1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 int platform_max;
181
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
185
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 else
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
194 return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198 /**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
212 {
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
215
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
219 */
220 uinfo->value.integer.max += mc->min;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226 /**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238 {
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
246 int max = mc->max;
247 int min = mc->min;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
251 int val;
252 int ret;
253
254 if (sign_bit)
255 mask = BIT(sign_bit + 1) - 1;
256
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 if (ret)
259 return ret;
260
261 ucontrol->value.integer.value[0] = val - min;
262 if (invert)
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
265
266 if (snd_soc_volsw_is_stereo(mc)) {
267 if (reg == reg2)
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
269 sign_bit, &val);
270 else
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
272 sign_bit, &val);
273 if (ret)
274 return ret;
275
276 ucontrol->value.integer.value[1] = val - min;
277 if (invert)
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
280 }
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286 /**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
298 {
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
306 int max = mc->max;
307 int min = mc->min;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
311 int err, ret;
312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
315
316 if (sign_bit)
317 mask = BIT(sign_bit + 1) - 1;
318
319 val = ucontrol->value.integer.value[0];
320 if (mc->platform_max && ((int)val + min) > mc->platform_max)
321 return -EINVAL;
322 if (val > max - min)
323 return -EINVAL;
324 if (val < 0)
325 return -EINVAL;
326 val = (val + min) & mask;
327 if (invert)
328 val = max - val;
329 val_mask = mask << shift;
330 val = val << shift;
331 if (snd_soc_volsw_is_stereo(mc)) {
332 val2 = ucontrol->value.integer.value[1];
333 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
334 return -EINVAL;
335 if (val2 > max - min)
336 return -EINVAL;
337 if (val2 < 0)
338 return -EINVAL;
339 val2 = (val2 + min) & mask;
340 if (invert)
341 val2 = max - val2;
342 if (reg == reg2) {
343 val_mask |= mask << rshift;
344 val |= val2 << rshift;
345 } else {
346 val2 = val2 << shift;
347 type_2r = true;
348 }
349 }
350 err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 if (err < 0)
352 return err;
353 ret = err;
354
355 if (type_2r) {
356 err = snd_soc_component_update_bits(component, reg2, val_mask,
357 val2);
358 /* Don't discard any error code or drop change flag */
359 if (ret == 0 || err < 0) {
360 ret = err;
361 }
362 }
363
364 return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367
368 /**
369 * snd_soc_get_volsw_sx - single mixer get callback
370 * @kcontrol: mixer control
371 * @ucontrol: control element information
372 *
373 * Callback to get the value of a single mixer control, or a double mixer
374 * control that spans 2 registers.
375 *
376 * Returns 0 for success.
377 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_value *ucontrol)
380 {
381 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 struct soc_mixer_control *mc =
383 (struct soc_mixer_control *)kcontrol->private_value;
384 unsigned int reg = mc->reg;
385 unsigned int reg2 = mc->rreg;
386 unsigned int shift = mc->shift;
387 unsigned int rshift = mc->rshift;
388 int max = mc->max;
389 int min = mc->min;
390 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 unsigned int val;
392
393 val = snd_soc_component_read(component, reg);
394 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395
396 if (snd_soc_volsw_is_stereo(mc)) {
397 val = snd_soc_component_read(component, reg2);
398 val = ((val >> rshift) - min) & mask;
399 ucontrol->value.integer.value[1] = val;
400 }
401
402 return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405
406 /**
407 * snd_soc_put_volsw_sx - double mixer set callback
408 * @kcontrol: mixer control
409 * @ucontrol: control element information
410 *
411 * Callback to set the value of a double mixer control that spans 2 registers.
412 *
413 * Returns 0 for success.
414 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 struct snd_ctl_elem_value *ucontrol)
417 {
418 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 struct soc_mixer_control *mc =
420 (struct soc_mixer_control *)kcontrol->private_value;
421
422 unsigned int reg = mc->reg;
423 unsigned int reg2 = mc->rreg;
424 unsigned int shift = mc->shift;
425 unsigned int rshift = mc->rshift;
426 int max = mc->max;
427 int min = mc->min;
428 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 int err = 0;
430 int ret;
431 unsigned int val, val_mask;
432
433 val = ucontrol->value.integer.value[0];
434 if (mc->platform_max && val > mc->platform_max)
435 return -EINVAL;
436 if (val > max)
437 return -EINVAL;
438 if (val < 0)
439 return -EINVAL;
440 val_mask = mask << shift;
441 val = (val + min) & mask;
442 val = val << shift;
443
444 err = snd_soc_component_update_bits(component, reg, val_mask, val);
445 if (err < 0)
446 return err;
447 ret = err;
448
449 if (snd_soc_volsw_is_stereo(mc)) {
450 unsigned int val2 = ucontrol->value.integer.value[1];
451
452 if (mc->platform_max && val2 > mc->platform_max)
453 return -EINVAL;
454 if (val2 > max)
455 return -EINVAL;
456
457 val_mask = mask << rshift;
458 val2 = (val2 + min) & mask;
459 val2 = val2 << rshift;
460
461 err = snd_soc_component_update_bits(component, reg2, val_mask,
462 val2);
463
464 /* Don't discard any error code or drop change flag */
465 if (ret == 0 || err < 0) {
466 ret = err;
467 }
468 }
469 return ret;
470 }
471 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
472
473 /**
474 * snd_soc_info_volsw_range - single mixer info callback with range.
475 * @kcontrol: mixer control
476 * @uinfo: control element information
477 *
478 * Callback to provide information, within a range, about a single
479 * mixer control.
480 *
481 * returns 0 for success.
482 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)483 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
484 struct snd_ctl_elem_info *uinfo)
485 {
486 struct soc_mixer_control *mc =
487 (struct soc_mixer_control *)kcontrol->private_value;
488 int platform_max;
489 int min = mc->min;
490
491 if (!mc->platform_max)
492 mc->platform_max = mc->max;
493 platform_max = mc->platform_max;
494
495 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
496 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
497 uinfo->value.integer.min = 0;
498 uinfo->value.integer.max = platform_max - min;
499
500 return 0;
501 }
502 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
503
504 /**
505 * snd_soc_put_volsw_range - single mixer put value callback with range.
506 * @kcontrol: mixer control
507 * @ucontrol: control element information
508 *
509 * Callback to set the value, within a range, for a single mixer control.
510 *
511 * Returns 0 for success.
512 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)513 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
514 struct snd_ctl_elem_value *ucontrol)
515 {
516 struct soc_mixer_control *mc =
517 (struct soc_mixer_control *)kcontrol->private_value;
518 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
519 unsigned int reg = mc->reg;
520 unsigned int rreg = mc->rreg;
521 unsigned int shift = mc->shift;
522 int min = mc->min;
523 int max = mc->max;
524 unsigned int mask = (1 << fls(max)) - 1;
525 unsigned int invert = mc->invert;
526 unsigned int val, val_mask;
527 int err, ret, tmp;
528
529 tmp = ucontrol->value.integer.value[0];
530 if (tmp < 0)
531 return -EINVAL;
532 if (mc->platform_max && tmp > mc->platform_max)
533 return -EINVAL;
534 if (tmp > mc->max - mc->min)
535 return -EINVAL;
536
537 if (invert)
538 val = (max - ucontrol->value.integer.value[0]) & mask;
539 else
540 val = ((ucontrol->value.integer.value[0] + min) & mask);
541 val_mask = mask << shift;
542 val = val << shift;
543
544 err = snd_soc_component_update_bits(component, reg, val_mask, val);
545 if (err < 0)
546 return err;
547 ret = err;
548
549 if (snd_soc_volsw_is_stereo(mc)) {
550 tmp = ucontrol->value.integer.value[1];
551 if (tmp < 0)
552 return -EINVAL;
553 if (mc->platform_max && tmp > mc->platform_max)
554 return -EINVAL;
555 if (tmp > mc->max - mc->min)
556 return -EINVAL;
557
558 if (invert)
559 val = (max - ucontrol->value.integer.value[1]) & mask;
560 else
561 val = ((ucontrol->value.integer.value[1] + min) & mask);
562 val_mask = mask << shift;
563 val = val << shift;
564
565 err = snd_soc_component_update_bits(component, rreg, val_mask,
566 val);
567 /* Don't discard any error code or drop change flag */
568 if (ret == 0 || err < 0) {
569 ret = err;
570 }
571 }
572
573 return ret;
574 }
575 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
576
577 /**
578 * snd_soc_get_volsw_range - single mixer get callback with range
579 * @kcontrol: mixer control
580 * @ucontrol: control element information
581 *
582 * Callback to get the value, within a range, of a single mixer control.
583 *
584 * Returns 0 for success.
585 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)586 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
587 struct snd_ctl_elem_value *ucontrol)
588 {
589 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
590 struct soc_mixer_control *mc =
591 (struct soc_mixer_control *)kcontrol->private_value;
592 unsigned int reg = mc->reg;
593 unsigned int rreg = mc->rreg;
594 unsigned int shift = mc->shift;
595 int min = mc->min;
596 int max = mc->max;
597 unsigned int mask = (1 << fls(max)) - 1;
598 unsigned int invert = mc->invert;
599 unsigned int val;
600
601 val = snd_soc_component_read(component, reg);
602 ucontrol->value.integer.value[0] = (val >> shift) & mask;
603 if (invert)
604 ucontrol->value.integer.value[0] =
605 max - ucontrol->value.integer.value[0];
606 else
607 ucontrol->value.integer.value[0] =
608 ucontrol->value.integer.value[0] - min;
609
610 if (snd_soc_volsw_is_stereo(mc)) {
611 val = snd_soc_component_read(component, rreg);
612 ucontrol->value.integer.value[1] = (val >> shift) & mask;
613 if (invert)
614 ucontrol->value.integer.value[1] =
615 max - ucontrol->value.integer.value[1];
616 else
617 ucontrol->value.integer.value[1] =
618 ucontrol->value.integer.value[1] - min;
619 }
620
621 return 0;
622 }
623 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
624
625 /**
626 * snd_soc_limit_volume - Set new limit to an existing volume control.
627 *
628 * @card: where to look for the control
629 * @name: Name of the control
630 * @max: new maximum limit
631 *
632 * Return 0 for success, else error.
633 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)634 int snd_soc_limit_volume(struct snd_soc_card *card,
635 const char *name, int max)
636 {
637 struct snd_kcontrol *kctl;
638 int ret = -EINVAL;
639
640 /* Sanity check for name and max */
641 if (unlikely(!name || max <= 0))
642 return -EINVAL;
643
644 kctl = snd_soc_card_get_kcontrol(card, name);
645 if (kctl) {
646 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
647 if (max <= mc->max - mc->min) {
648 mc->platform_max = max;
649 ret = 0;
650 }
651 }
652 return ret;
653 }
654 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
655
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)656 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
657 struct snd_ctl_elem_info *uinfo)
658 {
659 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
660 struct soc_bytes *params = (void *)kcontrol->private_value;
661
662 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
663 uinfo->count = params->num_regs * component->val_bytes;
664
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
668
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)669 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
670 struct snd_ctl_elem_value *ucontrol)
671 {
672 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
673 struct soc_bytes *params = (void *)kcontrol->private_value;
674 int ret;
675
676 if (component->regmap)
677 ret = regmap_raw_read(component->regmap, params->base,
678 ucontrol->value.bytes.data,
679 params->num_regs * component->val_bytes);
680 else
681 ret = -EINVAL;
682
683 /* Hide any masked bytes to ensure consistent data reporting */
684 if (ret == 0 && params->mask) {
685 switch (component->val_bytes) {
686 case 1:
687 ucontrol->value.bytes.data[0] &= ~params->mask;
688 break;
689 case 2:
690 ((u16 *)(&ucontrol->value.bytes.data))[0]
691 &= cpu_to_be16(~params->mask);
692 break;
693 case 4:
694 ((u32 *)(&ucontrol->value.bytes.data))[0]
695 &= cpu_to_be32(~params->mask);
696 break;
697 default:
698 return -EINVAL;
699 }
700 }
701
702 return ret;
703 }
704 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
705
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)706 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
707 struct snd_ctl_elem_value *ucontrol)
708 {
709 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
710 struct soc_bytes *params = (void *)kcontrol->private_value;
711 int ret, len;
712 unsigned int val, mask;
713 void *data;
714
715 if (!component->regmap || !params->num_regs)
716 return -EINVAL;
717
718 len = params->num_regs * component->val_bytes;
719
720 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
721 if (!data)
722 return -ENOMEM;
723
724 /*
725 * If we've got a mask then we need to preserve the register
726 * bits. We shouldn't modify the incoming data so take a
727 * copy.
728 */
729 if (params->mask) {
730 ret = regmap_read(component->regmap, params->base, &val);
731 if (ret != 0)
732 goto out;
733
734 val &= params->mask;
735
736 switch (component->val_bytes) {
737 case 1:
738 ((u8 *)data)[0] &= ~params->mask;
739 ((u8 *)data)[0] |= val;
740 break;
741 case 2:
742 mask = ~params->mask;
743 ret = regmap_parse_val(component->regmap,
744 &mask, &mask);
745 if (ret != 0)
746 goto out;
747
748 ((u16 *)data)[0] &= mask;
749
750 ret = regmap_parse_val(component->regmap,
751 &val, &val);
752 if (ret != 0)
753 goto out;
754
755 ((u16 *)data)[0] |= val;
756 break;
757 case 4:
758 mask = ~params->mask;
759 ret = regmap_parse_val(component->regmap,
760 &mask, &mask);
761 if (ret != 0)
762 goto out;
763
764 ((u32 *)data)[0] &= mask;
765
766 ret = regmap_parse_val(component->regmap,
767 &val, &val);
768 if (ret != 0)
769 goto out;
770
771 ((u32 *)data)[0] |= val;
772 break;
773 default:
774 ret = -EINVAL;
775 goto out;
776 }
777 }
778
779 ret = regmap_raw_write(component->regmap, params->base,
780 data, len);
781
782 out:
783 kfree(data);
784
785 return ret;
786 }
787 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
788
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)789 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
790 struct snd_ctl_elem_info *ucontrol)
791 {
792 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
793
794 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
795 ucontrol->count = params->max;
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
800
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)801 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
802 unsigned int size, unsigned int __user *tlv)
803 {
804 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
805 unsigned int count = size < params->max ? size : params->max;
806 int ret = -ENXIO;
807
808 switch (op_flag) {
809 case SNDRV_CTL_TLV_OP_READ:
810 if (params->get)
811 ret = params->get(kcontrol, tlv, count);
812 break;
813 case SNDRV_CTL_TLV_OP_WRITE:
814 if (params->put)
815 ret = params->put(kcontrol, tlv, count);
816 break;
817 }
818 return ret;
819 }
820 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
821
822 /**
823 * snd_soc_info_xr_sx - signed multi register info callback
824 * @kcontrol: mreg control
825 * @uinfo: control element information
826 *
827 * Callback to provide information of a control that can
828 * span multiple codec registers which together
829 * forms a single signed value in a MSB/LSB manner.
830 *
831 * Returns 0 for success.
832 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)833 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
834 struct snd_ctl_elem_info *uinfo)
835 {
836 struct soc_mreg_control *mc =
837 (struct soc_mreg_control *)kcontrol->private_value;
838 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
839 uinfo->count = 1;
840 uinfo->value.integer.min = mc->min;
841 uinfo->value.integer.max = mc->max;
842
843 return 0;
844 }
845 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
846
847 /**
848 * snd_soc_get_xr_sx - signed multi register get callback
849 * @kcontrol: mreg control
850 * @ucontrol: control element information
851 *
852 * Callback to get the value of a control that can span
853 * multiple codec registers which together forms a single
854 * signed value in a MSB/LSB manner. The control supports
855 * specifying total no of bits used to allow for bitfields
856 * across the multiple codec registers.
857 *
858 * Returns 0 for success.
859 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)860 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
861 struct snd_ctl_elem_value *ucontrol)
862 {
863 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
864 struct soc_mreg_control *mc =
865 (struct soc_mreg_control *)kcontrol->private_value;
866 unsigned int regbase = mc->regbase;
867 unsigned int regcount = mc->regcount;
868 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
869 unsigned int regwmask = (1UL<<regwshift)-1;
870 unsigned int invert = mc->invert;
871 unsigned long mask = (1UL<<mc->nbits)-1;
872 long min = mc->min;
873 long max = mc->max;
874 long val = 0;
875 unsigned int i;
876
877 for (i = 0; i < regcount; i++) {
878 unsigned int regval = snd_soc_component_read(component, regbase+i);
879 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
880 }
881 val &= mask;
882 if (min < 0 && val > max)
883 val |= ~mask;
884 if (invert)
885 val = max - val;
886 ucontrol->value.integer.value[0] = val;
887
888 return 0;
889 }
890 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
891
892 /**
893 * snd_soc_put_xr_sx - signed multi register get callback
894 * @kcontrol: mreg control
895 * @ucontrol: control element information
896 *
897 * Callback to set the value of a control that can span
898 * multiple codec registers which together forms a single
899 * signed value in a MSB/LSB manner. The control supports
900 * specifying total no of bits used to allow for bitfields
901 * across the multiple codec registers.
902 *
903 * Returns 0 for success.
904 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)905 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
906 struct snd_ctl_elem_value *ucontrol)
907 {
908 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
909 struct soc_mreg_control *mc =
910 (struct soc_mreg_control *)kcontrol->private_value;
911 unsigned int regbase = mc->regbase;
912 unsigned int regcount = mc->regcount;
913 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
914 unsigned int regwmask = (1UL<<regwshift)-1;
915 unsigned int invert = mc->invert;
916 unsigned long mask = (1UL<<mc->nbits)-1;
917 long max = mc->max;
918 long val = ucontrol->value.integer.value[0];
919 int ret = 0;
920 unsigned int i;
921
922 if (val < mc->min || val > mc->max)
923 return -EINVAL;
924 if (invert)
925 val = max - val;
926 val &= mask;
927 for (i = 0; i < regcount; i++) {
928 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
929 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
930 int err = snd_soc_component_update_bits(component, regbase+i,
931 regmask, regval);
932 if (err < 0)
933 return err;
934 if (err > 0)
935 ret = err;
936 }
937
938 return ret;
939 }
940 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
941
942 /**
943 * snd_soc_get_strobe - strobe get callback
944 * @kcontrol: mixer control
945 * @ucontrol: control element information
946 *
947 * Callback get the value of a strobe mixer control.
948 *
949 * Returns 0 for success.
950 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)951 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
952 struct snd_ctl_elem_value *ucontrol)
953 {
954 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
955 struct soc_mixer_control *mc =
956 (struct soc_mixer_control *)kcontrol->private_value;
957 unsigned int reg = mc->reg;
958 unsigned int shift = mc->shift;
959 unsigned int mask = 1 << shift;
960 unsigned int invert = mc->invert != 0;
961 unsigned int val;
962
963 val = snd_soc_component_read(component, reg);
964 val &= mask;
965
966 if (shift != 0 && val != 0)
967 val = val >> shift;
968 ucontrol->value.enumerated.item[0] = val ^ invert;
969
970 return 0;
971 }
972 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
973
974 /**
975 * snd_soc_put_strobe - strobe put callback
976 * @kcontrol: mixer control
977 * @ucontrol: control element information
978 *
979 * Callback strobe a register bit to high then low (or the inverse)
980 * in one pass of a single mixer enum control.
981 *
982 * Returns 1 for success.
983 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)984 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
985 struct snd_ctl_elem_value *ucontrol)
986 {
987 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
988 struct soc_mixer_control *mc =
989 (struct soc_mixer_control *)kcontrol->private_value;
990 unsigned int reg = mc->reg;
991 unsigned int shift = mc->shift;
992 unsigned int mask = 1 << shift;
993 unsigned int invert = mc->invert != 0;
994 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
995 unsigned int val1 = (strobe ^ invert) ? mask : 0;
996 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
997 int err;
998
999 err = snd_soc_component_update_bits(component, reg, mask, val1);
1000 if (err < 0)
1001 return err;
1002
1003 return snd_soc_component_update_bits(component, reg, mask, val2);
1004 }
1005 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1006