• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c  --  Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 //         with code, comments and ideas from :-
12 //         Richard Purdie <richard@openedhand.com>
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29 
30 /**
31  * snd_soc_info_enum_double - enumerated double mixer info callback
32  * @kcontrol: mixer control
33  * @uinfo: control element information
34  *
35  * Callback to provide information about a double enumerated
36  * mixer control.
37  *
38  * Returns 0 for success.
39  */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 	struct snd_ctl_elem_info *uinfo)
42 {
43 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44 
45 	return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 				 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49 
50 /**
51  * snd_soc_get_enum_double - enumerated double mixer get callback
52  * @kcontrol: mixer control
53  * @ucontrol: control element information
54  *
55  * Callback to get the value of a double enumerated mixer.
56  *
57  * Returns 0 for success.
58  */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 	struct snd_ctl_elem_value *ucontrol)
61 {
62 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 	unsigned int val, item;
65 	unsigned int reg_val;
66 
67 	reg_val = snd_soc_component_read(component, e->reg);
68 	val = (reg_val >> e->shift_l) & e->mask;
69 	item = snd_soc_enum_val_to_item(e, val);
70 	ucontrol->value.enumerated.item[0] = item;
71 	if (e->shift_l != e->shift_r) {
72 		val = (reg_val >> e->shift_r) & e->mask;
73 		item = snd_soc_enum_val_to_item(e, val);
74 		ucontrol->value.enumerated.item[1] = item;
75 	}
76 
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80 
81 /**
82  * snd_soc_put_enum_double - enumerated double mixer put callback
83  * @kcontrol: mixer control
84  * @ucontrol: control element information
85  *
86  * Callback to set the value of a double enumerated mixer.
87  *
88  * Returns 0 for success.
89  */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 	struct snd_ctl_elem_value *ucontrol)
92 {
93 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 	unsigned int *item = ucontrol->value.enumerated.item;
96 	unsigned int val;
97 	unsigned int mask;
98 
99 	if (item[0] >= e->items)
100 		return -EINVAL;
101 	val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 	mask = e->mask << e->shift_l;
103 	if (e->shift_l != e->shift_r) {
104 		if (item[1] >= e->items)
105 			return -EINVAL;
106 		val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 		mask |= e->mask << e->shift_r;
108 	}
109 
110 	return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113 
114 /**
115  * snd_soc_read_signed - Read a codec register and interpret as signed value
116  * @component: component
117  * @reg: Register to read
118  * @mask: Mask to use after shifting the register value
119  * @shift: Right shift of register value
120  * @sign_bit: Bit that describes if a number is negative or not.
121  * @signed_val: Pointer to where the read value should be stored
122  *
123  * This functions reads a codec register. The register value is shifted right
124  * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125  * the given registervalue into a signed integer if sign_bit is non-zero.
126  *
127  * Returns 0 on sucess, otherwise an error value
128  */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 	unsigned int reg, unsigned int mask, unsigned int shift,
131 	unsigned int sign_bit, int *signed_val)
132 {
133 	int ret;
134 	unsigned int val;
135 
136 	val = snd_soc_component_read(component, reg);
137 	val = (val >> shift) & mask;
138 
139 	if (!sign_bit) {
140 		*signed_val = val;
141 		return 0;
142 	}
143 
144 	/* non-negative number */
145 	if (!(val & BIT(sign_bit))) {
146 		*signed_val = val;
147 		return 0;
148 	}
149 
150 	ret = val;
151 
152 	/*
153 	 * The register most probably does not contain a full-sized int.
154 	 * Instead we have an arbitrary number of bits in a signed
155 	 * representation which has to be translated into a full-sized int.
156 	 * This is done by filling up all bits above the sign-bit.
157 	 */
158 	ret |= ~((int)(BIT(sign_bit) - 1));
159 
160 	*signed_val = ret;
161 
162 	return 0;
163 }
164 
165 /**
166  * snd_soc_info_volsw - single mixer info callback
167  * @kcontrol: mixer control
168  * @uinfo: control element information
169  *
170  * Callback to provide information about a single mixer control, or a double
171  * mixer control that spans 2 registers.
172  *
173  * Returns 0 for success.
174  */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 	struct snd_ctl_elem_info *uinfo)
177 {
178 	struct soc_mixer_control *mc =
179 		(struct soc_mixer_control *)kcontrol->private_value;
180 	int platform_max;
181 
182 	if (!mc->platform_max)
183 		mc->platform_max = mc->max;
184 	platform_max = mc->platform_max;
185 
186 	if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 		uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 	else
189 		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190 
191 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 	uinfo->value.integer.min = 0;
193 	uinfo->value.integer.max = platform_max - mc->min;
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197 
198 /**
199  * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200  * @kcontrol: mixer control
201  * @uinfo: control element information
202  *
203  * Callback to provide information about a single mixer control, or a double
204  * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205  * have a range that represents both positive and negative values either side
206  * of zero but without a sign bit.
207  *
208  * Returns 0 for success.
209  */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 			  struct snd_ctl_elem_info *uinfo)
212 {
213 	struct soc_mixer_control *mc =
214 		(struct soc_mixer_control *)kcontrol->private_value;
215 
216 	snd_soc_info_volsw(kcontrol, uinfo);
217 	/* Max represents the number of levels in an SX control not the
218 	 * maximum value, so add the minimum value back on
219 	 */
220 	uinfo->value.integer.max += mc->min;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225 
226 /**
227  * snd_soc_get_volsw - single mixer get callback
228  * @kcontrol: mixer control
229  * @ucontrol: control element information
230  *
231  * Callback to get the value of a single mixer control, or a double mixer
232  * control that spans 2 registers.
233  *
234  * Returns 0 for success.
235  */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 	struct snd_ctl_elem_value *ucontrol)
238 {
239 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 	struct soc_mixer_control *mc =
241 		(struct soc_mixer_control *)kcontrol->private_value;
242 	unsigned int reg = mc->reg;
243 	unsigned int reg2 = mc->rreg;
244 	unsigned int shift = mc->shift;
245 	unsigned int rshift = mc->rshift;
246 	int max = mc->max;
247 	int min = mc->min;
248 	int sign_bit = mc->sign_bit;
249 	unsigned int mask = (1 << fls(max)) - 1;
250 	unsigned int invert = mc->invert;
251 	int val;
252 	int ret;
253 
254 	if (sign_bit)
255 		mask = BIT(sign_bit + 1) - 1;
256 
257 	ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 	if (ret)
259 		return ret;
260 
261 	ucontrol->value.integer.value[0] = val - min;
262 	if (invert)
263 		ucontrol->value.integer.value[0] =
264 			max - ucontrol->value.integer.value[0];
265 
266 	if (snd_soc_volsw_is_stereo(mc)) {
267 		if (reg == reg2)
268 			ret = snd_soc_read_signed(component, reg, mask, rshift,
269 				sign_bit, &val);
270 		else
271 			ret = snd_soc_read_signed(component, reg2, mask, shift,
272 				sign_bit, &val);
273 		if (ret)
274 			return ret;
275 
276 		ucontrol->value.integer.value[1] = val - min;
277 		if (invert)
278 			ucontrol->value.integer.value[1] =
279 				max - ucontrol->value.integer.value[1];
280 	}
281 
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285 
286 /**
287  * snd_soc_put_volsw - single mixer put callback
288  * @kcontrol: mixer control
289  * @ucontrol: control element information
290  *
291  * Callback to set the value of a single mixer control, or a double mixer
292  * control that spans 2 registers.
293  *
294  * Returns 0 for success.
295  */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 	struct snd_ctl_elem_value *ucontrol)
298 {
299 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 	struct soc_mixer_control *mc =
301 		(struct soc_mixer_control *)kcontrol->private_value;
302 	unsigned int reg = mc->reg;
303 	unsigned int reg2 = mc->rreg;
304 	unsigned int shift = mc->shift;
305 	unsigned int rshift = mc->rshift;
306 	int max = mc->max;
307 	int min = mc->min;
308 	unsigned int sign_bit = mc->sign_bit;
309 	unsigned int mask = (1 << fls(max)) - 1;
310 	unsigned int invert = mc->invert;
311 	int err, ret;
312 	bool type_2r = false;
313 	unsigned int val2 = 0;
314 	unsigned int val, val_mask;
315 
316 	if (sign_bit)
317 		mask = BIT(sign_bit + 1) - 1;
318 
319 	val = ucontrol->value.integer.value[0];
320 	if (mc->platform_max && ((int)val + min) > mc->platform_max)
321 		return -EINVAL;
322 	if (val > max - min)
323 		return -EINVAL;
324 	if (val < 0)
325 		return -EINVAL;
326 	val = (val + min) & mask;
327 	if (invert)
328 		val = max - val;
329 	val_mask = mask << shift;
330 	val = val << shift;
331 	if (snd_soc_volsw_is_stereo(mc)) {
332 		val2 = ucontrol->value.integer.value[1];
333 		if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
334 			return -EINVAL;
335 		if (val2 > max - min)
336 			return -EINVAL;
337 		if (val2 < 0)
338 			return -EINVAL;
339 		val2 = (val2 + min) & mask;
340 		if (invert)
341 			val2 = max - val2;
342 		if (reg == reg2) {
343 			val_mask |= mask << rshift;
344 			val |= val2 << rshift;
345 		} else {
346 			val2 = val2 << shift;
347 			type_2r = true;
348 		}
349 	}
350 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
351 	if (err < 0)
352 		return err;
353 	ret = err;
354 
355 	if (type_2r) {
356 		err = snd_soc_component_update_bits(component, reg2, val_mask,
357 						    val2);
358 		/* Don't discard any error code or drop change flag */
359 		if (ret == 0 || err < 0) {
360 			ret = err;
361 		}
362 	}
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
367 
368 /**
369  * snd_soc_get_volsw_sx - single mixer get callback
370  * @kcontrol: mixer control
371  * @ucontrol: control element information
372  *
373  * Callback to get the value of a single mixer control, or a double mixer
374  * control that spans 2 registers.
375  *
376  * Returns 0 for success.
377  */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 		      struct snd_ctl_elem_value *ucontrol)
380 {
381 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 	struct soc_mixer_control *mc =
383 	    (struct soc_mixer_control *)kcontrol->private_value;
384 	unsigned int reg = mc->reg;
385 	unsigned int reg2 = mc->rreg;
386 	unsigned int shift = mc->shift;
387 	unsigned int rshift = mc->rshift;
388 	int max = mc->max;
389 	int min = mc->min;
390 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
391 	unsigned int val;
392 
393 	val = snd_soc_component_read(component, reg);
394 	ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
395 
396 	if (snd_soc_volsw_is_stereo(mc)) {
397 		val = snd_soc_component_read(component, reg2);
398 		val = ((val >> rshift) - min) & mask;
399 		ucontrol->value.integer.value[1] = val;
400 	}
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
405 
406 /**
407  * snd_soc_put_volsw_sx - double mixer set callback
408  * @kcontrol: mixer control
409  * @ucontrol: control element information
410  *
411  * Callback to set the value of a double mixer control that spans 2 registers.
412  *
413  * Returns 0 for success.
414  */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 			 struct snd_ctl_elem_value *ucontrol)
417 {
418 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 	struct soc_mixer_control *mc =
420 	    (struct soc_mixer_control *)kcontrol->private_value;
421 
422 	unsigned int reg = mc->reg;
423 	unsigned int reg2 = mc->rreg;
424 	unsigned int shift = mc->shift;
425 	unsigned int rshift = mc->rshift;
426 	int max = mc->max;
427 	int min = mc->min;
428 	unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
429 	int err = 0;
430 	int ret;
431 	unsigned int val, val_mask;
432 
433 	val = ucontrol->value.integer.value[0];
434 	if (mc->platform_max && val > mc->platform_max)
435 		return -EINVAL;
436 	if (val > max)
437 		return -EINVAL;
438 	if (val < 0)
439 		return -EINVAL;
440 	val_mask = mask << shift;
441 	val = (val + min) & mask;
442 	val = val << shift;
443 
444 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
445 	if (err < 0)
446 		return err;
447 	ret = err;
448 
449 	if (snd_soc_volsw_is_stereo(mc)) {
450 		unsigned int val2 = ucontrol->value.integer.value[1];
451 
452 		if (mc->platform_max && val2 > mc->platform_max)
453 			return -EINVAL;
454 		if (val2 > max)
455 			return -EINVAL;
456 
457 		val_mask = mask << rshift;
458 		val2 = (val2 + min) & mask;
459 		val2 = val2 << rshift;
460 
461 		err = snd_soc_component_update_bits(component, reg2, val_mask,
462 			val2);
463 
464 		/* Don't discard any error code or drop change flag */
465 		if (ret == 0 || err < 0) {
466 			ret = err;
467 		}
468 	}
469 	return ret;
470 }
471 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
472 
473 /**
474  * snd_soc_info_volsw_range - single mixer info callback with range.
475  * @kcontrol: mixer control
476  * @uinfo: control element information
477  *
478  * Callback to provide information, within a range, about a single
479  * mixer control.
480  *
481  * returns 0 for success.
482  */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)483 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
484 	struct snd_ctl_elem_info *uinfo)
485 {
486 	struct soc_mixer_control *mc =
487 		(struct soc_mixer_control *)kcontrol->private_value;
488 	int platform_max;
489 	int min = mc->min;
490 
491 	if (!mc->platform_max)
492 		mc->platform_max = mc->max;
493 	platform_max = mc->platform_max;
494 
495 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
496 	uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
497 	uinfo->value.integer.min = 0;
498 	uinfo->value.integer.max = platform_max - min;
499 
500 	return 0;
501 }
502 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
503 
504 /**
505  * snd_soc_put_volsw_range - single mixer put value callback with range.
506  * @kcontrol: mixer control
507  * @ucontrol: control element information
508  *
509  * Callback to set the value, within a range, for a single mixer control.
510  *
511  * Returns 0 for success.
512  */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)513 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
514 	struct snd_ctl_elem_value *ucontrol)
515 {
516 	struct soc_mixer_control *mc =
517 		(struct soc_mixer_control *)kcontrol->private_value;
518 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
519 	unsigned int reg = mc->reg;
520 	unsigned int rreg = mc->rreg;
521 	unsigned int shift = mc->shift;
522 	int min = mc->min;
523 	int max = mc->max;
524 	unsigned int mask = (1 << fls(max)) - 1;
525 	unsigned int invert = mc->invert;
526 	unsigned int val, val_mask;
527 	int err, ret, tmp;
528 
529 	tmp = ucontrol->value.integer.value[0];
530 	if (tmp < 0)
531 		return -EINVAL;
532 	if (mc->platform_max && tmp > mc->platform_max)
533 		return -EINVAL;
534 	if (tmp > mc->max - mc->min)
535 		return -EINVAL;
536 
537 	if (invert)
538 		val = (max - ucontrol->value.integer.value[0]) & mask;
539 	else
540 		val = ((ucontrol->value.integer.value[0] + min) & mask);
541 	val_mask = mask << shift;
542 	val = val << shift;
543 
544 	err = snd_soc_component_update_bits(component, reg, val_mask, val);
545 	if (err < 0)
546 		return err;
547 	ret = err;
548 
549 	if (snd_soc_volsw_is_stereo(mc)) {
550 		tmp = ucontrol->value.integer.value[1];
551 		if (tmp < 0)
552 			return -EINVAL;
553 		if (mc->platform_max && tmp > mc->platform_max)
554 			return -EINVAL;
555 		if (tmp > mc->max - mc->min)
556 			return -EINVAL;
557 
558 		if (invert)
559 			val = (max - ucontrol->value.integer.value[1]) & mask;
560 		else
561 			val = ((ucontrol->value.integer.value[1] + min) & mask);
562 		val_mask = mask << shift;
563 		val = val << shift;
564 
565 		err = snd_soc_component_update_bits(component, rreg, val_mask,
566 			val);
567 		/* Don't discard any error code or drop change flag */
568 		if (ret == 0 || err < 0) {
569 			ret = err;
570 		}
571 	}
572 
573 	return ret;
574 }
575 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
576 
577 /**
578  * snd_soc_get_volsw_range - single mixer get callback with range
579  * @kcontrol: mixer control
580  * @ucontrol: control element information
581  *
582  * Callback to get the value, within a range, of a single mixer control.
583  *
584  * Returns 0 for success.
585  */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)586 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
587 	struct snd_ctl_elem_value *ucontrol)
588 {
589 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
590 	struct soc_mixer_control *mc =
591 		(struct soc_mixer_control *)kcontrol->private_value;
592 	unsigned int reg = mc->reg;
593 	unsigned int rreg = mc->rreg;
594 	unsigned int shift = mc->shift;
595 	int min = mc->min;
596 	int max = mc->max;
597 	unsigned int mask = (1 << fls(max)) - 1;
598 	unsigned int invert = mc->invert;
599 	unsigned int val;
600 
601 	val = snd_soc_component_read(component, reg);
602 	ucontrol->value.integer.value[0] = (val >> shift) & mask;
603 	if (invert)
604 		ucontrol->value.integer.value[0] =
605 			max - ucontrol->value.integer.value[0];
606 	else
607 		ucontrol->value.integer.value[0] =
608 			ucontrol->value.integer.value[0] - min;
609 
610 	if (snd_soc_volsw_is_stereo(mc)) {
611 		val = snd_soc_component_read(component, rreg);
612 		ucontrol->value.integer.value[1] = (val >> shift) & mask;
613 		if (invert)
614 			ucontrol->value.integer.value[1] =
615 				max - ucontrol->value.integer.value[1];
616 		else
617 			ucontrol->value.integer.value[1] =
618 				ucontrol->value.integer.value[1] - min;
619 	}
620 
621 	return 0;
622 }
623 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
624 
625 /**
626  * snd_soc_limit_volume - Set new limit to an existing volume control.
627  *
628  * @card: where to look for the control
629  * @name: Name of the control
630  * @max: new maximum limit
631  *
632  * Return 0 for success, else error.
633  */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)634 int snd_soc_limit_volume(struct snd_soc_card *card,
635 	const char *name, int max)
636 {
637 	struct snd_kcontrol *kctl;
638 	int ret = -EINVAL;
639 
640 	/* Sanity check for name and max */
641 	if (unlikely(!name || max <= 0))
642 		return -EINVAL;
643 
644 	kctl = snd_soc_card_get_kcontrol(card, name);
645 	if (kctl) {
646 		struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
647 		if (max <= mc->max - mc->min) {
648 			mc->platform_max = max;
649 			ret = 0;
650 		}
651 	}
652 	return ret;
653 }
654 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
655 
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)656 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
657 		       struct snd_ctl_elem_info *uinfo)
658 {
659 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
660 	struct soc_bytes *params = (void *)kcontrol->private_value;
661 
662 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
663 	uinfo->count = params->num_regs * component->val_bytes;
664 
665 	return 0;
666 }
667 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
668 
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)669 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
670 		      struct snd_ctl_elem_value *ucontrol)
671 {
672 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
673 	struct soc_bytes *params = (void *)kcontrol->private_value;
674 	int ret;
675 
676 	if (component->regmap)
677 		ret = regmap_raw_read(component->regmap, params->base,
678 				      ucontrol->value.bytes.data,
679 				      params->num_regs * component->val_bytes);
680 	else
681 		ret = -EINVAL;
682 
683 	/* Hide any masked bytes to ensure consistent data reporting */
684 	if (ret == 0 && params->mask) {
685 		switch (component->val_bytes) {
686 		case 1:
687 			ucontrol->value.bytes.data[0] &= ~params->mask;
688 			break;
689 		case 2:
690 			((u16 *)(&ucontrol->value.bytes.data))[0]
691 				&= cpu_to_be16(~params->mask);
692 			break;
693 		case 4:
694 			((u32 *)(&ucontrol->value.bytes.data))[0]
695 				&= cpu_to_be32(~params->mask);
696 			break;
697 		default:
698 			return -EINVAL;
699 		}
700 	}
701 
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
705 
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)706 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
707 		      struct snd_ctl_elem_value *ucontrol)
708 {
709 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
710 	struct soc_bytes *params = (void *)kcontrol->private_value;
711 	int ret, len;
712 	unsigned int val, mask;
713 	void *data;
714 
715 	if (!component->regmap || !params->num_regs)
716 		return -EINVAL;
717 
718 	len = params->num_regs * component->val_bytes;
719 
720 	data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
721 	if (!data)
722 		return -ENOMEM;
723 
724 	/*
725 	 * If we've got a mask then we need to preserve the register
726 	 * bits.  We shouldn't modify the incoming data so take a
727 	 * copy.
728 	 */
729 	if (params->mask) {
730 		ret = regmap_read(component->regmap, params->base, &val);
731 		if (ret != 0)
732 			goto out;
733 
734 		val &= params->mask;
735 
736 		switch (component->val_bytes) {
737 		case 1:
738 			((u8 *)data)[0] &= ~params->mask;
739 			((u8 *)data)[0] |= val;
740 			break;
741 		case 2:
742 			mask = ~params->mask;
743 			ret = regmap_parse_val(component->regmap,
744 							&mask, &mask);
745 			if (ret != 0)
746 				goto out;
747 
748 			((u16 *)data)[0] &= mask;
749 
750 			ret = regmap_parse_val(component->regmap,
751 							&val, &val);
752 			if (ret != 0)
753 				goto out;
754 
755 			((u16 *)data)[0] |= val;
756 			break;
757 		case 4:
758 			mask = ~params->mask;
759 			ret = regmap_parse_val(component->regmap,
760 							&mask, &mask);
761 			if (ret != 0)
762 				goto out;
763 
764 			((u32 *)data)[0] &= mask;
765 
766 			ret = regmap_parse_val(component->regmap,
767 							&val, &val);
768 			if (ret != 0)
769 				goto out;
770 
771 			((u32 *)data)[0] |= val;
772 			break;
773 		default:
774 			ret = -EINVAL;
775 			goto out;
776 		}
777 	}
778 
779 	ret = regmap_raw_write(component->regmap, params->base,
780 			       data, len);
781 
782 out:
783 	kfree(data);
784 
785 	return ret;
786 }
787 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
788 
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)789 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
790 			struct snd_ctl_elem_info *ucontrol)
791 {
792 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
793 
794 	ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
795 	ucontrol->count = params->max;
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
800 
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)801 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
802 				unsigned int size, unsigned int __user *tlv)
803 {
804 	struct soc_bytes_ext *params = (void *)kcontrol->private_value;
805 	unsigned int count = size < params->max ? size : params->max;
806 	int ret = -ENXIO;
807 
808 	switch (op_flag) {
809 	case SNDRV_CTL_TLV_OP_READ:
810 		if (params->get)
811 			ret = params->get(kcontrol, tlv, count);
812 		break;
813 	case SNDRV_CTL_TLV_OP_WRITE:
814 		if (params->put)
815 			ret = params->put(kcontrol, tlv, count);
816 		break;
817 	}
818 	return ret;
819 }
820 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
821 
822 /**
823  * snd_soc_info_xr_sx - signed multi register info callback
824  * @kcontrol: mreg control
825  * @uinfo: control element information
826  *
827  * Callback to provide information of a control that can
828  * span multiple codec registers which together
829  * forms a single signed value in a MSB/LSB manner.
830  *
831  * Returns 0 for success.
832  */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)833 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
834 	struct snd_ctl_elem_info *uinfo)
835 {
836 	struct soc_mreg_control *mc =
837 		(struct soc_mreg_control *)kcontrol->private_value;
838 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
839 	uinfo->count = 1;
840 	uinfo->value.integer.min = mc->min;
841 	uinfo->value.integer.max = mc->max;
842 
843 	return 0;
844 }
845 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
846 
847 /**
848  * snd_soc_get_xr_sx - signed multi register get callback
849  * @kcontrol: mreg control
850  * @ucontrol: control element information
851  *
852  * Callback to get the value of a control that can span
853  * multiple codec registers which together forms a single
854  * signed value in a MSB/LSB manner. The control supports
855  * specifying total no of bits used to allow for bitfields
856  * across the multiple codec registers.
857  *
858  * Returns 0 for success.
859  */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)860 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
861 	struct snd_ctl_elem_value *ucontrol)
862 {
863 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
864 	struct soc_mreg_control *mc =
865 		(struct soc_mreg_control *)kcontrol->private_value;
866 	unsigned int regbase = mc->regbase;
867 	unsigned int regcount = mc->regcount;
868 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
869 	unsigned int regwmask = (1UL<<regwshift)-1;
870 	unsigned int invert = mc->invert;
871 	unsigned long mask = (1UL<<mc->nbits)-1;
872 	long min = mc->min;
873 	long max = mc->max;
874 	long val = 0;
875 	unsigned int i;
876 
877 	for (i = 0; i < regcount; i++) {
878 		unsigned int regval = snd_soc_component_read(component, regbase+i);
879 		val |= (regval & regwmask) << (regwshift*(regcount-i-1));
880 	}
881 	val &= mask;
882 	if (min < 0 && val > max)
883 		val |= ~mask;
884 	if (invert)
885 		val = max - val;
886 	ucontrol->value.integer.value[0] = val;
887 
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
891 
892 /**
893  * snd_soc_put_xr_sx - signed multi register get callback
894  * @kcontrol: mreg control
895  * @ucontrol: control element information
896  *
897  * Callback to set the value of a control that can span
898  * multiple codec registers which together forms a single
899  * signed value in a MSB/LSB manner. The control supports
900  * specifying total no of bits used to allow for bitfields
901  * across the multiple codec registers.
902  *
903  * Returns 0 for success.
904  */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)905 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
906 	struct snd_ctl_elem_value *ucontrol)
907 {
908 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
909 	struct soc_mreg_control *mc =
910 		(struct soc_mreg_control *)kcontrol->private_value;
911 	unsigned int regbase = mc->regbase;
912 	unsigned int regcount = mc->regcount;
913 	unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
914 	unsigned int regwmask = (1UL<<regwshift)-1;
915 	unsigned int invert = mc->invert;
916 	unsigned long mask = (1UL<<mc->nbits)-1;
917 	long max = mc->max;
918 	long val = ucontrol->value.integer.value[0];
919 	int ret = 0;
920 	unsigned int i;
921 
922 	if (val < mc->min || val > mc->max)
923 		return -EINVAL;
924 	if (invert)
925 		val = max - val;
926 	val &= mask;
927 	for (i = 0; i < regcount; i++) {
928 		unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
929 		unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
930 		int err = snd_soc_component_update_bits(component, regbase+i,
931 							regmask, regval);
932 		if (err < 0)
933 			return err;
934 		if (err > 0)
935 			ret = err;
936 	}
937 
938 	return ret;
939 }
940 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
941 
942 /**
943  * snd_soc_get_strobe - strobe get callback
944  * @kcontrol: mixer control
945  * @ucontrol: control element information
946  *
947  * Callback get the value of a strobe mixer control.
948  *
949  * Returns 0 for success.
950  */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)951 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
952 	struct snd_ctl_elem_value *ucontrol)
953 {
954 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
955 	struct soc_mixer_control *mc =
956 		(struct soc_mixer_control *)kcontrol->private_value;
957 	unsigned int reg = mc->reg;
958 	unsigned int shift = mc->shift;
959 	unsigned int mask = 1 << shift;
960 	unsigned int invert = mc->invert != 0;
961 	unsigned int val;
962 
963 	val = snd_soc_component_read(component, reg);
964 	val &= mask;
965 
966 	if (shift != 0 && val != 0)
967 		val = val >> shift;
968 	ucontrol->value.enumerated.item[0] = val ^ invert;
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
973 
974 /**
975  * snd_soc_put_strobe - strobe put callback
976  * @kcontrol: mixer control
977  * @ucontrol: control element information
978  *
979  * Callback strobe a register bit to high then low (or the inverse)
980  * in one pass of a single mixer enum control.
981  *
982  * Returns 1 for success.
983  */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)984 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
985 	struct snd_ctl_elem_value *ucontrol)
986 {
987 	struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
988 	struct soc_mixer_control *mc =
989 		(struct soc_mixer_control *)kcontrol->private_value;
990 	unsigned int reg = mc->reg;
991 	unsigned int shift = mc->shift;
992 	unsigned int mask = 1 << shift;
993 	unsigned int invert = mc->invert != 0;
994 	unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
995 	unsigned int val1 = (strobe ^ invert) ? mask : 0;
996 	unsigned int val2 = (strobe ^ invert) ? 0 : mask;
997 	int err;
998 
999 	err = snd_soc_component_update_bits(component, reg, mask, val1);
1000 	if (err < 0)
1001 		return err;
1002 
1003 	return snd_soc_component_update_bits(component, reg, mask, val2);
1004 }
1005 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1006