• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include <linux/shmem_fs.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63 
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67 
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 
__page_handle_poison(struct page * page)70 static bool __page_handle_poison(struct page *page)
71 {
72 	int ret;
73 
74 	zone_pcp_disable(page_zone(page));
75 	ret = dissolve_free_huge_page(page);
76 	if (!ret)
77 		ret = take_page_off_buddy(page);
78 	zone_pcp_enable(page_zone(page));
79 
80 	return ret > 0;
81 }
82 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)83 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
84 {
85 	if (hugepage_or_freepage) {
86 		/*
87 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
88 		 * returns 0 for non-hugetlb pages as well.
89 		 */
90 		if (!__page_handle_poison(page))
91 			/*
92 			 * We could fail to take off the target page from buddy
93 			 * for example due to racy page allocation, but that's
94 			 * acceptable because soft-offlined page is not broken
95 			 * and if someone really want to use it, they should
96 			 * take it.
97 			 */
98 			return false;
99 	}
100 
101 	SetPageHWPoison(page);
102 	if (release)
103 		put_page(page);
104 	page_ref_inc(page);
105 	num_poisoned_pages_inc();
106 
107 	return true;
108 }
109 
110 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
111 
112 u32 hwpoison_filter_enable = 0;
113 u32 hwpoison_filter_dev_major = ~0U;
114 u32 hwpoison_filter_dev_minor = ~0U;
115 u64 hwpoison_filter_flags_mask;
116 u64 hwpoison_filter_flags_value;
117 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
122 
hwpoison_filter_dev(struct page * p)123 static int hwpoison_filter_dev(struct page *p)
124 {
125 	struct address_space *mapping;
126 	dev_t dev;
127 
128 	if (hwpoison_filter_dev_major == ~0U &&
129 	    hwpoison_filter_dev_minor == ~0U)
130 		return 0;
131 
132 	/*
133 	 * page_mapping() does not accept slab pages.
134 	 */
135 	if (PageSlab(p))
136 		return -EINVAL;
137 
138 	mapping = page_mapping(p);
139 	if (mapping == NULL || mapping->host == NULL)
140 		return -EINVAL;
141 
142 	dev = mapping->host->i_sb->s_dev;
143 	if (hwpoison_filter_dev_major != ~0U &&
144 	    hwpoison_filter_dev_major != MAJOR(dev))
145 		return -EINVAL;
146 	if (hwpoison_filter_dev_minor != ~0U &&
147 	    hwpoison_filter_dev_minor != MINOR(dev))
148 		return -EINVAL;
149 
150 	return 0;
151 }
152 
hwpoison_filter_flags(struct page * p)153 static int hwpoison_filter_flags(struct page *p)
154 {
155 	if (!hwpoison_filter_flags_mask)
156 		return 0;
157 
158 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
159 				    hwpoison_filter_flags_value)
160 		return 0;
161 	else
162 		return -EINVAL;
163 }
164 
165 /*
166  * This allows stress tests to limit test scope to a collection of tasks
167  * by putting them under some memcg. This prevents killing unrelated/important
168  * processes such as /sbin/init. Note that the target task may share clean
169  * pages with init (eg. libc text), which is harmless. If the target task
170  * share _dirty_ pages with another task B, the test scheme must make sure B
171  * is also included in the memcg. At last, due to race conditions this filter
172  * can only guarantee that the page either belongs to the memcg tasks, or is
173  * a freed page.
174  */
175 #ifdef CONFIG_MEMCG
176 u64 hwpoison_filter_memcg;
177 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)178 static int hwpoison_filter_task(struct page *p)
179 {
180 	if (!hwpoison_filter_memcg)
181 		return 0;
182 
183 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
184 		return -EINVAL;
185 
186 	return 0;
187 }
188 #else
hwpoison_filter_task(struct page * p)189 static int hwpoison_filter_task(struct page *p) { return 0; }
190 #endif
191 
hwpoison_filter(struct page * p)192 int hwpoison_filter(struct page *p)
193 {
194 	if (!hwpoison_filter_enable)
195 		return 0;
196 
197 	if (hwpoison_filter_dev(p))
198 		return -EINVAL;
199 
200 	if (hwpoison_filter_flags(p))
201 		return -EINVAL;
202 
203 	if (hwpoison_filter_task(p))
204 		return -EINVAL;
205 
206 	return 0;
207 }
208 #else
hwpoison_filter(struct page * p)209 int hwpoison_filter(struct page *p)
210 {
211 	return 0;
212 }
213 #endif
214 
215 EXPORT_SYMBOL_GPL(hwpoison_filter);
216 
217 /*
218  * Kill all processes that have a poisoned page mapped and then isolate
219  * the page.
220  *
221  * General strategy:
222  * Find all processes having the page mapped and kill them.
223  * But we keep a page reference around so that the page is not
224  * actually freed yet.
225  * Then stash the page away
226  *
227  * There's no convenient way to get back to mapped processes
228  * from the VMAs. So do a brute-force search over all
229  * running processes.
230  *
231  * Remember that machine checks are not common (or rather
232  * if they are common you have other problems), so this shouldn't
233  * be a performance issue.
234  *
235  * Also there are some races possible while we get from the
236  * error detection to actually handle it.
237  */
238 
239 struct to_kill {
240 	struct list_head nd;
241 	struct task_struct *tsk;
242 	unsigned long addr;
243 	short size_shift;
244 };
245 
246 /*
247  * Send all the processes who have the page mapped a signal.
248  * ``action optional'' if they are not immediately affected by the error
249  * ``action required'' if error happened in current execution context
250  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)251 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
252 {
253 	struct task_struct *t = tk->tsk;
254 	short addr_lsb = tk->size_shift;
255 	int ret = 0;
256 
257 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
258 			pfn, t->comm, t->pid);
259 
260 	if (flags & MF_ACTION_REQUIRED) {
261 		if (t == current)
262 			ret = force_sig_mceerr(BUS_MCEERR_AR,
263 					 (void __user *)tk->addr, addr_lsb);
264 		else
265 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
266 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
267 				addr_lsb, t);
268 	} else {
269 		/*
270 		 * Don't use force here, it's convenient if the signal
271 		 * can be temporarily blocked.
272 		 * This could cause a loop when the user sets SIGBUS
273 		 * to SIG_IGN, but hopefully no one will do that?
274 		 */
275 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
276 				      addr_lsb, t);  /* synchronous? */
277 	}
278 	if (ret < 0)
279 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
280 			t->comm, t->pid, ret);
281 	return ret;
282 }
283 
284 /*
285  * Unknown page type encountered. Try to check whether it can turn PageLRU by
286  * lru_add_drain_all.
287  */
shake_page(struct page * p)288 void shake_page(struct page *p)
289 {
290 	if (PageHuge(p))
291 		return;
292 
293 	if (!PageSlab(p)) {
294 		lru_add_drain_all();
295 		if (PageLRU(p) || is_free_buddy_page(p))
296 			return;
297 	}
298 
299 	/*
300 	 * TODO: Could shrink slab caches here if a lightweight range-based
301 	 * shrinker will be available.
302 	 */
303 }
304 EXPORT_SYMBOL_GPL(shake_page);
305 
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)306 static unsigned long dev_pagemap_mapping_shift(struct page *page,
307 		struct vm_area_struct *vma)
308 {
309 	unsigned long address = vma_address(page, vma);
310 	unsigned long ret = 0;
311 	pgd_t *pgd;
312 	p4d_t *p4d;
313 	pud_t *pud;
314 	pmd_t *pmd;
315 	pte_t *pte;
316 
317 	pgd = pgd_offset(vma->vm_mm, address);
318 	if (!pgd_present(*pgd))
319 		return 0;
320 	p4d = p4d_offset(pgd, address);
321 	if (!p4d_present(*p4d))
322 		return 0;
323 	pud = pud_offset(p4d, address);
324 	if (!pud_present(*pud))
325 		return 0;
326 	if (pud_devmap(*pud))
327 		return PUD_SHIFT;
328 	pmd = pmd_offset(pud, address);
329 	if (!pmd_present(*pmd))
330 		return 0;
331 	if (pmd_devmap(*pmd))
332 		return PMD_SHIFT;
333 	pte = pte_offset_map(pmd, address);
334 	if (pte_present(*pte) && pte_devmap(*pte))
335 		ret = PAGE_SHIFT;
336 	pte_unmap(pte);
337 	return ret;
338 }
339 
340 /*
341  * Failure handling: if we can't find or can't kill a process there's
342  * not much we can do.	We just print a message and ignore otherwise.
343  */
344 
345 /*
346  * Schedule a process for later kill.
347  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
348  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)349 static void add_to_kill(struct task_struct *tsk, struct page *p,
350 		       struct vm_area_struct *vma,
351 		       struct list_head *to_kill)
352 {
353 	struct to_kill *tk;
354 
355 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
356 	if (!tk) {
357 		pr_err("Memory failure: Out of memory while machine check handling\n");
358 		return;
359 	}
360 
361 	tk->addr = page_address_in_vma(p, vma);
362 	if (is_zone_device_page(p))
363 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
364 	else
365 		tk->size_shift = page_shift(compound_head(p));
366 
367 	/*
368 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
369 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
370 	 * so "tk->size_shift == 0" effectively checks no mapping on
371 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
372 	 * to a process' address space, it's possible not all N VMAs
373 	 * contain mappings for the page, but at least one VMA does.
374 	 * Only deliver SIGBUS with payload derived from the VMA that
375 	 * has a mapping for the page.
376 	 */
377 	if (tk->addr == -EFAULT) {
378 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
379 			page_to_pfn(p), tsk->comm);
380 	} else if (tk->size_shift == 0) {
381 		kfree(tk);
382 		return;
383 	}
384 
385 	get_task_struct(tsk);
386 	tk->tsk = tsk;
387 	list_add_tail(&tk->nd, to_kill);
388 }
389 
390 /*
391  * Kill the processes that have been collected earlier.
392  *
393  * Only do anything when FORCEKILL is set, otherwise just free the
394  * list (this is used for clean pages which do not need killing)
395  * Also when FAIL is set do a force kill because something went
396  * wrong earlier.
397  */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)398 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
399 		unsigned long pfn, int flags)
400 {
401 	struct to_kill *tk, *next;
402 
403 	list_for_each_entry_safe (tk, next, to_kill, nd) {
404 		if (forcekill) {
405 			/*
406 			 * In case something went wrong with munmapping
407 			 * make sure the process doesn't catch the
408 			 * signal and then access the memory. Just kill it.
409 			 */
410 			if (fail || tk->addr == -EFAULT) {
411 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
412 				       pfn, tk->tsk->comm, tk->tsk->pid);
413 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
414 						 tk->tsk, PIDTYPE_PID);
415 			}
416 
417 			/*
418 			 * In theory the process could have mapped
419 			 * something else on the address in-between. We could
420 			 * check for that, but we need to tell the
421 			 * process anyways.
422 			 */
423 			else if (kill_proc(tk, pfn, flags) < 0)
424 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
425 				       pfn, tk->tsk->comm, tk->tsk->pid);
426 		}
427 		put_task_struct(tk->tsk);
428 		kfree(tk);
429 	}
430 }
431 
432 /*
433  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
434  * on behalf of the thread group. Return task_struct of the (first found)
435  * dedicated thread if found, and return NULL otherwise.
436  *
437  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
438  * have to call rcu_read_lock/unlock() in this function.
439  */
find_early_kill_thread(struct task_struct * tsk)440 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
441 {
442 	struct task_struct *t;
443 
444 	for_each_thread(tsk, t) {
445 		if (t->flags & PF_MCE_PROCESS) {
446 			if (t->flags & PF_MCE_EARLY)
447 				return t;
448 		} else {
449 			if (sysctl_memory_failure_early_kill)
450 				return t;
451 		}
452 	}
453 	return NULL;
454 }
455 
456 /*
457  * Determine whether a given process is "early kill" process which expects
458  * to be signaled when some page under the process is hwpoisoned.
459  * Return task_struct of the dedicated thread (main thread unless explicitly
460  * specified) if the process is "early kill" and otherwise returns NULL.
461  *
462  * Note that the above is true for Action Optional case. For Action Required
463  * case, it's only meaningful to the current thread which need to be signaled
464  * with SIGBUS, this error is Action Optional for other non current
465  * processes sharing the same error page,if the process is "early kill", the
466  * task_struct of the dedicated thread will also be returned.
467  */
task_early_kill(struct task_struct * tsk,int force_early)468 static struct task_struct *task_early_kill(struct task_struct *tsk,
469 					   int force_early)
470 {
471 	if (!tsk->mm)
472 		return NULL;
473 	/*
474 	 * Comparing ->mm here because current task might represent
475 	 * a subthread, while tsk always points to the main thread.
476 	 */
477 	if (force_early && tsk->mm == current->mm)
478 		return current;
479 
480 	return find_early_kill_thread(tsk);
481 }
482 
483 /*
484  * Collect processes when the error hit an anonymous page.
485  */
collect_procs_anon(struct page * page,struct list_head * to_kill,int force_early)486 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
487 				int force_early)
488 {
489 	struct vm_area_struct *vma;
490 	struct task_struct *tsk;
491 	struct anon_vma *av;
492 	pgoff_t pgoff;
493 
494 	av = page_lock_anon_vma_read(page, NULL);
495 	if (av == NULL)	/* Not actually mapped anymore */
496 		return;
497 
498 	pgoff = page_to_pgoff(page);
499 	read_lock(&tasklist_lock);
500 	for_each_process (tsk) {
501 		struct anon_vma_chain *vmac;
502 		struct task_struct *t = task_early_kill(tsk, force_early);
503 
504 		if (!t)
505 			continue;
506 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
507 					       pgoff, pgoff) {
508 			vma = vmac->vma;
509 			if (!page_mapped_in_vma(page, vma))
510 				continue;
511 			if (vma->vm_mm == t->mm)
512 				add_to_kill(t, page, vma, to_kill);
513 		}
514 	}
515 	read_unlock(&tasklist_lock);
516 	page_unlock_anon_vma_read(av);
517 }
518 
519 /*
520  * Collect processes when the error hit a file mapped page.
521  */
collect_procs_file(struct page * page,struct list_head * to_kill,int force_early)522 static void collect_procs_file(struct page *page, struct list_head *to_kill,
523 				int force_early)
524 {
525 	struct vm_area_struct *vma;
526 	struct task_struct *tsk;
527 	struct address_space *mapping = page->mapping;
528 	pgoff_t pgoff;
529 
530 	i_mmap_lock_read(mapping);
531 	read_lock(&tasklist_lock);
532 	pgoff = page_to_pgoff(page);
533 	for_each_process(tsk) {
534 		struct task_struct *t = task_early_kill(tsk, force_early);
535 
536 		if (!t)
537 			continue;
538 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
539 				      pgoff) {
540 			/*
541 			 * Send early kill signal to tasks where a vma covers
542 			 * the page but the corrupted page is not necessarily
543 			 * mapped it in its pte.
544 			 * Assume applications who requested early kill want
545 			 * to be informed of all such data corruptions.
546 			 */
547 			if (vma->vm_mm == t->mm)
548 				add_to_kill(t, page, vma, to_kill);
549 		}
550 	}
551 	read_unlock(&tasklist_lock);
552 	i_mmap_unlock_read(mapping);
553 }
554 
555 /*
556  * Collect the processes who have the corrupted page mapped to kill.
557  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)558 static void collect_procs(struct page *page, struct list_head *tokill,
559 				int force_early)
560 {
561 	if (!page->mapping)
562 		return;
563 
564 	if (PageAnon(page))
565 		collect_procs_anon(page, tokill, force_early);
566 	else
567 		collect_procs_file(page, tokill, force_early);
568 }
569 
570 struct hwp_walk {
571 	struct to_kill tk;
572 	unsigned long pfn;
573 	int flags;
574 };
575 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)576 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
577 {
578 	tk->addr = addr;
579 	tk->size_shift = shift;
580 }
581 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)582 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
583 				unsigned long poisoned_pfn, struct to_kill *tk)
584 {
585 	unsigned long pfn = 0;
586 
587 	if (pte_present(pte)) {
588 		pfn = pte_pfn(pte);
589 	} else {
590 		swp_entry_t swp = pte_to_swp_entry(pte);
591 
592 		if (is_hwpoison_entry(swp))
593 			pfn = hwpoison_entry_to_pfn(swp);
594 	}
595 
596 	if (!pfn || pfn != poisoned_pfn)
597 		return 0;
598 
599 	set_to_kill(tk, addr, shift);
600 	return 1;
601 }
602 
603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)604 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
605 				      struct hwp_walk *hwp)
606 {
607 	pmd_t pmd = *pmdp;
608 	unsigned long pfn;
609 	unsigned long hwpoison_vaddr;
610 
611 	if (!pmd_present(pmd))
612 		return 0;
613 	pfn = pmd_pfn(pmd);
614 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
615 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
616 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
617 		return 1;
618 	}
619 	return 0;
620 }
621 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwp_walk * hwp)622 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
623 				      struct hwp_walk *hwp)
624 {
625 	return 0;
626 }
627 #endif
628 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)629 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
630 			      unsigned long end, struct mm_walk *walk)
631 {
632 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
633 	int ret = 0;
634 	pte_t *ptep, *mapped_pte;
635 	spinlock_t *ptl;
636 
637 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
638 	if (ptl) {
639 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
640 		spin_unlock(ptl);
641 		goto out;
642 	}
643 
644 	if (pmd_trans_unstable(pmdp))
645 		goto out;
646 
647 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
648 						addr, &ptl);
649 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 					     hwp->pfn, &hwp->tk);
652 		if (ret == 1)
653 			break;
654 	}
655 	pte_unmap_unlock(mapped_pte, ptl);
656 out:
657 	cond_resched();
658 	return ret;
659 }
660 
661 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)662 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 			    unsigned long addr, unsigned long end,
664 			    struct mm_walk *walk)
665 {
666 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 	pte_t pte = huge_ptep_get(ptep);
668 	struct hstate *h = hstate_vma(walk->vma);
669 
670 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 				      hwp->pfn, &hwp->tk);
672 }
673 #else
674 #define hwpoison_hugetlb_range	NULL
675 #endif
676 
677 static struct mm_walk_ops hwp_walk_ops = {
678 	.pmd_entry = hwpoison_pte_range,
679 	.hugetlb_entry = hwpoison_hugetlb_range,
680 };
681 
682 /*
683  * Sends SIGBUS to the current process with error info.
684  *
685  * This function is intended to handle "Action Required" MCEs on already
686  * hardware poisoned pages. They could happen, for example, when
687  * memory_failure() failed to unmap the error page at the first call, or
688  * when multiple local machine checks happened on different CPUs.
689  *
690  * MCE handler currently has no easy access to the error virtual address,
691  * so this function walks page table to find it. The returned virtual address
692  * is proper in most cases, but it could be wrong when the application
693  * process has multiple entries mapping the error page.
694  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)695 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 				  int flags)
697 {
698 	int ret;
699 	struct hwp_walk priv = {
700 		.pfn = pfn,
701 	};
702 	priv.tk.tsk = p;
703 
704 	if (!p->mm)
705 		return -EFAULT;
706 
707 	mmap_read_lock(p->mm);
708 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
709 			      (void *)&priv);
710 	if (ret == 1 && priv.tk.addr)
711 		kill_proc(&priv.tk, pfn, flags);
712 	else
713 		ret = 0;
714 	mmap_read_unlock(p->mm);
715 	return ret > 0 ? -EHWPOISON : -EFAULT;
716 }
717 
718 static const char *action_name[] = {
719 	[MF_IGNORED] = "Ignored",
720 	[MF_FAILED] = "Failed",
721 	[MF_DELAYED] = "Delayed",
722 	[MF_RECOVERED] = "Recovered",
723 };
724 
725 static const char * const action_page_types[] = {
726 	[MF_MSG_KERNEL]			= "reserved kernel page",
727 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
728 	[MF_MSG_SLAB]			= "kernel slab page",
729 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
730 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
731 	[MF_MSG_HUGE]			= "huge page",
732 	[MF_MSG_FREE_HUGE]		= "free huge page",
733 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
734 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
735 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
736 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
737 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
738 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
739 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
740 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
741 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
742 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
743 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
744 	[MF_MSG_BUDDY]			= "free buddy page",
745 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
746 	[MF_MSG_DAX]			= "dax page",
747 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
748 	[MF_MSG_UNKNOWN]		= "unknown page",
749 };
750 
751 /*
752  * XXX: It is possible that a page is isolated from LRU cache,
753  * and then kept in swap cache or failed to remove from page cache.
754  * The page count will stop it from being freed by unpoison.
755  * Stress tests should be aware of this memory leak problem.
756  */
delete_from_lru_cache(struct page * p)757 static int delete_from_lru_cache(struct page *p)
758 {
759 	if (!isolate_lru_page(p)) {
760 		/*
761 		 * Clear sensible page flags, so that the buddy system won't
762 		 * complain when the page is unpoison-and-freed.
763 		 */
764 		ClearPageActive(p);
765 		ClearPageUnevictable(p);
766 
767 		/*
768 		 * Poisoned page might never drop its ref count to 0 so we have
769 		 * to uncharge it manually from its memcg.
770 		 */
771 		mem_cgroup_uncharge(p);
772 
773 		/*
774 		 * drop the page count elevated by isolate_lru_page()
775 		 */
776 		put_page(p);
777 		return 0;
778 	}
779 	return -EIO;
780 }
781 
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)782 static int truncate_error_page(struct page *p, unsigned long pfn,
783 				struct address_space *mapping)
784 {
785 	int ret = MF_FAILED;
786 
787 	if (mapping->a_ops->error_remove_page) {
788 		int err = mapping->a_ops->error_remove_page(mapping, p);
789 
790 		if (err != 0) {
791 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
792 				pfn, err);
793 		} else if (page_has_private(p) &&
794 			   !try_to_release_page(p, GFP_NOIO)) {
795 			pr_info("Memory failure: %#lx: failed to release buffers\n",
796 				pfn);
797 		} else {
798 			ret = MF_RECOVERED;
799 		}
800 	} else {
801 		/*
802 		 * If the file system doesn't support it just invalidate
803 		 * This fails on dirty or anything with private pages
804 		 */
805 		if (invalidate_inode_page(p))
806 			ret = MF_RECOVERED;
807 		else
808 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
809 				pfn);
810 	}
811 
812 	return ret;
813 }
814 
815 struct page_state {
816 	unsigned long mask;
817 	unsigned long res;
818 	enum mf_action_page_type type;
819 
820 	/* Callback ->action() has to unlock the relevant page inside it. */
821 	int (*action)(struct page_state *ps, struct page *p);
822 };
823 
824 /*
825  * Return true if page is still referenced by others, otherwise return
826  * false.
827  *
828  * The extra_pins is true when one extra refcount is expected.
829  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)830 static bool has_extra_refcount(struct page_state *ps, struct page *p,
831 			       bool extra_pins)
832 {
833 	int count = page_count(p) - 1;
834 
835 	if (extra_pins)
836 		count -= 1;
837 
838 	if (count > 0) {
839 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
840 		       page_to_pfn(p), action_page_types[ps->type], count);
841 		return true;
842 	}
843 
844 	return false;
845 }
846 
847 /*
848  * Error hit kernel page.
849  * Do nothing, try to be lucky and not touch this instead. For a few cases we
850  * could be more sophisticated.
851  */
me_kernel(struct page_state * ps,struct page * p)852 static int me_kernel(struct page_state *ps, struct page *p)
853 {
854 	unlock_page(p);
855 	return MF_IGNORED;
856 }
857 
858 /*
859  * Page in unknown state. Do nothing.
860  */
me_unknown(struct page_state * ps,struct page * p)861 static int me_unknown(struct page_state *ps, struct page *p)
862 {
863 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
864 	unlock_page(p);
865 	return MF_FAILED;
866 }
867 
868 /*
869  * Clean (or cleaned) page cache page.
870  */
me_pagecache_clean(struct page_state * ps,struct page * p)871 static int me_pagecache_clean(struct page_state *ps, struct page *p)
872 {
873 	int ret;
874 	struct address_space *mapping;
875 	bool extra_pins;
876 
877 	delete_from_lru_cache(p);
878 
879 	/*
880 	 * For anonymous pages we're done the only reference left
881 	 * should be the one m_f() holds.
882 	 */
883 	if (PageAnon(p)) {
884 		ret = MF_RECOVERED;
885 		goto out;
886 	}
887 
888 	/*
889 	 * Now truncate the page in the page cache. This is really
890 	 * more like a "temporary hole punch"
891 	 * Don't do this for block devices when someone else
892 	 * has a reference, because it could be file system metadata
893 	 * and that's not safe to truncate.
894 	 */
895 	mapping = page_mapping(p);
896 	if (!mapping) {
897 		/*
898 		 * Page has been teared down in the meanwhile
899 		 */
900 		ret = MF_FAILED;
901 		goto out;
902 	}
903 
904 	/*
905 	 * The shmem page is kept in page cache instead of truncating
906 	 * so is expected to have an extra refcount after error-handling.
907 	 */
908 	extra_pins = shmem_mapping(mapping);
909 
910 	/*
911 	 * Truncation is a bit tricky. Enable it per file system for now.
912 	 *
913 	 * Open: to take i_rwsem or not for this? Right now we don't.
914 	 */
915 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
916 	if (has_extra_refcount(ps, p, extra_pins))
917 		ret = MF_FAILED;
918 
919 out:
920 	unlock_page(p);
921 
922 	return ret;
923 }
924 
925 /*
926  * Dirty pagecache page
927  * Issues: when the error hit a hole page the error is not properly
928  * propagated.
929  */
me_pagecache_dirty(struct page_state * ps,struct page * p)930 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
931 {
932 	struct address_space *mapping = page_mapping(p);
933 
934 	SetPageError(p);
935 	/* TBD: print more information about the file. */
936 	if (mapping) {
937 		/*
938 		 * IO error will be reported by write(), fsync(), etc.
939 		 * who check the mapping.
940 		 * This way the application knows that something went
941 		 * wrong with its dirty file data.
942 		 *
943 		 * There's one open issue:
944 		 *
945 		 * The EIO will be only reported on the next IO
946 		 * operation and then cleared through the IO map.
947 		 * Normally Linux has two mechanisms to pass IO error
948 		 * first through the AS_EIO flag in the address space
949 		 * and then through the PageError flag in the page.
950 		 * Since we drop pages on memory failure handling the
951 		 * only mechanism open to use is through AS_AIO.
952 		 *
953 		 * This has the disadvantage that it gets cleared on
954 		 * the first operation that returns an error, while
955 		 * the PageError bit is more sticky and only cleared
956 		 * when the page is reread or dropped.  If an
957 		 * application assumes it will always get error on
958 		 * fsync, but does other operations on the fd before
959 		 * and the page is dropped between then the error
960 		 * will not be properly reported.
961 		 *
962 		 * This can already happen even without hwpoisoned
963 		 * pages: first on metadata IO errors (which only
964 		 * report through AS_EIO) or when the page is dropped
965 		 * at the wrong time.
966 		 *
967 		 * So right now we assume that the application DTRT on
968 		 * the first EIO, but we're not worse than other parts
969 		 * of the kernel.
970 		 */
971 		mapping_set_error(mapping, -EIO);
972 	}
973 
974 	return me_pagecache_clean(ps, p);
975 }
976 
977 /*
978  * Clean and dirty swap cache.
979  *
980  * Dirty swap cache page is tricky to handle. The page could live both in page
981  * cache and swap cache(ie. page is freshly swapped in). So it could be
982  * referenced concurrently by 2 types of PTEs:
983  * normal PTEs and swap PTEs. We try to handle them consistently by calling
984  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
985  * and then
986  *      - clear dirty bit to prevent IO
987  *      - remove from LRU
988  *      - but keep in the swap cache, so that when we return to it on
989  *        a later page fault, we know the application is accessing
990  *        corrupted data and shall be killed (we installed simple
991  *        interception code in do_swap_page to catch it).
992  *
993  * Clean swap cache pages can be directly isolated. A later page fault will
994  * bring in the known good data from disk.
995  */
me_swapcache_dirty(struct page_state * ps,struct page * p)996 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
997 {
998 	int ret;
999 	bool extra_pins = false;
1000 
1001 	ClearPageDirty(p);
1002 	/* Trigger EIO in shmem: */
1003 	ClearPageUptodate(p);
1004 
1005 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1006 	unlock_page(p);
1007 
1008 	if (ret == MF_DELAYED)
1009 		extra_pins = true;
1010 
1011 	if (has_extra_refcount(ps, p, extra_pins))
1012 		ret = MF_FAILED;
1013 
1014 	return ret;
1015 }
1016 
me_swapcache_clean(struct page_state * ps,struct page * p)1017 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1018 {
1019 	int ret;
1020 
1021 	delete_from_swap_cache(p);
1022 
1023 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1024 	unlock_page(p);
1025 
1026 	if (has_extra_refcount(ps, p, false))
1027 		ret = MF_FAILED;
1028 
1029 	return ret;
1030 }
1031 
1032 /*
1033  * Huge pages. Needs work.
1034  * Issues:
1035  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1036  *   To narrow down kill region to one page, we need to break up pmd.
1037  */
me_huge_page(struct page_state * ps,struct page * p)1038 static int me_huge_page(struct page_state *ps, struct page *p)
1039 {
1040 	int res;
1041 	struct page *hpage = compound_head(p);
1042 	struct address_space *mapping;
1043 	bool extra_pins = false;
1044 
1045 	if (!PageHuge(hpage))
1046 		return MF_DELAYED;
1047 
1048 	mapping = page_mapping(hpage);
1049 	if (mapping) {
1050 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1051 		/* The page is kept in page cache. */
1052 		extra_pins = true;
1053 		unlock_page(hpage);
1054 	} else {
1055 		res = MF_FAILED;
1056 		unlock_page(hpage);
1057 		/*
1058 		 * migration entry prevents later access on error anonymous
1059 		 * hugepage, so we can free and dissolve it into buddy to
1060 		 * save healthy subpages.
1061 		 */
1062 		if (PageAnon(hpage))
1063 			put_page(hpage);
1064 		if (__page_handle_poison(p)) {
1065 			page_ref_inc(p);
1066 			res = MF_RECOVERED;
1067 		}
1068 	}
1069 
1070 	if (has_extra_refcount(ps, p, extra_pins))
1071 		res = MF_FAILED;
1072 
1073 	return res;
1074 }
1075 
1076 /*
1077  * Various page states we can handle.
1078  *
1079  * A page state is defined by its current page->flags bits.
1080  * The table matches them in order and calls the right handler.
1081  *
1082  * This is quite tricky because we can access page at any time
1083  * in its live cycle, so all accesses have to be extremely careful.
1084  *
1085  * This is not complete. More states could be added.
1086  * For any missing state don't attempt recovery.
1087  */
1088 
1089 #define dirty		(1UL << PG_dirty)
1090 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1091 #define unevict		(1UL << PG_unevictable)
1092 #define mlock		(1UL << PG_mlocked)
1093 #define lru		(1UL << PG_lru)
1094 #define head		(1UL << PG_head)
1095 #define slab		(1UL << PG_slab)
1096 #define reserved	(1UL << PG_reserved)
1097 
1098 static struct page_state error_states[] = {
1099 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1100 	/*
1101 	 * free pages are specially detected outside this table:
1102 	 * PG_buddy pages only make a small fraction of all free pages.
1103 	 */
1104 
1105 	/*
1106 	 * Could in theory check if slab page is free or if we can drop
1107 	 * currently unused objects without touching them. But just
1108 	 * treat it as standard kernel for now.
1109 	 */
1110 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1111 
1112 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1113 
1114 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1115 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1116 
1117 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1118 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1119 
1120 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1121 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1122 
1123 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1124 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1125 
1126 	/*
1127 	 * Catchall entry: must be at end.
1128 	 */
1129 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1130 };
1131 
1132 #undef dirty
1133 #undef sc
1134 #undef unevict
1135 #undef mlock
1136 #undef lru
1137 #undef head
1138 #undef slab
1139 #undef reserved
1140 
1141 /*
1142  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1143  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1144  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1145 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1146 			  enum mf_result result)
1147 {
1148 	trace_memory_failure_event(pfn, type, result);
1149 
1150 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1151 		pfn, action_page_types[type], action_name[result]);
1152 }
1153 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1154 static int page_action(struct page_state *ps, struct page *p,
1155 			unsigned long pfn)
1156 {
1157 	int result;
1158 
1159 	/* page p should be unlocked after returning from ps->action().  */
1160 	result = ps->action(ps, p);
1161 
1162 	action_result(pfn, ps->type, result);
1163 
1164 	/* Could do more checks here if page looks ok */
1165 	/*
1166 	 * Could adjust zone counters here to correct for the missing page.
1167 	 */
1168 
1169 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1170 }
1171 
1172 /*
1173  * Return true if a page type of a given page is supported by hwpoison
1174  * mechanism (while handling could fail), otherwise false.  This function
1175  * does not return true for hugetlb or device memory pages, so it's assumed
1176  * to be called only in the context where we never have such pages.
1177  */
HWPoisonHandlable(struct page * page)1178 static inline bool HWPoisonHandlable(struct page *page)
1179 {
1180 	return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1181 }
1182 
__get_hwpoison_page(struct page * page)1183 static int __get_hwpoison_page(struct page *page)
1184 {
1185 	struct page *head = compound_head(page);
1186 	int ret = 0;
1187 	bool hugetlb = false;
1188 
1189 	ret = get_hwpoison_huge_page(head, &hugetlb);
1190 	if (hugetlb)
1191 		return ret;
1192 
1193 	/*
1194 	 * This check prevents from calling get_hwpoison_unless_zero()
1195 	 * for any unsupported type of page in order to reduce the risk of
1196 	 * unexpected races caused by taking a page refcount.
1197 	 */
1198 	if (!HWPoisonHandlable(head))
1199 		return -EBUSY;
1200 
1201 	if (get_page_unless_zero(head)) {
1202 		if (head == compound_head(page))
1203 			return 1;
1204 
1205 		pr_info("Memory failure: %#lx cannot catch tail\n",
1206 			page_to_pfn(page));
1207 		put_page(head);
1208 	}
1209 
1210 	return 0;
1211 }
1212 
get_any_page(struct page * p,unsigned long flags)1213 static int get_any_page(struct page *p, unsigned long flags)
1214 {
1215 	int ret = 0, pass = 0;
1216 	bool count_increased = false;
1217 
1218 	if (flags & MF_COUNT_INCREASED)
1219 		count_increased = true;
1220 
1221 try_again:
1222 	if (!count_increased) {
1223 		ret = __get_hwpoison_page(p);
1224 		if (!ret) {
1225 			if (page_count(p)) {
1226 				/* We raced with an allocation, retry. */
1227 				if (pass++ < 3)
1228 					goto try_again;
1229 				ret = -EBUSY;
1230 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1231 				/* We raced with put_page, retry. */
1232 				if (pass++ < 3)
1233 					goto try_again;
1234 				ret = -EIO;
1235 			}
1236 			goto out;
1237 		} else if (ret == -EBUSY) {
1238 			/*
1239 			 * We raced with (possibly temporary) unhandlable
1240 			 * page, retry.
1241 			 */
1242 			if (pass++ < 3) {
1243 				shake_page(p);
1244 				goto try_again;
1245 			}
1246 			ret = -EIO;
1247 			goto out;
1248 		}
1249 	}
1250 
1251 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1252 		ret = 1;
1253 	} else {
1254 		/*
1255 		 * A page we cannot handle. Check whether we can turn
1256 		 * it into something we can handle.
1257 		 */
1258 		if (pass++ < 3) {
1259 			put_page(p);
1260 			shake_page(p);
1261 			count_increased = false;
1262 			goto try_again;
1263 		}
1264 		put_page(p);
1265 		ret = -EIO;
1266 	}
1267 out:
1268 	if (ret == -EIO)
1269 		pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1270 
1271 	return ret;
1272 }
1273 
1274 /**
1275  * get_hwpoison_page() - Get refcount for memory error handling
1276  * @p:		Raw error page (hit by memory error)
1277  * @flags:	Flags controlling behavior of error handling
1278  *
1279  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1280  * error on it, after checking that the error page is in a well-defined state
1281  * (defined as a page-type we can successfully handle the memor error on it,
1282  * such as LRU page and hugetlb page).
1283  *
1284  * Memory error handling could be triggered at any time on any type of page,
1285  * so it's prone to race with typical memory management lifecycle (like
1286  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1287  * extra care for the error page's state (as done in __get_hwpoison_page()),
1288  * and has some retry logic in get_any_page().
1289  *
1290  * Return: 0 on failure,
1291  *         1 on success for in-use pages in a well-defined state,
1292  *         -EIO for pages on which we can not handle memory errors,
1293  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1294  *         operations like allocation and free.
1295  */
get_hwpoison_page(struct page * p,unsigned long flags)1296 static int get_hwpoison_page(struct page *p, unsigned long flags)
1297 {
1298 	int ret;
1299 
1300 	zone_pcp_disable(page_zone(p));
1301 	ret = get_any_page(p, flags);
1302 	zone_pcp_enable(page_zone(p));
1303 
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Do all that is necessary to remove user space mappings. Unmap
1309  * the pages and send SIGBUS to the processes if the data was dirty.
1310  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1311 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1312 				  int flags, struct page *hpage)
1313 {
1314 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1315 	struct address_space *mapping;
1316 	LIST_HEAD(tokill);
1317 	bool unmap_success;
1318 	int kill = 1, forcekill;
1319 	bool mlocked = PageMlocked(hpage);
1320 
1321 	/*
1322 	 * Here we are interested only in user-mapped pages, so skip any
1323 	 * other types of pages.
1324 	 */
1325 	if (PageReserved(p) || PageSlab(p))
1326 		return true;
1327 	if (!(PageLRU(hpage) || PageHuge(p)))
1328 		return true;
1329 
1330 	/*
1331 	 * This check implies we don't kill processes if their pages
1332 	 * are in the swap cache early. Those are always late kills.
1333 	 */
1334 	if (!page_mapped(p))
1335 		return true;
1336 
1337 	if (PageKsm(p)) {
1338 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1339 		return false;
1340 	}
1341 
1342 	if (PageSwapCache(p)) {
1343 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1344 			pfn);
1345 		ttu |= TTU_IGNORE_HWPOISON;
1346 	}
1347 
1348 	/*
1349 	 * Propagate the dirty bit from PTEs to struct page first, because we
1350 	 * need this to decide if we should kill or just drop the page.
1351 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1352 	 * be called inside page lock (it's recommended but not enforced).
1353 	 */
1354 	mapping = page_mapping(hpage);
1355 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1356 	    mapping_can_writeback(mapping)) {
1357 		if (page_mkclean(hpage)) {
1358 			SetPageDirty(hpage);
1359 		} else {
1360 			kill = 0;
1361 			ttu |= TTU_IGNORE_HWPOISON;
1362 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1363 				pfn);
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * First collect all the processes that have the page
1369 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1370 	 * because ttu takes the rmap data structures down.
1371 	 *
1372 	 * Error handling: We ignore errors here because
1373 	 * there's nothing that can be done.
1374 	 */
1375 	if (kill)
1376 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1377 
1378 	if (!PageHuge(hpage)) {
1379 		try_to_unmap(hpage, ttu);
1380 	} else {
1381 		if (!PageAnon(hpage)) {
1382 			/*
1383 			 * For hugetlb pages in shared mappings, try_to_unmap
1384 			 * could potentially call huge_pmd_unshare.  Because of
1385 			 * this, take semaphore in write mode here and set
1386 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1387 			 * at this higher level.
1388 			 */
1389 			mapping = hugetlb_page_mapping_lock_write(hpage);
1390 			if (mapping) {
1391 				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1392 				i_mmap_unlock_write(mapping);
1393 			} else
1394 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1395 		} else {
1396 			try_to_unmap(hpage, ttu);
1397 		}
1398 	}
1399 
1400 	unmap_success = !page_mapped(p);
1401 	if (!unmap_success)
1402 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1403 		       pfn, page_mapcount(p));
1404 
1405 	/*
1406 	 * try_to_unmap() might put mlocked page in lru cache, so call
1407 	 * shake_page() again to ensure that it's flushed.
1408 	 */
1409 	if (mlocked)
1410 		shake_page(hpage);
1411 
1412 	/*
1413 	 * Now that the dirty bit has been propagated to the
1414 	 * struct page and all unmaps done we can decide if
1415 	 * killing is needed or not.  Only kill when the page
1416 	 * was dirty or the process is not restartable,
1417 	 * otherwise the tokill list is merely
1418 	 * freed.  When there was a problem unmapping earlier
1419 	 * use a more force-full uncatchable kill to prevent
1420 	 * any accesses to the poisoned memory.
1421 	 */
1422 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1423 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1424 
1425 	return unmap_success;
1426 }
1427 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1428 static int identify_page_state(unsigned long pfn, struct page *p,
1429 				unsigned long page_flags)
1430 {
1431 	struct page_state *ps;
1432 
1433 	/*
1434 	 * The first check uses the current page flags which may not have any
1435 	 * relevant information. The second check with the saved page flags is
1436 	 * carried out only if the first check can't determine the page status.
1437 	 */
1438 	for (ps = error_states;; ps++)
1439 		if ((p->flags & ps->mask) == ps->res)
1440 			break;
1441 
1442 	page_flags |= (p->flags & (1UL << PG_dirty));
1443 
1444 	if (!ps->mask)
1445 		for (ps = error_states;; ps++)
1446 			if ((page_flags & ps->mask) == ps->res)
1447 				break;
1448 	return page_action(ps, p, pfn);
1449 }
1450 
try_to_split_thp_page(struct page * page,const char * msg)1451 static int try_to_split_thp_page(struct page *page, const char *msg)
1452 {
1453 	lock_page(page);
1454 	if (unlikely(split_huge_page(page))) {
1455 		unsigned long pfn = page_to_pfn(page);
1456 
1457 		unlock_page(page);
1458 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1459 		put_page(page);
1460 		return -EBUSY;
1461 	}
1462 	unlock_page(page);
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * Called from hugetlb code with hugetlb_lock held.
1469  *
1470  * Return values:
1471  *   0             - free hugepage
1472  *   1             - in-use hugepage
1473  *   2             - not a hugepage
1474  *   -EBUSY        - the hugepage is busy (try to retry)
1475  *   -EHWPOISON    - the hugepage is already hwpoisoned
1476  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)1477 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1478 {
1479 	struct page *page = pfn_to_page(pfn);
1480 	struct page *head = compound_head(page);
1481 	int ret = 2;	/* fallback to normal page handling */
1482 	bool count_increased = false;
1483 
1484 	if (!PageHeadHuge(head))
1485 		goto out;
1486 
1487 	if (flags & MF_COUNT_INCREASED) {
1488 		ret = 1;
1489 		count_increased = true;
1490 	} else if (HPageFreed(head) || HPageMigratable(head)) {
1491 		ret = get_page_unless_zero(head);
1492 		if (ret)
1493 			count_increased = true;
1494 	} else {
1495 		ret = -EBUSY;
1496 		goto out;
1497 	}
1498 
1499 	if (TestSetPageHWPoison(head)) {
1500 		ret = -EHWPOISON;
1501 		goto out;
1502 	}
1503 
1504 	return ret;
1505 out:
1506 	if (count_increased)
1507 		put_page(head);
1508 	return ret;
1509 }
1510 
1511 #ifdef CONFIG_HUGETLB_PAGE
1512 /*
1513  * Taking refcount of hugetlb pages needs extra care about race conditions
1514  * with basic operations like hugepage allocation/free/demotion.
1515  * So some of prechecks for hwpoison (pinning, and testing/setting
1516  * PageHWPoison) should be done in single hugetlb_lock range.
1517  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1518 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1519 {
1520 	int res;
1521 	struct page *p = pfn_to_page(pfn);
1522 	struct page *head;
1523 	unsigned long page_flags;
1524 	bool retry = true;
1525 
1526 	*hugetlb = 1;
1527 retry:
1528 	res = get_huge_page_for_hwpoison(pfn, flags);
1529 	if (res == 2) { /* fallback to normal page handling */
1530 		*hugetlb = 0;
1531 		return 0;
1532 	} else if (res == -EHWPOISON) {
1533 		pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1534 		if (flags & MF_ACTION_REQUIRED) {
1535 			head = compound_head(p);
1536 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1537 		}
1538 		return res;
1539 	} else if (res == -EBUSY) {
1540 		if (retry) {
1541 			retry = false;
1542 			goto retry;
1543 		}
1544 		action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1545 		return res;
1546 	}
1547 
1548 	head = compound_head(p);
1549 	lock_page(head);
1550 
1551 	if (hwpoison_filter(p)) {
1552 		ClearPageHWPoison(head);
1553 		res = -EOPNOTSUPP;
1554 		goto out;
1555 	}
1556 
1557 	num_poisoned_pages_inc();
1558 
1559 	/*
1560 	 * Handling free hugepage.  The possible race with hugepage allocation
1561 	 * or demotion can be prevented by PageHWPoison flag.
1562 	 */
1563 	if (res == 0) {
1564 		unlock_page(head);
1565 		res = MF_FAILED;
1566 		if (__page_handle_poison(p)) {
1567 			page_ref_inc(p);
1568 			res = MF_RECOVERED;
1569 		}
1570 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1571 		return res == MF_RECOVERED ? 0 : -EBUSY;
1572 	}
1573 
1574 	page_flags = head->flags;
1575 
1576 	/*
1577 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1578 	 * simply disable it. In order to make it work properly, we need
1579 	 * make sure that:
1580 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1581 	 *    entry properly works, and
1582 	 *  - other mm code walking over page table is aware of pud-aligned
1583 	 *    hwpoison entries.
1584 	 */
1585 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1586 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1587 		res = -EBUSY;
1588 		goto out;
1589 	}
1590 
1591 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1592 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1593 		res = -EBUSY;
1594 		goto out;
1595 	}
1596 
1597 	return identify_page_state(pfn, p, page_flags);
1598 out:
1599 	unlock_page(head);
1600 	return res;
1601 }
1602 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)1603 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1604 {
1605 	return 0;
1606 }
1607 #endif
1608 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1609 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1610 		struct dev_pagemap *pgmap)
1611 {
1612 	struct page *page = pfn_to_page(pfn);
1613 	unsigned long size = 0;
1614 	struct to_kill *tk;
1615 	LIST_HEAD(tokill);
1616 	int rc = -EBUSY;
1617 	loff_t start;
1618 	dax_entry_t cookie;
1619 
1620 	if (flags & MF_COUNT_INCREASED)
1621 		/*
1622 		 * Drop the extra refcount in case we come from madvise().
1623 		 */
1624 		put_page(page);
1625 
1626 	/* device metadata space is not recoverable */
1627 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1628 		rc = -ENXIO;
1629 		goto out;
1630 	}
1631 
1632 	/*
1633 	 * Prevent the inode from being freed while we are interrogating
1634 	 * the address_space, typically this would be handled by
1635 	 * lock_page(), but dax pages do not use the page lock. This
1636 	 * also prevents changes to the mapping of this pfn until
1637 	 * poison signaling is complete.
1638 	 */
1639 	cookie = dax_lock_page(page);
1640 	if (!cookie)
1641 		goto out;
1642 
1643 	if (hwpoison_filter(page)) {
1644 		rc = -EOPNOTSUPP;
1645 		goto unlock;
1646 	}
1647 
1648 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1649 		/*
1650 		 * TODO: Handle HMM pages which may need coordination
1651 		 * with device-side memory.
1652 		 */
1653 		goto unlock;
1654 	}
1655 
1656 	/*
1657 	 * Use this flag as an indication that the dax page has been
1658 	 * remapped UC to prevent speculative consumption of poison.
1659 	 */
1660 	SetPageHWPoison(page);
1661 
1662 	/*
1663 	 * Unlike System-RAM there is no possibility to swap in a
1664 	 * different physical page at a given virtual address, so all
1665 	 * userspace consumption of ZONE_DEVICE memory necessitates
1666 	 * SIGBUS (i.e. MF_MUST_KILL)
1667 	 */
1668 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1669 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1670 
1671 	list_for_each_entry(tk, &tokill, nd)
1672 		if (tk->size_shift)
1673 			size = max(size, 1UL << tk->size_shift);
1674 	if (size) {
1675 		/*
1676 		 * Unmap the largest mapping to avoid breaking up
1677 		 * device-dax mappings which are constant size. The
1678 		 * actual size of the mapping being torn down is
1679 		 * communicated in siginfo, see kill_proc()
1680 		 */
1681 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1682 		unmap_mapping_range(page->mapping, start, size, 0);
1683 	}
1684 	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1685 	rc = 0;
1686 unlock:
1687 	dax_unlock_page(page, cookie);
1688 out:
1689 	/* drop pgmap ref acquired in caller */
1690 	put_dev_pagemap(pgmap);
1691 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1692 	return rc;
1693 }
1694 
1695 static DEFINE_MUTEX(mf_mutex);
1696 
1697 /**
1698  * memory_failure - Handle memory failure of a page.
1699  * @pfn: Page Number of the corrupted page
1700  * @flags: fine tune action taken
1701  *
1702  * This function is called by the low level machine check code
1703  * of an architecture when it detects hardware memory corruption
1704  * of a page. It tries its best to recover, which includes
1705  * dropping pages, killing processes etc.
1706  *
1707  * The function is primarily of use for corruptions that
1708  * happen outside the current execution context (e.g. when
1709  * detected by a background scrubber)
1710  *
1711  * Must run in process context (e.g. a work queue) with interrupts
1712  * enabled and no spinlocks hold.
1713  *
1714  * Return: 0 for successfully handled the memory error,
1715  *         -EOPNOTSUPP for memory_filter() filtered the error event,
1716  *         < 0(except -EOPNOTSUPP) on failure.
1717  */
memory_failure(unsigned long pfn,int flags)1718 int memory_failure(unsigned long pfn, int flags)
1719 {
1720 	struct page *p;
1721 	struct page *hpage;
1722 	struct page *orig_head;
1723 	struct dev_pagemap *pgmap;
1724 	int res = 0;
1725 	unsigned long page_flags;
1726 	bool retry = true;
1727 	int hugetlb = 0;
1728 
1729 	if (!sysctl_memory_failure_recovery)
1730 		panic("Memory failure on page %lx", pfn);
1731 
1732 	p = pfn_to_online_page(pfn);
1733 	if (!p) {
1734 		if (pfn_valid(pfn)) {
1735 			pgmap = get_dev_pagemap(pfn, NULL);
1736 			if (pgmap)
1737 				return memory_failure_dev_pagemap(pfn, flags,
1738 								  pgmap);
1739 		}
1740 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1741 			pfn);
1742 		return -ENXIO;
1743 	}
1744 
1745 	mutex_lock(&mf_mutex);
1746 
1747 try_again:
1748 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1749 	if (hugetlb)
1750 		goto unlock_mutex;
1751 
1752 	if (TestSetPageHWPoison(p)) {
1753 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1754 			pfn);
1755 		res = -EHWPOISON;
1756 		if (flags & MF_ACTION_REQUIRED)
1757 			res = kill_accessing_process(current, pfn, flags);
1758 		goto unlock_mutex;
1759 	}
1760 
1761 	orig_head = hpage = compound_head(p);
1762 	num_poisoned_pages_inc();
1763 
1764 	/*
1765 	 * We need/can do nothing about count=0 pages.
1766 	 * 1) it's a free page, and therefore in safe hand:
1767 	 *    prep_new_page() will be the gate keeper.
1768 	 * 2) it's part of a non-compound high order page.
1769 	 *    Implies some kernel user: cannot stop them from
1770 	 *    R/W the page; let's pray that the page has been
1771 	 *    used and will be freed some time later.
1772 	 * In fact it's dangerous to directly bump up page count from 0,
1773 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1774 	 */
1775 	if (!(flags & MF_COUNT_INCREASED)) {
1776 		res = get_hwpoison_page(p, flags);
1777 		if (!res) {
1778 			if (is_free_buddy_page(p)) {
1779 				if (take_page_off_buddy(p)) {
1780 					page_ref_inc(p);
1781 					res = MF_RECOVERED;
1782 				} else {
1783 					/* We lost the race, try again */
1784 					if (retry) {
1785 						ClearPageHWPoison(p);
1786 						num_poisoned_pages_dec();
1787 						retry = false;
1788 						goto try_again;
1789 					}
1790 					res = MF_FAILED;
1791 				}
1792 				action_result(pfn, MF_MSG_BUDDY, res);
1793 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1794 			} else {
1795 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1796 				res = -EBUSY;
1797 			}
1798 			goto unlock_mutex;
1799 		} else if (res < 0) {
1800 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1801 			res = -EBUSY;
1802 			goto unlock_mutex;
1803 		}
1804 	}
1805 
1806 	if (PageTransHuge(hpage)) {
1807 		/*
1808 		 * The flag must be set after the refcount is bumped
1809 		 * otherwise it may race with THP split.
1810 		 * And the flag can't be set in get_hwpoison_page() since
1811 		 * it is called by soft offline too and it is just called
1812 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1813 		 * place.
1814 		 *
1815 		 * Don't need care about the above error handling paths for
1816 		 * get_hwpoison_page() since they handle either free page
1817 		 * or unhandlable page.  The refcount is bumped iff the
1818 		 * page is a valid handlable page.
1819 		 */
1820 		SetPageHasHWPoisoned(hpage);
1821 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1822 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1823 			res = -EBUSY;
1824 			goto unlock_mutex;
1825 		}
1826 		VM_BUG_ON_PAGE(!page_count(p), p);
1827 	}
1828 
1829 	/*
1830 	 * We ignore non-LRU pages for good reasons.
1831 	 * - PG_locked is only well defined for LRU pages and a few others
1832 	 * - to avoid races with __SetPageLocked()
1833 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1834 	 * The check (unnecessarily) ignores LRU pages being isolated and
1835 	 * walked by the page reclaim code, however that's not a big loss.
1836 	 */
1837 	shake_page(p);
1838 
1839 	lock_page(p);
1840 
1841 	/*
1842 	 * The page could have changed compound pages during the locking.
1843 	 * If this happens just bail out.
1844 	 */
1845 	if (PageCompound(p) && compound_head(p) != orig_head) {
1846 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1847 		res = -EBUSY;
1848 		goto unlock_page;
1849 	}
1850 
1851 	/*
1852 	 * We use page flags to determine what action should be taken, but
1853 	 * the flags can be modified by the error containment action.  One
1854 	 * example is an mlocked page, where PG_mlocked is cleared by
1855 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1856 	 * correctly, we save a copy of the page flags at this time.
1857 	 */
1858 	page_flags = p->flags;
1859 
1860 	if (hwpoison_filter(p)) {
1861 		if (TestClearPageHWPoison(p))
1862 			num_poisoned_pages_dec();
1863 		unlock_page(p);
1864 		put_page(p);
1865 		res = -EOPNOTSUPP;
1866 		goto unlock_mutex;
1867 	}
1868 
1869 	/*
1870 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1871 	 * page_lock. We need wait writeback completion for this page or it
1872 	 * may trigger vfs BUG while evict inode.
1873 	 */
1874 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1875 		goto identify_page_state;
1876 
1877 	/*
1878 	 * It's very difficult to mess with pages currently under IO
1879 	 * and in many cases impossible, so we just avoid it here.
1880 	 */
1881 	wait_on_page_writeback(p);
1882 
1883 	/*
1884 	 * Now take care of user space mappings.
1885 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1886 	 */
1887 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1888 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1889 		res = -EBUSY;
1890 		goto unlock_page;
1891 	}
1892 
1893 	/*
1894 	 * Torn down by someone else?
1895 	 */
1896 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1897 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1898 		res = -EBUSY;
1899 		goto unlock_page;
1900 	}
1901 
1902 identify_page_state:
1903 	res = identify_page_state(pfn, p, page_flags);
1904 	mutex_unlock(&mf_mutex);
1905 	return res;
1906 unlock_page:
1907 	unlock_page(p);
1908 unlock_mutex:
1909 	mutex_unlock(&mf_mutex);
1910 	return res;
1911 }
1912 EXPORT_SYMBOL_GPL(memory_failure);
1913 
1914 #define MEMORY_FAILURE_FIFO_ORDER	4
1915 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1916 
1917 struct memory_failure_entry {
1918 	unsigned long pfn;
1919 	int flags;
1920 };
1921 
1922 struct memory_failure_cpu {
1923 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1924 		      MEMORY_FAILURE_FIFO_SIZE);
1925 	spinlock_t lock;
1926 	struct work_struct work;
1927 };
1928 
1929 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1930 
1931 /**
1932  * memory_failure_queue - Schedule handling memory failure of a page.
1933  * @pfn: Page Number of the corrupted page
1934  * @flags: Flags for memory failure handling
1935  *
1936  * This function is called by the low level hardware error handler
1937  * when it detects hardware memory corruption of a page. It schedules
1938  * the recovering of error page, including dropping pages, killing
1939  * processes etc.
1940  *
1941  * The function is primarily of use for corruptions that
1942  * happen outside the current execution context (e.g. when
1943  * detected by a background scrubber)
1944  *
1945  * Can run in IRQ context.
1946  */
memory_failure_queue(unsigned long pfn,int flags)1947 void memory_failure_queue(unsigned long pfn, int flags)
1948 {
1949 	struct memory_failure_cpu *mf_cpu;
1950 	unsigned long proc_flags;
1951 	struct memory_failure_entry entry = {
1952 		.pfn =		pfn,
1953 		.flags =	flags,
1954 	};
1955 
1956 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1957 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1958 	if (kfifo_put(&mf_cpu->fifo, entry))
1959 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1960 	else
1961 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1962 		       pfn);
1963 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1964 	put_cpu_var(memory_failure_cpu);
1965 }
1966 EXPORT_SYMBOL_GPL(memory_failure_queue);
1967 
memory_failure_work_func(struct work_struct * work)1968 static void memory_failure_work_func(struct work_struct *work)
1969 {
1970 	struct memory_failure_cpu *mf_cpu;
1971 	struct memory_failure_entry entry = { 0, };
1972 	unsigned long proc_flags;
1973 	int gotten;
1974 
1975 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1976 	for (;;) {
1977 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1978 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1979 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1980 		if (!gotten)
1981 			break;
1982 		if (entry.flags & MF_SOFT_OFFLINE)
1983 			soft_offline_page(entry.pfn, entry.flags);
1984 		else
1985 			memory_failure(entry.pfn, entry.flags);
1986 	}
1987 }
1988 
1989 /*
1990  * Process memory_failure work queued on the specified CPU.
1991  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1992  */
memory_failure_queue_kick(int cpu)1993 void memory_failure_queue_kick(int cpu)
1994 {
1995 	struct memory_failure_cpu *mf_cpu;
1996 
1997 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1998 	cancel_work_sync(&mf_cpu->work);
1999 	memory_failure_work_func(&mf_cpu->work);
2000 }
2001 
memory_failure_init(void)2002 static int __init memory_failure_init(void)
2003 {
2004 	struct memory_failure_cpu *mf_cpu;
2005 	int cpu;
2006 
2007 	for_each_possible_cpu(cpu) {
2008 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2009 		spin_lock_init(&mf_cpu->lock);
2010 		INIT_KFIFO(mf_cpu->fifo);
2011 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2012 	}
2013 
2014 	return 0;
2015 }
2016 core_initcall(memory_failure_init);
2017 
2018 #define unpoison_pr_info(fmt, pfn, rs)			\
2019 ({							\
2020 	if (__ratelimit(rs))				\
2021 		pr_info(fmt, pfn);			\
2022 })
2023 
2024 /**
2025  * unpoison_memory - Unpoison a previously poisoned page
2026  * @pfn: Page number of the to be unpoisoned page
2027  *
2028  * Software-unpoison a page that has been poisoned by
2029  * memory_failure() earlier.
2030  *
2031  * This is only done on the software-level, so it only works
2032  * for linux injected failures, not real hardware failures
2033  *
2034  * Returns 0 for success, otherwise -errno.
2035  */
unpoison_memory(unsigned long pfn)2036 int unpoison_memory(unsigned long pfn)
2037 {
2038 	struct page *page;
2039 	struct page *p;
2040 	int freeit = 0;
2041 	int ret = 0;
2042 	unsigned long flags = 0;
2043 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2044 					DEFAULT_RATELIMIT_BURST);
2045 
2046 	if (!pfn_valid(pfn))
2047 		return -ENXIO;
2048 
2049 	p = pfn_to_page(pfn);
2050 	page = compound_head(p);
2051 
2052 	mutex_lock(&mf_mutex);
2053 
2054 	if (!PageHWPoison(p)) {
2055 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2056 				 pfn, &unpoison_rs);
2057 		goto unlock_mutex;
2058 	}
2059 
2060 	if (page_count(page) > 1) {
2061 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2062 				 pfn, &unpoison_rs);
2063 		goto unlock_mutex;
2064 	}
2065 
2066 	if (page_mapped(page)) {
2067 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2068 				 pfn, &unpoison_rs);
2069 		goto unlock_mutex;
2070 	}
2071 
2072 	if (page_mapping(page)) {
2073 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2074 				 pfn, &unpoison_rs);
2075 		goto unlock_mutex;
2076 	}
2077 
2078 	if (!get_hwpoison_page(p, flags)) {
2079 		if (TestClearPageHWPoison(p))
2080 			num_poisoned_pages_dec();
2081 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
2082 				 pfn, &unpoison_rs);
2083 		goto unlock_mutex;
2084 	}
2085 
2086 	if (TestClearPageHWPoison(page)) {
2087 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2088 				 pfn, &unpoison_rs);
2089 		num_poisoned_pages_dec();
2090 		freeit = 1;
2091 	}
2092 
2093 	put_page(page);
2094 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2095 		put_page(page);
2096 
2097 unlock_mutex:
2098 	mutex_unlock(&mf_mutex);
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL(unpoison_memory);
2102 
isolate_page(struct page * page,struct list_head * pagelist)2103 static bool isolate_page(struct page *page, struct list_head *pagelist)
2104 {
2105 	bool isolated = false;
2106 	bool lru = PageLRU(page);
2107 
2108 	if (PageHuge(page)) {
2109 		isolated = !isolate_hugetlb(page, pagelist);
2110 	} else {
2111 		if (lru)
2112 			isolated = !isolate_lru_page(page);
2113 		else
2114 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2115 
2116 		if (isolated)
2117 			list_add(&page->lru, pagelist);
2118 	}
2119 
2120 	if (isolated && lru)
2121 		inc_node_page_state(page, NR_ISOLATED_ANON +
2122 				    page_is_file_lru(page));
2123 
2124 	/*
2125 	 * If we succeed to isolate the page, we grabbed another refcount on
2126 	 * the page, so we can safely drop the one we got from get_any_pages().
2127 	 * If we failed to isolate the page, it means that we cannot go further
2128 	 * and we will return an error, so drop the reference we got from
2129 	 * get_any_pages() as well.
2130 	 */
2131 	put_page(page);
2132 	return isolated;
2133 }
2134 
2135 /*
2136  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2137  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2138  * If the page is mapped, it migrates the contents over.
2139  */
__soft_offline_page(struct page * page)2140 static int __soft_offline_page(struct page *page)
2141 {
2142 	int ret = 0;
2143 	unsigned long pfn = page_to_pfn(page);
2144 	struct page *hpage = compound_head(page);
2145 	char const *msg_page[] = {"page", "hugepage"};
2146 	bool huge = PageHuge(page);
2147 	LIST_HEAD(pagelist);
2148 	struct migration_target_control mtc = {
2149 		.nid = NUMA_NO_NODE,
2150 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2151 	};
2152 
2153 	/*
2154 	 * Check PageHWPoison again inside page lock because PageHWPoison
2155 	 * is set by memory_failure() outside page lock. Note that
2156 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2157 	 * so there's no race between soft_offline_page() and memory_failure().
2158 	 */
2159 	lock_page(page);
2160 	if (!PageHuge(page))
2161 		wait_on_page_writeback(page);
2162 	if (PageHWPoison(page)) {
2163 		unlock_page(page);
2164 		put_page(page);
2165 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2166 		return 0;
2167 	}
2168 
2169 	if (!PageHuge(page))
2170 		/*
2171 		 * Try to invalidate first. This should work for
2172 		 * non dirty unmapped page cache pages.
2173 		 */
2174 		ret = invalidate_inode_page(page);
2175 	unlock_page(page);
2176 
2177 	/*
2178 	 * RED-PEN would be better to keep it isolated here, but we
2179 	 * would need to fix isolation locking first.
2180 	 */
2181 	if (ret) {
2182 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2183 		page_handle_poison(page, false, true);
2184 		return 0;
2185 	}
2186 
2187 	if (isolate_page(hpage, &pagelist)) {
2188 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2189 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2190 		if (!ret) {
2191 			bool release = !huge;
2192 
2193 			if (!page_handle_poison(page, huge, release))
2194 				ret = -EBUSY;
2195 		} else {
2196 			if (!list_empty(&pagelist))
2197 				putback_movable_pages(&pagelist);
2198 
2199 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2200 				pfn, msg_page[huge], ret, page->flags, &page->flags);
2201 			if (ret > 0)
2202 				ret = -EBUSY;
2203 		}
2204 	} else {
2205 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2206 			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2207 		ret = -EBUSY;
2208 	}
2209 	return ret;
2210 }
2211 
soft_offline_in_use_page(struct page * page)2212 static int soft_offline_in_use_page(struct page *page)
2213 {
2214 	struct page *hpage = compound_head(page);
2215 
2216 	if (!PageHuge(page) && PageTransHuge(hpage))
2217 		if (try_to_split_thp_page(page, "soft offline") < 0)
2218 			return -EBUSY;
2219 	return __soft_offline_page(page);
2220 }
2221 
put_ref_page(struct page * page)2222 static void put_ref_page(struct page *page)
2223 {
2224 	if (page)
2225 		put_page(page);
2226 }
2227 
2228 /**
2229  * soft_offline_page - Soft offline a page.
2230  * @pfn: pfn to soft-offline
2231  * @flags: flags. Same as memory_failure().
2232  *
2233  * Returns 0 on success, otherwise negated errno.
2234  *
2235  * Soft offline a page, by migration or invalidation,
2236  * without killing anything. This is for the case when
2237  * a page is not corrupted yet (so it's still valid to access),
2238  * but has had a number of corrected errors and is better taken
2239  * out.
2240  *
2241  * The actual policy on when to do that is maintained by
2242  * user space.
2243  *
2244  * This should never impact any application or cause data loss,
2245  * however it might take some time.
2246  *
2247  * This is not a 100% solution for all memory, but tries to be
2248  * ``good enough'' for the majority of memory.
2249  */
soft_offline_page(unsigned long pfn,int flags)2250 int soft_offline_page(unsigned long pfn, int flags)
2251 {
2252 	int ret;
2253 	bool try_again = true;
2254 	struct page *page, *ref_page = NULL;
2255 
2256 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2257 
2258 	if (!pfn_valid(pfn))
2259 		return -ENXIO;
2260 	if (flags & MF_COUNT_INCREASED)
2261 		ref_page = pfn_to_page(pfn);
2262 
2263 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2264 	page = pfn_to_online_page(pfn);
2265 	if (!page) {
2266 		put_ref_page(ref_page);
2267 		return -EIO;
2268 	}
2269 
2270 	mutex_lock(&mf_mutex);
2271 
2272 	if (PageHWPoison(page)) {
2273 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2274 		put_ref_page(ref_page);
2275 		mutex_unlock(&mf_mutex);
2276 		return 0;
2277 	}
2278 
2279 retry:
2280 	get_online_mems();
2281 	ret = get_hwpoison_page(page, flags);
2282 	put_online_mems();
2283 
2284 	if (ret > 0) {
2285 		ret = soft_offline_in_use_page(page);
2286 	} else if (ret == 0) {
2287 		if (!page_handle_poison(page, true, false)) {
2288 			if (try_again) {
2289 				try_again = false;
2290 				flags &= ~MF_COUNT_INCREASED;
2291 				goto retry;
2292 			}
2293 			ret = -EBUSY;
2294 		}
2295 	}
2296 
2297 	mutex_unlock(&mf_mutex);
2298 
2299 	return ret;
2300 }
2301