• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/pgsize_migration.h>
15 #include <linux/page_idle.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/hugetlb.h>
18 #include <linux/falloc.h>
19 #include <linux/fadvise.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mm_inline.h>
23 #include <linux/string.h>
24 #include <linux/uio.h>
25 #include <linux/ksm.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagewalk.h>
31 #include <linux/swap.h>
32 #include <linux/swapops.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mmu_notifier.h>
35 #include <trace/hooks/mm.h>
36 
37 #include <asm/tlb.h>
38 
39 #include "internal.h"
40 
41 struct madvise_walk_private {
42 	struct mmu_gather *tlb;
43 	bool pageout;
44 	bool can_pageout_file;
45 };
46 
47 /*
48  * Any behaviour which results in changes to the vma->vm_flags needs to
49  * take mmap_lock for writing. Others, which simply traverse vmas, need
50  * to only take it for reading.
51  */
madvise_need_mmap_write(int behavior)52 static int madvise_need_mmap_write(int behavior)
53 {
54 	switch (behavior) {
55 	case MADV_REMOVE:
56 	case MADV_WILLNEED:
57 	case MADV_DONTNEED:
58 	case MADV_COLD:
59 	case MADV_PAGEOUT:
60 	case MADV_FREE:
61 	case MADV_POPULATE_READ:
62 	case MADV_POPULATE_WRITE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
anon_vma_name_free(struct kref * kref)87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
anon_vma_name(struct vm_area_struct * vma)94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	if (vma->vm_file)
99 		return NULL;
100 
101 	return vma->anon_name;
102 }
103 
104 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)105 static int replace_anon_vma_name(struct vm_area_struct *vma,
106 				 struct anon_vma_name *anon_name)
107 {
108 	struct anon_vma_name *orig_name = anon_vma_name(vma);
109 
110 	if (!anon_name) {
111 		vma->anon_name = NULL;
112 		anon_vma_name_put(orig_name);
113 		return 0;
114 	}
115 
116 	if (anon_vma_name_eq(orig_name, anon_name))
117 		return 0;
118 
119 	vma->anon_name = anon_vma_name_reuse(anon_name);
120 	anon_vma_name_put(orig_name);
121 
122 	return 0;
123 }
124 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)125 static int replace_anon_vma_name(struct vm_area_struct *vma,
126 				 struct anon_vma_name *anon_name)
127 {
128 	if (anon_name)
129 		return -EINVAL;
130 
131 	return 0;
132 }
133 #endif /* CONFIG_ANON_VMA_NAME */
134 /*
135  * Update the vm_flags on region of a vma, splitting it or merging it as
136  * necessary.  Must be called with mmap_sem held for writing;
137  * Caller should ensure anon_name stability by raising its refcount even when
138  * anon_name belongs to a valid vma because this function might free that vma.
139  */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)140 static int madvise_update_vma(struct vm_area_struct *vma,
141 			      struct vm_area_struct **prev, unsigned long start,
142 			      unsigned long end, unsigned long new_flags,
143 			      struct anon_vma_name *anon_name)
144 {
145 	struct mm_struct *mm = vma->vm_mm;
146 	int error;
147 	pgoff_t pgoff;
148 
149 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
150 		*prev = vma;
151 		return 0;
152 	}
153 
154 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
155 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
156 			  vma->vm_file, pgoff, vma_policy(vma),
157 			  vma->vm_userfaultfd_ctx, anon_name);
158 	if (*prev) {
159 		vma = *prev;
160 		goto success;
161 	}
162 
163 	*prev = vma;
164 
165 	if (start != vma->vm_start) {
166 		if (unlikely(mm->map_count >= sysctl_max_map_count))
167 			return -ENOMEM;
168 		error = __split_vma(mm, vma, start, 1);
169 		if (error)
170 			return error;
171 	}
172 
173 	if (end != vma->vm_end) {
174 		if (unlikely(mm->map_count >= sysctl_max_map_count))
175 			return -ENOMEM;
176 		error = __split_vma(mm, vma, end, 0);
177 		if (error)
178 			return error;
179 	}
180 
181 success:
182 	/*
183 	 * vm_flags is protected by the mmap_lock held in write mode.
184 	 */
185 	vma->vm_flags = new_flags;
186 	if (!vma->vm_file) {
187 		error = replace_anon_vma_name(vma, anon_name);
188 		if (error)
189 			return error;
190 	}
191 
192 	return 0;
193 }
194 
195 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)196 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
197 	unsigned long end, struct mm_walk *walk)
198 {
199 	pte_t *orig_pte;
200 	struct vm_area_struct *vma = walk->private;
201 	unsigned long index;
202 
203 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
204 		return 0;
205 
206 	for (index = start; index != end; index += PAGE_SIZE) {
207 		pte_t pte;
208 		swp_entry_t entry;
209 		struct page *page;
210 		spinlock_t *ptl;
211 
212 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
213 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
214 		pte_unmap_unlock(orig_pte, ptl);
215 
216 		if (pte_present(pte) || pte_none(pte))
217 			continue;
218 		entry = pte_to_swp_entry(pte);
219 		if (unlikely(non_swap_entry(entry)))
220 			continue;
221 
222 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
223 							vma, index, false);
224 		if (page)
225 			put_page(page);
226 	}
227 
228 	return 0;
229 }
230 
231 static const struct mm_walk_ops swapin_walk_ops = {
232 	.pmd_entry		= swapin_walk_pmd_entry,
233 };
234 
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)235 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
236 		unsigned long start, unsigned long end,
237 		struct address_space *mapping)
238 {
239 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
240 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
241 	struct page *page;
242 
243 	rcu_read_lock();
244 	xas_for_each(&xas, page, end_index) {
245 		swp_entry_t swap;
246 
247 		if (!xa_is_value(page))
248 			continue;
249 		xas_pause(&xas);
250 		rcu_read_unlock();
251 
252 		swap = radix_to_swp_entry(page);
253 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
254 							NULL, 0, false);
255 		if (page)
256 			put_page(page);
257 
258 		rcu_read_lock();
259 	}
260 	rcu_read_unlock();
261 
262 	lru_add_drain();	/* Push any new pages onto the LRU now */
263 }
264 #endif		/* CONFIG_SWAP */
265 
266 /*
267  * Schedule all required I/O operations.  Do not wait for completion.
268  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)269 static long madvise_willneed(struct vm_area_struct *vma,
270 			     struct vm_area_struct **prev,
271 			     unsigned long start, unsigned long end)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	loff_t offset;
276 
277 	*prev = vma;
278 #ifdef CONFIG_SWAP
279 	if (!file) {
280 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
281 		lru_add_drain(); /* Push any new pages onto the LRU now */
282 		return 0;
283 	}
284 
285 	if (shmem_mapping(file->f_mapping)) {
286 		force_shm_swapin_readahead(vma, start, end,
287 					file->f_mapping);
288 		return 0;
289 	}
290 #else
291 	if (!file)
292 		return -EBADF;
293 #endif
294 
295 	if (IS_DAX(file_inode(file))) {
296 		/* no bad return value, but ignore advice */
297 		return 0;
298 	}
299 
300 	/*
301 	 * Filesystem's fadvise may need to take various locks.  We need to
302 	 * explicitly grab a reference because the vma (and hence the
303 	 * vma's reference to the file) can go away as soon as we drop
304 	 * mmap_lock.
305 	 */
306 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
307 	get_file(file);
308 	offset = (loff_t)(start - vma->vm_start)
309 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
310 	mmap_read_unlock(mm);
311 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
312 	fput(file);
313 	mmap_read_lock(mm);
314 	return 0;
315 }
316 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)317 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
318 				unsigned long addr, unsigned long end,
319 				struct mm_walk *walk)
320 {
321 	struct madvise_walk_private *private = walk->private;
322 	struct mmu_gather *tlb = private->tlb;
323 	bool pageout = private->pageout;
324 	bool pageout_anon_only = pageout && !private->can_pageout_file;
325 	struct mm_struct *mm = tlb->mm;
326 	struct vm_area_struct *vma = walk->vma;
327 	pte_t *orig_pte, *pte, ptent;
328 	spinlock_t *ptl;
329 	struct page *page = NULL;
330 	LIST_HEAD(page_list);
331 
332 	if (fatal_signal_pending(current))
333 		return -EINTR;
334 
335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 	if (pmd_trans_huge(*pmd)) {
337 		pmd_t orig_pmd;
338 		unsigned long next = pmd_addr_end(addr, end);
339 
340 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
341 		ptl = pmd_trans_huge_lock(pmd, vma);
342 		if (!ptl)
343 			return 0;
344 
345 		orig_pmd = *pmd;
346 		if (is_huge_zero_pmd(orig_pmd))
347 			goto huge_unlock;
348 
349 		if (unlikely(!pmd_present(orig_pmd))) {
350 			VM_BUG_ON(thp_migration_supported() &&
351 					!is_pmd_migration_entry(orig_pmd));
352 			goto huge_unlock;
353 		}
354 
355 		page = pmd_page(orig_pmd);
356 
357 		/* Do not interfere with other mappings of this page */
358 		if (page_mapcount(page) != 1)
359 			goto huge_unlock;
360 
361 		if (pageout_anon_only && !PageAnon(page))
362 			goto huge_unlock;
363 
364 		if (next - addr != HPAGE_PMD_SIZE) {
365 			int err;
366 
367 			get_page(page);
368 			spin_unlock(ptl);
369 			lock_page(page);
370 			err = split_huge_page(page);
371 			unlock_page(page);
372 			put_page(page);
373 			if (!err)
374 				goto regular_page;
375 			return 0;
376 		}
377 
378 		if (pmd_young(orig_pmd)) {
379 			pmdp_invalidate(vma, addr, pmd);
380 			orig_pmd = pmd_mkold(orig_pmd);
381 
382 			set_pmd_at(mm, addr, pmd, orig_pmd);
383 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
384 		}
385 
386 		ClearPageReferenced(page);
387 		test_and_clear_page_young(page);
388 		if (pageout) {
389 			if (!isolate_lru_page(page)) {
390 				if (PageUnevictable(page))
391 					putback_lru_page(page);
392 				else
393 					list_add(&page->lru, &page_list);
394 			}
395 		} else
396 			deactivate_page(page);
397 huge_unlock:
398 		spin_unlock(ptl);
399 		if (pageout)
400 			reclaim_pages(&page_list);
401 		return 0;
402 	}
403 
404 regular_page:
405 	if (pmd_trans_unstable(pmd))
406 		return 0;
407 #endif
408 	tlb_change_page_size(tlb, PAGE_SIZE);
409 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
410 	flush_tlb_batched_pending(mm);
411 	arch_enter_lazy_mmu_mode();
412 	for (; addr < end; pte++, addr += PAGE_SIZE) {
413 		ptent = *pte;
414 
415 		if (pte_none(ptent))
416 			continue;
417 
418 		if (!pte_present(ptent))
419 			continue;
420 
421 		page = vm_normal_page(vma, addr, ptent);
422 		if (!page)
423 			continue;
424 
425 		/*
426 		 * Creating a THP page is expensive so split it only if we
427 		 * are sure it's worth. Split it if we are only owner.
428 		 */
429 		if (PageTransCompound(page)) {
430 			if (page_mapcount(page) != 1)
431 				break;
432 			if (pageout_anon_only && !PageAnon(page))
433 				break;
434 			get_page(page);
435 			if (!trylock_page(page)) {
436 				put_page(page);
437 				break;
438 			}
439 			pte_unmap_unlock(orig_pte, ptl);
440 			if (split_huge_page(page)) {
441 				unlock_page(page);
442 				put_page(page);
443 				pte_offset_map_lock(mm, pmd, addr, &ptl);
444 				break;
445 			}
446 			unlock_page(page);
447 			put_page(page);
448 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
449 			pte--;
450 			addr -= PAGE_SIZE;
451 			continue;
452 		}
453 
454 		/*
455 		 * Do not interfere with other mappings of this page and
456 		 * non-LRU page.
457 		 */
458 		if (!PageLRU(page) || page_mapcount(page) != 1)
459 			continue;
460 
461 		if (pageout_anon_only && !PageAnon(page))
462 			continue;
463 
464 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
465 
466 		if (pte_young(ptent)) {
467 			ptent = ptep_get_and_clear_full(mm, addr, pte,
468 							tlb->fullmm);
469 			ptent = pte_mkold(ptent);
470 			set_pte_at(mm, addr, pte, ptent);
471 			tlb_remove_tlb_entry(tlb, pte, addr);
472 		}
473 
474 		/*
475 		 * We are deactivating a page for accelerating reclaiming.
476 		 * VM couldn't reclaim the page unless we clear PG_young.
477 		 * As a side effect, it makes confuse idle-page tracking
478 		 * because they will miss recent referenced history.
479 		 */
480 		ClearPageReferenced(page);
481 		test_and_clear_page_young(page);
482 		if (pageout) {
483 			if (!isolate_lru_page(page)) {
484 				if (PageUnevictable(page))
485 					putback_lru_page(page);
486 				else
487 					list_add(&page->lru, &page_list);
488 			}
489 		} else
490 			deactivate_page(page);
491 	}
492 
493 	arch_leave_lazy_mmu_mode();
494 	pte_unmap_unlock(orig_pte, ptl);
495 	if (pageout)
496 		reclaim_pages(&page_list);
497 	cond_resched();
498 
499 	return 0;
500 }
501 
502 static const struct mm_walk_ops cold_walk_ops = {
503 	.pmd_entry = madvise_cold_or_pageout_pte_range,
504 };
505 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)506 static void madvise_cold_page_range(struct mmu_gather *tlb,
507 			     struct vm_area_struct *vma,
508 			     unsigned long addr, unsigned long end)
509 {
510 	struct madvise_walk_private walk_private = {
511 		.pageout = false,
512 		.tlb = tlb,
513 	};
514 
515 	tlb_start_vma(tlb, vma);
516 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
517 	tlb_end_vma(tlb, vma);
518 }
519 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)520 static long madvise_cold(struct vm_area_struct *vma,
521 			struct vm_area_struct **prev,
522 			unsigned long start_addr, unsigned long end_addr)
523 {
524 	struct mm_struct *mm = vma->vm_mm;
525 	struct mmu_gather tlb;
526 
527 	*prev = vma;
528 	if (!can_madv_lru_vma(vma))
529 		return -EINVAL;
530 
531 	lru_add_drain();
532 	tlb_gather_mmu(&tlb, mm);
533 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
534 	tlb_finish_mmu(&tlb);
535 
536 	return 0;
537 }
538 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,bool can_pageout_file)539 static void madvise_pageout_page_range(struct mmu_gather *tlb,
540 			     struct vm_area_struct *vma,
541 			     unsigned long addr, unsigned long end,
542 			     bool can_pageout_file)
543 {
544 	struct madvise_walk_private walk_private = {
545 		.pageout = true,
546 		.tlb = tlb,
547 		.can_pageout_file = can_pageout_file,
548 	};
549 
550 	tlb_start_vma(tlb, vma);
551 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
552 	tlb_end_vma(tlb, vma);
553 }
554 
can_do_file_pageout(struct vm_area_struct * vma)555 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
556 {
557 	if (!vma->vm_file)
558 		return false;
559 	/*
560 	 * paging out pagecache only for non-anonymous mappings that correspond
561 	 * to the files the calling process could (if tried) open for writing;
562 	 * otherwise we'd be including shared non-exclusive mappings, which
563 	 * opens a side channel.
564 	 */
565 	return inode_owner_or_capable(&init_user_ns,
566 				      file_inode(vma->vm_file)) ||
567 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
568 }
569 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)570 static long madvise_pageout(struct vm_area_struct *vma,
571 			struct vm_area_struct **prev,
572 			unsigned long start_addr, unsigned long end_addr)
573 {
574 	struct mm_struct *mm = vma->vm_mm;
575 	struct mmu_gather tlb;
576 	bool can_pageout_file;
577 
578 	*prev = vma;
579 	if (!can_madv_lru_vma(vma))
580 		return -EINVAL;
581 
582 	/*
583 	 * If the VMA belongs to a private file mapping, there can be private
584 	 * dirty pages which can be paged out if even this process is neither
585 	 * owner nor write capable of the file. Cache the file access check
586 	 * here and use it later during page walk.
587 	 */
588 	can_pageout_file = can_do_file_pageout(vma);
589 
590 	lru_add_drain();
591 	tlb_gather_mmu(&tlb, mm);
592 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr, can_pageout_file);
593 	tlb_finish_mmu(&tlb);
594 
595 	return 0;
596 }
597 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)598 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
599 				unsigned long end, struct mm_walk *walk)
600 
601 {
602 	struct mmu_gather *tlb = walk->private;
603 	struct mm_struct *mm = tlb->mm;
604 	struct vm_area_struct *vma = walk->vma;
605 	spinlock_t *ptl;
606 	pte_t *orig_pte, *pte, ptent;
607 	struct page *page;
608 	int nr_swap = 0;
609 	unsigned long next;
610 
611 	next = pmd_addr_end(addr, end);
612 	if (pmd_trans_huge(*pmd))
613 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
614 			goto next;
615 
616 	if (pmd_trans_unstable(pmd))
617 		return 0;
618 
619 	tlb_change_page_size(tlb, PAGE_SIZE);
620 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
621 	flush_tlb_batched_pending(mm);
622 	arch_enter_lazy_mmu_mode();
623 	for (; addr != end; pte++, addr += PAGE_SIZE) {
624 		ptent = *pte;
625 
626 		if (pte_none(ptent))
627 			continue;
628 		/*
629 		 * If the pte has swp_entry, just clear page table to
630 		 * prevent swap-in which is more expensive rather than
631 		 * (page allocation + zeroing).
632 		 */
633 		if (!pte_present(ptent)) {
634 			swp_entry_t entry;
635 
636 			entry = pte_to_swp_entry(ptent);
637 			if (non_swap_entry(entry))
638 				continue;
639 			nr_swap--;
640 			free_swap_and_cache(entry);
641 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
642 			continue;
643 		}
644 
645 		page = vm_normal_page(vma, addr, ptent);
646 		if (!page)
647 			continue;
648 
649 		/*
650 		 * If pmd isn't transhuge but the page is THP and
651 		 * is owned by only this process, split it and
652 		 * deactivate all pages.
653 		 */
654 		if (PageTransCompound(page)) {
655 			if (page_mapcount(page) != 1)
656 				goto out;
657 			get_page(page);
658 			if (!trylock_page(page)) {
659 				put_page(page);
660 				goto out;
661 			}
662 			pte_unmap_unlock(orig_pte, ptl);
663 			if (split_huge_page(page)) {
664 				unlock_page(page);
665 				put_page(page);
666 				pte_offset_map_lock(mm, pmd, addr, &ptl);
667 				goto out;
668 			}
669 			unlock_page(page);
670 			put_page(page);
671 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
672 			pte--;
673 			addr -= PAGE_SIZE;
674 			continue;
675 		}
676 
677 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
678 
679 		if (PageSwapCache(page) || PageDirty(page)) {
680 			if (!trylock_page(page))
681 				continue;
682 			/*
683 			 * If page is shared with others, we couldn't clear
684 			 * PG_dirty of the page.
685 			 */
686 			if (page_mapcount(page) != 1) {
687 				unlock_page(page);
688 				continue;
689 			}
690 
691 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
692 				unlock_page(page);
693 				continue;
694 			}
695 
696 			ClearPageDirty(page);
697 			unlock_page(page);
698 		}
699 
700 		if (pte_young(ptent) || pte_dirty(ptent)) {
701 			/*
702 			 * Some of architecture(ex, PPC) don't update TLB
703 			 * with set_pte_at and tlb_remove_tlb_entry so for
704 			 * the portability, remap the pte with old|clean
705 			 * after pte clearing.
706 			 */
707 			ptent = ptep_get_and_clear_full(mm, addr, pte,
708 							tlb->fullmm);
709 
710 			ptent = pte_mkold(ptent);
711 			ptent = pte_mkclean(ptent);
712 			set_pte_at(mm, addr, pte, ptent);
713 			tlb_remove_tlb_entry(tlb, pte, addr);
714 		}
715 		mark_page_lazyfree(page);
716 	}
717 out:
718 	if (nr_swap) {
719 		if (current->mm == mm)
720 			sync_mm_rss(mm);
721 
722 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
723 	}
724 	arch_leave_lazy_mmu_mode();
725 	pte_unmap_unlock(orig_pte, ptl);
726 	cond_resched();
727 next:
728 	return 0;
729 }
730 
731 static const struct mm_walk_ops madvise_free_walk_ops = {
732 	.pmd_entry		= madvise_free_pte_range,
733 };
734 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)735 static int madvise_free_single_vma(struct vm_area_struct *vma,
736 			unsigned long start_addr, unsigned long end_addr)
737 {
738 	struct mm_struct *mm = vma->vm_mm;
739 	struct mmu_notifier_range range;
740 	struct mmu_gather tlb;
741 
742 	/* MADV_FREE works for only anon vma at the moment */
743 	if (!vma_is_anonymous(vma))
744 		return -EINVAL;
745 
746 	range.start = max(vma->vm_start, start_addr);
747 	if (range.start >= vma->vm_end)
748 		return -EINVAL;
749 	range.end = min(vma->vm_end, end_addr);
750 	if (range.end <= vma->vm_start)
751 		return -EINVAL;
752 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
753 				range.start, range.end);
754 
755 	lru_add_drain();
756 	tlb_gather_mmu(&tlb, mm);
757 	update_hiwater_rss(mm);
758 
759 	mmu_notifier_invalidate_range_start(&range);
760 	tlb_start_vma(&tlb, vma);
761 	walk_page_range(vma->vm_mm, range.start, range.end,
762 			&madvise_free_walk_ops, &tlb);
763 	tlb_end_vma(&tlb, vma);
764 	mmu_notifier_invalidate_range_end(&range);
765 	tlb_finish_mmu(&tlb);
766 
767 	return 0;
768 }
769 
770 /*
771  * Application no longer needs these pages.  If the pages are dirty,
772  * it's OK to just throw them away.  The app will be more careful about
773  * data it wants to keep.  Be sure to free swap resources too.  The
774  * zap_page_range call sets things up for shrink_active_list to actually free
775  * these pages later if no one else has touched them in the meantime,
776  * although we could add these pages to a global reuse list for
777  * shrink_active_list to pick up before reclaiming other pages.
778  *
779  * NB: This interface discards data rather than pushes it out to swap,
780  * as some implementations do.  This has performance implications for
781  * applications like large transactional databases which want to discard
782  * pages in anonymous maps after committing to backing store the data
783  * that was kept in them.  There is no reason to write this data out to
784  * the swap area if the application is discarding it.
785  *
786  * An interface that causes the system to free clean pages and flush
787  * dirty pages is already available as msync(MS_INVALIDATE).
788  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)789 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
790 					unsigned long start, unsigned long end)
791 {
792 	madvise_vma_pad_pages(vma, start, end);
793 
794 	zap_page_range(vma, start, end - start);
795 	return 0;
796 }
797 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)798 static long madvise_dontneed_free(struct vm_area_struct *vma,
799 				  struct vm_area_struct **prev,
800 				  unsigned long start, unsigned long end,
801 				  int behavior)
802 {
803 	struct mm_struct *mm = vma->vm_mm;
804 
805 	*prev = vma;
806 	if (!can_madv_lru_vma(vma))
807 		return -EINVAL;
808 
809 	if (!userfaultfd_remove(vma, start, end)) {
810 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
811 
812 		mmap_read_lock(mm);
813 		vma = find_vma(mm, start);
814 		if (!vma)
815 			return -ENOMEM;
816 		if (start < vma->vm_start) {
817 			/*
818 			 * This "vma" under revalidation is the one
819 			 * with the lowest vma->vm_start where start
820 			 * is also < vma->vm_end. If start <
821 			 * vma->vm_start it means an hole materialized
822 			 * in the user address space within the
823 			 * virtual range passed to MADV_DONTNEED
824 			 * or MADV_FREE.
825 			 */
826 			return -ENOMEM;
827 		}
828 		if (!can_madv_lru_vma(vma))
829 			return -EINVAL;
830 		if (end > vma->vm_end) {
831 			/*
832 			 * Don't fail if end > vma->vm_end. If the old
833 			 * vma was split while the mmap_lock was
834 			 * released the effect of the concurrent
835 			 * operation may not cause madvise() to
836 			 * have an undefined result. There may be an
837 			 * adjacent next vma that we'll walk
838 			 * next. userfaultfd_remove() will generate an
839 			 * UFFD_EVENT_REMOVE repetition on the
840 			 * end-vma->vm_end range, but the manager can
841 			 * handle a repetition fine.
842 			 */
843 			end = vma->vm_end;
844 		}
845 		VM_WARN_ON(start >= end);
846 	}
847 
848 	if (behavior == MADV_DONTNEED)
849 		return madvise_dontneed_single_vma(vma, start, end);
850 	else if (behavior == MADV_FREE)
851 		return madvise_free_single_vma(vma, start, end);
852 	else
853 		return -EINVAL;
854 }
855 
madvise_populate(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)856 static long madvise_populate(struct vm_area_struct *vma,
857 			     struct vm_area_struct **prev,
858 			     unsigned long start, unsigned long end,
859 			     int behavior)
860 {
861 	const bool write = behavior == MADV_POPULATE_WRITE;
862 	struct mm_struct *mm = vma->vm_mm;
863 	unsigned long tmp_end;
864 	int locked = 1;
865 	long pages;
866 
867 	*prev = vma;
868 
869 	while (start < end) {
870 		/*
871 		 * We might have temporarily dropped the lock. For example,
872 		 * our VMA might have been split.
873 		 */
874 		if (!vma || start >= vma->vm_end) {
875 			vma = find_vma(mm, start);
876 			if (!vma || start < vma->vm_start)
877 				return -ENOMEM;
878 		}
879 
880 		tmp_end = min_t(unsigned long, end, vma->vm_end);
881 		/* Populate (prefault) page tables readable/writable. */
882 		pages = faultin_vma_page_range(vma, start, tmp_end, write,
883 					       &locked);
884 		if (!locked) {
885 			mmap_read_lock(mm);
886 			locked = 1;
887 			*prev = NULL;
888 			vma = NULL;
889 		}
890 		if (pages < 0) {
891 			switch (pages) {
892 			case -EINTR:
893 				return -EINTR;
894 			case -EINVAL: /* Incompatible mappings / permissions. */
895 				return -EINVAL;
896 			case -EHWPOISON:
897 				return -EHWPOISON;
898 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
899 				return -EFAULT;
900 			default:
901 				pr_warn_once("%s: unhandled return value: %ld\n",
902 					     __func__, pages);
903 				fallthrough;
904 			case -ENOMEM:
905 				return -ENOMEM;
906 			}
907 		}
908 		start += pages * PAGE_SIZE;
909 	}
910 	return 0;
911 }
912 
913 /*
914  * Application wants to free up the pages and associated backing store.
915  * This is effectively punching a hole into the middle of a file.
916  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)917 static long madvise_remove(struct vm_area_struct *vma,
918 				struct vm_area_struct **prev,
919 				unsigned long start, unsigned long end)
920 {
921 	loff_t offset;
922 	int error;
923 	struct file *f;
924 	struct mm_struct *mm = vma->vm_mm;
925 
926 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
927 
928 	if (vma->vm_flags & VM_LOCKED)
929 		return -EINVAL;
930 
931 	f = vma->vm_file;
932 
933 	if (!f || !f->f_mapping || !f->f_mapping->host) {
934 			return -EINVAL;
935 	}
936 
937 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
938 		return -EACCES;
939 
940 	offset = (loff_t)(start - vma->vm_start)
941 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
942 
943 	/*
944 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
945 	 * explicitly grab a reference because the vma (and hence the
946 	 * vma's reference to the file) can go away as soon as we drop
947 	 * mmap_lock.
948 	 */
949 	get_file(f);
950 	if (userfaultfd_remove(vma, start, end)) {
951 		/* mmap_lock was not released by userfaultfd_remove() */
952 		mmap_read_unlock(mm);
953 	}
954 	error = vfs_fallocate(f,
955 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
956 				offset, end - start);
957 	fput(f);
958 	mmap_read_lock(mm);
959 	return error;
960 }
961 
962 /*
963  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
964  * will handle splitting a vm area into separate areas, each area with its own
965  * behavior.
966  */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)967 static int madvise_vma_behavior(struct vm_area_struct *vma,
968 				struct vm_area_struct **prev,
969 				unsigned long start, unsigned long end,
970 				unsigned long behavior)
971 {
972 	int error;
973 	struct anon_vma_name *anon_name;
974 	unsigned long new_flags = vma->vm_flags;
975 
976 	switch (behavior) {
977 	case MADV_REMOVE:
978 		return madvise_remove(vma, prev, start, end);
979 	case MADV_WILLNEED:
980 		return madvise_willneed(vma, prev, start, end);
981 	case MADV_COLD:
982 		return madvise_cold(vma, prev, start, end);
983 	case MADV_PAGEOUT:
984 		return madvise_pageout(vma, prev, start, end);
985 	case MADV_FREE:
986 	case MADV_DONTNEED:
987 		return madvise_dontneed_free(vma, prev, start, end, behavior);
988 	case MADV_POPULATE_READ:
989 	case MADV_POPULATE_WRITE:
990 		return madvise_populate(vma, prev, start, end, behavior);
991 	case MADV_NORMAL:
992 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
993 		break;
994 	case MADV_SEQUENTIAL:
995 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
996 		break;
997 	case MADV_RANDOM:
998 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
999 		break;
1000 	case MADV_DONTFORK:
1001 		new_flags |= VM_DONTCOPY;
1002 		break;
1003 	case MADV_DOFORK:
1004 		if (vma->vm_flags & VM_IO)
1005 			return -EINVAL;
1006 		new_flags &= ~VM_DONTCOPY;
1007 		break;
1008 	case MADV_WIPEONFORK:
1009 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1010 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1011 			return -EINVAL;
1012 		new_flags |= VM_WIPEONFORK;
1013 		break;
1014 	case MADV_KEEPONFORK:
1015 		new_flags &= ~VM_WIPEONFORK;
1016 		break;
1017 	case MADV_DONTDUMP:
1018 		new_flags |= VM_DONTDUMP;
1019 		break;
1020 	case MADV_DODUMP:
1021 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1022 			return -EINVAL;
1023 		new_flags &= ~VM_DONTDUMP;
1024 		break;
1025 	case MADV_MERGEABLE:
1026 	case MADV_UNMERGEABLE:
1027 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1028 		if (error)
1029 			goto out;
1030 		break;
1031 	case MADV_HUGEPAGE:
1032 	case MADV_NOHUGEPAGE:
1033 		error = hugepage_madvise(vma, &new_flags, behavior);
1034 		if (error)
1035 			goto out;
1036 		break;
1037 	}
1038 
1039 	anon_name = anon_vma_name(vma);
1040 	anon_vma_name_get(anon_name);
1041 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1042 				   anon_name);
1043 	anon_vma_name_put(anon_name);
1044 
1045 out:
1046 	/*
1047 	 * madvise() returns EAGAIN if kernel resources, such as
1048 	 * slab, are temporarily unavailable.
1049 	 */
1050 	if (error == -ENOMEM)
1051 		error = -EAGAIN;
1052 	return error;
1053 }
1054 
1055 #ifdef CONFIG_MEMORY_FAILURE
1056 /*
1057  * Error injection support for memory error handling.
1058  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1059 static int madvise_inject_error(int behavior,
1060 		unsigned long start, unsigned long end)
1061 {
1062 	unsigned long size;
1063 
1064 	if (!capable(CAP_SYS_ADMIN))
1065 		return -EPERM;
1066 
1067 
1068 	for (; start < end; start += size) {
1069 		unsigned long pfn;
1070 		struct page *page;
1071 		int ret;
1072 
1073 		ret = get_user_pages_fast(start, 1, 0, &page);
1074 		if (ret != 1)
1075 			return ret;
1076 		pfn = page_to_pfn(page);
1077 
1078 		/*
1079 		 * When soft offlining hugepages, after migrating the page
1080 		 * we dissolve it, therefore in the second loop "page" will
1081 		 * no longer be a compound page.
1082 		 */
1083 		size = page_size(compound_head(page));
1084 
1085 		if (behavior == MADV_SOFT_OFFLINE) {
1086 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1087 				 pfn, start);
1088 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1089 		} else {
1090 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1091 				 pfn, start);
1092 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
1093 			if (ret == -EOPNOTSUPP)
1094 				ret = 0;
1095 		}
1096 
1097 		if (ret)
1098 			return ret;
1099 	}
1100 
1101 	return 0;
1102 }
1103 #endif
1104 
1105 static bool
madvise_behavior_valid(int behavior)1106 madvise_behavior_valid(int behavior)
1107 {
1108 	switch (behavior) {
1109 	case MADV_DOFORK:
1110 	case MADV_DONTFORK:
1111 	case MADV_NORMAL:
1112 	case MADV_SEQUENTIAL:
1113 	case MADV_RANDOM:
1114 	case MADV_REMOVE:
1115 	case MADV_WILLNEED:
1116 	case MADV_DONTNEED:
1117 	case MADV_FREE:
1118 	case MADV_COLD:
1119 	case MADV_PAGEOUT:
1120 	case MADV_POPULATE_READ:
1121 	case MADV_POPULATE_WRITE:
1122 #ifdef CONFIG_KSM
1123 	case MADV_MERGEABLE:
1124 	case MADV_UNMERGEABLE:
1125 #endif
1126 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1127 	case MADV_HUGEPAGE:
1128 	case MADV_NOHUGEPAGE:
1129 #endif
1130 	case MADV_DONTDUMP:
1131 	case MADV_DODUMP:
1132 	case MADV_WIPEONFORK:
1133 	case MADV_KEEPONFORK:
1134 #ifdef CONFIG_MEMORY_FAILURE
1135 	case MADV_SOFT_OFFLINE:
1136 	case MADV_HWPOISON:
1137 #endif
1138 		return true;
1139 
1140 	default:
1141 		return false;
1142 	}
1143 }
1144 
1145 static bool
process_madvise_behavior_valid(int behavior)1146 process_madvise_behavior_valid(int behavior)
1147 {
1148 	switch (behavior) {
1149 	case MADV_COLD:
1150 	case MADV_PAGEOUT:
1151 	case MADV_WILLNEED:
1152 		return true;
1153 	default:
1154 		return false;
1155 	}
1156 }
1157 
1158 /*
1159  * Walk the vmas in range [start,end), and call the visit function on each one.
1160  * The visit function will get start and end parameters that cover the overlap
1161  * between the current vma and the original range.  Any unmapped regions in the
1162  * original range will result in this function returning -ENOMEM while still
1163  * calling the visit function on all of the existing vmas in the range.
1164  * Must be called with the mmap_lock held for reading or writing.
1165  */
1166 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1167 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1168 		      unsigned long end, unsigned long arg,
1169 		      int (*visit)(struct vm_area_struct *vma,
1170 				   struct vm_area_struct **prev, unsigned long start,
1171 				   unsigned long end, unsigned long arg))
1172 {
1173 	struct vm_area_struct *vma;
1174 	struct vm_area_struct *prev;
1175 	unsigned long tmp;
1176 	int unmapped_error = 0;
1177 
1178 	/*
1179 	 * If the interval [start,end) covers some unmapped address
1180 	 * ranges, just ignore them, but return -ENOMEM at the end.
1181 	 * - different from the way of handling in mlock etc.
1182 	 */
1183 	vma = find_vma_prev(mm, start, &prev);
1184 	if (vma && start > vma->vm_start)
1185 		prev = vma;
1186 
1187 	for (;;) {
1188 		int error;
1189 
1190 		/* Still start < end. */
1191 		if (!vma)
1192 			return -ENOMEM;
1193 
1194 		/* Here start < (end|vma->vm_end). */
1195 		if (start < vma->vm_start) {
1196 			unmapped_error = -ENOMEM;
1197 			start = vma->vm_start;
1198 			if (start >= end)
1199 				break;
1200 		}
1201 
1202 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1203 		tmp = vma->vm_end;
1204 		if (end < tmp)
1205 			tmp = end;
1206 
1207 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1208 		error = visit(vma, &prev, start, tmp, arg);
1209 		if (error)
1210 			return error;
1211 		start = tmp;
1212 		if (prev && start < prev->vm_end)
1213 			start = prev->vm_end;
1214 		if (start >= end)
1215 			break;
1216 		if (prev)
1217 			vma = prev->vm_next;
1218 		else	/* madvise_remove dropped mmap_lock */
1219 			vma = find_vma(mm, start);
1220 	}
1221 
1222 	return unmapped_error;
1223 }
1224 
1225 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1226 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1227 				 struct vm_area_struct **prev,
1228 				 unsigned long start, unsigned long end,
1229 				 unsigned long anon_name)
1230 {
1231 	int error;
1232 
1233 	/* Only anonymous mappings can be named */
1234 	if (vma->vm_file)
1235 		return -EBADF;
1236 
1237 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1238 				   (struct anon_vma_name *)anon_name);
1239 
1240 	/*
1241 	 * madvise() returns EAGAIN if kernel resources, such as
1242 	 * slab, are temporarily unavailable.
1243 	 */
1244 	if (error == -ENOMEM)
1245 		error = -EAGAIN;
1246 	return error;
1247 }
1248 
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1249 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1250 			  unsigned long len_in, struct anon_vma_name *anon_name)
1251 {
1252 	unsigned long end;
1253 	unsigned long len;
1254 
1255 	if (start & ~PAGE_MASK)
1256 		return -EINVAL;
1257 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1258 
1259 	/* Check to see whether len was rounded up from small -ve to zero */
1260 	if (len_in && !len)
1261 		return -EINVAL;
1262 
1263 	end = start + len;
1264 	if (end < start)
1265 		return -EINVAL;
1266 
1267 	if (end == start)
1268 		return 0;
1269 
1270 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1271 				 madvise_vma_anon_name);
1272 }
1273 #endif /* CONFIG_ANON_VMA_NAME */
1274 /*
1275  * The madvise(2) system call.
1276  *
1277  * Applications can use madvise() to advise the kernel how it should
1278  * handle paging I/O in this VM area.  The idea is to help the kernel
1279  * use appropriate read-ahead and caching techniques.  The information
1280  * provided is advisory only, and can be safely disregarded by the
1281  * kernel without affecting the correct operation of the application.
1282  *
1283  * behavior values:
1284  *  MADV_NORMAL - the default behavior is to read clusters.  This
1285  *		results in some read-ahead and read-behind.
1286  *  MADV_RANDOM - the system should read the minimum amount of data
1287  *		on any access, since it is unlikely that the appli-
1288  *		cation will need more than what it asks for.
1289  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1290  *		once, so they can be aggressively read ahead, and
1291  *		can be freed soon after they are accessed.
1292  *  MADV_WILLNEED - the application is notifying the system to read
1293  *		some pages ahead.
1294  *  MADV_DONTNEED - the application is finished with the given range,
1295  *		so the kernel can free resources associated with it.
1296  *  MADV_FREE - the application marks pages in the given range as lazy free,
1297  *		where actual purges are postponed until memory pressure happens.
1298  *  MADV_REMOVE - the application wants to free up the given range of
1299  *		pages and associated backing store.
1300  *  MADV_DONTFORK - omit this area from child's address space when forking:
1301  *		typically, to avoid COWing pages pinned by get_user_pages().
1302  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1303  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1304  *              range after a fork.
1305  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1306  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1307  *		were corrupted by unrecoverable hardware memory failure.
1308  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1309  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1310  *		this area with pages of identical content from other such areas.
1311  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1312  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1313  *		huge pages in the future. Existing pages might be coalesced and
1314  *		new pages might be allocated as THP.
1315  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1316  *		transparent huge pages so the existing pages will not be
1317  *		coalesced into THP and new pages will not be allocated as THP.
1318  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1319  *		from being included in its core dump.
1320  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1321  *  MADV_COLD - the application is not expected to use this memory soon,
1322  *		deactivate pages in this range so that they can be reclaimed
1323  *		easily if memory pressure happens.
1324  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1325  *		page out the pages in this range immediately.
1326  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1327  *		triggering read faults if required
1328  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1329  *		triggering write faults if required
1330  *
1331  * return values:
1332  *  zero    - success
1333  *  -EINVAL - start + len < 0, start is not page-aligned,
1334  *		"behavior" is not a valid value, or application
1335  *		is attempting to release locked or shared pages,
1336  *		or the specified address range includes file, Huge TLB,
1337  *		MAP_SHARED or VMPFNMAP range.
1338  *  -ENOMEM - addresses in the specified range are not currently
1339  *		mapped, or are outside the AS of the process.
1340  *  -EIO    - an I/O error occurred while paging in data.
1341  *  -EBADF  - map exists, but area maps something that isn't a file.
1342  *  -EAGAIN - a kernel resource was temporarily unavailable.
1343  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1344 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1345 {
1346 	unsigned long end;
1347 	int error;
1348 	int write;
1349 	size_t len;
1350 	struct blk_plug plug;
1351 	bool do_plug = true;
1352 
1353 	start = untagged_addr(start);
1354 
1355 	if (!madvise_behavior_valid(behavior))
1356 		return -EINVAL;
1357 
1358 	if (!PAGE_ALIGNED(start))
1359 		return -EINVAL;
1360 	len = PAGE_ALIGN(len_in);
1361 
1362 	/* Check to see whether len was rounded up from small -ve to zero */
1363 	if (len_in && !len)
1364 		return -EINVAL;
1365 
1366 	end = start + len;
1367 	if (end < start)
1368 		return -EINVAL;
1369 
1370 	if (end == start)
1371 		return 0;
1372 
1373 #ifdef CONFIG_MEMORY_FAILURE
1374 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1375 		return madvise_inject_error(behavior, start, start + len_in);
1376 #endif
1377 
1378 	write = madvise_need_mmap_write(behavior);
1379 	if (write) {
1380 		if (mmap_write_lock_killable(mm))
1381 			return -EINTR;
1382 	} else {
1383 		mmap_read_lock(mm);
1384 	}
1385 
1386 	trace_android_vh_do_madvise_blk_plug(behavior, &do_plug);
1387 	if (do_plug)
1388 		blk_start_plug(&plug);
1389 	error = madvise_walk_vmas(mm, start, end, behavior,
1390 			madvise_vma_behavior);
1391 	if (do_plug)
1392 		blk_finish_plug(&plug);
1393 	if (write)
1394 		mmap_write_unlock(mm);
1395 	else
1396 		mmap_read_unlock(mm);
1397 
1398 	return error;
1399 }
1400 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1401 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1402 {
1403 	return do_madvise(current->mm, start, len_in, behavior);
1404 }
1405 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1406 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1407 		size_t, vlen, int, behavior, unsigned int, flags)
1408 {
1409 	ssize_t ret;
1410 	struct iovec iovstack[UIO_FASTIOV], iovec;
1411 	struct iovec *iov = iovstack;
1412 	struct iov_iter iter;
1413 	struct pid *pid;
1414 	struct task_struct *task;
1415 	struct mm_struct *mm;
1416 	size_t total_len;
1417 	unsigned int f_flags;
1418 
1419 	if (flags != 0) {
1420 		ret = -EINVAL;
1421 		goto out;
1422 	}
1423 
1424 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1425 	if (ret < 0)
1426 		goto out;
1427 
1428 	pid = pidfd_get_pid(pidfd, &f_flags);
1429 	if (IS_ERR(pid)) {
1430 		ret = PTR_ERR(pid);
1431 		goto free_iov;
1432 	}
1433 
1434 	task = get_pid_task(pid, PIDTYPE_PID);
1435 	if (!task) {
1436 		ret = -ESRCH;
1437 		goto put_pid;
1438 	}
1439 
1440 	if (!process_madvise_behavior_valid(behavior)) {
1441 		ret = -EINVAL;
1442 		goto release_task;
1443 	}
1444 
1445 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1446 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1447 	if (IS_ERR_OR_NULL(mm)) {
1448 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1449 		goto release_task;
1450 	}
1451 
1452 	/*
1453 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1454 	 * only non-destructive hints are currently supported.
1455 	 */
1456 	if (!capable(CAP_SYS_NICE)) {
1457 		ret = -EPERM;
1458 		goto release_mm;
1459 	}
1460 
1461 	total_len = iov_iter_count(&iter);
1462 
1463 	while (iov_iter_count(&iter)) {
1464 		iovec = iov_iter_iovec(&iter);
1465 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1466 					iovec.iov_len, behavior);
1467 		if (ret < 0)
1468 			break;
1469 		iov_iter_advance(&iter, iovec.iov_len);
1470 	}
1471 
1472 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1473 
1474 release_mm:
1475 	mmput(mm);
1476 release_task:
1477 	put_task_struct(task);
1478 put_pid:
1479 	put_pid(pid);
1480 free_iov:
1481 	kfree(iov);
1482 out:
1483 	return ret;
1484 }
1485