstate_inode(inode);
757 
758 		if (!hugetlb_acct_memory(h, 1))
759 			reserved = true;
760 	} else if (!rsv_adjust) {
761 		reserved = true;
762 	}
763 
764 	if (!reserved)
765 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
766 }
767 
768 /*
769  * Count and return the number of huge pages in the reserve map
770  * that intersect with the range [f, t).
771  */
region_count(struct resv_map * resv,long f,long t)772 static long region_count(struct resv_map *resv, long f, long t)
773 {
774 	struct list_head *head = &resv->regions;
775 	struct file_region *rg;
776 	long chg = 0;
777 
778 	spin_lock(&resv->lock);
779 	/* Locate each segment we overlap with, and count that overlap. */
780 	list_for_each_entry(rg, head, link) {
781 		long seg_from;
782 		long seg_to;
783 
784 		if (rg->to <= f)
785 			continue;
786 		if (rg->from >= t)
787 			break;
788 
789 		seg_from = max(rg->from, f);
790 		seg_to = min(rg->to, t);
791 
792 		chg += seg_to - seg_from;
793 	}
794 	spin_unlock(&resv->lock);
795 
796 	return chg;
797 }
798 
799 /*
800  * Convert the address within this vma to the page offset within
801  * the mapping, in pagecache page units; huge pages here.
802  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)803 static pgoff_t vma_hugecache_offset(struct hstate *h,
804 			struct vm_area_struct *vma, unsigned long address)
805 {
806 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
807 			(vma->vm_pgoff >> huge_page_order(h));
808 }
809 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)810 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
811 				     unsigned long address)
812 {
813 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
814 }
815 EXPORT_SYMBOL_GPL(linear_hugepage_index);
816 
817 /*
818  * Return the size of the pages allocated when backing a VMA. In the majority
819  * cases this will be same size as used by the page table entries.
820  */
vma_kernel_pagesize(struct vm_area_struct * vma)821 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
822 {
823 	if (vma->vm_ops && vma->vm_ops->pagesize)
824 		return vma->vm_ops->pagesize(vma);
825 	return PAGE_SIZE;
826 }
827 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
828 
829 /*
830  * Return the page size being used by the MMU to back a VMA. In the majority
831  * of cases, the page size used by the kernel matches the MMU size. On
832  * architectures where it differs, an architecture-specific 'strong'
833  * version of this symbol is required.
834  */
vma_mmu_pagesize(struct vm_area_struct * vma)835 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
836 {
837 	return vma_kernel_pagesize(vma);
838 }
839 
840 /*
841  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
842  * bits of the reservation map pointer, which are always clear due to
843  * alignment.
844  */
845 #define HPAGE_RESV_OWNER    (1UL << 0)
846 #define HPAGE_RESV_UNMAPPED (1UL << 1)
847 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
848 
849 /*
850  * These helpers are used to track how many pages are reserved for
851  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
852  * is guaranteed to have their future faults succeed.
853  *
854  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
855  * the reserve counters are updated with the hugetlb_lock held. It is safe
856  * to reset the VMA at fork() time as it is not in use yet and there is no
857  * chance of the global counters getting corrupted as a result of the values.
858  *
859  * The private mapping reservation is represented in a subtly different
860  * manner to a shared mapping.  A shared mapping has a region map associated
861  * with the underlying file, this region map represents the backing file
862  * pages which have ever had a reservation assigned which this persists even
863  * after the page is instantiated.  A private mapping has a region map
864  * associated with the original mmap which is attached to all VMAs which
865  * reference it, this region map represents those offsets which have consumed
866  * reservation ie. where pages have been instantiated.
867  */
get_vma_private_data(struct vm_area_struct * vma)868 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
869 {
870 	return (unsigned long)vma->vm_private_data;
871 }
872 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)873 static void set_vma_private_data(struct vm_area_struct *vma,
874 							unsigned long value)
875 {
876 	vma->vm_private_data = (void *)value;
877 }
878 
879 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)880 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
881 					  struct hugetlb_cgroup *h_cg,
882 					  struct hstate *h)
883 {
884 #ifdef CONFIG_CGROUP_HUGETLB
885 	if (!h_cg || !h) {
886 		resv_map->reservation_counter = NULL;
887 		resv_map->pages_per_hpage = 0;
888 		resv_map->css = NULL;
889 	} else {
890 		resv_map->reservation_counter =
891 			&h_cg->rsvd_hugepage[hstate_index(h)];
892 		resv_map->pages_per_hpage = pages_per_huge_page(h);
893 		resv_map->css = &h_cg->css;
894 	}
895 #endif
896 }
897 
resv_map_alloc(void)898 struct resv_map *resv_map_alloc(void)
899 {
900 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
901 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
902 
903 	if (!resv_map || !rg) {
904 		kfree(resv_map);
905 		kfree(rg);
906 		return NULL;
907 	}
908 
909 	kref_init(&resv_map->refs);
910 	spin_lock_init(&resv_map->lock);
911 	INIT_LIST_HEAD(&resv_map->regions);
912 
913 	resv_map->adds_in_progress = 0;
914 	/*
915 	 * Initialize these to 0. On shared mappings, 0's here indicate these
916 	 * fields don't do cgroup accounting. On private mappings, these will be
917 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
918 	 * reservations are to be un-charged from here.
919 	 */
920 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
921 
922 	INIT_LIST_HEAD(&resv_map->region_cache);
923 	list_add(&rg->link, &resv_map->region_cache);
924 	resv_map->region_cache_count = 1;
925 
926 	return resv_map;
927 }
928 
resv_map_release(struct kref * ref)929 void resv_map_release(struct kref *ref)
930 {
931 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
932 	struct list_head *head = &resv_map->region_cache;
933 	struct file_region *rg, *trg;
934 
935 	/* Clear out any active regions before we release the map. */
936 	region_del(resv_map, 0, LONG_MAX);
937 
938 	/* ... and any entries left in the cache */
939 	list_for_each_entry_safe(rg, trg, head, link) {
940 		list_del(&rg->link);
941 		kfree(rg);
942 	}
943 
944 	VM_BUG_ON(resv_map->adds_in_progress);
945 
946 	kfree(resv_map);
947 }
948 
inode_resv_map(struct inode * inode)949 static inline struct resv_map *inode_resv_map(struct inode *inode)
950 {
951 	/*
952 	 * At inode evict time, i_mapping may not point to the original
953 	 * address space within the inode.  This original address space
954 	 * contains the pointer to the resv_map.  So, always use the
955 	 * address space embedded within the inode.
956 	 * The VERY common case is inode->mapping == &inode->i_data but,
957 	 * this may not be true for device special inodes.
958 	 */
959 	return (struct resv_map *)(&inode->i_data)->private_data;
960 }
961 
vma_resv_map(struct vm_area_struct * vma)962 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
963 {
964 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965 	if (vma->vm_flags & VM_MAYSHARE) {
966 		struct address_space *mapping = vma->vm_file->f_mapping;
967 		struct inode *inode = mapping->host;
968 
969 		return inode_resv_map(inode);
970 
971 	} else {
972 		return (struct resv_map *)(get_vma_private_data(vma) &
973 							~HPAGE_RESV_MASK);
974 	}
975 }
976 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)977 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
978 {
979 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
981 
982 	set_vma_private_data(vma, (get_vma_private_data(vma) &
983 				HPAGE_RESV_MASK) | (unsigned long)map);
984 }
985 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)986 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
992 }
993 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)994 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
995 {
996 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997 
998 	return (get_vma_private_data(vma) & flag) != 0;
999 }
1000 
1001 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)1002 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1003 {
1004 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005 	if (!(vma->vm_flags & VM_MAYSHARE))
1006 		vma->vm_private_data = (void *)0;
1007 }
1008 
1009 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1010 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1011 {
1012 	if (vma->vm_flags & VM_NORESERVE) {
1013 		/*
1014 		 * This address is already reserved by other process(chg == 0),
1015 		 * so, we should decrement reserved count. Without decrementing,
1016 		 * reserve count remains after releasing inode, because this
1017 		 * allocated page will go into page cache and is regarded as
1018 		 * coming from reserved pool in releasing step.  Currently, we
1019 		 * don't have any other solution to deal with this situation
1020 		 * properly, so add work-around here.
1021 		 */
1022 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1023 			return true;
1024 		else
1025 			return false;
1026 	}
1027 
1028 	/* Shared mappings always use reserves */
1029 	if (vma->vm_flags & VM_MAYSHARE) {
1030 		/*
1031 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1032 		 * be a region map for all pages.  The only situation where
1033 		 * there is no region map is if a hole was punched via
1034 		 * fallocate.  In this case, there really are no reserves to
1035 		 * use.  This situation is indicated if chg != 0.
1036 		 */
1037 		if (chg)
1038 			return false;
1039 		else
1040 			return true;
1041 	}
1042 
1043 	/*
1044 	 * Only the process that called mmap() has reserves for
1045 	 * private mappings.
1046 	 */
1047 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048 		/*
1049 		 * Like the shared case above, a hole punch or truncate
1050 		 * could have been performed on the private mapping.
1051 		 * Examine the value of chg to determine if reserves
1052 		 * actually exist or were previously consumed.
1053 		 * Very Subtle - The value of chg comes from a previous
1054 		 * call to vma_needs_reserves().  The reserve map for
1055 		 * private mappings has different (opposite) semantics
1056 		 * than that of shared mappings.  vma_needs_reserves()
1057 		 * has already taken this difference in semantics into
1058 		 * account.  Therefore, the meaning of chg is the same
1059 		 * as in the shared case above.  Code could easily be
1060 		 * combined, but keeping it separate draws attention to
1061 		 * subtle differences.
1062 		 */
1063 		if (chg)
1064 			return false;
1065 		else
1066 			return true;
1067 	}
1068 
1069 	return false;
1070 }
1071 
enqueue_huge_page(struct hstate * h,struct page * page)1072 static void enqueue_huge_page(struct hstate *h, struct page *page)
1073 {
1074 	int nid = page_to_nid(page);
1075 
1076 	lockdep_assert_held(&hugetlb_lock);
1077 	VM_BUG_ON_PAGE(page_count(page), page);
1078 
1079 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1080 	h->free_huge_pages++;
1081 	h->free_huge_pages_node[nid]++;
1082 	SetHPageFreed(page);
1083 }
1084 
dequeue_huge_page_node_exact(struct hstate * h,int nid)1085 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1086 {
1087 	struct page *page;
1088 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1089 
1090 	lockdep_assert_held(&hugetlb_lock);
1091 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1092 		if (pin && !is_pinnable_page(page))
1093 			continue;
1094 
1095 		if (PageHWPoison(page))
1096 			continue;
1097 
1098 		list_move(&page->lru, &h->hugepage_activelist);
1099 		set_page_refcounted(page);
1100 		ClearHPageFreed(page);
1101 		h->free_huge_pages--;
1102 		h->free_huge_pages_node[nid]--;
1103 		return page;
1104 	}
1105 
1106 	return NULL;
1107 }
1108 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1109 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1110 		nodemask_t *nmask)
1111 {
1112 	unsigned int cpuset_mems_cookie;
1113 	struct zonelist *zonelist;
1114 	struct zone *zone;
1115 	struct zoneref *z;
1116 	int node = NUMA_NO_NODE;
1117 
1118 	zonelist = node_zonelist(nid, gfp_mask);
1119 
1120 retry_cpuset:
1121 	cpuset_mems_cookie = read_mems_allowed_begin();
1122 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1123 		struct page *page;
1124 
1125 		if (!cpuset_zone_allowed(zone, gfp_mask))
1126 			continue;
1127 		/*
1128 		 * no need to ask again on the same node. Pool is node rather than
1129 		 * zone aware
1130 		 */
1131 		if (zone_to_nid(zone) == node)
1132 			continue;
1133 		node = zone_to_nid(zone);
1134 
1135 		page = dequeue_huge_page_node_exact(h, node);
1136 		if (page)
1137 			return page;
1138 	}
1139 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1140 		goto retry_cpuset;
1141 
1142 	return NULL;
1143 }
1144 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1145 static struct page *dequeue_huge_page_vma(struct hstate *h,
1146 				struct vm_area_struct *vma,
1147 				unsigned long address, int avoid_reserve,
1148 				long chg)
1149 {
1150 	struct page *page = NULL;
1151 	struct mempolicy *mpol;
1152 	gfp_t gfp_mask;
1153 	nodemask_t *nodemask;
1154 	int nid;
1155 
1156 	/*
1157 	 * A child process with MAP_PRIVATE mappings created by their parent
1158 	 * have no page reserves. This check ensures that reservations are
1159 	 * not "stolen". The child may still get SIGKILLed
1160 	 */
1161 	if (!vma_has_reserves(vma, chg) &&
1162 			h->free_huge_pages - h->resv_huge_pages == 0)
1163 		goto err;
1164 
1165 	/* If reserves cannot be used, ensure enough pages are in the pool */
1166 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1167 		goto err;
1168 
1169 	gfp_mask = htlb_alloc_mask(h);
1170 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1171 
1172 	if (mpol_is_preferred_many(mpol)) {
1173 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1174 
1175 		/* Fallback to all nodes if page==NULL */
1176 		nodemask = NULL;
1177 	}
1178 
1179 	if (!page)
1180 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1181 
1182 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1183 		SetHPageRestoreReserve(page);
1184 		h->resv_huge_pages--;
1185 	}
1186 
1187 	mpol_cond_put(mpol);
1188 	return page;
1189 
1190 err:
1191 	return NULL;
1192 }
1193 
1194 /*
1195  * common helper functions for hstate_next_node_to_{alloc|free}.
1196  * We may have allocated or freed a huge page based on a different
1197  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1198  * be outside of *nodes_allowed.  Ensure that we use an allowed
1199  * node for alloc or free.
1200  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1201 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1202 {
1203 	nid = next_node_in(nid, *nodes_allowed);
1204 	VM_BUG_ON(nid >= MAX_NUMNODES);
1205 
1206 	return nid;
1207 }
1208 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1209 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1210 {
1211 	if (!node_isset(nid, *nodes_allowed))
1212 		nid = next_node_allowed(nid, nodes_allowed);
1213 	return nid;
1214 }
1215 
1216 /*
1217  * returns the previously saved node ["this node"] from which to
1218  * allocate a persistent huge page for the pool and advance the
1219  * next node from which to allocate, handling wrap at end of node
1220  * mask.
1221  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1222 static int hstate_next_node_to_alloc(struct hstate *h,
1223 					nodemask_t *nodes_allowed)
1224 {
1225 	int nid;
1226 
1227 	VM_BUG_ON(!nodes_allowed);
1228 
1229 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1230 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1231 
1232 	return nid;
1233 }
1234 
1235 /*
1236  * helper for remove_pool_huge_page() - return the previously saved
1237  * node ["this node"] from which to free a huge page.  Advance the
1238  * next node id whether or not we find a free huge page to free so
1239  * that the next attempt to free addresses the next node.
1240  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1241 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1242 {
1243 	int nid;
1244 
1245 	VM_BUG_ON(!nodes_allowed);
1246 
1247 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1248 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1249 
1250 	return nid;
1251 }
1252 
1253 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1254 	for (nr_nodes = nodes_weight(*mask);				\
1255 		nr_nodes > 0 &&						\
1256 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1257 		nr_nodes--)
1258 
1259 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1260 	for (nr_nodes = nodes_weight(*mask);				\
1261 		nr_nodes > 0 &&						\
1262 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1263 		nr_nodes--)
1264 
1265 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1266 static void destroy_compound_gigantic_page(struct page *page,
1267 					unsigned int order)
1268 {
1269 	int i;
1270 	int nr_pages = 1 << order;
1271 	struct page *p = page + 1;
1272 
1273 	atomic_set(compound_mapcount_ptr(page), 0);
1274 	atomic_set(compound_pincount_ptr(page), 0);
1275 
1276 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277 		clear_compound_head(p);
1278 		set_page_refcounted(p);
1279 	}
1280 
1281 	set_compound_order(page, 0);
1282 	page[1].compound_nr = 0;
1283 	__ClearPageHead(page);
1284 }
1285 
free_gigantic_page(struct page * page,unsigned int order)1286 static void free_gigantic_page(struct page *page, unsigned int order)
1287 {
1288 	/*
1289 	 * If the page isn't allocated using the cma allocator,
1290 	 * cma_release() returns false.
1291 	 */
1292 #ifdef CONFIG_CMA
1293 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1294 		return;
1295 #endif
1296 
1297 	free_contig_range(page_to_pfn(page), 1 << order);
1298 }
1299 
1300 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1301 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1302 		int nid, nodemask_t *nodemask)
1303 {
1304 	unsigned long nr_pages = pages_per_huge_page(h);
1305 	if (nid == NUMA_NO_NODE)
1306 		nid = numa_mem_id();
1307 
1308 #ifdef CONFIG_CMA
1309 	{
1310 		struct page *page;
1311 		int node;
1312 
1313 		if (hugetlb_cma[nid]) {
1314 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1315 					huge_page_order(h),
1316 					GFP_KERNEL | __GFP_NOWARN);
1317 			if (page)
1318 				return page;
1319 		}
1320 
1321 		if (!(gfp_mask & __GFP_THISNODE)) {
1322 			for_each_node_mask(node, *nodemask) {
1323 				if (node == nid || !hugetlb_cma[node])
1324 					continue;
1325 
1326 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1327 						huge_page_order(h),
1328 						GFP_KERNEL | __GFP_NOWARN);
1329 				if (page)
1330 					return page;
1331 			}
1332 		}
1333 	}
1334 #endif
1335 
1336 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1337 }
1338 
1339 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1340 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1341 					int nid, nodemask_t *nodemask)
1342 {
1343 	return NULL;
1344 }
1345 #endif /* CONFIG_CONTIG_ALLOC */
1346 
1347 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1348 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1349 					int nid, nodemask_t *nodemask)
1350 {
1351 	return NULL;
1352 }
free_gigantic_page(struct page * page,unsigned int order)1353 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1354 static inline void destroy_compound_gigantic_page(struct page *page,
1355 						unsigned int order) { }
1356 #endif
1357 
1358 /*
1359  * Remove hugetlb page from lists, and update dtor so that page appears
1360  * as just a compound page.  A reference is held on the page.
1361  *
1362  * Must be called with hugetlb lock held.
1363  */
remove_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1364 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1365 							bool adjust_surplus)
1366 {
1367 	int nid = page_to_nid(page);
1368 
1369 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1370 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1371 
1372 	lockdep_assert_held(&hugetlb_lock);
1373 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1374 		return;
1375 
1376 	list_del(&page->lru);
1377 
1378 	if (HPageFreed(page)) {
1379 		h->free_huge_pages--;
1380 		h->free_huge_pages_node[nid]--;
1381 	}
1382 	if (adjust_surplus) {
1383 		h->surplus_huge_pages--;
1384 		h->surplus_huge_pages_node[nid]--;
1385 	}
1386 
1387 	/*
1388 	 * Very subtle
1389 	 *
1390 	 * For non-gigantic pages set the destructor to the normal compound
1391 	 * page dtor.  This is needed in case someone takes an additional
1392 	 * temporary ref to the page, and freeing is delayed until they drop
1393 	 * their reference.
1394 	 *
1395 	 * For gigantic pages set the destructor to the null dtor.  This
1396 	 * destructor will never be called.  Before freeing the gigantic
1397 	 * page destroy_compound_gigantic_page will turn the compound page
1398 	 * into a simple group of pages.  After this the destructor does not
1399 	 * apply.
1400 	 *
1401 	 * This handles the case where more than one ref is held when and
1402 	 * after update_and_free_page is called.
1403 	 */
1404 	set_page_refcounted(page);
1405 	if (hstate_is_gigantic(h))
1406 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1407 	else
1408 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1409 
1410 	h->nr_huge_pages--;
1411 	h->nr_huge_pages_node[nid]--;
1412 }
1413 
add_hugetlb_page(struct hstate * h,struct page * page,bool adjust_surplus)1414 static void add_hugetlb_page(struct hstate *h, struct page *page,
1415 			     bool adjust_surplus)
1416 {
1417 	int zeroed;
1418 	int nid = page_to_nid(page);
1419 
1420 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1421 
1422 	lockdep_assert_held(&hugetlb_lock);
1423 
1424 	INIT_LIST_HEAD(&page->lru);
1425 	h->nr_huge_pages++;
1426 	h->nr_huge_pages_node[nid]++;
1427 
1428 	if (adjust_surplus) {
1429 		h->surplus_huge_pages++;
1430 		h->surplus_huge_pages_node[nid]++;
1431 	}
1432 
1433 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1434 	set_page_private(page, 0);
1435 	SetHPageVmemmapOptimized(page);
1436 
1437 	/*
1438 	 * This page is about to be managed by the hugetlb allocator and
1439 	 * should have no users.  Drop our reference, and check for others
1440 	 * just in case.
1441 	 */
1442 	zeroed = put_page_testzero(page);
1443 	if (!zeroed)
1444 		/*
1445 		 * It is VERY unlikely soneone else has taken a ref on
1446 		 * the page.  In this case, we simply return as the
1447 		 * hugetlb destructor (free_huge_page) will be called
1448 		 * when this other ref is dropped.
1449 		 */
1450 		return;
1451 
1452 	arch_clear_hugepage_flags(page);
1453 	enqueue_huge_page(h, page);
1454 }
1455 
__update_and_free_page(struct hstate * h,struct page * page)1456 static void __update_and_free_page(struct hstate *h, struct page *page)
1457 {
1458 	int i;
1459 	struct page *subpage = page;
1460 
1461 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1462 		return;
1463 
1464 	if (alloc_huge_page_vmemmap(h, page)) {
1465 		spin_lock_irq(&hugetlb_lock);
1466 		/*
1467 		 * If we cannot allocate vmemmap pages, just refuse to free the
1468 		 * page and put the page back on the hugetlb free list and treat
1469 		 * as a surplus page.
1470 		 */
1471 		add_hugetlb_page(h, page, true);
1472 		spin_unlock_irq(&hugetlb_lock);
1473 		return;
1474 	}
1475 
1476 	for (i = 0; i < pages_per_huge_page(h);
1477 	     i++, subpage = mem_map_next(subpage, page, i)) {
1478 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1479 				1 << PG_referenced | 1 << PG_dirty |
1480 				1 << PG_active | 1 << PG_private |
1481 				1 << PG_writeback);
1482 	}
1483 	if (hstate_is_gigantic(h)) {
1484 		destroy_compound_gigantic_page(page, huge_page_order(h));
1485 		free_gigantic_page(page, huge_page_order(h));
1486 	} else {
1487 		__free_pages(page, huge_page_order(h));
1488 	}
1489 }
1490 
1491 /*
1492  * As update_and_free_page() can be called under any context, so we cannot
1493  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1494  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1495  * the vmemmap pages.
1496  *
1497  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1498  * freed and frees them one-by-one. As the page->mapping pointer is going
1499  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1500  * structure of a lockless linked list of huge pages to be freed.
1501  */
1502 static LLIST_HEAD(hpage_freelist);
1503 
free_hpage_workfn(struct work_struct * work)1504 static void free_hpage_workfn(struct work_struct *work)
1505 {
1506 	struct llist_node *node;
1507 
1508 	node = llist_del_all(&hpage_freelist);
1509 
1510 	while (node) {
1511 		struct page *page;
1512 		struct hstate *h;
1513 
1514 		page = container_of((struct address_space **)node,
1515 				     struct page, mapping);
1516 		node = node->next;
1517 		page->mapping = NULL;
1518 		/*
1519 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1520 		 * is going to trigger because a previous call to
1521 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1522 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1523 		 */
1524 		h = size_to_hstate(page_size(page));
1525 
1526 		__update_and_free_page(h, page);
1527 
1528 		cond_resched();
1529 	}
1530 }
1531 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1532 
flush_free_hpage_work(struct hstate * h)1533 static inline void flush_free_hpage_work(struct hstate *h)
1534 {
1535 	if (free_vmemmap_pages_per_hpage(h))
1536 		flush_work(&free_hpage_work);
1537 }
1538 
update_and_free_page(struct hstate * h,struct page * page,bool atomic)1539 static void update_and_free_page(struct hstate *h, struct page *page,
1540 				 bool atomic)
1541 {
1542 	if (!HPageVmemmapOptimized(page) || !atomic) {
1543 		__update_and_free_page(h, page);
1544 		return;
1545 	}
1546 
1547 	/*
1548 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1549 	 *
1550 	 * Only call schedule_work() if hpage_freelist is previously
1551 	 * empty. Otherwise, schedule_work() had been called but the workfn
1552 	 * hasn't retrieved the list yet.
1553 	 */
1554 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1555 		schedule_work(&free_hpage_work);
1556 }
1557 
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1558 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1559 {
1560 	struct page *page, *t_page;
1561 
1562 	list_for_each_entry_safe(page, t_page, list, lru) {
1563 		update_and_free_page(h, page, false);
1564 		cond_resched();
1565 	}
1566 }
1567 
size_to_hstate(unsigned long size)1568 struct hstate *size_to_hstate(unsigned long size)
1569 {
1570 	struct hstate *h;
1571 
1572 	for_each_hstate(h) {
1573 		if (huge_page_size(h) == size)
1574 			return h;
1575 	}
1576 	return NULL;
1577 }
1578 
free_huge_page(struct page * page)1579 void free_huge_page(struct page *page)
1580 {
1581 	/*
1582 	 * Can't pass hstate in here because it is called from the
1583 	 * compound page destructor.
1584 	 */
1585 	struct hstate *h = page_hstate(page);
1586 	int nid = page_to_nid(page);
1587 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1588 	bool restore_reserve;
1589 	unsigned long flags;
1590 
1591 	VM_BUG_ON_PAGE(page_count(page), page);
1592 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1593 
1594 	hugetlb_set_page_subpool(page, NULL);
1595 	page->mapping = NULL;
1596 	restore_reserve = HPageRestoreReserve(page);
1597 	ClearHPageRestoreReserve(page);
1598 
1599 	/*
1600 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1601 	 * reservation.  If the page was associated with a subpool, there
1602 	 * would have been a page reserved in the subpool before allocation
1603 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1604 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1605 	 * remove the reserved page from the subpool.
1606 	 */
1607 	if (!restore_reserve) {
1608 		/*
1609 		 * A return code of zero implies that the subpool will be
1610 		 * under its minimum size if the reservation is not restored
1611 		 * after page is free.  Therefore, force restore_reserve
1612 		 * operation.
1613 		 */
1614 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1615 			restore_reserve = true;
1616 	}
1617 
1618 	spin_lock_irqsave(&hugetlb_lock, flags);
1619 	ClearHPageMigratable(page);
1620 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1621 				     pages_per_huge_page(h), page);
1622 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1623 					  pages_per_huge_page(h), page);
1624 	if (restore_reserve)
1625 		h->resv_huge_pages++;
1626 
1627 	if (HPageTemporary(page)) {
1628 		remove_hugetlb_page(h, page, false);
1629 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1630 		update_and_free_page(h, page, true);
1631 	} else if (h->surplus_huge_pages_node[nid]) {
1632 		/* remove the page from active list */
1633 		remove_hugetlb_page(h, page, true);
1634 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1635 		update_and_free_page(h, page, true);
1636 	} else {
1637 		arch_clear_hugepage_flags(page);
1638 		enqueue_huge_page(h, page);
1639 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1640 	}
1641 }
1642 
1643 /*
1644  * Must be called with the hugetlb lock held
1645  */
__prep_account_new_huge_page(struct hstate * h,int nid)1646 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1647 {
1648 	lockdep_assert_held(&hugetlb_lock);
1649 	h->nr_huge_pages++;
1650 	h->nr_huge_pages_node[nid]++;
1651 }
1652 
__prep_new_huge_page(struct hstate * h,struct page * page)1653 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1654 {
1655 	free_huge_page_vmemmap(h, page);
1656 	INIT_LIST_HEAD(&page->lru);
1657 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1658 	hugetlb_set_page_subpool(page, NULL);
1659 	set_hugetlb_cgroup(page, NULL);
1660 	set_hugetlb_cgroup_rsvd(page, NULL);
1661 }
1662 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1663 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1664 {
1665 	__prep_new_huge_page(h, page);
1666 	spin_lock_irq(&hugetlb_lock);
1667 	__prep_account_new_huge_page(h, nid);
1668 	spin_unlock_irq(&hugetlb_lock);
1669 }
1670 
prep_compound_gigantic_page(struct page * page,unsigned int order)1671 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1672 {
1673 	int i, j;
1674 	int nr_pages = 1 << order;
1675 	struct page *p = page + 1;
1676 
1677 	/* we rely on prep_new_huge_page to set the destructor */
1678 	set_compound_order(page, order);
1679 	__ClearPageReserved(page);
1680 	__SetPageHead(page);
1681 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1682 		/*
1683 		 * For gigantic hugepages allocated through bootmem at
1684 		 * boot, it's safer to be consistent with the not-gigantic
1685 		 * hugepages and clear the PG_reserved bit from all tail pages
1686 		 * too.  Otherwise drivers using get_user_pages() to access tail
1687 		 * pages may get the reference counting wrong if they see
1688 		 * PG_reserved set on a tail page (despite the head page not
1689 		 * having PG_reserved set).  Enforcing this consistency between
1690 		 * head and tail pages allows drivers to optimize away a check
1691 		 * on the head page when they need know if put_page() is needed
1692 		 * after get_user_pages().
1693 		 */
1694 		__ClearPageReserved(p);
1695 		/*
1696 		 * Subtle and very unlikely
1697 		 *
1698 		 * Gigantic 'page allocators' such as memblock or cma will
1699 		 * return a set of pages with each page ref counted.  We need
1700 		 * to turn this set of pages into a compound page with tail
1701 		 * page ref counts set to zero.  Code such as speculative page
1702 		 * cache adding could take a ref on a 'to be' tail page.
1703 		 * We need to respect any increased ref count, and only set
1704 		 * the ref count to zero if count is currently 1.  If count
1705 		 * is not 1, we return an error.  An error return indicates
1706 		 * the set of pages can not be converted to a gigantic page.
1707 		 * The caller who allocated the pages should then discard the
1708 		 * pages using the appropriate free interface.
1709 		 */
1710 		if (!page_ref_freeze(p, 1)) {
1711 			pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1712 			goto out_error;
1713 		}
1714 		set_page_count(p, 0);
1715 		set_compound_head(p, page);
1716 	}
1717 	atomic_set(compound_mapcount_ptr(page), -1);
1718 	atomic_set(compound_pincount_ptr(page), 0);
1719 	return true;
1720 
1721 out_error:
1722 	/* undo tail page modifications made above */
1723 	p = page + 1;
1724 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1725 		clear_compound_head(p);
1726 		set_page_refcounted(p);
1727 	}
1728 	/* need to clear PG_reserved on remaining tail pages  */
1729 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1730 		__ClearPageReserved(p);
1731 	set_compound_order(page, 0);
1732 	page[1].compound_nr = 0;
1733 	__ClearPageHead(page);
1734 	return false;
1735 }
1736 
1737 /*
1738  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1739  * transparent huge pages.  See the PageTransHuge() documentation for more
1740  * details.
1741  */
PageHuge(struct page * page)1742 int PageHuge(struct page *page)
1743 {
1744 	if (!PageCompound(page))
1745 		return 0;
1746 
1747 	page = compound_head(page);
1748 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1749 }
1750 EXPORT_SYMBOL_GPL(PageHuge);
1751 
1752 /*
1753  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1754  * normal or transparent huge pages.
1755  */
PageHeadHuge(struct page * page_head)1756 int PageHeadHuge(struct page *page_head)
1757 {
1758 	if (!PageHead(page_head))
1759 		return 0;
1760 
1761 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1762 }
1763 
1764 /*
1765  * Find and lock address space (mapping) in write mode.
1766  *
1767  * Upon entry, the page is locked which means that page_mapping() is
1768  * stable.  Due to locking order, we can only trylock_write.  If we can
1769  * not get the lock, simply return NULL to caller.
1770  */
hugetlb_page_mapping_lock_write(struct page * hpage)1771 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1772 {
1773 	struct address_space *mapping = page_mapping(hpage);
1774 
1775 	if (!mapping)
1776 		return mapping;
1777 
1778 	if (i_mmap_trylock_write(mapping))
1779 		return mapping;
1780 
1781 	return NULL;
1782 }
1783 
hugetlb_basepage_index(struct page * page)1784 pgoff_t hugetlb_basepage_index(struct page *page)
1785 {
1786 	struct page *page_head = compound_head(page);
1787 	pgoff_t index = page_index(page_head);
1788 	unsigned long compound_idx;
1789 
1790 	if (compound_order(page_head) >= MAX_ORDER)
1791 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1792 	else
1793 		compound_idx = page - page_head;
1794 
1795 	return (index << compound_order(page_head)) + compound_idx;
1796 }
1797 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1798 static struct page *alloc_buddy_huge_page(struct hstate *h,
1799 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1800 		nodemask_t *node_alloc_noretry)
1801 {
1802 	int order = huge_page_order(h);
1803 	struct page *page;
1804 	bool alloc_try_hard = true;
1805 
1806 	/*
1807 	 * By default we always try hard to allocate the page with
1808 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1809 	 * a loop (to adjust global huge page counts) and previous allocation
1810 	 * failed, do not continue to try hard on the same node.  Use the
1811 	 * node_alloc_noretry bitmap to manage this state information.
1812 	 */
1813 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1814 		alloc_try_hard = false;
1815 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1816 	if (alloc_try_hard)
1817 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1818 	if (nid == NUMA_NO_NODE)
1819 		nid = numa_mem_id();
1820 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1821 	if (page)
1822 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1823 	else
1824 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1825 
1826 	/*
1827 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1828 	 * indicates an overall state change.  Clear bit so that we resume
1829 	 * normal 'try hard' allocations.
1830 	 */
1831 	if (node_alloc_noretry && page && !alloc_try_hard)
1832 		node_clear(nid, *node_alloc_noretry);
1833 
1834 	/*
1835 	 * If we tried hard to get a page but failed, set bit so that
1836 	 * subsequent attempts will not try as hard until there is an
1837 	 * overall state change.
1838 	 */
1839 	if (node_alloc_noretry && !page && alloc_try_hard)
1840 		node_set(nid, *node_alloc_noretry);
1841 
1842 	return page;
1843 }
1844 
1845 /*
1846  * Common helper to allocate a fresh hugetlb page. All specific allocators
1847  * should use this function to get new hugetlb pages
1848  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1849 static struct page *alloc_fresh_huge_page(struct hstate *h,
1850 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1851 		nodemask_t *node_alloc_noretry)
1852 {
1853 	struct page *page;
1854 	bool retry = false;
1855 
1856 retry:
1857 	if (hstate_is_gigantic(h))
1858 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1859 	else
1860 		page = alloc_buddy_huge_page(h, gfp_mask,
1861 				nid, nmask, node_alloc_noretry);
1862 	if (!page)
1863 		return NULL;
1864 
1865 	if (hstate_is_gigantic(h)) {
1866 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1867 			/*
1868 			 * Rare failure to convert pages to compound page.
1869 			 * Free pages and try again - ONCE!
1870 			 */
1871 			free_gigantic_page(page, huge_page_order(h));
1872 			if (!retry) {
1873 				retry = true;
1874 				goto retry;
1875 			}
1876 			return NULL;
1877 		}
1878 	}
1879 	prep_new_huge_page(h, page, page_to_nid(page));
1880 
1881 	return page;
1882 }
1883 
1884 /*
1885  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1886  * manner.
1887  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1888 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1889 				nodemask_t *node_alloc_noretry)
1890 {
1891 	struct page *page;
1892 	int nr_nodes, node;
1893 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1894 
1895 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1896 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1897 						node_alloc_noretry);
1898 		if (page)
1899 			break;
1900 	}
1901 
1902 	if (!page)
1903 		return 0;
1904 
1905 	put_page(page); /* free it into the hugepage allocator */
1906 
1907 	return 1;
1908 }
1909 
1910 /*
1911  * Remove huge page from pool from next node to free.  Attempt to keep
1912  * persistent huge pages more or less balanced over allowed nodes.
1913  * This routine only 'removes' the hugetlb page.  The caller must make
1914  * an additional call to free the page to low level allocators.
1915  * Called with hugetlb_lock locked.
1916  */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1917 static struct page *remove_pool_huge_page(struct hstate *h,
1918 						nodemask_t *nodes_allowed,
1919 						 bool acct_surplus)
1920 {
1921 	int nr_nodes, node;
1922 	struct page *page = NULL;
1923 
1924 	lockdep_assert_held(&hugetlb_lock);
1925 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1926 		/*
1927 		 * If we're returning unused surplus pages, only examine
1928 		 * nodes with surplus pages.
1929 		 */
1930 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1931 		    !list_empty(&h->hugepage_freelists[node])) {
1932 			page = list_entry(h->hugepage_freelists[node].next,
1933 					  struct page, lru);
1934 			remove_hugetlb_page(h, page, acct_surplus);
1935 			break;
1936 		}
1937 	}
1938 
1939 	return page;
1940 }
1941 
1942 /*
1943  * Dissolve a given free hugepage into free buddy pages. This function does
1944  * nothing for in-use hugepages and non-hugepages.
1945  * This function returns values like below:
1946  *
1947  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1948  *           when the system is under memory pressure and the feature of
1949  *           freeing unused vmemmap pages associated with each hugetlb page
1950  *           is enabled.
1951  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1952  *           (allocated or reserved.)
1953  *       0:  successfully dissolved free hugepages or the page is not a
1954  *           hugepage (considered as already dissolved)
1955  */
dissolve_free_huge_page(struct page * page)1956 int dissolve_free_huge_page(struct page *page)
1957 {
1958 	int rc = -EBUSY;
1959 
1960 retry:
1961 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1962 	if (!PageHuge(page))
1963 		return 0;
1964 
1965 	spin_lock_irq(&hugetlb_lock);
1966 	if (!PageHuge(page)) {
1967 		rc = 0;
1968 		goto out;
1969 	}
1970 
1971 	if (!page_count(page)) {
1972 		struct page *head = compound_head(page);
1973 		struct hstate *h = page_hstate(head);
1974 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1975 			goto out;
1976 
1977 		/*
1978 		 * We should make sure that the page is already on the free list
1979 		 * when it is dissolved.
1980 		 */
1981 		if (unlikely(!HPageFreed(head))) {
1982 			spin_unlock_irq(&hugetlb_lock);
1983 			cond_resched();
1984 
1985 			/*
1986 			 * Theoretically, we should return -EBUSY when we
1987 			 * encounter this race. In fact, we have a chance
1988 			 * to successfully dissolve the page if we do a
1989 			 * retry. Because the race window is quite small.
1990 			 * If we seize this opportunity, it is an optimization
1991 			 * for increasing the success rate of dissolving page.
1992 			 */
1993 			goto retry;
1994 		}
1995 
1996 		remove_hugetlb_page(h, head, false);
1997 		h->max_huge_pages--;
1998 		spin_unlock_irq(&hugetlb_lock);
1999 
2000 		/*
2001 		 * Normally update_and_free_page will allocate required vmemmmap
2002 		 * before freeing the page.  update_and_free_page will fail to
2003 		 * free the page if it can not allocate required vmemmap.  We
2004 		 * need to adjust max_huge_pages if the page is not freed.
2005 		 * Attempt to allocate vmemmmap here so that we can take
2006 		 * appropriate action on failure.
2007 		 */
2008 		rc = alloc_huge_page_vmemmap(h, head);
2009 		if (!rc) {
2010 			/*
2011 			 * Move PageHWPoison flag from head page to the raw
2012 			 * error page, which makes any subpages rather than
2013 			 * the error page reusable.
2014 			 */
2015 			if (PageHWPoison(head) && page != head) {
2016 				SetPageHWPoison(page);
2017 				ClearPageHWPoison(head);
2018 			}
2019 			update_and_free_page(h, head, false);
2020 		} else {
2021 			spin_lock_irq(&hugetlb_lock);
2022 			add_hugetlb_page(h, head, false);
2023 			h->max_huge_pages++;
2024 			spin_unlock_irq(&hugetlb_lock);
2025 		}
2026 
2027 		return rc;
2028 	}
2029 out:
2030 	spin_unlock_irq(&hugetlb_lock);
2031 	return rc;
2032 }
2033 
2034 /*
2035  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2036  * make specified memory blocks removable from the system.
2037  * Note that this will dissolve a free gigantic hugepage completely, if any
2038  * part of it lies within the given range.
2039  * Also note that if dissolve_free_huge_page() returns with an error, all
2040  * free hugepages that were dissolved before that error are lost.
2041  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2042 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2043 {
2044 	unsigned long pfn;
2045 	struct page *page;
2046 	int rc = 0;
2047 
2048 	if (!hugepages_supported())
2049 		return rc;
2050 
2051 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2052 		page = pfn_to_page(pfn);
2053 		rc = dissolve_free_huge_page(page);
2054 		if (rc)
2055 			break;
2056 	}
2057 
2058 	return rc;
2059 }
2060 
2061 /*
2062  * Allocates a fresh surplus page from the page allocator.
2063  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,bool zero_ref)2064 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2065 		int nid, nodemask_t *nmask, bool zero_ref)
2066 {
2067 	struct page *page = NULL;
2068 	bool retry = false;
2069 
2070 	if (hstate_is_gigantic(h))
2071 		return NULL;
2072 
2073 	spin_lock_irq(&hugetlb_lock);
2074 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2075 		goto out_unlock;
2076 	spin_unlock_irq(&hugetlb_lock);
2077 
2078 retry:
2079 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2080 	if (!page)
2081 		return NULL;
2082 
2083 	spin_lock_irq(&hugetlb_lock);
2084 	/*
2085 	 * We could have raced with the pool size change.
2086 	 * Double check that and simply deallocate the new page
2087 	 * if we would end up overcommiting the surpluses. Abuse
2088 	 * temporary page to workaround the nasty free_huge_page
2089 	 * codeflow
2090 	 */
2091 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2092 		SetHPageTemporary(page);
2093 		spin_unlock_irq(&hugetlb_lock);
2094 		put_page(page);
2095 		return NULL;
2096 	}
2097 
2098 	if (zero_ref) {
2099 		/*
2100 		 * Caller requires a page with zero ref count.
2101 		 * We will drop ref count here.  If someone else is holding
2102 		 * a ref, the page will be freed when they drop it.  Abuse
2103 		 * temporary page flag to accomplish this.
2104 		 */
2105 		SetHPageTemporary(page);
2106 		if (!put_page_testzero(page)) {
2107 			/*
2108 			 * Unexpected inflated ref count on freshly allocated
2109 			 * huge.  Retry once.
2110 			 */
2111 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2112 			spin_unlock_irq(&hugetlb_lock);
2113 			if (retry)
2114 				return NULL;
2115 
2116 			retry = true;
2117 			goto retry;
2118 		}
2119 		ClearHPageTemporary(page);
2120 	}
2121 
2122 	h->surplus_huge_pages++;
2123 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2124 
2125 out_unlock:
2126 	spin_unlock_irq(&hugetlb_lock);
2127 
2128 	return page;
2129 }
2130 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2131 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2132 				     int nid, nodemask_t *nmask)
2133 {
2134 	struct page *page;
2135 
2136 	if (hstate_is_gigantic(h))
2137 		return NULL;
2138 
2139 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2140 	if (!page)
2141 		return NULL;
2142 
2143 	/*
2144 	 * We do not account these pages as surplus because they are only
2145 	 * temporary and will be released properly on the last reference
2146 	 */
2147 	SetHPageTemporary(page);
2148 
2149 	return page;
2150 }
2151 
2152 /*
2153  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2154  */
2155 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2156 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2157 		struct vm_area_struct *vma, unsigned long addr)
2158 {
2159 	struct page *page = NULL;
2160 	struct mempolicy *mpol;
2161 	gfp_t gfp_mask = htlb_alloc_mask(h);
2162 	int nid;
2163 	nodemask_t *nodemask;
2164 
2165 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2166 	if (mpol_is_preferred_many(mpol)) {
2167 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2168 
2169 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2170 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2171 
2172 		/* Fallback to all nodes if page==NULL */
2173 		nodemask = NULL;
2174 	}
2175 
2176 	if (!page)
2177 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2178 	mpol_cond_put(mpol);
2179 	return page;
2180 }
2181 
2182 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2183 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2184 		nodemask_t *nmask, gfp_t gfp_mask)
2185 {
2186 	spin_lock_irq(&hugetlb_lock);
2187 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2188 		struct page *page;
2189 
2190 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2191 		if (page) {
2192 			spin_unlock_irq(&hugetlb_lock);
2193 			return page;
2194 		}
2195 	}
2196 	spin_unlock_irq(&hugetlb_lock);
2197 
2198 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2199 }
2200 
2201 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2202 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2203 		unsigned long address)
2204 {
2205 	struct mempolicy *mpol;
2206 	nodemask_t *nodemask;
2207 	struct page *page;
2208 	gfp_t gfp_mask;
2209 	int node;
2210 
2211 	gfp_mask = htlb_alloc_mask(h);
2212 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2213 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2214 	mpol_cond_put(mpol);
2215 
2216 	return page;
2217 }
2218 
2219 /*
2220  * Increase the hugetlb pool such that it can accommodate a reservation
2221  * of size 'delta'.
2222  */
gather_surplus_pages(struct hstate * h,long delta)2223 static int gather_surplus_pages(struct hstate *h, long delta)
2224 	__must_hold(&hugetlb_lock)
2225 {
2226 	struct list_head surplus_list;
2227 	struct page *page, *tmp;
2228 	int ret;
2229 	long i;
2230 	long needed, allocated;
2231 	bool alloc_ok = true;
2232 
2233 	lockdep_assert_held(&hugetlb_lock);
2234 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2235 	if (needed <= 0) {
2236 		h->resv_huge_pages += delta;
2237 		return 0;
2238 	}
2239 
2240 	allocated = 0;
2241 	INIT_LIST_HEAD(&surplus_list);
2242 
2243 	ret = -ENOMEM;
2244 retry:
2245 	spin_unlock_irq(&hugetlb_lock);
2246 	for (i = 0; i < needed; i++) {
2247 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2248 				NUMA_NO_NODE, NULL, true);
2249 		if (!page) {
2250 			alloc_ok = false;
2251 			break;
2252 		}
2253 		list_add(&page->lru, &surplus_list);
2254 		cond_resched();
2255 	}
2256 	allocated += i;
2257 
2258 	/*
2259 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2260 	 * because either resv_huge_pages or free_huge_pages may have changed.
2261 	 */
2262 	spin_lock_irq(&hugetlb_lock);
2263 	needed = (h->resv_huge_pages + delta) -
2264 			(h->free_huge_pages + allocated);
2265 	if (needed > 0) {
2266 		if (alloc_ok)
2267 			goto retry;
2268 		/*
2269 		 * We were not able to allocate enough pages to
2270 		 * satisfy the entire reservation so we free what
2271 		 * we've allocated so far.
2272 		 */
2273 		goto free;
2274 	}
2275 	/*
2276 	 * The surplus_list now contains _at_least_ the number of extra pages
2277 	 * needed to accommodate the reservation.  Add the appropriate number
2278 	 * of pages to the hugetlb pool and free the extras back to the buddy
2279 	 * allocator.  Commit the entire reservation here to prevent another
2280 	 * process from stealing the pages as they are added to the pool but
2281 	 * before they are reserved.
2282 	 */
2283 	needed += allocated;
2284 	h->resv_huge_pages += delta;
2285 	ret = 0;
2286 
2287 	/* Free the needed pages to the hugetlb pool */
2288 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2289 		if ((--needed) < 0)
2290 			break;
2291 		/* Add the page to the hugetlb allocator */
2292 		enqueue_huge_page(h, page);
2293 	}
2294 free:
2295 	spin_unlock_irq(&hugetlb_lock);
2296 
2297 	/*
2298 	 * Free unnecessary surplus pages to the buddy allocator.
2299 	 * Pages have no ref count, call free_huge_page directly.
2300 	 */
2301 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2302 		free_huge_page(page);
2303 	spin_lock_irq(&hugetlb_lock);
2304 
2305 	return ret;
2306 }
2307 
2308 /*
2309  * This routine has two main purposes:
2310  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2311  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2312  *    to the associated reservation map.
2313  * 2) Free any unused surplus pages that may have been allocated to satisfy
2314  *    the reservation.  As many as unused_resv_pages may be freed.
2315  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2316 static void return_unused_surplus_pages(struct hstate *h,
2317 					unsigned long unused_resv_pages)
2318 {
2319 	unsigned long nr_pages;
2320 	struct page *page;
2321 	LIST_HEAD(page_list);
2322 
2323 	lockdep_assert_held(&hugetlb_lock);
2324 	/* Uncommit the reservation */
2325 	h->resv_huge_pages -= unused_resv_pages;
2326 
2327 	/* Cannot return gigantic pages currently */
2328 	if (hstate_is_gigantic(h))
2329 		goto out;
2330 
2331 	/*
2332 	 * Part (or even all) of the reservation could have been backed
2333 	 * by pre-allocated pages. Only free surplus pages.
2334 	 */
2335 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2336 
2337 	/*
2338 	 * We want to release as many surplus pages as possible, spread
2339 	 * evenly across all nodes with memory. Iterate across these nodes
2340 	 * until we can no longer free unreserved surplus pages. This occurs
2341 	 * when the nodes with surplus pages have no free pages.
2342 	 * remove_pool_huge_page() will balance the freed pages across the
2343 	 * on-line nodes with memory and will handle the hstate accounting.
2344 	 */
2345 	while (nr_pages--) {
2346 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2347 		if (!page)
2348 			goto out;
2349 
2350 		list_add(&page->lru, &page_list);
2351 	}
2352 
2353 out:
2354 	spin_unlock_irq(&hugetlb_lock);
2355 	update_and_free_pages_bulk(h, &page_list);
2356 	spin_lock_irq(&hugetlb_lock);
2357 }
2358 
2359 
2360 /*
2361  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2362  * are used by the huge page allocation routines to manage reservations.
2363  *
2364  * vma_needs_reservation is called to determine if the huge page at addr
2365  * within the vma has an associated reservation.  If a reservation is
2366  * needed, the value 1 is returned.  The caller is then responsible for
2367  * managing the global reservation and subpool usage counts.  After
2368  * the huge page has been allocated, vma_commit_reservation is called
2369  * to add the page to the reservation map.  If the page allocation fails,
2370  * the reservation must be ended instead of committed.  vma_end_reservation
2371  * is called in such cases.
2372  *
2373  * In the normal case, vma_commit_reservation returns the same value
2374  * as the preceding vma_needs_reservation call.  The only time this
2375  * is not the case is if a reserve map was changed between calls.  It
2376  * is the responsibility of the caller to notice the difference and
2377  * take appropriate action.
2378  *
2379  * vma_add_reservation is used in error paths where a reservation must
2380  * be restored when a newly allocated huge page must be freed.  It is
2381  * to be called after calling vma_needs_reservation to determine if a
2382  * reservation exists.
2383  *
2384  * vma_del_reservation is used in error paths where an entry in the reserve
2385  * map was created during huge page allocation and must be removed.  It is to
2386  * be called after calling vma_needs_reservation to determine if a reservation
2387  * exists.
2388  */
2389 enum vma_resv_mode {
2390 	VMA_NEEDS_RESV,
2391 	VMA_COMMIT_RESV,
2392 	VMA_END_RESV,
2393 	VMA_ADD_RESV,
2394 	VMA_DEL_RESV,
2395 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2396 static long __vma_reservation_common(struct hstate *h,
2397 				struct vm_area_struct *vma, unsigned long addr,
2398 				enum vma_resv_mode mode)
2399 {
2400 	struct resv_map *resv;
2401 	pgoff_t idx;
2402 	long ret;
2403 	long dummy_out_regions_needed;
2404 
2405 	resv = vma_resv_map(vma);
2406 	if (!resv)
2407 		return 1;
2408 
2409 	idx = vma_hugecache_offset(h, vma, addr);
2410 	switch (mode) {
2411 	case VMA_NEEDS_RESV:
2412 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2413 		/* We assume that vma_reservation_* routines always operate on
2414 		 * 1 page, and that adding to resv map a 1 page entry can only
2415 		 * ever require 1 region.
2416 		 */
2417 		VM_BUG_ON(dummy_out_regions_needed != 1);
2418 		break;
2419 	case VMA_COMMIT_RESV:
2420 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2421 		/* region_add calls of range 1 should never fail. */
2422 		VM_BUG_ON(ret < 0);
2423 		break;
2424 	case VMA_END_RESV:
2425 		region_abort(resv, idx, idx + 1, 1);
2426 		ret = 0;
2427 		break;
2428 	case VMA_ADD_RESV:
2429 		if (vma->vm_flags & VM_MAYSHARE) {
2430 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2431 			/* region_add calls of range 1 should never fail. */
2432 			VM_BUG_ON(ret < 0);
2433 		} else {
2434 			region_abort(resv, idx, idx + 1, 1);
2435 			ret = region_del(resv, idx, idx + 1);
2436 		}
2437 		break;
2438 	case VMA_DEL_RESV:
2439 		if (vma->vm_flags & VM_MAYSHARE) {
2440 			region_abort(resv, idx, idx + 1, 1);
2441 			ret = region_del(resv, idx, idx + 1);
2442 		} else {
2443 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2444 			/* region_add calls of range 1 should never fail. */
2445 			VM_BUG_ON(ret < 0);
2446 		}
2447 		break;
2448 	default:
2449 		BUG();
2450 	}
2451 
2452 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2453 		return ret;
2454 	/*
2455 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2456 	 *
2457 	 * In most cases, reserves always exist for private mappings.
2458 	 * However, a file associated with mapping could have been
2459 	 * hole punched or truncated after reserves were consumed.
2460 	 * As subsequent fault on such a range will not use reserves.
2461 	 * Subtle - The reserve map for private mappings has the
2462 	 * opposite meaning than that of shared mappings.  If NO
2463 	 * entry is in the reserve map, it means a reservation exists.
2464 	 * If an entry exists in the reserve map, it means the
2465 	 * reservation has already been consumed.  As a result, the
2466 	 * return value of this routine is the opposite of the
2467 	 * value returned from reserve map manipulation routines above.
2468 	 */
2469 	if (ret > 0)
2470 		return 0;
2471 	if (ret == 0)
2472 		return 1;
2473 	return ret;
2474 }
2475 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2476 static long vma_needs_reservation(struct hstate *h,
2477 			struct vm_area_struct *vma, unsigned long addr)
2478 {
2479 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2480 }
2481 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2482 static long vma_commit_reservation(struct hstate *h,
2483 			struct vm_area_struct *vma, unsigned long addr)
2484 {
2485 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2486 }
2487 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2488 static void vma_end_reservation(struct hstate *h,
2489 			struct vm_area_struct *vma, unsigned long addr)
2490 {
2491 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2492 }
2493 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2494 static long vma_add_reservation(struct hstate *h,
2495 			struct vm_area_struct *vma, unsigned long addr)
2496 {
2497 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2498 }
2499 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2500 static long vma_del_reservation(struct hstate *h,
2501 			struct vm_area_struct *vma, unsigned long addr)
2502 {
2503 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2504 }
2505 
2506 /*
2507  * This routine is called to restore reservation information on error paths.
2508  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2509  * the hugetlb mutex should remain held when calling this routine.
2510  *
2511  * It handles two specific cases:
2512  * 1) A reservation was in place and the page consumed the reservation.
2513  *    HPageRestoreReserve is set in the page.
2514  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2515  *    not set.  However, alloc_huge_page always updates the reserve map.
2516  *
2517  * In case 1, free_huge_page later in the error path will increment the
2518  * global reserve count.  But, free_huge_page does not have enough context
2519  * to adjust the reservation map.  This case deals primarily with private
2520  * mappings.  Adjust the reserve map here to be consistent with global
2521  * reserve count adjustments to be made by free_huge_page.  Make sure the
2522  * reserve map indicates there is a reservation present.
2523  *
2524  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2525  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2526 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2527 			unsigned long address, struct page *page)
2528 {
2529 	long rc = vma_needs_reservation(h, vma, address);
2530 
2531 	if (HPageRestoreReserve(page)) {
2532 		if (unlikely(rc < 0))
2533 			/*
2534 			 * Rare out of memory condition in reserve map
2535 			 * manipulation.  Clear HPageRestoreReserve so that
2536 			 * global reserve count will not be incremented
2537 			 * by free_huge_page.  This will make it appear
2538 			 * as though the reservation for this page was
2539 			 * consumed.  This may prevent the task from
2540 			 * faulting in the page at a later time.  This
2541 			 * is better than inconsistent global huge page
2542 			 * accounting of reserve counts.
2543 			 */
2544 			ClearHPageRestoreReserve(page);
2545 		else if (rc)
2546 			(void)vma_add_reservation(h, vma, address);
2547 		else
2548 			vma_end_reservation(h, vma, address);
2549 	} else {
2550 		if (!rc) {
2551 			/*
2552 			 * This indicates there is an entry in the reserve map
2553 			 * not added by alloc_huge_page.  We know it was added
2554 			 * before the alloc_huge_page call, otherwise
2555 			 * HPageRestoreReserve would be set on the page.
2556 			 * Remove the entry so that a subsequent allocation
2557 			 * does not consume a reservation.
2558 			 */
2559 			rc = vma_del_reservation(h, vma, address);
2560 			if (rc < 0)
2561 				/*
2562 				 * VERY rare out of memory condition.  Since
2563 				 * we can not delete the entry, set
2564 				 * HPageRestoreReserve so that the reserve
2565 				 * count will be incremented when the page
2566 				 * is freed.  This reserve will be consumed
2567 				 * on a subsequent allocation.
2568 				 */
2569 				SetHPageRestoreReserve(page);
2570 		} else if (rc < 0) {
2571 			/*
2572 			 * Rare out of memory condition from
2573 			 * vma_needs_reservation call.  Memory allocation is
2574 			 * only attempted if a new entry is needed.  Therefore,
2575 			 * this implies there is not an entry in the
2576 			 * reserve map.
2577 			 *
2578 			 * For shared mappings, no entry in the map indicates
2579 			 * no reservation.  We are done.
2580 			 */
2581 			if (!(vma->vm_flags & VM_MAYSHARE))
2582 				/*
2583 				 * For private mappings, no entry indicates
2584 				 * a reservation is present.  Since we can
2585 				 * not add an entry, set SetHPageRestoreReserve
2586 				 * on the page so reserve count will be
2587 				 * incremented when freed.  This reserve will
2588 				 * be consumed on a subsequent allocation.
2589 				 */
2590 				SetHPageRestoreReserve(page);
2591 		} else
2592 			/*
2593 			 * No reservation present, do nothing
2594 			 */
2595 			 vma_end_reservation(h, vma, address);
2596 	}
2597 }
2598 
2599 /*
2600  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2601  * @h: struct hstate old page belongs to
2602  * @old_page: Old page to dissolve
2603  * @list: List to isolate the page in case we need to
2604  * Returns 0 on success, otherwise negated error.
2605  */
alloc_and_dissolve_huge_page(struct hstate * h,struct page * old_page,struct list_head * list)2606 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2607 					struct list_head *list)
2608 {
2609 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2610 	int nid = page_to_nid(old_page);
2611 	bool alloc_retry = false;
2612 	struct page *new_page;
2613 	int ret = 0;
2614 
2615 	/*
2616 	 * Before dissolving the page, we need to allocate a new one for the
2617 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2618 	 * by doing everything but actually updating counters and adding to
2619 	 * the pool.  This simplifies and let us do most of the processing
2620 	 * under the lock.
2621 	 */
2622 alloc_retry:
2623 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2624 	if (!new_page)
2625 		return -ENOMEM;
2626 	/*
2627 	 * If all goes well, this page will be directly added to the free
2628 	 * list in the pool.  For this the ref count needs to be zero.
2629 	 * Attempt to drop now, and retry once if needed.  It is VERY
2630 	 * unlikely there is another ref on the page.
2631 	 *
2632 	 * If someone else has a reference to the page, it will be freed
2633 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2634 	 * this.  Retry once if there is an inflated ref count.
2635 	 */
2636 	SetHPageTemporary(new_page);
2637 	if (!put_page_testzero(new_page)) {
2638 		if (alloc_retry)
2639 			return -EBUSY;
2640 
2641 		alloc_retry = true;
2642 		goto alloc_retry;
2643 	}
2644 	ClearHPageTemporary(new_page);
2645 
2646 	__prep_new_huge_page(h, new_page);
2647 
2648 retry:
2649 	spin_lock_irq(&hugetlb_lock);
2650 	if (!PageHuge(old_page)) {
2651 		/*
2652 		 * Freed from under us. Drop new_page too.
2653 		 */
2654 		goto free_new;
2655 	} else if (page_count(old_page)) {
2656 		/*
2657 		 * Someone has grabbed the page, try to isolate it here.
2658 		 * Fail with -EBUSY if not possible.
2659 		 */
2660 		spin_unlock_irq(&hugetlb_lock);
2661 		ret = isolate_hugetlb(old_page, list);
2662 		spin_lock_irq(&hugetlb_lock);
2663 		goto free_new;
2664 	} else if (!HPageFreed(old_page)) {
2665 		/*
2666 		 * Page's refcount is 0 but it has not been enqueued in the
2667 		 * freelist yet. Race window is small, so we can succeed here if
2668 		 * we retry.
2669 		 */
2670 		spin_unlock_irq(&hugetlb_lock);
2671 		cond_resched();
2672 		goto retry;
2673 	} else {
2674 		/*
2675 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2676 		 * the freelist and decrease the counters. These will be
2677 		 * incremented again when calling __prep_account_new_huge_page()
2678 		 * and enqueue_huge_page() for new_page. The counters will remain
2679 		 * stable since this happens under the lock.
2680 		 */
2681 		remove_hugetlb_page(h, old_page, false);
2682 
2683 		/*
2684 		 * Ref count on new page is already zero as it was dropped
2685 		 * earlier.  It can be directly added to the pool free list.
2686 		 */
2687 		__prep_account_new_huge_page(h, nid);
2688 		enqueue_huge_page(h, new_page);
2689 
2690 		/*
2691 		 * Pages have been replaced, we can safely free the old one.
2692 		 */
2693 		spin_unlock_irq(&hugetlb_lock);
2694 		update_and_free_page(h, old_page, false);
2695 	}
2696 
2697 	return ret;
2698 
2699 free_new:
2700 	spin_unlock_irq(&hugetlb_lock);
2701 	/* Page has a zero ref count, but needs a ref to be freed */
2702 	set_page_refcounted(new_page);
2703 	update_and_free_page(h, new_page, false);
2704 
2705 	return ret;
2706 }
2707 
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2708 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2709 {
2710 	struct hstate *h;
2711 	struct page *head;
2712 	int ret = -EBUSY;
2713 
2714 	/*
2715 	 * The page might have been dissolved from under our feet, so make sure
2716 	 * to carefully check the state under the lock.
2717 	 * Return success when racing as if we dissolved the page ourselves.
2718 	 */
2719 	spin_lock_irq(&hugetlb_lock);
2720 	if (PageHuge(page)) {
2721 		head = compound_head(page);
2722 		h = page_hstate(head);
2723 	} else {
2724 		spin_unlock_irq(&hugetlb_lock);
2725 		return 0;
2726 	}
2727 	spin_unlock_irq(&hugetlb_lock);
2728 
2729 	/*
2730 	 * Fence off gigantic pages as there is a cyclic dependency between
2731 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2732 	 * of bailing out right away without further retrying.
2733 	 */
2734 	if (hstate_is_gigantic(h))
2735 		return -ENOMEM;
2736 
2737 	if (page_count(head) && !isolate_hugetlb(head, list))
2738 		ret = 0;
2739 	else if (!page_count(head))
2740 		ret = alloc_and_dissolve_huge_page(h, head, list);
2741 
2742 	return ret;
2743 }
2744 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2745 struct page *alloc_huge_page(struct vm_area_struct *vma,
2746 				    unsigned long addr, int avoid_reserve)
2747 {
2748 	struct hugepage_subpool *spool = subpool_vma(vma);
2749 	struct hstate *h = hstate_vma(vma);
2750 	struct page *page;
2751 	long map_chg, map_commit;
2752 	long gbl_chg;
2753 	int ret, idx;
2754 	struct hugetlb_cgroup *h_cg;
2755 	bool deferred_reserve;
2756 
2757 	idx = hstate_index(h);
2758 	/*
2759 	 * Examine the region/reserve map to determine if the process
2760 	 * has a reservation for the page to be allocated.  A return
2761 	 * code of zero indicates a reservation exists (no change).
2762 	 */
2763 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2764 	if (map_chg < 0)
2765 		return ERR_PTR(-ENOMEM);
2766 
2767 	/*
2768 	 * Processes that did not create the mapping will have no
2769 	 * reserves as indicated by the region/reserve map. Check
2770 	 * that the allocation will not exceed the subpool limit.
2771 	 * Allocations for MAP_NORESERVE mappings also need to be
2772 	 * checked against any subpool limit.
2773 	 */
2774 	if (map_chg || avoid_reserve) {
2775 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2776 		if (gbl_chg < 0) {
2777 			vma_end_reservation(h, vma, addr);
2778 			return ERR_PTR(-ENOSPC);
2779 		}
2780 
2781 		/*
2782 		 * Even though there was no reservation in the region/reserve
2783 		 * map, there could be reservations associated with the
2784 		 * subpool that can be used.  This would be indicated if the
2785 		 * return value of hugepage_subpool_get_pages() is zero.
2786 		 * However, if avoid_reserve is specified we still avoid even
2787 		 * the subpool reservations.
2788 		 */
2789 		if (avoid_reserve)
2790 			gbl_chg = 1;
2791 	}
2792 
2793 	/* If this allocation is not consuming a reservation, charge it now.
2794 	 */
2795 	deferred_reserve = map_chg || avoid_reserve;
2796 	if (deferred_reserve) {
2797 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2798 			idx, pages_per_huge_page(h), &h_cg);
2799 		if (ret)
2800 			goto out_subpool_put;
2801 	}
2802 
2803 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2804 	if (ret)
2805 		goto out_uncharge_cgroup_reservation;
2806 
2807 	spin_lock_irq(&hugetlb_lock);
2808 	/*
2809 	 * glb_chg is passed to indicate whether or not a page must be taken
2810 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2811 	 * a reservation exists for the allocation.
2812 	 */
2813 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2814 	if (!page) {
2815 		spin_unlock_irq(&hugetlb_lock);
2816 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2817 		if (!page)
2818 			goto out_uncharge_cgroup;
2819 		spin_lock_irq(&hugetlb_lock);
2820 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2821 			SetHPageRestoreReserve(page);
2822 			h->resv_huge_pages--;
2823 		}
2824 		list_add(&page->lru, &h->hugepage_activelist);
2825 		/* Fall through */
2826 	}
2827 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2828 	/* If allocation is not consuming a reservation, also store the
2829 	 * hugetlb_cgroup pointer on the page.
2830 	 */
2831 	if (deferred_reserve) {
2832 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2833 						  h_cg, page);
2834 	}
2835 
2836 	spin_unlock_irq(&hugetlb_lock);
2837 
2838 	hugetlb_set_page_subpool(page, spool);
2839 
2840 	map_commit = vma_commit_reservation(h, vma, addr);
2841 	if (unlikely(map_chg > map_commit)) {
2842 		/*
2843 		 * The page was added to the reservation map between
2844 		 * vma_needs_reservation and vma_commit_reservation.
2845 		 * This indicates a race with hugetlb_reserve_pages.
2846 		 * Adjust for the subpool count incremented above AND
2847 		 * in hugetlb_reserve_pages for the same page.  Also,
2848 		 * the reservation count added in hugetlb_reserve_pages
2849 		 * no longer applies.
2850 		 */
2851 		long rsv_adjust;
2852 
2853 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2854 		hugetlb_acct_memory(h, -rsv_adjust);
2855 		if (deferred_reserve)
2856 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2857 					pages_per_huge_page(h), page);
2858 	}
2859 	return page;
2860 
2861 out_uncharge_cgroup:
2862 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2863 out_uncharge_cgroup_reservation:
2864 	if (deferred_reserve)
2865 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2866 						    h_cg);
2867 out_subpool_put:
2868 	if (map_chg || avoid_reserve)
2869 		hugepage_subpool_put_pages(spool, 1);
2870 	vma_end_reservation(h, vma, addr);
2871 	return ERR_PTR(-ENOSPC);
2872 }
2873 
2874 int alloc_bootmem_huge_page(struct hstate *h)
2875 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2876 int __alloc_bootmem_huge_page(struct hstate *h)
2877 {
2878 	struct huge_bootmem_page *m;
2879 	int nr_nodes, node;
2880 
2881 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2882 		void *addr;
2883 
2884 		addr = memblock_alloc_try_nid_raw(
2885 				huge_page_size(h), huge_page_size(h),
2886 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2887 		if (addr) {
2888 			/*
2889 			 * Use the beginning of the huge page to store the
2890 			 * huge_bootmem_page struct (until gather_bootmem
2891 			 * puts them into the mem_map).
2892 			 */
2893 			m = addr;
2894 			goto found;
2895 		}
2896 	}
2897 	return 0;
2898 
2899 found:
2900 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2901 	/* Put them into a private list first because mem_map is not up yet */
2902 	INIT_LIST_HEAD(&m->list);
2903 	list_add(&m->list, &huge_boot_pages);
2904 	m->hstate = h;
2905 	return 1;
2906 }
2907 
2908 /*
2909  * Put bootmem huge pages into the standard lists after mem_map is up.
2910  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2911  */
gather_bootmem_prealloc(void)2912 static void __init gather_bootmem_prealloc(void)
2913 {
2914 	struct huge_bootmem_page *m;
2915 
2916 	list_for_each_entry(m, &huge_boot_pages, list) {
2917 		struct page *page = virt_to_page(m);
2918 		struct hstate *h = m->hstate;
2919 
2920 		VM_BUG_ON(!hstate_is_gigantic(h));
2921 		WARN_ON(page_count(page) != 1);
2922 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2923 			WARN_ON(PageReserved(page));
2924 			prep_new_huge_page(h, page, page_to_nid(page));
2925 			put_page(page); /* add to the hugepage allocator */
2926 		} else {
2927 			/* VERY unlikely inflated ref count on a tail page */
2928 			free_gigantic_page(page, huge_page_order(h));
2929 		}
2930 
2931 		/*
2932 		 * We need to restore the 'stolen' pages to totalram_pages
2933 		 * in order to fix confusing memory reports from free(1) and
2934 		 * other side-effects, like CommitLimit going negative.
2935 		 */
2936 		adjust_managed_page_count(page, pages_per_huge_page(h));
2937 		cond_resched();
2938 	}
2939 }
2940 
hugetlb_hstate_alloc_pages(struct hstate * h)2941 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2942 {
2943 	unsigned long i;
2944 	nodemask_t *node_alloc_noretry;
2945 
2946 	if (!hstate_is_gigantic(h)) {
2947 		/*
2948 		 * Bit mask controlling how hard we retry per-node allocations.
2949 		 * Ignore errors as lower level routines can deal with
2950 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2951 		 * time, we are likely in bigger trouble.
2952 		 */
2953 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2954 						GFP_KERNEL);
2955 	} else {
2956 		/* allocations done at boot time */
2957 		node_alloc_noretry = NULL;
2958 	}
2959 
2960 	/* bit mask controlling how hard we retry per-node allocations */
2961 	if (node_alloc_noretry)
2962 		nodes_clear(*node_alloc_noretry);
2963 
2964 	for (i = 0; i < h->max_huge_pages; ++i) {
2965 		if (hstate_is_gigantic(h)) {
2966 			if (hugetlb_cma_size) {
2967 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2968 				goto free;
2969 			}
2970 			if (!alloc_bootmem_huge_page(h))
2971 				break;
2972 		} else if (!alloc_pool_huge_page(h,
2973 					 &node_states[N_MEMORY],
2974 					 node_alloc_noretry))
2975 			break;
2976 		cond_resched();
2977 	}
2978 	if (i < h->max_huge_pages) {
2979 		char buf[32];
2980 
2981 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2982 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2983 			h->max_huge_pages, buf, i);
2984 		h->max_huge_pages = i;
2985 	}
2986 free:
2987 	kfree(node_alloc_noretry);
2988 }
2989 
hugetlb_init_hstates(void)2990 static void __init hugetlb_init_hstates(void)
2991 {
2992 	struct hstate *h;
2993 
2994 	for_each_hstate(h) {
2995 		if (minimum_order > huge_page_order(h))
2996 			minimum_order = huge_page_order(h);
2997 
2998 		/* oversize hugepages were init'ed in early boot */
2999 		if (!hstate_is_gigantic(h))
3000 			hugetlb_hstate_alloc_pages(h);
3001 	}
3002 	VM_BUG_ON(minimum_order == UINT_MAX);
3003 }
3004 
report_hugepages(void)3005 static void __init report_hugepages(void)
3006 {
3007 	struct hstate *h;
3008 
3009 	for_each_hstate(h) {
3010 		char buf[32];
3011 
3012 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3013 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3014 			buf, h->free_huge_pages);
3015 	}
3016 }
3017 
3018 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3019 static void try_to_free_low(struct hstate *h, unsigned long count,
3020 						nodemask_t *nodes_allowed)
3021 {
3022 	int i;
3023 	LIST_HEAD(page_list);
3024 
3025 	lockdep_assert_held(&hugetlb_lock);
3026 	if (hstate_is_gigantic(h))
3027 		return;
3028 
3029 	/*
3030 	 * Collect pages to be freed on a list, and free after dropping lock
3031 	 */
3032 	for_each_node_mask(i, *nodes_allowed) {
3033 		struct page *page, *next;
3034 		struct list_head *freel = &h->hugepage_freelists[i];
3035 		list_for_each_entry_safe(page, next, freel, lru) {
3036 			if (count >= h->nr_huge_pages)
3037 				goto out;
3038 			if (PageHighMem(page))
3039 				continue;
3040 			remove_hugetlb_page(h, page, false);
3041 			list_add(&page->lru, &page_list);
3042 		}
3043 	}
3044 
3045 out:
3046 	spin_unlock_irq(&hugetlb_lock);
3047 	update_and_free_pages_bulk(h, &page_list);
3048 	spin_lock_irq(&hugetlb_lock);
3049 }
3050 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3051 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3052 						nodemask_t *nodes_allowed)
3053 {
3054 }
3055 #endif
3056 
3057 /*
3058  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3059  * balanced by operating on them in a round-robin fashion.
3060  * Returns 1 if an adjustment was made.
3061  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3062 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3063 				int delta)
3064 {
3065 	int nr_nodes, node;
3066 
3067 	lockdep_assert_held(&hugetlb_lock);
3068 	VM_BUG_ON(delta != -1 && delta != 1);
3069 
3070 	if (delta < 0) {
3071 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3072 			if (h->surplus_huge_pages_node[node])
3073 				goto found;
3074 		}
3075 	} else {
3076 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3077 			if (h->surplus_huge_pages_node[node] <
3078 					h->nr_huge_pages_node[node])
3079 				goto found;
3080 		}
3081 	}
3082 	return 0;
3083 
3084 found:
3085 	h->surplus_huge_pages += delta;
3086 	h->surplus_huge_pages_node[node] += delta;
3087 	return 1;
3088 }
3089 
3090 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3091 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3092 			      nodemask_t *nodes_allowed)
3093 {
3094 	unsigned long min_count, ret;
3095 	struct page *page;
3096 	LIST_HEAD(page_list);
3097 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3098 
3099 	/*
3100 	 * Bit mask controlling how hard we retry per-node allocations.
3101 	 * If we can not allocate the bit mask, do not attempt to allocate
3102 	 * the requested huge pages.
3103 	 */
3104 	if (node_alloc_noretry)
3105 		nodes_clear(*node_alloc_noretry);
3106 	else
3107 		return -ENOMEM;
3108 
3109 	/*
3110 	 * resize_lock mutex prevents concurrent adjustments to number of
3111 	 * pages in hstate via the proc/sysfs interfaces.
3112 	 */
3113 	mutex_lock(&h->resize_lock);
3114 	flush_free_hpage_work(h);
3115 	spin_lock_irq(&hugetlb_lock);
3116 
3117 	/*
3118 	 * Check for a node specific request.
3119 	 * Changing node specific huge page count may require a corresponding
3120 	 * change to the global count.  In any case, the passed node mask
3121 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3122 	 */
3123 	if (nid != NUMA_NO_NODE) {
3124 		unsigned long old_count = count;
3125 
3126 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3127 		/*
3128 		 * User may have specified a large count value which caused the
3129 		 * above calculation to overflow.  In this case, they wanted
3130 		 * to allocate as many huge pages as possible.  Set count to
3131 		 * largest possible value to align with their intention.
3132 		 */
3133 		if (count < old_count)
3134 			count = ULONG_MAX;
3135 	}
3136 
3137 	/*
3138 	 * Gigantic pages runtime allocation depend on the capability for large
3139 	 * page range allocation.
3140 	 * If the system does not provide this feature, return an error when
3141 	 * the user tries to allocate gigantic pages but let the user free the
3142 	 * boottime allocated gigantic pages.
3143 	 */
3144 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3145 		if (count > persistent_huge_pages(h)) {
3146 			spin_unlock_irq(&hugetlb_lock);
3147 			mutex_unlock(&h->resize_lock);
3148 			NODEMASK_FREE(node_alloc_noretry);
3149 			return -EINVAL;
3150 		}
3151 		/* Fall through to decrease pool */
3152 	}
3153 
3154 	/*
3155 	 * Increase the pool size
3156 	 * First take pages out of surplus state.  Then make up the
3157 	 * remaining difference by allocating fresh huge pages.
3158 	 *
3159 	 * We might race with alloc_surplus_huge_page() here and be unable
3160 	 * to convert a surplus huge page to a normal huge page. That is
3161 	 * not critical, though, it just means the overall size of the
3162 	 * pool might be one hugepage larger than it needs to be, but
3163 	 * within all the constraints specified by the sysctls.
3164 	 */
3165 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3166 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3167 			break;
3168 	}
3169 
3170 	while (count > persistent_huge_pages(h)) {
3171 		/*
3172 		 * If this allocation races such that we no longer need the
3173 		 * page, free_huge_page will handle it by freeing the page
3174 		 * and reducing the surplus.
3175 		 */
3176 		spin_unlock_irq(&hugetlb_lock);
3177 
3178 		/* yield cpu to avoid soft lockup */
3179 		cond_resched();
3180 
3181 		ret = alloc_pool_huge_page(h, nodes_allowed,
3182 						node_alloc_noretry);
3183 		spin_lock_irq(&hugetlb_lock);
3184 		if (!ret)
3185 			goto out;
3186 
3187 		/* Bail for signals. Probably ctrl-c from user */
3188 		if (signal_pending(current))
3189 			goto out;
3190 	}
3191 
3192 	/*
3193 	 * Decrease the pool size
3194 	 * First return free pages to the buddy allocator (being careful
3195 	 * to keep enough around to satisfy reservations).  Then place
3196 	 * pages into surplus state as needed so the pool will shrink
3197 	 * to the desired size as pages become free.
3198 	 *
3199 	 * By placing pages into the surplus state independent of the
3200 	 * overcommit value, we are allowing the surplus pool size to
3201 	 * exceed overcommit. There are few sane options here. Since
3202 	 * alloc_surplus_huge_page() is checking the global counter,
3203 	 * though, we'll note that we're not allowed to exceed surplus
3204 	 * and won't grow the pool anywhere else. Not until one of the
3205 	 * sysctls are changed, or the surplus pages go out of use.
3206 	 */
3207 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3208 	min_count = max(count, min_count);
3209 	try_to_free_low(h, min_count, nodes_allowed);
3210 
3211 	/*
3212 	 * Collect pages to be removed on list without dropping lock
3213 	 */
3214 	while (min_count < persistent_huge_pages(h)) {
3215 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3216 		if (!page)
3217 			break;
3218 
3219 		list_add(&page->lru, &page_list);
3220 	}
3221 	/* free the pages after dropping lock */
3222 	spin_unlock_irq(&hugetlb_lock);
3223 	update_and_free_pages_bulk(h, &page_list);
3224 	flush_free_hpage_work(h);
3225 	spin_lock_irq(&hugetlb_lock);
3226 
3227 	while (count < persistent_huge_pages(h)) {
3228 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3229 			break;
3230 	}
3231 out:
3232 	h->max_huge_pages = persistent_huge_pages(h);
3233 	spin_unlock_irq(&hugetlb_lock);
3234 	mutex_unlock(&h->resize_lock);
3235 
3236 	NODEMASK_FREE(node_alloc_noretry);
3237 
3238 	return 0;
3239 }
3240 
3241 #define HSTATE_ATTR_RO(_name) \
3242 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3243 
3244 #define HSTATE_ATTR(_name) \
3245 	static struct kobj_attribute _name##_attr = \
3246 		__ATTR(_name, 0644, _name##_show, _name##_store)
3247 
3248 static struct kobject *hugepages_kobj;
3249 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3250 
3251 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3252 
kobj_to_hstate(struct kobject * kobj,int * nidp)3253 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3254 {
3255 	int i;
3256 
3257 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3258 		if (hstate_kobjs[i] == kobj) {
3259 			if (nidp)
3260 				*nidp = NUMA_NO_NODE;
3261 			return &hstates[i];
3262 		}
3263 
3264 	return kobj_to_node_hstate(kobj, nidp);
3265 }
3266 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3267 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3268 					struct kobj_attribute *attr, char *buf)
3269 {
3270 	struct hstate *h;
3271 	unsigned long nr_huge_pages;
3272 	int nid;
3273 
3274 	h = kobj_to_hstate(kobj, &nid);
3275 	if (nid == NUMA_NO_NODE)
3276 		nr_huge_pages = h->nr_huge_pages;
3277 	else
3278 		nr_huge_pages = h->nr_huge_pages_node[nid];
3279 
3280 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3281 }
3282 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3283 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3284 					   struct hstate *h, int nid,
3285 					   unsigned long count, size_t len)
3286 {
3287 	int err;
3288 	nodemask_t nodes_allowed, *n_mask;
3289 
3290 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3291 		return -EINVAL;
3292 
3293 	if (nid == NUMA_NO_NODE) {
3294 		/*
3295 		 * global hstate attribute
3296 		 */
3297 		if (!(obey_mempolicy &&
3298 				init_nodemask_of_mempolicy(&nodes_allowed)))
3299 			n_mask = &node_states[N_MEMORY];
3300 		else
3301 			n_mask = &nodes_allowed;
3302 	} else {
3303 		/*
3304 		 * Node specific request.  count adjustment happens in
3305 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3306 		 */
3307 		init_nodemask_of_node(&nodes_allowed, nid);
3308 		n_mask = &nodes_allowed;
3309 	}
3310 
3311 	err = set_max_huge_pages(h, count, nid, n_mask);
3312 
3313 	return err ? err : len;
3314 }
3315 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3316 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3317 					 struct kobject *kobj, const char *buf,
3318 					 size_t len)
3319 {
3320 	struct hstate *h;
3321 	unsigned long count;
3322 	int nid;
3323 	int err;
3324 
3325 	err = kstrtoul(buf, 10, &count);
3326 	if (err)
3327 		return err;
3328 
3329 	h = kobj_to_hstate(kobj, &nid);
3330 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3331 }
3332 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3333 static ssize_t nr_hugepages_show(struct kobject *kobj,
3334 				       struct kobj_attribute *attr, char *buf)
3335 {
3336 	return nr_hugepages_show_common(kobj, attr, buf);
3337 }
3338 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3339 static ssize_t nr_hugepages_store(struct kobject *kobj,
3340 	       struct kobj_attribute *attr, const char *buf, size_t len)
3341 {
3342 	return nr_hugepages_store_common(false, kobj, buf, len);
3343 }
3344 HSTATE_ATTR(nr_hugepages);
3345 
3346 #ifdef CONFIG_NUMA
3347 
3348 /*
3349  * hstate attribute for optionally mempolicy-based constraint on persistent
3350  * huge page alloc/free.
3351  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3352 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3353 					   struct kobj_attribute *attr,
3354 					   char *buf)
3355 {
3356 	return nr_hugepages_show_common(kobj, attr, buf);
3357 }
3358 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3359 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3360 	       struct kobj_attribute *attr, const char *buf, size_t len)
3361 {
3362 	return nr_hugepages_store_common(true, kobj, buf, len);
3363 }
3364 HSTATE_ATTR(nr_hugepages_mempolicy);
3365 #endif
3366 
3367 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3368 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3369 					struct kobj_attribute *attr, char *buf)
3370 {
3371 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3372 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3373 }
3374 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3375 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3376 		struct kobj_attribute *attr, const char *buf, size_t count)
3377 {
3378 	int err;
3379 	unsigned long input;
3380 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3381 
3382 	if (hstate_is_gigantic(h))
3383 		return -EINVAL;
3384 
3385 	err = kstrtoul(buf, 10, &input);
3386 	if (err)
3387 		return err;
3388 
3389 	spin_lock_irq(&hugetlb_lock);
3390 	h->nr_overcommit_huge_pages = input;
3391 	spin_unlock_irq(&hugetlb_lock);
3392 
3393 	return count;
3394 }
3395 HSTATE_ATTR(nr_overcommit_hugepages);
3396 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3397 static ssize_t free_hugepages_show(struct kobject *kobj,
3398 					struct kobj_attribute *attr, char *buf)
3399 {
3400 	struct hstate *h;
3401 	unsigned long free_huge_pages;
3402 	int nid;
3403 
3404 	h = kobj_to_hstate(kobj, &nid);
3405 	if (nid == NUMA_NO_NODE)
3406 		free_huge_pages = h->free_huge_pages;
3407 	else
3408 		free_huge_pages = h->free_huge_pages_node[nid];
3409 
3410 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3411 }
3412 HSTATE_ATTR_RO(free_hugepages);
3413 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3414 static ssize_t resv_hugepages_show(struct kobject *kobj,
3415 					struct kobj_attribute *attr, char *buf)
3416 {
3417 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3418 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3419 }
3420 HSTATE_ATTR_RO(resv_hugepages);
3421 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3422 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3423 					struct kobj_attribute *attr, char *buf)
3424 {
3425 	struct hstate *h;
3426 	unsigned long surplus_huge_pages;
3427 	int nid;
3428 
3429 	h = kobj_to_hstate(kobj, &nid);
3430 	if (nid == NUMA_NO_NODE)
3431 		surplus_huge_pages = h->surplus_huge_pages;
3432 	else
3433 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3434 
3435 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3436 }
3437 HSTATE_ATTR_RO(surplus_hugepages);
3438 
3439 static struct attribute *hstate_attrs[] = {
3440 	&nr_hugepages_attr.attr,
3441 	&nr_overcommit_hugepages_attr.attr,
3442 	&free_hugepages_attr.attr,
3443 	&resv_hugepages_attr.attr,
3444 	&surplus_hugepages_attr.attr,
3445 #ifdef CONFIG_NUMA
3446 	&nr_hugepages_mempolicy_attr.attr,
3447 #endif
3448 	NULL,
3449 };
3450 
3451 static const struct attribute_group hstate_attr_group = {
3452 	.attrs = hstate_attrs,
3453 };
3454 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)3455 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3456 				    struct kobject **hstate_kobjs,
3457 				    const struct attribute_group *hstate_attr_group)
3458 {
3459 	int retval;
3460 	int hi = hstate_index(h);
3461 
3462 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3463 	if (!hstate_kobjs[hi])
3464 		return -ENOMEM;
3465 
3466 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3467 	if (retval) {
3468 		kobject_put(hstate_kobjs[hi]);
3469 		hstate_kobjs[hi] = NULL;
3470 	}
3471 
3472 	return retval;
3473 }
3474 
hugetlb_sysfs_init(void)3475 static void __init hugetlb_sysfs_init(void)
3476 {
3477 	struct hstate *h;
3478 	int err;
3479 
3480 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3481 	if (!hugepages_kobj)
3482 		return;
3483 
3484 	for_each_hstate(h) {
3485 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3486 					 hstate_kobjs, &hstate_attr_group);
3487 		if (err)
3488 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3489 	}
3490 }
3491 
3492 #ifdef CONFIG_NUMA
3493 
3494 /*
3495  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3496  * with node devices in node_devices[] using a parallel array.  The array
3497  * index of a node device or _hstate == node id.
3498  * This is here to avoid any static dependency of the node device driver, in
3499  * the base kernel, on the hugetlb module.
3500  */
3501 struct node_hstate {
3502 	struct kobject		*hugepages_kobj;
3503 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3504 };
3505 static struct node_hstate node_hstates[MAX_NUMNODES];
3506 
3507 /*
3508  * A subset of global hstate attributes for node devices
3509  */
3510 static struct attribute *per_node_hstate_attrs[] = {
3511 	&nr_hugepages_attr.attr,
3512 	&free_hugepages_attr.attr,
3513 	&surplus_hugepages_attr.attr,
3514 	NULL,
3515 };
3516 
3517 static const struct attribute_group per_node_hstate_attr_group = {
3518 	.attrs = per_node_hstate_attrs,
3519 };
3520 
3521 /*
3522  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3523  * Returns node id via non-NULL nidp.
3524  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3525 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3526 {
3527 	int nid;
3528 
3529 	for (nid = 0; nid < nr_node_ids; nid++) {
3530 		struct node_hstate *nhs = &node_hstates[nid];
3531 		int i;
3532 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3533 			if (nhs->hstate_kobjs[i] == kobj) {
3534 				if (nidp)
3535 					*nidp = nid;
3536 				return &hstates[i];
3537 			}
3538 	}
3539 
3540 	BUG();
3541 	return NULL;
3542 }
3543 
3544 /*
3545  * Unregister hstate attributes from a single node device.
3546  * No-op if no hstate attributes attached.
3547  */
hugetlb_unregister_node(struct node * node)3548 static void hugetlb_unregister_node(struct node *node)
3549 {
3550 	struct hstate *h;
3551 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3552 
3553 	if (!nhs->hugepages_kobj)
3554 		return;		/* no hstate attributes */
3555 
3556 	for_each_hstate(h) {
3557 		int idx = hstate_index(h);
3558 		if (nhs->hstate_kobjs[idx]) {
3559 			kobject_put(nhs->hstate_kobjs[idx]);
3560 			nhs->hstate_kobjs[idx] = NULL;
3561 		}
3562 	}
3563 
3564 	kobject_put(nhs->hugepages_kobj);
3565 	nhs->hugepages_kobj = NULL;
3566 }
3567 
3568 
3569 /*
3570  * Register hstate attributes for a single node device.
3571  * No-op if attributes already registered.
3572  */
hugetlb_register_node(struct node * node)3573 static void hugetlb_register_node(struct node *node)
3574 {
3575 	struct hstate *h;
3576 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3577 	int err;
3578 
3579 	if (nhs->hugepages_kobj)
3580 		return;		/* already allocated */
3581 
3582 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3583 							&node->dev.kobj);
3584 	if (!nhs->hugepages_kobj)
3585 		return;
3586 
3587 	for_each_hstate(h) {
3588 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3589 						nhs->hstate_kobjs,
3590 						&per_node_hstate_attr_group);
3591 		if (err) {
3592 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3593 				h->name, node->dev.id);
3594 			hugetlb_unregister_node(node);
3595 			break;
3596 		}
3597 	}
3598 }
3599 
3600 /*
3601  * hugetlb init time:  register hstate attributes for all registered node
3602  * devices of nodes that have memory.  All on-line nodes should have
3603  * registered their associated device by this time.
3604  */
hugetlb_register_all_nodes(void)3605 static void __init hugetlb_register_all_nodes(void)
3606 {
3607 	int nid;
3608 
3609 	for_each_node_state(nid, N_MEMORY) {
3610 		struct node *node = node_devices[nid];
3611 		if (node->dev.id == nid)
3612 			hugetlb_register_node(node);
3613 	}
3614 
3615 	/*
3616 	 * Let the node device driver know we're here so it can
3617 	 * [un]register hstate attributes on node hotplug.
3618 	 */
3619 	register_hugetlbfs_with_node(hugetlb_register_node,
3620 				     hugetlb_unregister_node);
3621 }
3622 #else	/* !CONFIG_NUMA */
3623 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3624 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3625 {
3626 	BUG();
3627 	if (nidp)
3628 		*nidp = -1;
3629 	return NULL;
3630 }
3631 
hugetlb_register_all_nodes(void)3632 static void hugetlb_register_all_nodes(void) { }
3633 
3634 #endif
3635 
hugetlb_init(void)3636 static int __init hugetlb_init(void)
3637 {
3638 	int i;
3639 
3640 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3641 			__NR_HPAGEFLAGS);
3642 
3643 	if (!hugepages_supported()) {
3644 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3645 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3646 		return 0;
3647 	}
3648 
3649 	/*
3650 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3651 	 * architectures depend on setup being done here.
3652 	 */
3653 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3654 	if (!parsed_default_hugepagesz) {
3655 		/*
3656 		 * If we did not parse a default huge page size, set
3657 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3658 		 * number of huge pages for this default size was implicitly
3659 		 * specified, set that here as well.
3660 		 * Note that the implicit setting will overwrite an explicit
3661 		 * setting.  A warning will be printed in this case.
3662 		 */
3663 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3664 		if (default_hstate_max_huge_pages) {
3665 			if (default_hstate.max_huge_pages) {
3666 				char buf[32];
3667 
3668 				string_get_size(huge_page_size(&default_hstate),
3669 					1, STRING_UNITS_2, buf, 32);
3670 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3671 					default_hstate.max_huge_pages, buf);
3672 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3673 					default_hstate_max_huge_pages);
3674 			}
3675 			default_hstate.max_huge_pages =
3676 				default_hstate_max_huge_pages;
3677 		}
3678 	}
3679 
3680 	hugetlb_cma_check();
3681 	hugetlb_init_hstates();
3682 	gather_bootmem_prealloc();
3683 	report_hugepages();
3684 
3685 	hugetlb_sysfs_init();
3686 	hugetlb_register_all_nodes();
3687 	hugetlb_cgroup_file_init();
3688 
3689 #ifdef CONFIG_SMP
3690 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3691 #else
3692 	num_fault_mutexes = 1;
3693 #endif
3694 	hugetlb_fault_mutex_table =
3695 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3696 			      GFP_KERNEL);
3697 	BUG_ON(!hugetlb_fault_mutex_table);
3698 
3699 	for (i = 0; i < num_fault_mutexes; i++)
3700 		mutex_init(&hugetlb_fault_mutex_table[i]);
3701 	return 0;
3702 }
3703 subsys_initcall(hugetlb_init);
3704 
3705 /* Overwritten by architectures with more huge page sizes */
__init(weak)3706 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3707 {
3708 	return size == HPAGE_SIZE;
3709 }
3710 
hugetlb_add_hstate(unsigned int order)3711 void __init hugetlb_add_hstate(unsigned int order)
3712 {
3713 	struct hstate *h;
3714 	unsigned long i;
3715 
3716 	if (size_to_hstate(PAGE_SIZE << order)) {
3717 		return;
3718 	}
3719 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3720 	BUG_ON(order == 0);
3721 	h = &hstates[hugetlb_max_hstate++];
3722 	mutex_init(&h->resize_lock);
3723 	h->order = order;
3724 	h->mask = ~(huge_page_size(h) - 1);
3725 	for (i = 0; i < MAX_NUMNODES; ++i)
3726 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3727 	INIT_LIST_HEAD(&h->hugepage_activelist);
3728 	h->next_nid_to_alloc = first_memory_node;
3729 	h->next_nid_to_free = first_memory_node;
3730 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3731 					huge_page_size(h)/1024);
3732 	hugetlb_vmemmap_init(h);
3733 
3734 	parsed_hstate = h;
3735 }
3736 
3737 /*
3738  * hugepages command line processing
3739  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3740  * specification.  If not, ignore the hugepages value.  hugepages can also
3741  * be the first huge page command line  option in which case it implicitly
3742  * specifies the number of huge pages for the default size.
3743  */
hugepages_setup(char * s)3744 static int __init hugepages_setup(char *s)
3745 {
3746 	unsigned long *mhp;
3747 	static unsigned long *last_mhp;
3748 
3749 	if (!parsed_valid_hugepagesz) {
3750 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3751 		parsed_valid_hugepagesz = true;
3752 		return 0;
3753 	}
3754 
3755 	/*
3756 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3757 	 * yet, so this hugepages= parameter goes to the "default hstate".
3758 	 * Otherwise, it goes with the previously parsed hugepagesz or
3759 	 * default_hugepagesz.
3760 	 */
3761 	else if (!hugetlb_max_hstate)
3762 		mhp = &default_hstate_max_huge_pages;
3763 	else
3764 		mhp = &parsed_hstate->max_huge_pages;
3765 
3766 	if (mhp == last_mhp) {
3767 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3768 		return 0;
3769 	}
3770 
3771 	if (sscanf(s, "%lu", mhp) <= 0)
3772 		*mhp = 0;
3773 
3774 	/*
3775 	 * Global state is always initialized later in hugetlb_init.
3776 	 * But we need to allocate gigantic hstates here early to still
3777 	 * use the bootmem allocator.
3778 	 */
3779 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3780 		hugetlb_hstate_alloc_pages(parsed_hstate);
3781 
3782 	last_mhp = mhp;
3783 
3784 	return 1;
3785 }
3786 __setup("hugepages=", hugepages_setup);
3787 
3788 /*
3789  * hugepagesz command line processing
3790  * A specific huge page size can only be specified once with hugepagesz.
3791  * hugepagesz is followed by hugepages on the command line.  The global
3792  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3793  * hugepagesz argument was valid.
3794  */
hugepagesz_setup(char * s)3795 static int __init hugepagesz_setup(char *s)
3796 {
3797 	unsigned long size;
3798 	struct hstate *h;
3799 
3800 	parsed_valid_hugepagesz = false;
3801 	size = (unsigned long)memparse(s, NULL);
3802 
3803 	if (!arch_hugetlb_valid_size(size)) {
3804 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3805 		return 0;
3806 	}
3807 
3808 	h = size_to_hstate(size);
3809 	if (h) {
3810 		/*
3811 		 * hstate for this size already exists.  This is normally
3812 		 * an error, but is allowed if the existing hstate is the
3813 		 * default hstate.  More specifically, it is only allowed if
3814 		 * the number of huge pages for the default hstate was not
3815 		 * previously specified.
3816 		 */
3817 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3818 		    default_hstate.max_huge_pages) {
3819 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3820 			return 0;
3821 		}
3822 
3823 		/*
3824 		 * No need to call hugetlb_add_hstate() as hstate already
3825 		 * exists.  But, do set parsed_hstate so that a following
3826 		 * hugepages= parameter will be applied to this hstate.
3827 		 */
3828 		parsed_hstate = h;
3829 		parsed_valid_hugepagesz = true;
3830 		return 1;
3831 	}
3832 
3833 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3834 	parsed_valid_hugepagesz = true;
3835 	return 1;
3836 }
3837 __setup("hugepagesz=", hugepagesz_setup);
3838 
3839 /*
3840  * default_hugepagesz command line input
3841  * Only one instance of default_hugepagesz allowed on command line.
3842  */
default_hugepagesz_setup(char * s)3843 static int __init default_hugepagesz_setup(char *s)
3844 {
3845 	unsigned long size;
3846 
3847 	parsed_valid_hugepagesz = false;
3848 	if (parsed_default_hugepagesz) {
3849 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3850 		return 0;
3851 	}
3852 
3853 	size = (unsigned long)memparse(s, NULL);
3854 
3855 	if (!arch_hugetlb_valid_size(size)) {
3856 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3857 		return 0;
3858 	}
3859 
3860 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3861 	parsed_valid_hugepagesz = true;
3862 	parsed_default_hugepagesz = true;
3863 	default_hstate_idx = hstate_index(size_to_hstate(size));
3864 
3865 	/*
3866 	 * The number of default huge pages (for this size) could have been
3867 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3868 	 * then default_hstate_max_huge_pages is set.  If the default huge
3869 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3870 	 * allocated here from bootmem allocator.
3871 	 */
3872 	if (default_hstate_max_huge_pages) {
3873 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3874 		if (hstate_is_gigantic(&default_hstate))
3875 			hugetlb_hstate_alloc_pages(&default_hstate);
3876 		default_hstate_max_huge_pages = 0;
3877 	}
3878 
3879 	return 1;
3880 }
3881 __setup("default_hugepagesz=", default_hugepagesz_setup);
3882 
allowed_mems_nr(struct hstate * h)3883 static unsigned int allowed_mems_nr(struct hstate *h)
3884 {
3885 	int node;
3886 	unsigned int nr = 0;
3887 	nodemask_t *mpol_allowed;
3888 	unsigned int *array = h->free_huge_pages_node;
3889 	gfp_t gfp_mask = htlb_alloc_mask(h);
3890 
3891 	mpol_allowed = policy_nodemask_current(gfp_mask);
3892 
3893 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3894 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3895 			nr += array[node];
3896 	}
3897 
3898 	return nr;
3899 }
3900 
3901 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3902 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3903 					  void *buffer, size_t *length,
3904 					  loff_t *ppos, unsigned long *out)
3905 {
3906 	struct ctl_table dup_table;
3907 
3908 	/*
3909 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3910 	 * can duplicate the @table and alter the duplicate of it.
3911 	 */
3912 	dup_table = *table;
3913 	dup_table.data = out;
3914 
3915 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3916 }
3917 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3918 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3919 			 struct ctl_table *table, int write,
3920 			 void *buffer, size_t *length, loff_t *ppos)
3921 {
3922 	struct hstate *h = &default_hstate;
3923 	unsigned long tmp = h->max_huge_pages;
3924 	int ret;
3925 
3926 	if (!hugepages_supported())
3927 		return -EOPNOTSUPP;
3928 
3929 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3930 					     &tmp);
3931 	if (ret)
3932 		goto out;
3933 
3934 	if (write)
3935 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3936 						  NUMA_NO_NODE, tmp, *length);
3937 out:
3938 	return ret;
3939 }
3940 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3941 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3942 			  void *buffer, size_t *length, loff_t *ppos)
3943 {
3944 
3945 	return hugetlb_sysctl_handler_common(false, table, write,
3946 							buffer, length, ppos);
3947 }
3948 
3949 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3950 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3951 			  void *buffer, size_t *length, loff_t *ppos)
3952 {
3953 	return hugetlb_sysctl_handler_common(true, table, write,
3954 							buffer, length, ppos);
3955 }
3956 #endif /* CONFIG_NUMA */
3957 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3958 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3959 		void *buffer, size_t *length, loff_t *ppos)
3960 {
3961 	struct hstate *h = &default_hstate;
3962 	unsigned long tmp;
3963 	int ret;
3964 
3965 	if (!hugepages_supported())
3966 		return -EOPNOTSUPP;
3967 
3968 	tmp = h->nr_overcommit_huge_pages;
3969 
3970 	if (write && hstate_is_gigantic(h))
3971 		return -EINVAL;
3972 
3973 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3974 					     &tmp);
3975 	if (ret)
3976 		goto out;
3977 
3978 	if (write) {
3979 		spin_lock_irq(&hugetlb_lock);
3980 		h->nr_overcommit_huge_pages = tmp;
3981 		spin_unlock_irq(&hugetlb_lock);
3982 	}
3983 out:
3984 	return ret;
3985 }
3986 
3987 #endif /* CONFIG_SYSCTL */
3988 
hugetlb_report_meminfo(struct seq_file * m)3989 void hugetlb_report_meminfo(struct seq_file *m)
3990 {
3991 	struct hstate *h;
3992 	unsigned long total = 0;
3993 
3994 	if (!hugepages_supported())
3995 		return;
3996 
3997 	for_each_hstate(h) {
3998 		unsigned long count = h->nr_huge_pages;
3999 
4000 		total += huge_page_size(h) * count;
4001 
4002 		if (h == &default_hstate)
4003 			seq_printf(m,
4004 				   "HugePages_Total:   %5lu\n"
4005 				   "HugePages_Free:    %5lu\n"
4006 				   "HugePages_Rsvd:    %5lu\n"
4007 				   "HugePages_Surp:    %5lu\n"
4008 				   "Hugepagesize:   %8lu kB\n",
4009 				   count,
4010 				   h->free_huge_pages,
4011 				   h->resv_huge_pages,
4012 				   h->surplus_huge_pages,
4013 				   huge_page_size(h) / SZ_1K);
4014 	}
4015 
4016 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4017 }
4018 
hugetlb_report_node_meminfo(char * buf,int len,int nid)4019 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4020 {
4021 	struct hstate *h = &default_hstate;
4022 
4023 	if (!hugepages_supported())
4024 		return 0;
4025 
4026 	return sysfs_emit_at(buf, len,
4027 			     "Node %d HugePages_Total: %5u\n"
4028 			     "Node %d HugePages_Free:  %5u\n"
4029 			     "Node %d HugePages_Surp:  %5u\n",
4030 			     nid, h->nr_huge_pages_node[nid],
4031 			     nid, h->free_huge_pages_node[nid],
4032 			     nid, h->surplus_huge_pages_node[nid]);
4033 }
4034 
hugetlb_show_meminfo(void)4035 void hugetlb_show_meminfo(void)
4036 {
4037 	struct hstate *h;
4038 	int nid;
4039 
4040 	if (!hugepages_supported())
4041 		return;
4042 
4043 	for_each_node_state(nid, N_MEMORY)
4044 		for_each_hstate(h)
4045 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4046 				nid,
4047 				h->nr_huge_pages_node[nid],
4048 				h->free_huge_pages_node[nid],
4049 				h->surplus_huge_pages_node[nid],
4050 				huge_page_size(h) / SZ_1K);
4051 }
4052 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4053 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4054 {
4055 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4056 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4057 }
4058 
4059 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4060 unsigned long hugetlb_total_pages(void)
4061 {
4062 	struct hstate *h;
4063 	unsigned long nr_total_pages = 0;
4064 
4065 	for_each_hstate(h)
4066 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4067 	return nr_total_pages;
4068 }
4069 
hugetlb_acct_memory(struct hstate * h,long delta)4070 static int hugetlb_acct_memory(struct hstate *h, long delta)
4071 {
4072 	int ret = -ENOMEM;
4073 
4074 	if (!delta)
4075 		return 0;
4076 
4077 	spin_lock_irq(&hugetlb_lock);
4078 	/*
4079 	 * When cpuset is configured, it breaks the strict hugetlb page
4080 	 * reservation as the accounting is done on a global variable. Such
4081 	 * reservation is completely rubbish in the presence of cpuset because
4082 	 * the reservation is not checked against page availability for the
4083 	 * current cpuset. Application can still potentially OOM'ed by kernel
4084 	 * with lack of free htlb page in cpuset that the task is in.
4085 	 * Attempt to enforce strict accounting with cpuset is almost
4086 	 * impossible (or too ugly) because cpuset is too fluid that
4087 	 * task or memory node can be dynamically moved between cpusets.
4088 	 *
4089 	 * The change of semantics for shared hugetlb mapping with cpuset is
4090 	 * undesirable. However, in order to preserve some of the semantics,
4091 	 * we fall back to check against current free page availability as
4092 	 * a best attempt and hopefully to minimize the impact of changing
4093 	 * semantics that cpuset has.
4094 	 *
4095 	 * Apart from cpuset, we also have memory policy mechanism that
4096 	 * also determines from which node the kernel will allocate memory
4097 	 * in a NUMA system. So similar to cpuset, we also should consider
4098 	 * the memory policy of the current task. Similar to the description
4099 	 * above.
4100 	 */
4101 	if (delta > 0) {
4102 		if (gather_surplus_pages(h, delta) < 0)
4103 			goto out;
4104 
4105 		if (delta > allowed_mems_nr(h)) {
4106 			return_unused_surplus_pages(h, delta);
4107 			goto out;
4108 		}
4109 	}
4110 
4111 	ret = 0;
4112 	if (delta < 0)
4113 		return_unused_surplus_pages(h, (unsigned long) -delta);
4114 
4115 out:
4116 	spin_unlock_irq(&hugetlb_lock);
4117 	return ret;
4118 }
4119 
hugetlb_vm_op_open(struct vm_area_struct * vma)4120 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4121 {
4122 	struct resv_map *resv = vma_resv_map(vma);
4123 
4124 	/*
4125 	 * This new VMA should share its siblings reservation map if present.
4126 	 * The VMA will only ever have a valid reservation map pointer where
4127 	 * it is being copied for another still existing VMA.  As that VMA
4128 	 * has a reference to the reservation map it cannot disappear until
4129 	 * after this open call completes.  It is therefore safe to take a
4130 	 * new reference here without additional locking.
4131 	 */
4132 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4133 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4134 		kref_get(&resv->refs);
4135 	}
4136 }
4137 
hugetlb_vm_op_close(struct vm_area_struct * vma)4138 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4139 {
4140 	struct hstate *h = hstate_vma(vma);
4141 	struct resv_map *resv = vma_resv_map(vma);
4142 	struct hugepage_subpool *spool = subpool_vma(vma);
4143 	unsigned long reserve, start, end;
4144 	long gbl_reserve;
4145 
4146 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4147 		return;
4148 
4149 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4150 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4151 
4152 	reserve = (end - start) - region_count(resv, start, end);
4153 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4154 	if (reserve) {
4155 		/*
4156 		 * Decrement reserve counts.  The global reserve count may be
4157 		 * adjusted if the subpool has a minimum size.
4158 		 */
4159 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4160 		hugetlb_acct_memory(h, -gbl_reserve);
4161 	}
4162 
4163 	kref_put(&resv->refs, resv_map_release);
4164 }
4165 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4166 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4167 {
4168 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4169 		return -EINVAL;
4170 
4171 	/*
4172 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4173 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4174 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4175 	 */
4176 	if (addr & ~PUD_MASK) {
4177 		/*
4178 		 * hugetlb_vm_op_split is called right before we attempt to
4179 		 * split the VMA. We will need to unshare PMDs in the old and
4180 		 * new VMAs, so let's unshare before we split.
4181 		 */
4182 		unsigned long floor = addr & PUD_MASK;
4183 		unsigned long ceil = floor + PUD_SIZE;
4184 
4185 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4186 			hugetlb_unshare_pmds(vma, floor, ceil);
4187 	}
4188 
4189 	return 0;
4190 }
4191 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4192 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4193 {
4194 	return huge_page_size(hstate_vma(vma));
4195 }
4196 
4197 /*
4198  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4199  * handle_mm_fault() to try to instantiate regular-sized pages in the
4200  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4201  * this far.
4202  */
hugetlb_vm_op_fault(struct vm_fault * vmf)4203 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4204 {
4205 	BUG();
4206 	return 0;
4207 }
4208 
4209 /*
4210  * When a new function is introduced to vm_operations_struct and added
4211  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4212  * This is because under System V memory model, mappings created via
4213  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4214  * their original vm_ops are overwritten with shm_vm_ops.
4215  */
4216 const struct vm_operations_struct hugetlb_vm_ops = {
4217 	.fault = hugetlb_vm_op_fault,
4218 	.open = hugetlb_vm_op_open,
4219 	.close = hugetlb_vm_op_close,
4220 	.may_split = hugetlb_vm_op_split,
4221 	.pagesize = hugetlb_vm_op_pagesize,
4222 };
4223 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4224 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4225 				int writable)
4226 {
4227 	pte_t entry;
4228 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4229 
4230 	if (writable) {
4231 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4232 					 vma->vm_page_prot)));
4233 	} else {
4234 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4235 					   vma->vm_page_prot));
4236 	}
4237 	entry = pte_mkyoung(entry);
4238 	entry = pte_mkhuge(entry);
4239 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4240 
4241 	return entry;
4242 }
4243 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4244 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4245 				   unsigned long address, pte_t *ptep)
4246 {
4247 	pte_t entry;
4248 
4249 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4250 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4251 		update_mmu_cache(vma, address, ptep);
4252 }
4253 
is_hugetlb_entry_migration(pte_t pte)4254 bool is_hugetlb_entry_migration(pte_t pte)
4255 {
4256 	swp_entry_t swp;
4257 
4258 	if (huge_pte_none(pte) || pte_present(pte))
4259 		return false;
4260 	swp = pte_to_swp_entry(pte);
4261 	if (is_migration_entry(swp))
4262 		return true;
4263 	else
4264 		return false;
4265 }
4266 
is_hugetlb_entry_hwpoisoned(pte_t pte)4267 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4268 {
4269 	swp_entry_t swp;
4270 
4271 	if (huge_pte_none(pte) || pte_present(pte))
4272 		return false;
4273 	swp = pte_to_swp_entry(pte);
4274 	if (is_hwpoison_entry(swp))
4275 		return true;
4276 	else
4277 		return false;
4278 }
4279 
4280 static void
hugetlb_install_page(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct page * new_page)4281 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4282 		     struct page *new_page)
4283 {
4284 	__SetPageUptodate(new_page);
4285 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4286 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4287 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4288 	ClearHPageRestoreReserve(new_page);
4289 	SetHPageMigratable(new_page);
4290 }
4291 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)4292 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4293 			    struct vm_area_struct *vma)
4294 {
4295 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4296 	struct page *ptepage;
4297 	unsigned long addr;
4298 	bool cow = is_cow_mapping(vma->vm_flags);
4299 	struct hstate *h = hstate_vma(vma);
4300 	unsigned long sz = huge_page_size(h);
4301 	unsigned long npages = pages_per_huge_page(h);
4302 	struct address_space *mapping = vma->vm_file->f_mapping;
4303 	struct mmu_notifier_range range;
4304 	int ret = 0;
4305 
4306 	if (cow) {
4307 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4308 					vma->vm_start,
4309 					vma->vm_end);
4310 		mmu_notifier_invalidate_range_start(&range);
4311 	} else {
4312 		/*
4313 		 * For shared mappings i_mmap_rwsem must be held to call
4314 		 * huge_pte_alloc, otherwise the returned ptep could go
4315 		 * away if part of a shared pmd and another thread calls
4316 		 * huge_pmd_unshare.
4317 		 */
4318 		i_mmap_lock_read(mapping);
4319 	}
4320 
4321 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4322 		spinlock_t *src_ptl, *dst_ptl;
4323 		src_pte = huge_pte_offset(src, addr, sz);
4324 		if (!src_pte)
4325 			continue;
4326 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4327 		if (!dst_pte) {
4328 			ret = -ENOMEM;
4329 			break;
4330 		}
4331 
4332 		/*
4333 		 * If the pagetables are shared don't copy or take references.
4334 		 * dst_pte == src_pte is the common case of src/dest sharing.
4335 		 *
4336 		 * However, src could have 'unshared' and dst shares with
4337 		 * another vma.  If dst_pte !none, this implies sharing.
4338 		 * Check here before taking page table lock, and once again
4339 		 * after taking the lock below.
4340 		 */
4341 		dst_entry = huge_ptep_get(dst_pte);
4342 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4343 			continue;
4344 
4345 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4346 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4347 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4348 		entry = huge_ptep_get(src_pte);
4349 		dst_entry = huge_ptep_get(dst_pte);
4350 again:
4351 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4352 			/*
4353 			 * Skip if src entry none.  Also, skip in the
4354 			 * unlikely case dst entry !none as this implies
4355 			 * sharing with another vma.
4356 			 */
4357 			;
4358 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4359 				    is_hugetlb_entry_hwpoisoned(entry))) {
4360 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4361 
4362 			if (is_writable_migration_entry(swp_entry) && cow) {
4363 				/*
4364 				 * COW mappings require pages in both
4365 				 * parent and child to be set to read.
4366 				 */
4367 				swp_entry = make_readable_migration_entry(
4368 							swp_offset(swp_entry));
4369 				entry = swp_entry_to_pte(swp_entry);
4370 				set_huge_swap_pte_at(src, addr, src_pte,
4371 						     entry, sz);
4372 			}
4373 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4374 		} else {
4375 			entry = huge_ptep_get(src_pte);
4376 			ptepage = pte_page(entry);
4377 			get_page(ptepage);
4378 
4379 			/*
4380 			 * This is a rare case where we see pinned hugetlb
4381 			 * pages while they're prone to COW.  We need to do the
4382 			 * COW earlier during fork.
4383 			 *
4384 			 * When pre-allocating the page or copying data, we
4385 			 * need to be without the pgtable locks since we could
4386 			 * sleep during the process.
4387 			 */
4388 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4389 				pte_t src_pte_old = entry;
4390 				struct page *new;
4391 
4392 				spin_unlock(src_ptl);
4393 				spin_unlock(dst_ptl);
4394 				/* Do not use reserve as it's private owned */
4395 				new = alloc_huge_page(vma, addr, 1);
4396 				if (IS_ERR(new)) {
4397 					put_page(ptepage);
4398 					ret = PTR_ERR(new);
4399 					break;
4400 				}
4401 				copy_user_huge_page(new, ptepage, addr, vma,
4402 						    npages);
4403 				put_page(ptepage);
4404 
4405 				/* Install the new huge page if src pte stable */
4406 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4407 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4408 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4409 				entry = huge_ptep_get(src_pte);
4410 				if (!pte_same(src_pte_old, entry)) {
4411 					restore_reserve_on_error(h, vma, addr,
4412 								new);
4413 					put_page(new);
4414 					/* dst_entry won't change as in child */
4415 					goto again;
4416 				}
4417 				hugetlb_install_page(vma, dst_pte, addr, new);
4418 				spin_unlock(src_ptl);
4419 				spin_unlock(dst_ptl);
4420 				continue;
4421 			}
4422 
4423 			if (cow) {
4424 				/*
4425 				 * No need to notify as we are downgrading page
4426 				 * table protection not changing it to point
4427 				 * to a new page.
4428 				 *
4429 				 * See Documentation/vm/mmu_notifier.rst
4430 				 */
4431 				huge_ptep_set_wrprotect(src, addr, src_pte);
4432 				entry = huge_pte_wrprotect(entry);
4433 			}
4434 
4435 			page_dup_rmap(ptepage, true);
4436 			set_huge_pte_at(dst, addr, dst_pte, entry);
4437 			hugetlb_count_add(npages, dst);
4438 		}
4439 		spin_unlock(src_ptl);
4440 		spin_unlock(dst_ptl);
4441 	}
4442 
4443 	if (cow)
4444 		mmu_notifier_invalidate_range_end(&range);
4445 	else
4446 		i_mmap_unlock_read(mapping);
4447 
4448 	return ret;
4449 }
4450 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4451 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4452 			    unsigned long start, unsigned long end,
4453 			    struct page *ref_page)
4454 {
4455 	struct mm_struct *mm = vma->vm_mm;
4456 	unsigned long address;
4457 	pte_t *ptep;
4458 	pte_t pte;
4459 	spinlock_t *ptl;
4460 	struct page *page;
4461 	struct hstate *h = hstate_vma(vma);
4462 	unsigned long sz = huge_page_size(h);
4463 	struct mmu_notifier_range range;
4464 	bool force_flush = false;
4465 
4466 	WARN_ON(!is_vm_hugetlb_page(vma));
4467 	BUG_ON(start & ~huge_page_mask(h));
4468 	BUG_ON(end & ~huge_page_mask(h));
4469 
4470 	/*
4471 	 * This is a hugetlb vma, all the pte entries should point
4472 	 * to huge page.
4473 	 */
4474 	tlb_change_page_size(tlb, sz);
4475 	tlb_start_vma(tlb, vma);
4476 
4477 	/*
4478 	 * If sharing possible, alert mmu notifiers of worst case.
4479 	 */
4480 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4481 				end);
4482 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4483 	mmu_notifier_invalidate_range_start(&range);
4484 	address = start;
4485 	for (; address < end; address += sz) {
4486 		ptep = huge_pte_offset(mm, address, sz);
4487 		if (!ptep)
4488 			continue;
4489 
4490 		ptl = huge_pte_lock(h, mm, ptep);
4491 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4492 			spin_unlock(ptl);
4493 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4494 			force_flush = true;
4495 			continue;
4496 		}
4497 
4498 		pte = huge_ptep_get(ptep);
4499 		if (huge_pte_none(pte)) {
4500 			spin_unlock(ptl);
4501 			continue;
4502 		}
4503 
4504 		/*
4505 		 * Migrating hugepage or HWPoisoned hugepage is already
4506 		 * unmapped and its refcount is dropped, so just clear pte here.
4507 		 */
4508 		if (unlikely(!pte_present(pte))) {
4509 			huge_pte_clear(mm, address, ptep, sz);
4510 			spin_unlock(ptl);
4511 			continue;
4512 		}
4513 
4514 		page = pte_page(pte);
4515 		/*
4516 		 * If a reference page is supplied, it is because a specific
4517 		 * page is being unmapped, not a range. Ensure the page we
4518 		 * are about to unmap is the actual page of interest.
4519 		 */
4520 		if (ref_page) {
4521 			if (page != ref_page) {
4522 				spin_unlock(ptl);
4523 				continue;
4524 			}
4525 			/*
4526 			 * Mark the VMA as having unmapped its page so that
4527 			 * future faults in this VMA will fail rather than
4528 			 * looking like data was lost
4529 			 */
4530 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4531 		}
4532 
4533 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4534 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4535 		if (huge_pte_dirty(pte))
4536 			set_page_dirty(page);
4537 
4538 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4539 		page_remove_rmap(page, true);
4540 
4541 		spin_unlock(ptl);
4542 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4543 		/*
4544 		 * Bail out after unmapping reference page if supplied
4545 		 */
4546 		if (ref_page)
4547 			break;
4548 	}
4549 	mmu_notifier_invalidate_range_end(&range);
4550 	tlb_end_vma(tlb, vma);
4551 
4552 	/*
4553 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4554 	 * could defer the flush until now, since by holding i_mmap_rwsem we
4555 	 * guaranteed that the last refernece would not be dropped. But we must
4556 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4557 	 * dropped and the last reference to the shared PMDs page might be
4558 	 * dropped as well.
4559 	 *
4560 	 * In theory we could defer the freeing of the PMD pages as well, but
4561 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4562 	 * detect sharing, so we cannot defer the release of the page either.
4563 	 * Instead, do flush now.
4564 	 */
4565 	if (force_flush)
4566 		tlb_flush_mmu_tlbonly(tlb);
4567 }
4568 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4569 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4570 			  struct vm_area_struct *vma, unsigned long start,
4571 			  unsigned long end, struct page *ref_page)
4572 {
4573 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4574 
4575 	/*
4576 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4577 	 * test will fail on a vma being torn down, and not grab a page table
4578 	 * on its way out.  We're lucky that the flag has such an appropriate
4579 	 * name, and can in fact be safely cleared here. We could clear it
4580 	 * before the __unmap_hugepage_range above, but all that's necessary
4581 	 * is to clear it before releasing the i_mmap_rwsem. This works
4582 	 * because in the context this is called, the VMA is about to be
4583 	 * destroyed and the i_mmap_rwsem is held.
4584 	 */
4585 	vma->vm_flags &= ~VM_MAYSHARE;
4586 }
4587 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4588 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4589 			  unsigned long end, struct page *ref_page)
4590 {
4591 	struct mmu_gather tlb;
4592 
4593 	tlb_gather_mmu(&tlb, vma->vm_mm);
4594 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4595 	tlb_finish_mmu(&tlb);
4596 }
4597 
4598 /*
4599  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4600  * mapping it owns the reserve page for. The intention is to unmap the page
4601  * from other VMAs and let the children be SIGKILLed if they are faulting the
4602  * same region.
4603  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4604 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4605 			      struct page *page, unsigned long address)
4606 {
4607 	struct hstate *h = hstate_vma(vma);
4608 	struct vm_area_struct *iter_vma;
4609 	struct address_space *mapping;
4610 	pgoff_t pgoff;
4611 
4612 	/*
4613 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4614 	 * from page cache lookup which is in HPAGE_SIZE units.
4615 	 */
4616 	address = address & huge_page_mask(h);
4617 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4618 			vma->vm_pgoff;
4619 	mapping = vma->vm_file->f_mapping;
4620 
4621 	/*
4622 	 * Take the mapping lock for the duration of the table walk. As
4623 	 * this mapping should be shared between all the VMAs,
4624 	 * __unmap_hugepage_range() is called as the lock is already held
4625 	 */
4626 	i_mmap_lock_write(mapping);
4627 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4628 		/* Do not unmap the current VMA */
4629 		if (iter_vma == vma)
4630 			continue;
4631 
4632 		/*
4633 		 * Shared VMAs have their own reserves and do not affect
4634 		 * MAP_PRIVATE accounting but it is possible that a shared
4635 		 * VMA is using the same page so check and skip such VMAs.
4636 		 */
4637 		if (iter_vma->vm_flags & VM_MAYSHARE)
4638 			continue;
4639 
4640 		/*
4641 		 * Unmap the page from other VMAs without their own reserves.
4642 		 * They get marked to be SIGKILLed if they fault in these
4643 		 * areas. This is because a future no-page fault on this VMA
4644 		 * could insert a zeroed page instead of the data existing
4645 		 * from the time of fork. This would look like data corruption
4646 		 */
4647 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4648 			unmap_hugepage_range(iter_vma, address,
4649 					     address + huge_page_size(h), page);
4650 	}
4651 	i_mmap_unlock_write(mapping);
4652 }
4653 
4654 /*
4655  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4656  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4657  * cannot race with other handlers or page migration.
4658  * Keep the pte_same checks anyway to make transition from the mutex easier.
4659  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4660 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4661 		       unsigned long address, pte_t *ptep,
4662 		       struct page *pagecache_page, spinlock_t *ptl)
4663 {
4664 	pte_t pte;
4665 	struct hstate *h = hstate_vma(vma);
4666 	struct page *old_page, *new_page;
4667 	int outside_reserve = 0;
4668 	vm_fault_t ret = 0;
4669 	unsigned long haddr = address & huge_page_mask(h);
4670 	struct mmu_notifier_range range;
4671 
4672 	pte = huge_ptep_get(ptep);
4673 	old_page = pte_page(pte);
4674 
4675 retry_avoidcopy:
4676 	/* If no-one else is actually using this page, avoid the copy
4677 	 * and just make the page writable */
4678 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4679 		page_move_anon_rmap(old_page, vma);
4680 		set_huge_ptep_writable(vma, haddr, ptep);
4681 		return 0;
4682 	}
4683 
4684 	/*
4685 	 * If the process that created a MAP_PRIVATE mapping is about to
4686 	 * perform a COW due to a shared page count, attempt to satisfy
4687 	 * the allocation without using the existing reserves. The pagecache
4688 	 * page is used to determine if the reserve at this address was
4689 	 * consumed or not. If reserves were used, a partial faulted mapping
4690 	 * at the time of fork() could consume its reserves on COW instead
4691 	 * of the full address range.
4692 	 */
4693 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4694 			old_page != pagecache_page)
4695 		outside_reserve = 1;
4696 
4697 	get_page(old_page);
4698 
4699 	/*
4700 	 * Drop page table lock as buddy allocator may be called. It will
4701 	 * be acquired again before returning to the caller, as expected.
4702 	 */
4703 	spin_unlock(ptl);
4704 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4705 
4706 	if (IS_ERR(new_page)) {
4707 		/*
4708 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4709 		 * it is due to references held by a child and an insufficient
4710 		 * huge page pool. To guarantee the original mappers
4711 		 * reliability, unmap the page from child processes. The child
4712 		 * may get SIGKILLed if it later faults.
4713 		 */
4714 		if (outside_reserve) {
4715 			struct address_space *mapping = vma->vm_file->f_mapping;
4716 			pgoff_t idx;
4717 			u32 hash;
4718 
4719 			put_page(old_page);
4720 			BUG_ON(huge_pte_none(pte));
4721 			/*
4722 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4723 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4724 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4725 			 * here is OK as COW mappings do not interact with
4726 			 * PMD sharing.
4727 			 *
4728 			 * Reacquire both after unmap operation.
4729 			 */
4730 			idx = vma_hugecache_offset(h, vma, haddr);
4731 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4732 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4733 			i_mmap_unlock_read(mapping);
4734 
4735 			unmap_ref_private(mm, vma, old_page, haddr);
4736 
4737 			i_mmap_lock_read(mapping);
4738 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4739 			spin_lock(ptl);
4740 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4741 			if (likely(ptep &&
4742 				   pte_same(huge_ptep_get(ptep), pte)))
4743 				goto retry_avoidcopy;
4744 			/*
4745 			 * race occurs while re-acquiring page table
4746 			 * lock, and our job is done.
4747 			 */
4748 			return 0;
4749 		}
4750 
4751 		ret = vmf_error(PTR_ERR(new_page));
4752 		goto out_release_old;
4753 	}
4754 
4755 	/*
4756 	 * When the original hugepage is shared one, it does not have
4757 	 * anon_vma prepared.
4758 	 */
4759 	if (unlikely(anon_vma_prepare(vma))) {
4760 		ret = VM_FAULT_OOM;
4761 		goto out_release_all;
4762 	}
4763 
4764 	copy_user_huge_page(new_page, old_page, address, vma,
4765 			    pages_per_huge_page(h));
4766 	__SetPageUptodate(new_page);
4767 
4768 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4769 				haddr + huge_page_size(h));
4770 	mmu_notifier_invalidate_range_start(&range);
4771 
4772 	/*
4773 	 * Retake the page table lock to check for racing updates
4774 	 * before the page tables are altered
4775 	 */
4776 	spin_lock(ptl);
4777 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4778 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4779 		ClearHPageRestoreReserve(new_page);
4780 
4781 		/* Break COW */
4782 		huge_ptep_clear_flush(vma, haddr, ptep);
4783 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4784 		set_huge_pte_at(mm, haddr, ptep,
4785 				make_huge_pte(vma, new_page, 1));
4786 		page_remove_rmap(old_page, true);
4787 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4788 		SetHPageMigratable(new_page);
4789 		/* Make the old page be freed below */
4790 		new_page = old_page;
4791 	}
4792 	spin_unlock(ptl);
4793 	mmu_notifier_invalidate_range_end(&range);
4794 out_release_all:
4795 	/* No restore in case of successful pagetable update (Break COW) */
4796 	if (new_page != old_page)
4797 		restore_reserve_on_error(h, vma, haddr, new_page);
4798 	put_page(new_page);
4799 out_release_old:
4800 	put_page(old_page);
4801 
4802 	spin_lock(ptl); /* Caller expects lock to be held */
4803 	return ret;
4804 }
4805 
4806 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4807 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4808 			struct vm_area_struct *vma, unsigned long address)
4809 {
4810 	struct address_space *mapping;
4811 	pgoff_t idx;
4812 
4813 	mapping = vma->vm_file->f_mapping;
4814 	idx = vma_hugecache_offset(h, vma, address);
4815 
4816 	return find_lock_page(mapping, idx);
4817 }
4818 
4819 /*
4820  * Return whether there is a pagecache page to back given address within VMA.
4821  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4822  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4823 static bool hugetlbfs_pagecache_present(struct hstate *h,
4824 			struct vm_area_struct *vma, unsigned long address)
4825 {
4826 	struct address_space *mapping;
4827 	pgoff_t idx;
4828 	struct page *page;
4829 
4830 	mapping = vma->vm_file->f_mapping;
4831 	idx = vma_hugecache_offset(h, vma, address);
4832 
4833 	page = find_get_page(mapping, idx);
4834 	if (page)
4835 		put_page(page);
4836 	return page != NULL;
4837 }
4838 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4839 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4840 			   pgoff_t idx)
4841 {
4842 	struct inode *inode = mapping->host;
4843 	struct hstate *h = hstate_inode(inode);
4844 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4845 
4846 	if (err)
4847 		return err;
4848 	ClearHPageRestoreReserve(page);
4849 
4850 	/*
4851 	 * set page dirty so that it will not be removed from cache/file
4852 	 * by non-hugetlbfs specific code paths.
4853 	 */
4854 	set_page_dirty(page);
4855 
4856 	spin_lock(&inode->i_lock);
4857 	inode->i_blocks += blocks_per_huge_page(h);
4858 	spin_unlock(&inode->i_lock);
4859 	return 0;
4860 }
4861 
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long reason)4862 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4863 						  struct address_space *mapping,
4864 						  pgoff_t idx,
4865 						  unsigned int flags,
4866 						  unsigned long haddr,
4867 						  unsigned long reason)
4868 {
4869 	u32 hash;
4870 	struct vm_fault vmf = {
4871 		.vma = vma,
4872 		.address = haddr,
4873 		.flags = flags,
4874 
4875 		/*
4876 		 * Hard to debug if it ends up being
4877 		 * used by a callee that assumes
4878 		 * something about the other
4879 		 * uninitialized fields... same as in
4880 		 * memory.c
4881 		 */
4882 	};
4883 
4884 	/*
4885 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
4886 	 * userfault. Also mmap_lock will be dropped during handling
4887 	 * userfault, any vma operation should be careful from here.
4888 	 */
4889 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4890 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4891 	i_mmap_unlock_read(mapping);
4892 	return handle_userfault(&vmf, reason);
4893 }
4894 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4895 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4896 			struct vm_area_struct *vma,
4897 			struct address_space *mapping, pgoff_t idx,
4898 			unsigned long address, pte_t *ptep, unsigned int flags)
4899 {
4900 	struct hstate *h = hstate_vma(vma);
4901 	vm_fault_t ret = VM_FAULT_SIGBUS;
4902 	int anon_rmap = 0;
4903 	unsigned long size;
4904 	struct page *page;
4905 	pte_t new_pte;
4906 	spinlock_t *ptl;
4907 	unsigned long haddr = address & huge_page_mask(h);
4908 	bool new_page, new_pagecache_page = false;
4909 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4910 
4911 	/*
4912 	 * Currently, we are forced to kill the process in the event the
4913 	 * original mapper has unmapped pages from the child due to a failed
4914 	 * COW. Warn that such a situation has occurred as it may not be obvious
4915 	 */
4916 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4917 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4918 			   current->pid);
4919 		goto out;
4920 	}
4921 
4922 	/*
4923 	 * We can not race with truncation due to holding i_mmap_rwsem.
4924 	 * i_size is modified when holding i_mmap_rwsem, so check here
4925 	 * once for faults beyond end of file.
4926 	 */
4927 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4928 	if (idx >= size)
4929 		goto out;
4930 
4931 retry:
4932 	new_page = false;
4933 	page = find_lock_page(mapping, idx);
4934 	if (!page) {
4935 		/* Check for page in userfault range */
4936 		if (userfaultfd_missing(vma))
4937 			return hugetlb_handle_userfault(vma, mapping, idx,
4938 						       flags, haddr,
4939 						       VM_UFFD_MISSING);
4940 
4941 		page = alloc_huge_page(vma, haddr, 0);
4942 		if (IS_ERR(page)) {
4943 			/*
4944 			 * Returning error will result in faulting task being
4945 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4946 			 * tasks from racing to fault in the same page which
4947 			 * could result in false unable to allocate errors.
4948 			 * Page migration does not take the fault mutex, but
4949 			 * does a clear then write of pte's under page table
4950 			 * lock.  Page fault code could race with migration,
4951 			 * notice the clear pte and try to allocate a page
4952 			 * here.  Before returning error, get ptl and make
4953 			 * sure there really is no pte entry.
4954 			 */
4955 			ptl = huge_pte_lock(h, mm, ptep);
4956 			ret = 0;
4957 			if (huge_pte_none(huge_ptep_get(ptep)))
4958 				ret = vmf_error(PTR_ERR(page));
4959 			spin_unlock(ptl);
4960 			goto out;
4961 		}
4962 		clear_huge_page(page, address, pages_per_huge_page(h));
4963 		__SetPageUptodate(page);
4964 		new_page = true;
4965 
4966 		if (vma->vm_flags & VM_MAYSHARE) {
4967 			int err = huge_add_to_page_cache(page, mapping, idx);
4968 			if (err) {
4969 				put_page(page);
4970 				if (err == -EEXIST)
4971 					goto retry;
4972 				goto out;
4973 			}
4974 			new_pagecache_page = true;
4975 		} else {
4976 			lock_page(page);
4977 			if (unlikely(anon_vma_prepare(vma))) {
4978 				ret = VM_FAULT_OOM;
4979 				goto backout_unlocked;
4980 			}
4981 			anon_rmap = 1;
4982 		}
4983 	} else {
4984 		/*
4985 		 * If memory error occurs between mmap() and fault, some process
4986 		 * don't have hwpoisoned swap entry for errored virtual address.
4987 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4988 		 */
4989 		if (unlikely(PageHWPoison(page))) {
4990 			ret = VM_FAULT_HWPOISON_LARGE |
4991 				VM_FAULT_SET_HINDEX(hstate_index(h));
4992 			goto backout_unlocked;
4993 		}
4994 
4995 		/* Check for page in userfault range. */
4996 		if (userfaultfd_minor(vma)) {
4997 			unlock_page(page);
4998 			put_page(page);
4999 			return hugetlb_handle_userfault(vma, mapping, idx,
5000 						       flags, haddr,
5001 						       VM_UFFD_MINOR);
5002 		}
5003 	}
5004 
5005 	/*
5006 	 * If we are going to COW a private mapping later, we examine the
5007 	 * pending reservations for this page now. This will ensure that
5008 	 * any allocations necessary to record that reservation occur outside
5009 	 * the spinlock.
5010 	 */
5011 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5012 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5013 			ret = VM_FAULT_OOM;
5014 			goto backout_unlocked;
5015 		}
5016 		/* Just decrements count, does not deallocate */
5017 		vma_end_reservation(h, vma, haddr);
5018 	}
5019 
5020 	ptl = huge_pte_lock(h, mm, ptep);
5021 	ret = 0;
5022 	if (!huge_pte_none(huge_ptep_get(ptep)))
5023 		goto backout;
5024 
5025 	if (anon_rmap) {
5026 		ClearHPageRestoreReserve(page);
5027 		hugepage_add_new_anon_rmap(page, vma, haddr);
5028 	} else
5029 		page_dup_rmap(page, true);
5030 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5031 				&& (vma->vm_flags & VM_SHARED)));
5032 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5033 
5034 	hugetlb_count_add(pages_per_huge_page(h), mm);
5035 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5036 		/* Optimization, do the COW without a second fault */
5037 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5038 	}
5039 
5040 	spin_unlock(ptl);
5041 
5042 	/*
5043 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5044 	 * found in the pagecache may not have HPageMigratableset if they have
5045 	 * been isolated for migration.
5046 	 */
5047 	if (new_page)
5048 		SetHPageMigratable(page);
5049 
5050 	unlock_page(page);
5051 out:
5052 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5053 	i_mmap_unlock_read(mapping);
5054 	return ret;
5055 
5056 backout:
5057 	spin_unlock(ptl);
5058 backout_unlocked:
5059 	unlock_page(page);
5060 	/* restore reserve for newly allocated pages not in page cache */
5061 	if (new_page && !new_pagecache_page)
5062 		restore_reserve_on_error(h, vma, haddr, page);
5063 	put_page(page);
5064 	goto out;
5065 }
5066 
5067 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5068 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5069 {
5070 	unsigned long key[2];
5071 	u32 hash;
5072 
5073 	key[0] = (unsigned long) mapping;
5074 	key[1] = idx;
5075 
5076 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5077 
5078 	return hash & (num_fault_mutexes - 1);
5079 }
5080 #else
5081 /*
5082  * For uniprocessor systems we always use a single mutex, so just
5083  * return 0 and avoid the hashing overhead.
5084  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5085 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5086 {
5087 	return 0;
5088 }
5089 #endif
5090 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)5091 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5092 			unsigned long address, unsigned int flags)
5093 {
5094 	pte_t *ptep, entry;
5095 	spinlock_t *ptl;
5096 	vm_fault_t ret;
5097 	u32 hash;
5098 	pgoff_t idx;
5099 	struct page *page = NULL;
5100 	struct page *pagecache_page = NULL;
5101 	struct hstate *h = hstate_vma(vma);
5102 	struct address_space *mapping;
5103 	int need_wait_lock = 0;
5104 	unsigned long haddr = address & huge_page_mask(h);
5105 
5106 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5107 	if (ptep) {
5108 		/*
5109 		 * Since we hold no locks, ptep could be stale.  That is
5110 		 * OK as we are only making decisions based on content and
5111 		 * not actually modifying content here.
5112 		 */
5113 		entry = huge_ptep_get(ptep);
5114 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5115 			migration_entry_wait_huge(vma, mm, ptep);
5116 			return 0;
5117 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5118 			return VM_FAULT_HWPOISON_LARGE |
5119 				VM_FAULT_SET_HINDEX(hstate_index(h));
5120 	}
5121 
5122 	/*
5123 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5124 	 * until finished with ptep.  This serves two purposes:
5125 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5126 	 *    and making the ptep no longer valid.
5127 	 * 2) It synchronizes us with i_size modifications during truncation.
5128 	 *
5129 	 * ptep could have already be assigned via huge_pte_offset.  That
5130 	 * is OK, as huge_pte_alloc will return the same value unless
5131 	 * something has changed.
5132 	 */
5133 	mapping = vma->vm_file->f_mapping;
5134 	i_mmap_lock_read(mapping);
5135 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5136 	if (!ptep) {
5137 		i_mmap_unlock_read(mapping);
5138 		return VM_FAULT_OOM;
5139 	}
5140 
5141 	/*
5142 	 * Serialize hugepage allocation and instantiation, so that we don't
5143 	 * get spurious allocation failures if two CPUs race to instantiate
5144 	 * the same page in the page cache.
5145 	 */
5146 	idx = vma_hugecache_offset(h, vma, haddr);
5147 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5148 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5149 
5150 	entry = huge_ptep_get(ptep);
5151 	if (huge_pte_none(entry))
5152 		/*
5153 		 * hugetlb_no_page will drop vma lock and hugetlb fault
5154 		 * mutex internally, which make us return immediately.
5155 		 */
5156 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5157 
5158 	ret = 0;
5159 
5160 	/*
5161 	 * entry could be a migration/hwpoison entry at this point, so this
5162 	 * check prevents the kernel from going below assuming that we have
5163 	 * an active hugepage in pagecache. This goto expects the 2nd page
5164 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5165 	 * properly handle it.
5166 	 */
5167 	if (!pte_present(entry))
5168 		goto out_mutex;
5169 
5170 	/*
5171 	 * If we are going to COW the mapping later, we examine the pending
5172 	 * reservations for this page now. This will ensure that any
5173 	 * allocations necessary to record that reservation occur outside the
5174 	 * spinlock. For private mappings, we also lookup the pagecache
5175 	 * page now as it is used to determine if a reservation has been
5176 	 * consumed.
5177 	 */
5178 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5179 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5180 			ret = VM_FAULT_OOM;
5181 			goto out_mutex;
5182 		}
5183 		/* Just decrements count, does not deallocate */
5184 		vma_end_reservation(h, vma, haddr);
5185 
5186 		if (!(vma->vm_flags & VM_MAYSHARE))
5187 			pagecache_page = hugetlbfs_pagecache_page(h,
5188 								vma, haddr);
5189 	}
5190 
5191 	ptl = huge_pte_lock(h, mm, ptep);
5192 
5193 	/* Check for a racing update before calling hugetlb_cow */
5194 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5195 		goto out_ptl;
5196 
5197 	/*
5198 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5199 	 * pagecache_page, so here we need take the former one
5200 	 * when page != pagecache_page or !pagecache_page.
5201 	 */
5202 	page = pte_page(entry);
5203 	if (page != pagecache_page)
5204 		if (!trylock_page(page)) {
5205 			need_wait_lock = 1;
5206 			goto out_ptl;
5207 		}
5208 
5209 	get_page(page);
5210 
5211 	if (flags & FAULT_FLAG_WRITE) {
5212 		if (!huge_pte_write(entry)) {
5213 			ret = hugetlb_cow(mm, vma, address, ptep,
5214 					  pagecache_page, ptl);
5215 			goto out_put_page;
5216 		}
5217 		entry = huge_pte_mkdirty(entry);
5218 	}
5219 	entry = pte_mkyoung(entry);
5220 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5221 						flags & FAULT_FLAG_WRITE))
5222 		update_mmu_cache(vma, haddr, ptep);
5223 out_put_page:
5224 	if (page != pagecache_page)
5225 		unlock_page(page);
5226 	put_page(page);
5227 out_ptl:
5228 	spin_unlock(ptl);
5229 
5230 	if (pagecache_page) {
5231 		unlock_page(pagecache_page);
5232 		put_page(pagecache_page);
5233 	}
5234 out_mutex:
5235 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5236 	i_mmap_unlock_read(mapping);
5237 	/*
5238 	 * Generally it's safe to hold refcount during waiting page lock. But
5239 	 * here we just wait to defer the next page fault to avoid busy loop and
5240 	 * the page is not used after unlocked before returning from the current
5241 	 * page fault. So we are safe from accessing freed page, even if we wait
5242 	 * here without taking refcount.
5243 	 */
5244 	if (need_wait_lock)
5245 		wait_on_page_locked(page);
5246 	return ret;
5247 }
5248 
5249 #ifdef CONFIG_USERFAULTFD
5250 /*
5251  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5252  * modifications for huge pages.
5253  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep)5254 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5255 			    pte_t *dst_pte,
5256 			    struct vm_area_struct *dst_vma,
5257 			    unsigned long dst_addr,
5258 			    unsigned long src_addr,
5259 			    enum mcopy_atomic_mode mode,
5260 			    struct page **pagep)
5261 {
5262 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5263 	struct hstate *h = hstate_vma(dst_vma);
5264 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5265 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5266 	unsigned long size;
5267 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5268 	pte_t _dst_pte;
5269 	spinlock_t *ptl;
5270 	int ret = -ENOMEM;
5271 	struct page *page;
5272 	int writable;
5273 	bool page_in_pagecache = false;
5274 
5275 	if (is_continue) {
5276 		ret = -EFAULT;
5277 		page = find_lock_page(mapping, idx);
5278 		if (!page)
5279 			goto out;
5280 		page_in_pagecache = true;
5281 	} else if (!*pagep) {
5282 		/* If a page already exists, then it's UFFDIO_COPY for
5283 		 * a non-missing case. Return -EEXIST.
5284 		 */
5285 		if (vm_shared &&
5286 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5287 			ret = -EEXIST;
5288 			goto out;
5289 		}
5290 
5291 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5292 		if (IS_ERR(page)) {
5293 			ret = -ENOMEM;
5294 			goto out;
5295 		}
5296 
5297 		ret = copy_huge_page_from_user(page,
5298 						(const void __user *) src_addr,
5299 						pages_per_huge_page(h), false);
5300 
5301 		/* fallback to copy_from_user outside mmap_lock */
5302 		if (unlikely(ret)) {
5303 			ret = -ENOENT;
5304 			/* Free the allocated page which may have
5305 			 * consumed a reservation.
5306 			 */
5307 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5308 			put_page(page);
5309 
5310 			/* Allocate a temporary page to hold the copied
5311 			 * contents.
5312 			 */
5313 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5314 			if (!page) {
5315 				ret = -ENOMEM;
5316 				goto out;
5317 			}
5318 			*pagep = page;
5319 			/* Set the outparam pagep and return to the caller to
5320 			 * copy the contents outside the lock. Don't free the
5321 			 * page.
5322 			 */
5323 			goto out;
5324 		}
5325 	} else {
5326 		if (vm_shared &&
5327 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5328 			put_page(*pagep);
5329 			ret = -EEXIST;
5330 			*pagep = NULL;
5331 			goto out;
5332 		}
5333 
5334 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5335 		if (IS_ERR(page)) {
5336 			put_page(*pagep);
5337 			ret = -ENOMEM;
5338 			*pagep = NULL;
5339 			goto out;
5340 		}
5341 		copy_huge_page(page, *pagep);
5342 		put_page(*pagep);
5343 		*pagep = NULL;
5344 	}
5345 
5346 	/*
5347 	 * The memory barrier inside __SetPageUptodate makes sure that
5348 	 * preceding stores to the page contents become visible before
5349 	 * the set_pte_at() write.
5350 	 */
5351 	__SetPageUptodate(page);
5352 
5353 	/* Add shared, newly allocated pages to the page cache. */
5354 	if (vm_shared && !is_continue) {
5355 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5356 		ret = -EFAULT;
5357 		if (idx >= size)
5358 			goto out_release_nounlock;
5359 
5360 		/*
5361 		 * Serialization between remove_inode_hugepages() and
5362 		 * huge_add_to_page_cache() below happens through the
5363 		 * hugetlb_fault_mutex_table that here must be hold by
5364 		 * the caller.
5365 		 */
5366 		ret = huge_add_to_page_cache(page, mapping, idx);
5367 		if (ret)
5368 			goto out_release_nounlock;
5369 		page_in_pagecache = true;
5370 	}
5371 
5372 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5373 	spin_lock(ptl);
5374 
5375 	ret = -EIO;
5376 	if (PageHWPoison(page))
5377 		goto out_release_unlock;
5378 
5379 	/*
5380 	 * Recheck the i_size after holding PT lock to make sure not
5381 	 * to leave any page mapped (as page_mapped()) beyond the end
5382 	 * of the i_size (remove_inode_hugepages() is strict about
5383 	 * enforcing that). If we bail out here, we'll also leave a
5384 	 * page in the radix tree in the vm_shared case beyond the end
5385 	 * of the i_size, but remove_inode_hugepages() will take care
5386 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5387 	 */
5388 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5389 	ret = -EFAULT;
5390 	if (idx >= size)
5391 		goto out_release_unlock;
5392 
5393 	ret = -EEXIST;
5394 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5395 		goto out_release_unlock;
5396 
5397 	if (page_in_pagecache) {
5398 		page_dup_rmap(page, true);
5399 	} else {
5400 		ClearHPageRestoreReserve(page);
5401 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5402 	}
5403 
5404 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5405 	if (is_continue && !vm_shared)
5406 		writable = 0;
5407 	else
5408 		writable = dst_vma->vm_flags & VM_WRITE;
5409 
5410 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5411 	if (writable)
5412 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5413 	_dst_pte = pte_mkyoung(_dst_pte);
5414 
5415 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5416 
5417 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5418 					dst_vma->vm_flags & VM_WRITE);
5419 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5420 
5421 	/* No need to invalidate - it was non-present before */
5422 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5423 
5424 	spin_unlock(ptl);
5425 	if (!is_continue)
5426 		SetHPageMigratable(page);
5427 	if (vm_shared || is_continue)
5428 		unlock_page(page);
5429 	ret = 0;
5430 out:
5431 	return ret;
5432 out_release_unlock:
5433 	spin_unlock(ptl);
5434 	if (vm_shared || is_continue)
5435 		unlock_page(page);
5436 out_release_nounlock:
5437 	if (!page_in_pagecache)
5438 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5439 	put_page(page);
5440 	goto out;
5441 }
5442 #endif /* CONFIG_USERFAULTFD */
5443 
record_subpages_vmas(struct page * page,struct vm_area_struct * vma,int refs,struct page ** pages,struct vm_area_struct ** vmas)5444 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5445 				 int refs, struct page **pages,
5446 				 struct vm_area_struct **vmas)
5447 {
5448 	int nr;
5449 
5450 	for (nr = 0; nr < refs; nr++) {
5451 		if (likely(pages))
5452 			pages[nr] = mem_map_offset(page, nr);
5453 		if (vmas)
5454 			vmas[nr] = vma;
5455 	}
5456 }
5457 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)5458 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5459 			 struct page **pages, struct vm_area_struct **vmas,
5460 			 unsigned long *position, unsigned long *nr_pages,
5461 			 long i, unsigned int flags, int *locked)
5462 {
5463 	unsigned long pfn_offset;
5464 	unsigned long vaddr = *position;
5465 	unsigned long remainder = *nr_pages;
5466 	struct hstate *h = hstate_vma(vma);
5467 	int err = -EFAULT, refs;
5468 
5469 	while (vaddr < vma->vm_end && remainder) {
5470 		pte_t *pte;
5471 		spinlock_t *ptl = NULL;
5472 		int absent;
5473 		struct page *page;
5474 
5475 		/*
5476 		 * If we have a pending SIGKILL, don't keep faulting pages and
5477 		 * potentially allocating memory.
5478 		 */
5479 		if (fatal_signal_pending(current)) {
5480 			remainder = 0;
5481 			break;
5482 		}
5483 
5484 		/*
5485 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5486 		 * each hugepage.  We have to make sure we get the
5487 		 * first, for the page indexing below to work.
5488 		 *
5489 		 * Note that page table lock is not held when pte is null.
5490 		 */
5491 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5492 				      huge_page_size(h));
5493 		if (pte)
5494 			ptl = huge_pte_lock(h, mm, pte);
5495 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5496 
5497 		/*
5498 		 * When coredumping, it suits get_dump_page if we just return
5499 		 * an error where there's an empty slot with no huge pagecache
5500 		 * to back it.  This way, we avoid allocating a hugepage, and
5501 		 * the sparse dumpfile avoids allocating disk blocks, but its
5502 		 * huge holes still show up with zeroes where they need to be.
5503 		 */
5504 		if (absent && (flags & FOLL_DUMP) &&
5505 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5506 			if (pte)
5507 				spin_unlock(ptl);
5508 			remainder = 0;
5509 			break;
5510 		}
5511 
5512 		/*
5513 		 * We need call hugetlb_fault for both hugepages under migration
5514 		 * (in which case hugetlb_fault waits for the migration,) and
5515 		 * hwpoisoned hugepages (in which case we need to prevent the
5516 		 * caller from accessing to them.) In order to do this, we use
5517 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5518 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5519 		 * both cases, and because we can't follow correct pages
5520 		 * directly from any kind of swap entries.
5521 		 */
5522 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5523 		    ((flags & FOLL_WRITE) &&
5524 		      !huge_pte_write(huge_ptep_get(pte)))) {
5525 			vm_fault_t ret;
5526 			unsigned int fault_flags = 0;
5527 
5528 			if (pte)
5529 				spin_unlock(ptl);
5530 			if (flags & FOLL_WRITE)
5531 				fault_flags |= FAULT_FLAG_WRITE;
5532 			if (locked)
5533 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5534 					FAULT_FLAG_KILLABLE;
5535 			if (flags & FOLL_NOWAIT)
5536 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5537 					FAULT_FLAG_RETRY_NOWAIT;
5538 			if (flags & FOLL_TRIED) {
5539 				/*
5540 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5541 				 * FAULT_FLAG_TRIED can co-exist
5542 				 */
5543 				fault_flags |= FAULT_FLAG_TRIED;
5544 			}
5545 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5546 			if (ret & VM_FAULT_ERROR) {
5547 				err = vm_fault_to_errno(ret, flags);
5548 				remainder = 0;
5549 				break;
5550 			}
5551 			if (ret & VM_FAULT_RETRY) {
5552 				if (locked &&
5553 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5554 					*locked = 0;
5555 				*nr_pages = 0;
5556 				/*
5557 				 * VM_FAULT_RETRY must not return an
5558 				 * error, it will return zero
5559 				 * instead.
5560 				 *
5561 				 * No need to update "position" as the
5562 				 * caller will not check it after
5563 				 * *nr_pages is set to 0.
5564 				 */
5565 				return i;
5566 			}
5567 			continue;
5568 		}
5569 
5570 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5571 		page = pte_page(huge_ptep_get(pte));
5572 
5573 		/*
5574 		 * If subpage information not requested, update counters
5575 		 * and skip the same_page loop below.
5576 		 */
5577 		if (!pages && !vmas && !pfn_offset &&
5578 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5579 		    (remainder >= pages_per_huge_page(h))) {
5580 			vaddr += huge_page_size(h);
5581 			remainder -= pages_per_huge_page(h);
5582 			i += pages_per_huge_page(h);
5583 			spin_unlock(ptl);
5584 			continue;
5585 		}
5586 
5587 		/* vaddr may not be aligned to PAGE_SIZE */
5588 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5589 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5590 
5591 		if (pages || vmas)
5592 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5593 					     vma, refs,
5594 					     likely(pages) ? pages + i : NULL,
5595 					     vmas ? vmas + i : NULL);
5596 
5597 		if (pages) {
5598 			/*
5599 			 * try_grab_compound_head() should always succeed here,
5600 			 * because: a) we hold the ptl lock, and b) we've just
5601 			 * checked that the huge page is present in the page
5602 			 * tables. If the huge page is present, then the tail
5603 			 * pages must also be present. The ptl prevents the
5604 			 * head page and tail pages from being rearranged in
5605 			 * any way. So this page must be available at this
5606 			 * point, unless the page refcount overflowed:
5607 			 */
5608 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5609 								 refs,
5610 								 flags))) {
5611 				spin_unlock(ptl);
5612 				remainder = 0;
5613 				err = -ENOMEM;
5614 				break;
5615 			}
5616 		}
5617 
5618 		vaddr += (refs << PAGE_SHIFT);
5619 		remainder -= refs;
5620 		i += refs;
5621 
5622 		spin_unlock(ptl);
5623 	}
5624 	*nr_pages = remainder;
5625 	/*
5626 	 * setting position is actually required only if remainder is
5627 	 * not zero but it's faster not to add a "if (remainder)"
5628 	 * branch.
5629 	 */
5630 	*position = vaddr;
5631 
5632 	return i ? i : err;
5633 }
5634 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5635 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5636 		unsigned long address, unsigned long end, pgprot_t newprot)
5637 {
5638 	struct mm_struct *mm = vma->vm_mm;
5639 	unsigned long start = address;
5640 	pte_t *ptep;
5641 	pte_t pte;
5642 	struct hstate *h = hstate_vma(vma);
5643 	unsigned long pages = 0;
5644 	bool shared_pmd = false;
5645 	struct mmu_notifier_range range;
5646 
5647 	/*
5648 	 * In the case of shared PMDs, the area to flush could be beyond
5649 	 * start/end.  Set range.start/range.end to cover the maximum possible
5650 	 * range if PMD sharing is possible.
5651 	 */
5652 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5653 				0, vma, mm, start, end);
5654 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5655 
5656 	BUG_ON(address >= end);
5657 	flush_cache_range(vma, range.start, range.end);
5658 
5659 	mmu_notifier_invalidate_range_start(&range);
5660 	i_mmap_lock_write(vma->vm_file->f_mapping);
5661 	for (; address < end; address += huge_page_size(h)) {
5662 		spinlock_t *ptl;
5663 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5664 		if (!ptep)
5665 			continue;
5666 		ptl = huge_pte_lock(h, mm, ptep);
5667 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5668 			pages++;
5669 			spin_unlock(ptl);
5670 			shared_pmd = true;
5671 			continue;
5672 		}
5673 		pte = huge_ptep_get(ptep);
5674 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5675 			spin_unlock(ptl);
5676 			continue;
5677 		}
5678 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5679 			swp_entry_t entry = pte_to_swp_entry(pte);
5680 
5681 			if (is_writable_migration_entry(entry)) {
5682 				pte_t newpte;
5683 
5684 				entry = make_readable_migration_entry(
5685 							swp_offset(entry));
5686 				newpte = swp_entry_to_pte(entry);
5687 				set_huge_swap_pte_at(mm, address, ptep,
5688 						     newpte, huge_page_size(h));
5689 				pages++;
5690 			}
5691 			spin_unlock(ptl);
5692 			continue;
5693 		}
5694 		if (!huge_pte_none(pte)) {
5695 			pte_t old_pte;
5696 			unsigned int shift = huge_page_shift(hstate_vma(vma));
5697 
5698 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5699 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5700 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5701 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5702 			pages++;
5703 		}
5704 		spin_unlock(ptl);
5705 	}
5706 	/*
5707 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5708 	 * may have cleared our pud entry and done put_page on the page table:
5709 	 * once we release i_mmap_rwsem, another task can do the final put_page
5710 	 * and that page table be reused and filled with junk.  If we actually
5711 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5712 	 */
5713 	if (shared_pmd)
5714 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5715 	else
5716 		flush_hugetlb_tlb_range(vma, start, end);
5717 	/*
5718 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5719 	 * page table protection not changing it to point to a new page.
5720 	 *
5721 	 * See Documentation/vm/mmu_notifier.rst
5722 	 */
5723 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5724 	mmu_notifier_invalidate_range_end(&range);
5725 
5726 	return pages << h->order;
5727 }
5728 
5729 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5730 bool hugetlb_reserve_pages(struct inode *inode,
5731 					long from, long to,
5732 					struct vm_area_struct *vma,
5733 					vm_flags_t vm_flags)
5734 {
5735 	long chg, add = -1;
5736 	struct hstate *h = hstate_inode(inode);
5737 	struct hugepage_subpool *spool = subpool_inode(inode);
5738 	struct resv_map *resv_map;
5739 	struct hugetlb_cgroup *h_cg = NULL;
5740 	long gbl_reserve, regions_needed = 0;
5741 
5742 	/* This should never happen */
5743 	if (from > to) {
5744 		VM_WARN(1, "%s called with a negative range\n", __func__);
5745 		return false;
5746 	}
5747 
5748 	/*
5749 	 * Only apply hugepage reservation if asked. At fault time, an
5750 	 * attempt will be made for VM_NORESERVE to allocate a page
5751 	 * without using reserves
5752 	 */
5753 	if (vm_flags & VM_NORESERVE)
5754 		return true;
5755 
5756 	/*
5757 	 * Shared mappings base their reservation on the number of pages that
5758 	 * are already allocated on behalf of the file. Private mappings need
5759 	 * to reserve the full area even if read-only as mprotect() may be
5760 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5761 	 */
5762 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5763 		/*
5764 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5765 		 * called for inodes for which resv_maps were created (see
5766 		 * hugetlbfs_get_inode).
5767 		 */
5768 		resv_map = inode_resv_map(inode);
5769 
5770 		chg = region_chg(resv_map, from, to, &regions_needed);
5771 
5772 	} else {
5773 		/* Private mapping. */
5774 		resv_map = resv_map_alloc();
5775 		if (!resv_map)
5776 			return false;
5777 
5778 		chg = to - from;
5779 
5780 		set_vma_resv_map(vma, resv_map);
5781 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5782 	}
5783 
5784 	if (chg < 0)
5785 		goto out_err;
5786 
5787 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5788 				chg * pages_per_huge_page(h), &h_cg) < 0)
5789 		goto out_err;
5790 
5791 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5792 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5793 		 * of the resv_map.
5794 		 */
5795 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5796 	}
5797 
5798 	/*
5799 	 * There must be enough pages in the subpool for the mapping. If
5800 	 * the subpool has a minimum size, there may be some global
5801 	 * reservations already in place (gbl_reserve).
5802 	 */
5803 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5804 	if (gbl_reserve < 0)
5805 		goto out_uncharge_cgroup;
5806 
5807 	/*
5808 	 * Check enough hugepages are available for the reservation.
5809 	 * Hand the pages back to the subpool if there are not
5810 	 */
5811 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5812 		goto out_put_pages;
5813 
5814 	/*
5815 	 * Account for the reservations made. Shared mappings record regions
5816 	 * that have reservations as they are shared by multiple VMAs.
5817 	 * When the last VMA disappears, the region map says how much
5818 	 * the reservation was and the page cache tells how much of
5819 	 * the reservation was consumed. Private mappings are per-VMA and
5820 	 * only the consumed reservations are tracked. When the VMA
5821 	 * disappears, the original reservation is the VMA size and the
5822 	 * consumed reservations are stored in the map. Hence, nothing
5823 	 * else has to be done for private mappings here
5824 	 */
5825 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5826 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5827 
5828 		if (unlikely(add < 0)) {
5829 			hugetlb_acct_memory(h, -gbl_reserve);
5830 			goto out_put_pages;
5831 		} else if (unlikely(chg > add)) {
5832 			/*
5833 			 * pages in this range were added to the reserve
5834 			 * map between region_chg and region_add.  This
5835 			 * indicates a race with alloc_huge_page.  Adjust
5836 			 * the subpool and reserve counts modified above
5837 			 * based on the difference.
5838 			 */
5839 			long rsv_adjust;
5840 
5841 			/*
5842 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5843 			 * reference to h_cg->css. See comment below for detail.
5844 			 */
5845 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5846 				hstate_index(h),
5847 				(chg - add) * pages_per_huge_page(h), h_cg);
5848 
5849 			rsv_adjust = hugepage_subpool_put_pages(spool,
5850 								chg - add);
5851 			hugetlb_acct_memory(h, -rsv_adjust);
5852 		} else if (h_cg) {
5853 			/*
5854 			 * The file_regions will hold their own reference to
5855 			 * h_cg->css. So we should release the reference held
5856 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5857 			 * done.
5858 			 */
5859 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5860 		}
5861 	}
5862 	return true;
5863 
5864 out_put_pages:
5865 	/* put back original number of pages, chg */
5866 	(void)hugepage_subpool_put_pages(spool, chg);
5867 out_uncharge_cgroup:
5868 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5869 					    chg * pages_per_huge_page(h), h_cg);
5870 out_err:
5871 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5872 		/* Only call region_abort if the region_chg succeeded but the
5873 		 * region_add failed or didn't run.
5874 		 */
5875 		if (chg >= 0 && add < 0)
5876 			region_abort(resv_map, from, to, regions_needed);
5877 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5878 		kref_put(&resv_map->refs, resv_map_release);
5879 	return false;
5880 }
5881 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5882 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5883 								long freed)
5884 {
5885 	struct hstate *h = hstate_inode(inode);
5886 	struct resv_map *resv_map = inode_resv_map(inode);
5887 	long chg = 0;
5888 	struct hugepage_subpool *spool = subpool_inode(inode);
5889 	long gbl_reserve;
5890 
5891 	/*
5892 	 * Since this routine can be called in the evict inode path for all
5893 	 * hugetlbfs inodes, resv_map could be NULL.
5894 	 */
5895 	if (resv_map) {
5896 		chg = region_del(resv_map, start, end);
5897 		/*
5898 		 * region_del() can fail in the rare case where a region
5899 		 * must be split and another region descriptor can not be
5900 		 * allocated.  If end == LONG_MAX, it will not fail.
5901 		 */
5902 		if (chg < 0)
5903 			return chg;
5904 	}
5905 
5906 	spin_lock(&inode->i_lock);
5907 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5908 	spin_unlock(&inode->i_lock);
5909 
5910 	/*
5911 	 * If the subpool has a minimum size, the number of global
5912 	 * reservations to be released may be adjusted.
5913 	 *
5914 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5915 	 * won't go negative.
5916 	 */
5917 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5918 	hugetlb_acct_memory(h, -gbl_reserve);
5919 
5920 	return 0;
5921 }
5922 
5923 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5924 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5925 				struct vm_area_struct *vma,
5926 				unsigned long addr, pgoff_t idx)
5927 {
5928 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5929 				svma->vm_start;
5930 	unsigned long sbase = saddr & PUD_MASK;
5931 	unsigned long s_end = sbase + PUD_SIZE;
5932 
5933 	/* Allow segments to share if only one is marked locked */
5934 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5935 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5936 
5937 	/*
5938 	 * match the virtual addresses, permission and the alignment of the
5939 	 * page table page.
5940 	 */
5941 	if (pmd_index(addr) != pmd_index(saddr) ||
5942 	    vm_flags != svm_flags ||
5943 	    !range_in_vma(svma, sbase, s_end))
5944 		return 0;
5945 
5946 	return saddr;
5947 }
5948 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5949 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5950 {
5951 	unsigned long base = addr & PUD_MASK;
5952 	unsigned long end = base + PUD_SIZE;
5953 
5954 	/*
5955 	 * check on proper vm_flags and page table alignment
5956 	 */
5957 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5958 		return true;
5959 	return false;
5960 }
5961 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5962 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5963 {
5964 #ifdef CONFIG_USERFAULTFD
5965 	if (uffd_disable_huge_pmd_share(vma))
5966 		return false;
5967 #endif
5968 	return vma_shareable(vma, addr);
5969 }
5970 
5971 /*
5972  * Determine if start,end range within vma could be mapped by shared pmd.
5973  * If yes, adjust start and end to cover range associated with possible
5974  * shared pmd mappings.
5975  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5976 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5977 				unsigned long *start, unsigned long *end)
5978 {
5979 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5980 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5981 
5982 	/*
5983 	 * vma needs to span at least one aligned PUD size, and the range
5984 	 * must be at least partially within in.
5985 	 */
5986 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5987 		(*end <= v_start) || (*start >= v_end))
5988 		return;
5989 
5990 	/* Extend the range to be PUD aligned for a worst case scenario */
5991 	if (*start > v_start)
5992 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5993 
5994 	if (*end < v_end)
5995 		*end = ALIGN(*end, PUD_SIZE);
5996 }
5997 
5998 /*
5999  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6000  * and returns the corresponding pte. While this is not necessary for the
6001  * !shared pmd case because we can allocate the pmd later as well, it makes the
6002  * code much cleaner.
6003  *
6004  * This routine must be called with i_mmap_rwsem held in at least read mode if
6005  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6006  * table entries associated with the address space.  This is important as we
6007  * are setting up sharing based on existing page table entries (mappings).
6008  *
6009  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
6010  * huge_pte_alloc know that sharing is not possible and do not take
6011  * i_mmap_rwsem as a performance optimization.  This is handled by the
6012  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
6013  * only required for subsequent processing.
6014  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6015 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6016 		      unsigned long addr, pud_t *pud)
6017 {
6018 	struct address_space *mapping = vma->vm_file->f_mapping;
6019 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6020 			vma->vm_pgoff;
6021 	struct vm_area_struct *svma;
6022 	unsigned long saddr;
6023 	pte_t *spte = NULL;
6024 	pte_t *pte;
6025 	spinlock_t *ptl;
6026 
6027 	i_mmap_assert_locked(mapping);
6028 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6029 		if (svma == vma)
6030 			continue;
6031 
6032 		saddr = page_table_shareable(svma, vma, addr, idx);
6033 		if (saddr) {
6034 			spte = huge_pte_offset(svma->vm_mm, saddr,
6035 					       vma_mmu_pagesize(svma));
6036 			if (spte) {
6037 				get_page(virt_to_page(spte));
6038 				break;
6039 			}
6040 		}
6041 	}
6042 
6043 	if (!spte)
6044 		goto out;
6045 
6046 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6047 	if (pud_none(*pud)) {
6048 		pud_populate(mm, pud,
6049 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6050 		mm_inc_nr_pmds(mm);
6051 	} else {
6052 		put_page(virt_to_page(spte));
6053 	}
6054 	spin_unlock(ptl);
6055 out:
6056 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6057 	return pte;
6058 }
6059 
6060 /*
6061  * unmap huge page backed by shared pte.
6062  *
6063  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6064  * indicated by page_count > 1, unmap is achieved by clearing pud and
6065  * decrementing the ref count. If count == 1, the pte page is not shared.
6066  *
6067  * Called with page table lock held and i_mmap_rwsem held in write mode.
6068  *
6069  * returns: 1 successfully unmapped a shared pte page
6070  *	    0 the underlying pte page is not shared, or it is the last user
6071  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)6072 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6073 					unsigned long *addr, pte_t *ptep)
6074 {
6075 	pgd_t *pgd = pgd_offset(mm, *addr);
6076 	p4d_t *p4d = p4d_offset(pgd, *addr);
6077 	pud_t *pud = pud_offset(p4d, *addr);
6078 
6079 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6080 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6081 	if (page_count(virt_to_page(ptep)) == 1)
6082 		return 0;
6083 
6084 	pud_clear(pud);
6085 	put_page(virt_to_page(ptep));
6086 	mm_dec_nr_pmds(mm);
6087 	/*
6088 	 * This update of passed address optimizes loops sequentially
6089 	 * processing addresses in increments of huge page size (PMD_SIZE
6090 	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6091 	 * Update address to the 'last page' in the cleared area so that
6092 	 * calling loop can move to first page past this area.
6093 	 */
6094 	*addr |= PUD_SIZE - PMD_SIZE;
6095 	return 1;
6096 }
6097 
6098 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6099 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6100 		      unsigned long addr, pud_t *pud)
6101 {
6102 	return NULL;
6103 }
6104 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)6105 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6106 				unsigned long *addr, pte_t *ptep)
6107 {
6108 	return 0;
6109 }
6110 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6111 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6112 				unsigned long *start, unsigned long *end)
6113 {
6114 }
6115 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6116 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6117 {
6118 	return false;
6119 }
6120 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6121 
6122 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)6123 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6124 			unsigned long addr, unsigned long sz)
6125 {
6126 	pgd_t *pgd;
6127 	p4d_t *p4d;
6128 	pud_t *pud;
6129 	pte_t *pte = NULL;
6130 
6131 	pgd = pgd_offset(mm, addr);
6132 	p4d = p4d_alloc(mm, pgd, addr);
6133 	if (!p4d)
6134 		return NULL;
6135 	pud = pud_alloc(mm, p4d, addr);
6136 	if (pud) {
6137 		if (sz == PUD_SIZE) {
6138 			pte = (pte_t *)pud;
6139 		} else {
6140 			BUG_ON(sz != PMD_SIZE);
6141 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6142 				pte = huge_pmd_share(mm, vma, addr, pud);
6143 			else
6144 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6145 		}
6146 	}
6147 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6148 
6149 	return pte;
6150 }
6151 
6152 /*
6153  * huge_pte_offset() - Walk the page table to resolve the hugepage
6154  * entry at address @addr
6155  *
6156  * Return: Pointer to page table entry (PUD or PMD) for
6157  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6158  * size @sz doesn't match the hugepage size at this level of the page
6159  * table.
6160  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)6161 pte_t *huge_pte_offset(struct mm_struct *mm,
6162 		       unsigned long addr, unsigned long sz)
6163 {
6164 	pgd_t *pgd;
6165 	p4d_t *p4d;
6166 	pud_t *pud;
6167 	pmd_t *pmd;
6168 
6169 	pgd = pgd_offset(mm, addr);
6170 	if (!pgd_present(*pgd))
6171 		return NULL;
6172 	p4d = p4d_offset(pgd, addr);
6173 	if (!p4d_present(*p4d))
6174 		return NULL;
6175 
6176 	pud = pud_offset(p4d, addr);
6177 	if (sz == PUD_SIZE)
6178 		/* must be pud huge, non-present or none */
6179 		return (pte_t *)pud;
6180 	if (!pud_present(*pud))
6181 		return NULL;
6182 	/* must have a valid entry and size to go further */
6183 
6184 	pmd = pmd_offset(pud, addr);
6185 	/* must be pmd huge, non-present or none */
6186 	return (pte_t *)pmd;
6187 }
6188 
6189 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6190 
6191 /*
6192  * These functions are overwritable if your architecture needs its own
6193  * behavior.
6194  */
6195 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)6196 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6197 			      int write)
6198 {
6199 	return ERR_PTR(-EINVAL);
6200 }
6201 
6202 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)6203 follow_huge_pd(struct vm_area_struct *vma,
6204 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6205 {
6206 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6207 	return NULL;
6208 }
6209 
6210 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)6211 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
6212 {
6213 	struct hstate *h = hstate_vma(vma);
6214 	struct mm_struct *mm = vma->vm_mm;
6215 	struct page *page = NULL;
6216 	spinlock_t *ptl;
6217 	pte_t *ptep, pte;
6218 
6219 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6220 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6221 			 (FOLL_PIN | FOLL_GET)))
6222 		return NULL;
6223 
6224 retry:
6225 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
6226 	if (!ptep)
6227 		return NULL;
6228 
6229 	ptl = huge_pte_lock(h, mm, ptep);
6230 	pte = huge_ptep_get(ptep);
6231 	if (pte_present(pte)) {
6232 		page = pte_page(pte) +
6233 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6234 		/*
6235 		 * try_grab_page() should always succeed here, because: a) we
6236 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6237 		 * huge pmd (head) page is present in the page tables. The ptl
6238 		 * prevents the head page and tail pages from being rearranged
6239 		 * in any way. So this page must be available at this point,
6240 		 * unless the page refcount overflowed:
6241 		 */
6242 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6243 			page = NULL;
6244 			goto out;
6245 		}
6246 	} else {
6247 		if (is_hugetlb_entry_migration(pte)) {
6248 			spin_unlock(ptl);
6249 			__migration_entry_wait(mm, ptep, ptl);
6250 			goto retry;
6251 		}
6252 		/*
6253 		 * hwpoisoned entry is treated as no_page_table in
6254 		 * follow_page_mask().
6255 		 */
6256 	}
6257 out:
6258 	spin_unlock(ptl);
6259 	return page;
6260 }
6261 
6262 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)6263 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6264 		pud_t *pud, int flags)
6265 {
6266 	if (flags & (FOLL_GET | FOLL_PIN))
6267 		return NULL;
6268 
6269 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6270 }
6271 
6272 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)6273 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6274 {
6275 	if (flags & (FOLL_GET | FOLL_PIN))
6276 		return NULL;
6277 
6278 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6279 }
6280 
isolate_hugetlb(struct page * page,struct list_head * list)6281 int isolate_hugetlb(struct page *page, struct list_head *list)
6282 {
6283 	int ret = 0;
6284 
6285 	spin_lock_irq(&hugetlb_lock);
6286 	if (!PageHeadHuge(page) ||
6287 	    !HPageMigratable(page) ||
6288 	    !get_page_unless_zero(page)) {
6289 		ret = -EBUSY;
6290 		goto unlock;
6291 	}
6292 	ClearHPageMigratable(page);
6293 	list_move_tail(&page->lru, list);
6294 unlock:
6295 	spin_unlock_irq(&hugetlb_lock);
6296 	return ret;
6297 }
6298 
get_hwpoison_huge_page(struct page * page,bool * hugetlb)6299 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6300 {
6301 	int ret = 0;
6302 
6303 	*hugetlb = false;
6304 	spin_lock_irq(&hugetlb_lock);
6305 	if (PageHeadHuge(page)) {
6306 		*hugetlb = true;
6307 		if (HPageFreed(page) || HPageMigratable(page))
6308 			ret = get_page_unless_zero(page);
6309 		else
6310 			ret = -EBUSY;
6311 	}
6312 	spin_unlock_irq(&hugetlb_lock);
6313 	return ret;
6314 }
6315 
get_huge_page_for_hwpoison(unsigned long pfn,int flags)6316 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6317 {
6318 	int ret;
6319 
6320 	spin_lock_irq(&hugetlb_lock);
6321 	ret = __get_huge_page_for_hwpoison(pfn, flags);
6322 	spin_unlock_irq(&hugetlb_lock);
6323 	return ret;
6324 }
6325 
putback_active_hugepage(struct page * page)6326 void putback_active_hugepage(struct page *page)
6327 {
6328 	spin_lock_irq(&hugetlb_lock);
6329 	SetHPageMigratable(page);
6330 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6331 	spin_unlock_irq(&hugetlb_lock);
6332 	put_page(page);
6333 }
6334 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)6335 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6336 {
6337 	struct hstate *h = page_hstate(oldpage);
6338 
6339 	hugetlb_cgroup_migrate(oldpage, newpage);
6340 	set_page_owner_migrate_reason(newpage, reason);
6341 
6342 	/*
6343 	 * transfer temporary state of the new huge page. This is
6344 	 * reverse to other transitions because the newpage is going to
6345 	 * be final while the old one will be freed so it takes over
6346 	 * the temporary status.
6347 	 *
6348 	 * Also note that we have to transfer the per-node surplus state
6349 	 * here as well otherwise the global surplus count will not match
6350 	 * the per-node's.
6351 	 */
6352 	if (HPageTemporary(newpage)) {
6353 		int old_nid = page_to_nid(oldpage);
6354 		int new_nid = page_to_nid(newpage);
6355 
6356 		SetHPageTemporary(oldpage);
6357 		ClearHPageTemporary(newpage);
6358 
6359 		/*
6360 		 * There is no need to transfer the per-node surplus state
6361 		 * when we do not cross the node.
6362 		 */
6363 		if (new_nid == old_nid)
6364 			return;
6365 		spin_lock_irq(&hugetlb_lock);
6366 		if (h->surplus_huge_pages_node[old_nid]) {
6367 			h->surplus_huge_pages_node[old_nid]--;
6368 			h->surplus_huge_pages_node[new_nid]++;
6369 		}
6370 		spin_unlock_irq(&hugetlb_lock);
6371 	}
6372 }
6373 
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)6374 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
6375 				   unsigned long start,
6376 				   unsigned long end)
6377 {
6378 	struct hstate *h = hstate_vma(vma);
6379 	unsigned long sz = huge_page_size(h);
6380 	struct mm_struct *mm = vma->vm_mm;
6381 	struct mmu_notifier_range range;
6382 	unsigned long address;
6383 	spinlock_t *ptl;
6384 	pte_t *ptep;
6385 
6386 	if (!(vma->vm_flags & VM_MAYSHARE))
6387 		return;
6388 
6389 	if (start >= end)
6390 		return;
6391 
6392 	/*
6393 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6394 	 * we have already done the PUD_SIZE alignment.
6395 	 */
6396 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6397 				start, end);
6398 	mmu_notifier_invalidate_range_start(&range);
6399 	i_mmap_lock_write(vma->vm_file->f_mapping);
6400 	for (address = start; address < end; address += PUD_SIZE) {
6401 		unsigned long tmp = address;
6402 
6403 		ptep = huge_pte_offset(mm, address, sz);
6404 		if (!ptep)
6405 			continue;
6406 		ptl = huge_pte_lock(h, mm, ptep);
6407 		/* We don't want 'address' to be changed */
6408 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6409 		spin_unlock(ptl);
6410 	}
6411 	flush_hugetlb_tlb_range(vma, start, end);
6412 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6413 	/*
6414 	 * No need to call mmu_notifier_invalidate_range(), see
6415 	 * Documentation/vm/mmu_notifier.rst.
6416 	 */
6417 	mmu_notifier_invalidate_range_end(&range);
6418 }
6419 
6420 /*
6421  * This function will unconditionally remove all the shared pmd pgtable entries
6422  * within the specific vma for a hugetlbfs memory range.
6423  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)6424 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6425 {
6426 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
6427 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
6428 }
6429 
6430 #ifdef CONFIG_CMA
6431 static bool cma_reserve_called __initdata;
6432 
cmdline_parse_hugetlb_cma(char * p)6433 static int __init cmdline_parse_hugetlb_cma(char *p)
6434 {
6435 	hugetlb_cma_size = memparse(p, &p);
6436 	return 0;
6437 }
6438 
6439 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6440 
hugetlb_cma_reserve(int order)6441 void __init hugetlb_cma_reserve(int order)
6442 {
6443 	unsigned long size, reserved, per_node;
6444 	int nid;
6445 
6446 	cma_reserve_called = true;
6447 
6448 	if (!hugetlb_cma_size)
6449 		return;
6450 
6451 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6452 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6453 			(PAGE_SIZE << order) / SZ_1M);
6454 		return;
6455 	}
6456 
6457 	/*
6458 	 * If 3 GB area is requested on a machine with 4 numa nodes,
6459 	 * let's allocate 1 GB on first three nodes and ignore the last one.
6460 	 */
6461 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6462 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6463 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6464 
6465 	reserved = 0;
6466 	for_each_node_state(nid, N_ONLINE) {
6467 		int res;
6468 		char name[CMA_MAX_NAME];
6469 
6470 		size = min(per_node, hugetlb_cma_size - reserved);
6471 		size = round_up(size, PAGE_SIZE << order);
6472 
6473 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6474 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6475 						 0, false, name,
6476 						 &hugetlb_cma[nid], nid);
6477 		if (res) {
6478 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6479 				res, nid);
6480 			continue;
6481 		}
6482 
6483 		reserved += size;
6484 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6485 			size / SZ_1M, nid);
6486 
6487 		if (reserved >= hugetlb_cma_size)
6488 			break;
6489 	}
6490 }
6491 
hugetlb_cma_check(void)6492 void __init hugetlb_cma_check(void)
6493 {
6494 	if (!hugetlb_cma_size || cma_reserve_called)
6495 		return;
6496 
6497 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6498 }
6499 
6500 #endif /* CONFIG_CMA */
6501