1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
129 /*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
kvm_no_compat_open(struct inode * inode,struct file * file)139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
164 {
165 }
166
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
kvm_is_zone_device_pfn(kvm_pfn_t pfn)171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
172 {
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
180 return false;
181
182 return is_zone_device_page(pfn_to_page(pfn));
183 }
184
kvm_is_reserved_pfn(kvm_pfn_t pfn)185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
186 {
187 /*
188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
189 * perspective they are "normal" pages, albeit with slightly different
190 * usage rules.
191 */
192 if (pfn_valid(pfn))
193 return PageReserved(pfn_to_page(pfn)) &&
194 !is_zero_pfn(pfn) &&
195 !kvm_is_zone_device_pfn(pfn);
196
197 return true;
198 }
199
200 /*
201 * Switches to specified vcpu, until a matching vcpu_put()
202 */
vcpu_load(struct kvm_vcpu * vcpu)203 void vcpu_load(struct kvm_vcpu *vcpu)
204 {
205 int cpu = get_cpu();
206
207 __this_cpu_write(kvm_running_vcpu, vcpu);
208 preempt_notifier_register(&vcpu->preempt_notifier);
209 kvm_arch_vcpu_load(vcpu, cpu);
210 put_cpu();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_load);
213
vcpu_put(struct kvm_vcpu * vcpu)214 void vcpu_put(struct kvm_vcpu *vcpu)
215 {
216 preempt_disable();
217 kvm_arch_vcpu_put(vcpu);
218 preempt_notifier_unregister(&vcpu->preempt_notifier);
219 __this_cpu_write(kvm_running_vcpu, NULL);
220 preempt_enable();
221 }
222 EXPORT_SYMBOL_GPL(vcpu_put);
223
224 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
226 {
227 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
228
229 /*
230 * We need to wait for the VCPU to reenable interrupts and get out of
231 * READING_SHADOW_PAGE_TABLES mode.
232 */
233 if (req & KVM_REQUEST_WAIT)
234 return mode != OUTSIDE_GUEST_MODE;
235
236 /*
237 * Need to kick a running VCPU, but otherwise there is nothing to do.
238 */
239 return mode == IN_GUEST_MODE;
240 }
241
ack_flush(void * _completed)242 static void ack_flush(void *_completed)
243 {
244 }
245
kvm_kick_many_cpus(cpumask_var_t tmp,bool wait)246 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
247 {
248 const struct cpumask *cpus;
249
250 if (likely(cpumask_available(tmp)))
251 cpus = tmp;
252 else
253 cpus = cpu_online_mask;
254
255 if (cpumask_empty(cpus))
256 return false;
257
258 smp_call_function_many(cpus, ack_flush, NULL, wait);
259 return true;
260 }
261
kvm_make_vcpu_request(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int req,cpumask_var_t tmp,int current_cpu)262 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
263 unsigned int req, cpumask_var_t tmp,
264 int current_cpu)
265 {
266 int cpu;
267
268 kvm_make_request(req, vcpu);
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
273 /*
274 * tmp can be "unavailable" if cpumasks are allocated off stack as
275 * allocation of the mask is deliberately not fatal and is handled by
276 * falling back to kicking all online CPUs.
277 */
278 if (!cpumask_available(tmp))
279 return;
280
281 /*
282 * Note, the vCPU could get migrated to a different pCPU at any point
283 * after kvm_request_needs_ipi(), which could result in sending an IPI
284 * to the previous pCPU. But, that's OK because the purpose of the IPI
285 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
286 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
287 * after this point is also OK, as the requirement is only that KVM wait
288 * for vCPUs that were reading SPTEs _before_ any changes were
289 * finalized. See kvm_vcpu_kick() for more details on handling requests.
290 */
291 if (kvm_request_needs_ipi(vcpu, req)) {
292 cpu = READ_ONCE(vcpu->cpu);
293 if (cpu != -1 && cpu != current_cpu)
294 __cpumask_set_cpu(cpu, tmp);
295 }
296 }
297
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)298 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
299 struct kvm_vcpu *except,
300 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
301 {
302 struct kvm_vcpu *vcpu;
303 unsigned long i;
304 int me;
305 bool called;
306
307 me = get_cpu();
308
309 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
310 vcpu = kvm_get_vcpu(kvm, i);
311 if (!vcpu || vcpu == except)
312 continue;
313 kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
314 }
315
316 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
317 put_cpu();
318
319 return called;
320 }
321
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)322 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
323 struct kvm_vcpu *except)
324 {
325 struct kvm_vcpu *vcpu;
326 struct cpumask *cpus;
327 bool called;
328 unsigned long i;
329 int me;
330
331 me = get_cpu();
332
333 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
334 cpumask_clear(cpus);
335
336 kvm_for_each_vcpu(i, vcpu, kvm) {
337 if (vcpu == except)
338 continue;
339 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
340 }
341
342 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
343 put_cpu();
344
345 return called;
346 }
347
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)348 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
349 {
350 return kvm_make_all_cpus_request_except(kvm, req, NULL);
351 }
352 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
353
354 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)355 void kvm_flush_remote_tlbs(struct kvm *kvm)
356 {
357 ++kvm->stat.generic.remote_tlb_flush_requests;
358
359 /*
360 * We want to publish modifications to the page tables before reading
361 * mode. Pairs with a memory barrier in arch-specific code.
362 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
363 * and smp_mb in walk_shadow_page_lockless_begin/end.
364 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
365 *
366 * There is already an smp_mb__after_atomic() before
367 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
368 * barrier here.
369 */
370 if (!kvm_arch_flush_remote_tlb(kvm)
371 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
372 ++kvm->stat.generic.remote_tlb_flush;
373 }
374 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
375 #endif
376
kvm_reload_remote_mmus(struct kvm * kvm)377 void kvm_reload_remote_mmus(struct kvm *kvm)
378 {
379 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
380 }
381
kvm_flush_shadow_all(struct kvm * kvm)382 static void kvm_flush_shadow_all(struct kvm *kvm)
383 {
384 kvm_arch_flush_shadow_all(kvm);
385 kvm_arch_guest_memory_reclaimed(kvm);
386 }
387
388 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)389 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
390 gfp_t gfp_flags)
391 {
392 gfp_flags |= mc->gfp_zero;
393
394 if (mc->kmem_cache)
395 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
396 else
397 return (void *)__get_free_page(gfp_flags);
398 }
399
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)400 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
401 {
402 void *obj;
403
404 if (mc->nobjs >= min)
405 return 0;
406 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
407 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
408 if (!obj)
409 return mc->nobjs >= min ? 0 : -ENOMEM;
410 mc->objects[mc->nobjs++] = obj;
411 }
412 return 0;
413 }
414
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)415 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
416 {
417 return mc->nobjs;
418 }
419
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)420 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
421 {
422 while (mc->nobjs) {
423 if (mc->kmem_cache)
424 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
425 else
426 free_page((unsigned long)mc->objects[--mc->nobjs]);
427 }
428 }
429
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
431 {
432 void *p;
433
434 if (WARN_ON(!mc->nobjs))
435 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
436 else
437 p = mc->objects[--mc->nobjs];
438 BUG_ON(!p);
439 return p;
440 }
441 #endif
442
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
444 {
445 mutex_init(&vcpu->mutex);
446 vcpu->cpu = -1;
447 vcpu->kvm = kvm;
448 vcpu->vcpu_id = id;
449 vcpu->pid = NULL;
450 rcuwait_init(&vcpu->wait);
451 kvm_async_pf_vcpu_init(vcpu);
452
453 vcpu->pre_pcpu = -1;
454 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
455
456 kvm_vcpu_set_in_spin_loop(vcpu, false);
457 kvm_vcpu_set_dy_eligible(vcpu, false);
458 vcpu->preempted = false;
459 vcpu->ready = false;
460 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
461 vcpu->last_used_slot = 0;
462 }
463
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)464 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
465 {
466 kvm_arch_vcpu_destroy(vcpu);
467 kvm_dirty_ring_free(&vcpu->dirty_ring);
468
469 /*
470 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
471 * the vcpu->pid pointer, and at destruction time all file descriptors
472 * are already gone.
473 */
474 put_pid(rcu_dereference_protected(vcpu->pid, 1));
475
476 free_page((unsigned long)vcpu->run);
477 kmem_cache_free(kvm_vcpu_cache, vcpu);
478 }
479
kvm_destroy_vcpus(struct kvm * kvm)480 void kvm_destroy_vcpus(struct kvm *kvm)
481 {
482 unsigned long i;
483 struct kvm_vcpu *vcpu;
484
485 kvm_for_each_vcpu(i, vcpu, kvm) {
486 kvm_vcpu_destroy(vcpu);
487 xa_erase(&kvm->vcpu_array, i);
488 }
489
490 atomic_set(&kvm->online_vcpus, 0);
491 }
492 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
493
494 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)495 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
496 {
497 return container_of(mn, struct kvm, mmu_notifier);
498 }
499
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)500 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
501 struct mm_struct *mm,
502 unsigned long start, unsigned long end)
503 {
504 struct kvm *kvm = mmu_notifier_to_kvm(mn);
505 int idx;
506
507 idx = srcu_read_lock(&kvm->srcu);
508 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
509 srcu_read_unlock(&kvm->srcu, idx);
510 }
511
512 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
513
514 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
515 unsigned long end);
516
517 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
518
519 struct kvm_hva_range {
520 unsigned long start;
521 unsigned long end;
522 pte_t pte;
523 hva_handler_t handler;
524 on_lock_fn_t on_lock;
525 on_unlock_fn_t on_unlock;
526 bool flush_on_ret;
527 bool may_block;
528 };
529
530 /*
531 * Use a dedicated stub instead of NULL to indicate that there is no callback
532 * function/handler. The compiler technically can't guarantee that a real
533 * function will have a non-zero address, and so it will generate code to
534 * check for !NULL, whereas comparing against a stub will be elided at compile
535 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
536 */
kvm_null_fn(void)537 static void kvm_null_fn(void)
538 {
539
540 }
541 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
542
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)543 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
544 const struct kvm_hva_range *range)
545 {
546 bool ret = false, locked = false;
547 struct kvm_gfn_range gfn_range;
548 struct kvm_memory_slot *slot;
549 struct kvm_memslots *slots;
550 int i, idx;
551
552 /* A null handler is allowed if and only if on_lock() is provided. */
553 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
554 IS_KVM_NULL_FN(range->handler)))
555 return 0;
556
557 idx = srcu_read_lock(&kvm->srcu);
558
559 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
560 slots = __kvm_memslots(kvm, i);
561 kvm_for_each_memslot(slot, slots) {
562 unsigned long hva_start, hva_end;
563
564 hva_start = max(range->start, slot->userspace_addr);
565 hva_end = min(range->end, slot->userspace_addr +
566 (slot->npages << PAGE_SHIFT));
567 if (hva_start >= hva_end)
568 continue;
569
570 /*
571 * To optimize for the likely case where the address
572 * range is covered by zero or one memslots, don't
573 * bother making these conditional (to avoid writes on
574 * the second or later invocation of the handler).
575 */
576 gfn_range.pte = range->pte;
577 gfn_range.may_block = range->may_block;
578
579 /*
580 * {gfn(page) | page intersects with [hva_start, hva_end)} =
581 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
582 */
583 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
584 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
585 gfn_range.slot = slot;
586
587 if (!locked) {
588 locked = true;
589 KVM_MMU_LOCK(kvm);
590 if (!IS_KVM_NULL_FN(range->on_lock))
591 range->on_lock(kvm, range->start, range->end);
592 if (IS_KVM_NULL_FN(range->handler))
593 break;
594 }
595 ret |= range->handler(kvm, &gfn_range);
596 }
597 }
598
599 if (range->flush_on_ret && ret)
600 kvm_flush_remote_tlbs(kvm);
601
602 if (locked) {
603 KVM_MMU_UNLOCK(kvm);
604 if (!IS_KVM_NULL_FN(range->on_unlock))
605 range->on_unlock(kvm);
606 }
607
608 srcu_read_unlock(&kvm->srcu, idx);
609
610 /* The notifiers are averse to booleans. :-( */
611 return (int)ret;
612 }
613
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,pte_t pte,hva_handler_t handler)614 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
615 unsigned long start,
616 unsigned long end,
617 pte_t pte,
618 hva_handler_t handler)
619 {
620 struct kvm *kvm = mmu_notifier_to_kvm(mn);
621 const struct kvm_hva_range range = {
622 .start = start,
623 .end = end,
624 .pte = pte,
625 .handler = handler,
626 .on_lock = (void *)kvm_null_fn,
627 .on_unlock = (void *)kvm_null_fn,
628 .flush_on_ret = true,
629 .may_block = false,
630 };
631
632 return __kvm_handle_hva_range(kvm, &range);
633 }
634
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)635 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
636 unsigned long start,
637 unsigned long end,
638 hva_handler_t handler)
639 {
640 struct kvm *kvm = mmu_notifier_to_kvm(mn);
641 const struct kvm_hva_range range = {
642 .start = start,
643 .end = end,
644 .pte = __pte(0),
645 .handler = handler,
646 .on_lock = (void *)kvm_null_fn,
647 .on_unlock = (void *)kvm_null_fn,
648 .flush_on_ret = false,
649 .may_block = false,
650 };
651
652 return __kvm_handle_hva_range(kvm, &range);
653 }
654
kvm_change_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)655 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
656 {
657 /*
658 * Skipping invalid memslots is correct if and only change_pte() is
659 * surrounded by invalidate_range_{start,end}(), which is currently
660 * guaranteed by the primary MMU. If that ever changes, KVM needs to
661 * unmap the memslot instead of skipping the memslot to ensure that KVM
662 * doesn't hold references to the old PFN.
663 */
664 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
665
666 if (range->slot->flags & KVM_MEMSLOT_INVALID)
667 return false;
668
669 return kvm_set_spte_gfn(kvm, range);
670 }
671
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)672 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
673 struct mm_struct *mm,
674 unsigned long address,
675 pte_t pte)
676 {
677 struct kvm *kvm = mmu_notifier_to_kvm(mn);
678
679 trace_kvm_set_spte_hva(address);
680
681 /*
682 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
683 * If mmu_notifier_count is zero, then no in-progress invalidations,
684 * including this one, found a relevant memslot at start(); rechecking
685 * memslots here is unnecessary. Note, a false positive (count elevated
686 * by a different invalidation) is sub-optimal but functionally ok.
687 */
688 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
689 if (!READ_ONCE(kvm->mmu_notifier_count))
690 return;
691
692 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn);
693 }
694
kvm_inc_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)695 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
696 unsigned long end)
697 {
698 /*
699 * The count increase must become visible at unlock time as no
700 * spte can be established without taking the mmu_lock and
701 * count is also read inside the mmu_lock critical section.
702 */
703 kvm->mmu_notifier_count++;
704 if (likely(kvm->mmu_notifier_count == 1)) {
705 kvm->mmu_notifier_range_start = start;
706 kvm->mmu_notifier_range_end = end;
707 } else {
708 /*
709 * Fully tracking multiple concurrent ranges has dimishing
710 * returns. Keep things simple and just find the minimal range
711 * which includes the current and new ranges. As there won't be
712 * enough information to subtract a range after its invalidate
713 * completes, any ranges invalidated concurrently will
714 * accumulate and persist until all outstanding invalidates
715 * complete.
716 */
717 kvm->mmu_notifier_range_start =
718 min(kvm->mmu_notifier_range_start, start);
719 kvm->mmu_notifier_range_end =
720 max(kvm->mmu_notifier_range_end, end);
721 }
722 }
723
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)724 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
725 const struct mmu_notifier_range *range)
726 {
727 struct kvm *kvm = mmu_notifier_to_kvm(mn);
728 const struct kvm_hva_range hva_range = {
729 .start = range->start,
730 .end = range->end,
731 .pte = __pte(0),
732 .handler = kvm_unmap_gfn_range,
733 .on_lock = kvm_inc_notifier_count,
734 .on_unlock = kvm_arch_guest_memory_reclaimed,
735 .flush_on_ret = true,
736 .may_block = mmu_notifier_range_blockable(range),
737 };
738
739 trace_kvm_unmap_hva_range(range->start, range->end);
740
741 /*
742 * Prevent memslot modification between range_start() and range_end()
743 * so that conditionally locking provides the same result in both
744 * functions. Without that guarantee, the mmu_notifier_count
745 * adjustments will be imbalanced.
746 *
747 * Pairs with the decrement in range_end().
748 */
749 spin_lock(&kvm->mn_invalidate_lock);
750 kvm->mn_active_invalidate_count++;
751 spin_unlock(&kvm->mn_invalidate_lock);
752
753 __kvm_handle_hva_range(kvm, &hva_range);
754
755 return 0;
756 }
757
kvm_dec_notifier_count(struct kvm * kvm,unsigned long start,unsigned long end)758 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
759 unsigned long end)
760 {
761 /*
762 * This sequence increase will notify the kvm page fault that
763 * the page that is going to be mapped in the spte could have
764 * been freed.
765 */
766 kvm->mmu_notifier_seq++;
767 smp_wmb();
768 /*
769 * The above sequence increase must be visible before the
770 * below count decrease, which is ensured by the smp_wmb above
771 * in conjunction with the smp_rmb in mmu_notifier_retry().
772 */
773 kvm->mmu_notifier_count--;
774 }
775
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)776 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
777 const struct mmu_notifier_range *range)
778 {
779 struct kvm *kvm = mmu_notifier_to_kvm(mn);
780 const struct kvm_hva_range hva_range = {
781 .start = range->start,
782 .end = range->end,
783 .pte = __pte(0),
784 .handler = (void *)kvm_null_fn,
785 .on_lock = kvm_dec_notifier_count,
786 .on_unlock = (void *)kvm_null_fn,
787 .flush_on_ret = false,
788 .may_block = mmu_notifier_range_blockable(range),
789 };
790 bool wake;
791
792 __kvm_handle_hva_range(kvm, &hva_range);
793
794 /* Pairs with the increment in range_start(). */
795 spin_lock(&kvm->mn_invalidate_lock);
796 wake = (--kvm->mn_active_invalidate_count == 0);
797 spin_unlock(&kvm->mn_invalidate_lock);
798
799 /*
800 * There can only be one waiter, since the wait happens under
801 * slots_lock.
802 */
803 if (wake)
804 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
805
806 BUG_ON(kvm->mmu_notifier_count < 0);
807 }
808
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)809 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
810 struct mm_struct *mm,
811 unsigned long start,
812 unsigned long end)
813 {
814 trace_kvm_age_hva(start, end);
815
816 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
817 }
818
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)819 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
820 struct mm_struct *mm,
821 unsigned long start,
822 unsigned long end)
823 {
824 trace_kvm_age_hva(start, end);
825
826 /*
827 * Even though we do not flush TLB, this will still adversely
828 * affect performance on pre-Haswell Intel EPT, where there is
829 * no EPT Access Bit to clear so that we have to tear down EPT
830 * tables instead. If we find this unacceptable, we can always
831 * add a parameter to kvm_age_hva so that it effectively doesn't
832 * do anything on clear_young.
833 *
834 * Also note that currently we never issue secondary TLB flushes
835 * from clear_young, leaving this job up to the regular system
836 * cadence. If we find this inaccurate, we might come up with a
837 * more sophisticated heuristic later.
838 */
839 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
840 }
841
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)842 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
843 struct mm_struct *mm,
844 unsigned long address)
845 {
846 trace_kvm_test_age_hva(address);
847
848 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
849 kvm_test_age_gfn);
850 }
851
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)852 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
853 struct mm_struct *mm)
854 {
855 struct kvm *kvm = mmu_notifier_to_kvm(mn);
856 int idx;
857
858 idx = srcu_read_lock(&kvm->srcu);
859 kvm_flush_shadow_all(kvm);
860 srcu_read_unlock(&kvm->srcu, idx);
861 }
862
863 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
864 .invalidate_range = kvm_mmu_notifier_invalidate_range,
865 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
866 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
867 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
868 .clear_young = kvm_mmu_notifier_clear_young,
869 .test_young = kvm_mmu_notifier_test_young,
870 .change_pte = kvm_mmu_notifier_change_pte,
871 .release = kvm_mmu_notifier_release,
872 };
873
kvm_init_mmu_notifier(struct kvm * kvm)874 static int kvm_init_mmu_notifier(struct kvm *kvm)
875 {
876 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
877 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
878 }
879
880 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
881
kvm_init_mmu_notifier(struct kvm * kvm)882 static int kvm_init_mmu_notifier(struct kvm *kvm)
883 {
884 return 0;
885 }
886
887 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
888
889 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)890 static int kvm_pm_notifier_call(struct notifier_block *bl,
891 unsigned long state,
892 void *unused)
893 {
894 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
895
896 return kvm_arch_pm_notifier(kvm, state);
897 }
898
kvm_init_pm_notifier(struct kvm * kvm)899 static void kvm_init_pm_notifier(struct kvm *kvm)
900 {
901 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
902 /* Suspend KVM before we suspend ftrace, RCU, etc. */
903 kvm->pm_notifier.priority = INT_MAX;
904 register_pm_notifier(&kvm->pm_notifier);
905 }
906
kvm_destroy_pm_notifier(struct kvm * kvm)907 static void kvm_destroy_pm_notifier(struct kvm *kvm)
908 {
909 unregister_pm_notifier(&kvm->pm_notifier);
910 }
911 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)912 static void kvm_init_pm_notifier(struct kvm *kvm)
913 {
914 }
915
kvm_destroy_pm_notifier(struct kvm * kvm)916 static void kvm_destroy_pm_notifier(struct kvm *kvm)
917 {
918 }
919 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
920
kvm_alloc_memslots(void)921 static struct kvm_memslots *kvm_alloc_memslots(void)
922 {
923 int i;
924 struct kvm_memslots *slots;
925
926 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
927 if (!slots)
928 return NULL;
929
930 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
931 slots->id_to_index[i] = -1;
932
933 return slots;
934 }
935
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)936 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
937 {
938 if (!memslot->dirty_bitmap)
939 return;
940
941 kvfree(memslot->dirty_bitmap);
942 memslot->dirty_bitmap = NULL;
943 }
944
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)945 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
946 {
947 kvm_destroy_dirty_bitmap(slot);
948
949 kvm_arch_free_memslot(kvm, slot);
950
951 slot->flags = 0;
952 slot->npages = 0;
953 }
954
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)955 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
956 {
957 struct kvm_memory_slot *memslot;
958
959 if (!slots)
960 return;
961
962 kvm_for_each_memslot(memslot, slots)
963 kvm_free_memslot(kvm, memslot);
964
965 kvfree(slots);
966 }
967
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)968 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
969 {
970 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
971 case KVM_STATS_TYPE_INSTANT:
972 return 0444;
973 case KVM_STATS_TYPE_CUMULATIVE:
974 case KVM_STATS_TYPE_PEAK:
975 default:
976 return 0644;
977 }
978 }
979
980
kvm_destroy_vm_debugfs(struct kvm * kvm)981 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
982 {
983 int i;
984 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
985 kvm_vcpu_stats_header.num_desc;
986
987 if (IS_ERR(kvm->debugfs_dentry))
988 return;
989
990 debugfs_remove_recursive(kvm->debugfs_dentry);
991
992 if (kvm->debugfs_stat_data) {
993 for (i = 0; i < kvm_debugfs_num_entries; i++)
994 kfree(kvm->debugfs_stat_data[i]);
995 kfree(kvm->debugfs_stat_data);
996 }
997 }
998
kvm_create_vm_debugfs(struct kvm * kvm,int fd)999 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
1000 {
1001 static DEFINE_MUTEX(kvm_debugfs_lock);
1002 struct dentry *dent;
1003 char dir_name[ITOA_MAX_LEN * 2];
1004 struct kvm_stat_data *stat_data;
1005 const struct _kvm_stats_desc *pdesc;
1006 int i, ret;
1007 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1008 kvm_vcpu_stats_header.num_desc;
1009
1010 /*
1011 * Force subsequent debugfs file creations to fail if the VM directory
1012 * is not created.
1013 */
1014 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1015
1016 if (!debugfs_initialized())
1017 return 0;
1018
1019 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
1020 mutex_lock(&kvm_debugfs_lock);
1021 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1022 if (dent) {
1023 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1024 dput(dent);
1025 mutex_unlock(&kvm_debugfs_lock);
1026 return 0;
1027 }
1028 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1029 mutex_unlock(&kvm_debugfs_lock);
1030 if (IS_ERR(dent))
1031 return 0;
1032
1033 kvm->debugfs_dentry = dent;
1034 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1035 sizeof(*kvm->debugfs_stat_data),
1036 GFP_KERNEL_ACCOUNT);
1037 if (!kvm->debugfs_stat_data)
1038 return -ENOMEM;
1039
1040 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1041 pdesc = &kvm_vm_stats_desc[i];
1042 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1043 if (!stat_data)
1044 return -ENOMEM;
1045
1046 stat_data->kvm = kvm;
1047 stat_data->desc = pdesc;
1048 stat_data->kind = KVM_STAT_VM;
1049 kvm->debugfs_stat_data[i] = stat_data;
1050 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1051 kvm->debugfs_dentry, stat_data,
1052 &stat_fops_per_vm);
1053 }
1054
1055 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1056 pdesc = &kvm_vcpu_stats_desc[i];
1057 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1058 if (!stat_data)
1059 return -ENOMEM;
1060
1061 stat_data->kvm = kvm;
1062 stat_data->desc = pdesc;
1063 stat_data->kind = KVM_STAT_VCPU;
1064 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1065 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1066 kvm->debugfs_dentry, stat_data,
1067 &stat_fops_per_vm);
1068 }
1069
1070 ret = kvm_arch_create_vm_debugfs(kvm);
1071 if (ret) {
1072 kvm_destroy_vm_debugfs(kvm);
1073 return i;
1074 }
1075
1076 return 0;
1077 }
1078
1079 /*
1080 * Called after the VM is otherwise initialized, but just before adding it to
1081 * the vm_list.
1082 */
kvm_arch_post_init_vm(struct kvm * kvm)1083 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1084 {
1085 return 0;
1086 }
1087
1088 /*
1089 * Called just after removing the VM from the vm_list, but before doing any
1090 * other destruction.
1091 */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1092 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1093 {
1094 }
1095
1096 /*
1097 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1098 * be setup already, so we can create arch-specific debugfs entries under it.
1099 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1100 * a per-arch destroy interface is not needed.
1101 */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1102 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1103 {
1104 return 0;
1105 }
1106
kvm_create_vm(unsigned long type)1107 static struct kvm *kvm_create_vm(unsigned long type)
1108 {
1109 struct kvm *kvm = kvm_arch_alloc_vm();
1110 int r = -ENOMEM;
1111 int i;
1112
1113 if (!kvm)
1114 return ERR_PTR(-ENOMEM);
1115
1116 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1117 __module_get(kvm_chardev_ops.owner);
1118
1119 KVM_MMU_LOCK_INIT(kvm);
1120 mmgrab(current->mm);
1121 kvm->mm = current->mm;
1122 kvm_eventfd_init(kvm);
1123 mutex_init(&kvm->lock);
1124 mutex_init(&kvm->irq_lock);
1125 mutex_init(&kvm->slots_lock);
1126 mutex_init(&kvm->slots_arch_lock);
1127 spin_lock_init(&kvm->mn_invalidate_lock);
1128 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1129 xa_init(&kvm->vcpu_array);
1130
1131 INIT_LIST_HEAD(&kvm->devices);
1132
1133 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1134
1135 /*
1136 * Force subsequent debugfs file creations to fail if the VM directory
1137 * is not created (by kvm_create_vm_debugfs()).
1138 */
1139 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1140
1141 if (init_srcu_struct(&kvm->srcu))
1142 goto out_err_no_srcu;
1143 if (init_srcu_struct(&kvm->irq_srcu))
1144 goto out_err_no_irq_srcu;
1145
1146 refcount_set(&kvm->users_count, 1);
1147 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1148 struct kvm_memslots *slots = kvm_alloc_memslots();
1149
1150 if (!slots)
1151 goto out_err_no_arch_destroy_vm;
1152 /* Generations must be different for each address space. */
1153 slots->generation = i;
1154 rcu_assign_pointer(kvm->memslots[i], slots);
1155 }
1156
1157 for (i = 0; i < KVM_NR_BUSES; i++) {
1158 rcu_assign_pointer(kvm->buses[i],
1159 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1160 if (!kvm->buses[i])
1161 goto out_err_no_arch_destroy_vm;
1162 }
1163
1164 kvm->max_halt_poll_ns = halt_poll_ns;
1165
1166 r = kvm_arch_init_vm(kvm, type);
1167 if (r)
1168 goto out_err_no_arch_destroy_vm;
1169
1170 r = hardware_enable_all();
1171 if (r)
1172 goto out_err_no_disable;
1173
1174 #ifdef CONFIG_HAVE_KVM_IRQFD
1175 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1176 #endif
1177
1178 r = kvm_init_mmu_notifier(kvm);
1179 if (r)
1180 goto out_err_no_mmu_notifier;
1181
1182 r = kvm_arch_post_init_vm(kvm);
1183 if (r)
1184 goto out_err;
1185
1186 mutex_lock(&kvm_lock);
1187 list_add(&kvm->vm_list, &vm_list);
1188 mutex_unlock(&kvm_lock);
1189
1190 preempt_notifier_inc();
1191 kvm_init_pm_notifier(kvm);
1192
1193 return kvm;
1194
1195 out_err:
1196 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1197 if (kvm->mmu_notifier.ops)
1198 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1199 #endif
1200 out_err_no_mmu_notifier:
1201 hardware_disable_all();
1202 out_err_no_disable:
1203 kvm_arch_destroy_vm(kvm);
1204 out_err_no_arch_destroy_vm:
1205 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1206 for (i = 0; i < KVM_NR_BUSES; i++)
1207 kfree(kvm_get_bus(kvm, i));
1208 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1209 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1210 cleanup_srcu_struct(&kvm->irq_srcu);
1211 out_err_no_irq_srcu:
1212 cleanup_srcu_struct(&kvm->srcu);
1213 out_err_no_srcu:
1214 kvm_arch_free_vm(kvm);
1215 mmdrop(current->mm);
1216 module_put(kvm_chardev_ops.owner);
1217 return ERR_PTR(r);
1218 }
1219
kvm_destroy_devices(struct kvm * kvm)1220 static void kvm_destroy_devices(struct kvm *kvm)
1221 {
1222 struct kvm_device *dev, *tmp;
1223
1224 /*
1225 * We do not need to take the kvm->lock here, because nobody else
1226 * has a reference to the struct kvm at this point and therefore
1227 * cannot access the devices list anyhow.
1228 */
1229 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1230 list_del(&dev->vm_node);
1231 dev->ops->destroy(dev);
1232 }
1233 }
1234
kvm_destroy_vm(struct kvm * kvm)1235 static void kvm_destroy_vm(struct kvm *kvm)
1236 {
1237 int i;
1238 struct mm_struct *mm = kvm->mm;
1239
1240 kvm_destroy_pm_notifier(kvm);
1241 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1242 kvm_destroy_vm_debugfs(kvm);
1243 kvm_arch_sync_events(kvm);
1244 mutex_lock(&kvm_lock);
1245 list_del(&kvm->vm_list);
1246 mutex_unlock(&kvm_lock);
1247 kvm_arch_pre_destroy_vm(kvm);
1248
1249 kvm_free_irq_routing(kvm);
1250 for (i = 0; i < KVM_NR_BUSES; i++) {
1251 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1252
1253 if (bus)
1254 kvm_io_bus_destroy(bus);
1255 kvm->buses[i] = NULL;
1256 }
1257 kvm_coalesced_mmio_free(kvm);
1258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1259 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1260 /*
1261 * At this point, pending calls to invalidate_range_start()
1262 * have completed but no more MMU notifiers will run, so
1263 * mn_active_invalidate_count may remain unbalanced.
1264 * No threads can be waiting in install_new_memslots as the
1265 * last reference on KVM has been dropped, but freeing
1266 * memslots would deadlock without this manual intervention.
1267 */
1268 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1269 kvm->mn_active_invalidate_count = 0;
1270 #else
1271 kvm_flush_shadow_all(kvm);
1272 #endif
1273 kvm_arch_destroy_vm(kvm);
1274 kvm_destroy_devices(kvm);
1275 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1276 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1277 cleanup_srcu_struct(&kvm->irq_srcu);
1278 cleanup_srcu_struct(&kvm->srcu);
1279 kvm_arch_free_vm(kvm);
1280 preempt_notifier_dec();
1281 hardware_disable_all();
1282 mmdrop(mm);
1283 module_put(kvm_chardev_ops.owner);
1284 }
1285
kvm_get_kvm(struct kvm * kvm)1286 void kvm_get_kvm(struct kvm *kvm)
1287 {
1288 refcount_inc(&kvm->users_count);
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1291
1292 /*
1293 * Make sure the vm is not during destruction, which is a safe version of
1294 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1295 */
kvm_get_kvm_safe(struct kvm * kvm)1296 bool kvm_get_kvm_safe(struct kvm *kvm)
1297 {
1298 return refcount_inc_not_zero(&kvm->users_count);
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1301
kvm_put_kvm(struct kvm * kvm)1302 void kvm_put_kvm(struct kvm *kvm)
1303 {
1304 if (refcount_dec_and_test(&kvm->users_count))
1305 kvm_destroy_vm(kvm);
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1308
1309 /*
1310 * Used to put a reference that was taken on behalf of an object associated
1311 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1312 * of the new file descriptor fails and the reference cannot be transferred to
1313 * its final owner. In such cases, the caller is still actively using @kvm and
1314 * will fail miserably if the refcount unexpectedly hits zero.
1315 */
kvm_put_kvm_no_destroy(struct kvm * kvm)1316 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1317 {
1318 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1321
kvm_vm_release(struct inode * inode,struct file * filp)1322 static int kvm_vm_release(struct inode *inode, struct file *filp)
1323 {
1324 struct kvm *kvm = filp->private_data;
1325
1326 kvm_irqfd_release(kvm);
1327
1328 kvm_put_kvm(kvm);
1329 return 0;
1330 }
1331
1332 /*
1333 * Allocation size is twice as large as the actual dirty bitmap size.
1334 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1335 */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1336 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1337 {
1338 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1339
1340 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1341 if (!memslot->dirty_bitmap)
1342 return -ENOMEM;
1343
1344 return 0;
1345 }
1346
1347 /*
1348 * Delete a memslot by decrementing the number of used slots and shifting all
1349 * other entries in the array forward one spot.
1350 */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1351 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1352 struct kvm_memory_slot *memslot)
1353 {
1354 struct kvm_memory_slot *mslots = slots->memslots;
1355 int i;
1356
1357 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1358 return;
1359
1360 slots->used_slots--;
1361
1362 if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1363 atomic_set(&slots->last_used_slot, 0);
1364
1365 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1366 mslots[i] = mslots[i + 1];
1367 slots->id_to_index[mslots[i].id] = i;
1368 }
1369 mslots[i] = *memslot;
1370 slots->id_to_index[memslot->id] = -1;
1371 }
1372
1373 /*
1374 * "Insert" a new memslot by incrementing the number of used slots. Returns
1375 * the new slot's initial index into the memslots array.
1376 */
kvm_memslot_insert_back(struct kvm_memslots * slots)1377 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1378 {
1379 return slots->used_slots++;
1380 }
1381
1382 /*
1383 * Move a changed memslot backwards in the array by shifting existing slots
1384 * with a higher GFN toward the front of the array. Note, the changed memslot
1385 * itself is not preserved in the array, i.e. not swapped at this time, only
1386 * its new index into the array is tracked. Returns the changed memslot's
1387 * current index into the memslots array.
1388 */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1389 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1390 struct kvm_memory_slot *memslot)
1391 {
1392 struct kvm_memory_slot *mslots = slots->memslots;
1393 int i;
1394
1395 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1396 WARN_ON_ONCE(!slots->used_slots))
1397 return -1;
1398
1399 /*
1400 * Move the target memslot backward in the array by shifting existing
1401 * memslots with a higher GFN (than the target memslot) towards the
1402 * front of the array.
1403 */
1404 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1405 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1406 break;
1407
1408 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1409
1410 /* Shift the next memslot forward one and update its index. */
1411 mslots[i] = mslots[i + 1];
1412 slots->id_to_index[mslots[i].id] = i;
1413 }
1414 return i;
1415 }
1416
1417 /*
1418 * Move a changed memslot forwards in the array by shifting existing slots with
1419 * a lower GFN toward the back of the array. Note, the changed memslot itself
1420 * is not preserved in the array, i.e. not swapped at this time, only its new
1421 * index into the array is tracked. Returns the changed memslot's final index
1422 * into the memslots array.
1423 */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1424 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1425 struct kvm_memory_slot *memslot,
1426 int start)
1427 {
1428 struct kvm_memory_slot *mslots = slots->memslots;
1429 int i;
1430
1431 for (i = start; i > 0; i--) {
1432 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1433 break;
1434
1435 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1436
1437 /* Shift the next memslot back one and update its index. */
1438 mslots[i] = mslots[i - 1];
1439 slots->id_to_index[mslots[i].id] = i;
1440 }
1441 return i;
1442 }
1443
1444 /*
1445 * Re-sort memslots based on their GFN to account for an added, deleted, or
1446 * moved memslot. Sorting memslots by GFN allows using a binary search during
1447 * memslot lookup.
1448 *
1449 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1450 * at memslots[0] has the highest GFN.
1451 *
1452 * The sorting algorithm takes advantage of having initially sorted memslots
1453 * and knowing the position of the changed memslot. Sorting is also optimized
1454 * by not swapping the updated memslot and instead only shifting other memslots
1455 * and tracking the new index for the update memslot. Only once its final
1456 * index is known is the updated memslot copied into its position in the array.
1457 *
1458 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1459 * the end of the array.
1460 *
1461 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1462 * end of the array and then it forward to its correct location.
1463 *
1464 * - When moving a memslot, the algorithm first moves the updated memslot
1465 * backward to handle the scenario where the memslot's GFN was changed to a
1466 * lower value. update_memslots() then falls through and runs the same flow
1467 * as creating a memslot to move the memslot forward to handle the scenario
1468 * where its GFN was changed to a higher value.
1469 *
1470 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1471 * historical reasons. Originally, invalid memslots where denoted by having
1472 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1473 * to the end of the array. The current algorithm uses dedicated logic to
1474 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1475 *
1476 * The other historical motiviation for highest->lowest was to improve the
1477 * performance of memslot lookup. KVM originally used a linear search starting
1478 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1479 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1480 * single memslot above the 4gb boundary. As the largest memslot is also the
1481 * most likely to be referenced, sorting it to the front of the array was
1482 * advantageous. The current binary search starts from the middle of the array
1483 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1484 */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1485 static void update_memslots(struct kvm_memslots *slots,
1486 struct kvm_memory_slot *memslot,
1487 enum kvm_mr_change change)
1488 {
1489 int i;
1490
1491 if (change == KVM_MR_DELETE) {
1492 kvm_memslot_delete(slots, memslot);
1493 } else {
1494 if (change == KVM_MR_CREATE)
1495 i = kvm_memslot_insert_back(slots);
1496 else
1497 i = kvm_memslot_move_backward(slots, memslot);
1498 i = kvm_memslot_move_forward(slots, memslot, i);
1499
1500 /*
1501 * Copy the memslot to its new position in memslots and update
1502 * its index accordingly.
1503 */
1504 slots->memslots[i] = *memslot;
1505 slots->id_to_index[memslot->id] = i;
1506 }
1507 }
1508
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1509 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1510 {
1511 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1512
1513 #ifdef __KVM_HAVE_READONLY_MEM
1514 valid_flags |= KVM_MEM_READONLY;
1515 #endif
1516
1517 if (mem->flags & ~valid_flags)
1518 return -EINVAL;
1519
1520 return 0;
1521 }
1522
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1523 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1524 int as_id, struct kvm_memslots *slots)
1525 {
1526 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1527 u64 gen = old_memslots->generation;
1528
1529 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1530 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1531
1532 /*
1533 * Do not store the new memslots while there are invalidations in
1534 * progress, otherwise the locking in invalidate_range_start and
1535 * invalidate_range_end will be unbalanced.
1536 */
1537 spin_lock(&kvm->mn_invalidate_lock);
1538 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1539 while (kvm->mn_active_invalidate_count) {
1540 set_current_state(TASK_UNINTERRUPTIBLE);
1541 spin_unlock(&kvm->mn_invalidate_lock);
1542 schedule();
1543 spin_lock(&kvm->mn_invalidate_lock);
1544 }
1545 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1546 rcu_assign_pointer(kvm->memslots[as_id], slots);
1547 spin_unlock(&kvm->mn_invalidate_lock);
1548
1549 /*
1550 * Acquired in kvm_set_memslot. Must be released before synchronize
1551 * SRCU below in order to avoid deadlock with another thread
1552 * acquiring the slots_arch_lock in an srcu critical section.
1553 */
1554 mutex_unlock(&kvm->slots_arch_lock);
1555
1556 synchronize_srcu_expedited(&kvm->srcu);
1557
1558 /*
1559 * Increment the new memslot generation a second time, dropping the
1560 * update in-progress flag and incrementing the generation based on
1561 * the number of address spaces. This provides a unique and easily
1562 * identifiable generation number while the memslots are in flux.
1563 */
1564 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1565
1566 /*
1567 * Generations must be unique even across address spaces. We do not need
1568 * a global counter for that, instead the generation space is evenly split
1569 * across address spaces. For example, with two address spaces, address
1570 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1571 * use generations 1, 3, 5, ...
1572 */
1573 gen += KVM_ADDRESS_SPACE_NUM;
1574
1575 kvm_arch_memslots_updated(kvm, gen);
1576
1577 slots->generation = gen;
1578
1579 return old_memslots;
1580 }
1581
kvm_memslots_size(int slots)1582 static size_t kvm_memslots_size(int slots)
1583 {
1584 return sizeof(struct kvm_memslots) +
1585 (sizeof(struct kvm_memory_slot) * slots);
1586 }
1587
kvm_copy_memslots(struct kvm_memslots * to,struct kvm_memslots * from)1588 static void kvm_copy_memslots(struct kvm_memslots *to,
1589 struct kvm_memslots *from)
1590 {
1591 memcpy(to, from, kvm_memslots_size(from->used_slots));
1592 }
1593
1594 /*
1595 * Note, at a minimum, the current number of used slots must be allocated, even
1596 * when deleting a memslot, as we need a complete duplicate of the memslots for
1597 * use when invalidating a memslot prior to deleting/moving the memslot.
1598 */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1599 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1600 enum kvm_mr_change change)
1601 {
1602 struct kvm_memslots *slots;
1603 size_t new_size;
1604
1605 if (change == KVM_MR_CREATE)
1606 new_size = kvm_memslots_size(old->used_slots + 1);
1607 else
1608 new_size = kvm_memslots_size(old->used_slots);
1609
1610 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1611 if (likely(slots))
1612 kvm_copy_memslots(slots, old);
1613
1614 return slots;
1615 }
1616
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1617 static int kvm_set_memslot(struct kvm *kvm,
1618 const struct kvm_userspace_memory_region *mem,
1619 struct kvm_memory_slot *new, int as_id,
1620 enum kvm_mr_change change)
1621 {
1622 struct kvm_memory_slot *slot, old;
1623 struct kvm_memslots *slots;
1624 int r;
1625
1626 /*
1627 * Released in install_new_memslots.
1628 *
1629 * Must be held from before the current memslots are copied until
1630 * after the new memslots are installed with rcu_assign_pointer,
1631 * then released before the synchronize srcu in install_new_memslots.
1632 *
1633 * When modifying memslots outside of the slots_lock, must be held
1634 * before reading the pointer to the current memslots until after all
1635 * changes to those memslots are complete.
1636 *
1637 * These rules ensure that installing new memslots does not lose
1638 * changes made to the previous memslots.
1639 */
1640 mutex_lock(&kvm->slots_arch_lock);
1641
1642 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1643 if (!slots) {
1644 mutex_unlock(&kvm->slots_arch_lock);
1645 return -ENOMEM;
1646 }
1647
1648 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1649 /*
1650 * Note, the INVALID flag needs to be in the appropriate entry
1651 * in the freshly allocated memslots, not in @old or @new.
1652 */
1653 slot = id_to_memslot(slots, new->id);
1654 slot->flags |= KVM_MEMSLOT_INVALID;
1655
1656 /*
1657 * We can re-use the memory from the old memslots.
1658 * It will be overwritten with a copy of the new memslots
1659 * after reacquiring the slots_arch_lock below.
1660 */
1661 slots = install_new_memslots(kvm, as_id, slots);
1662
1663 /* From this point no new shadow pages pointing to a deleted,
1664 * or moved, memslot will be created.
1665 *
1666 * validation of sp->gfn happens in:
1667 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1668 * - kvm_is_visible_gfn (mmu_check_root)
1669 */
1670 kvm_arch_flush_shadow_memslot(kvm, slot);
1671 kvm_arch_guest_memory_reclaimed(kvm);
1672
1673 /* Released in install_new_memslots. */
1674 mutex_lock(&kvm->slots_arch_lock);
1675
1676 /*
1677 * The arch-specific fields of the memslots could have changed
1678 * between releasing the slots_arch_lock in
1679 * install_new_memslots and here, so get a fresh copy of the
1680 * slots.
1681 */
1682 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1683 }
1684
1685 /*
1686 * Make a full copy of the old memslot, the pointer will become stale
1687 * when the memslots are re-sorted by update_memslots(), and the old
1688 * memslot needs to be referenced after calling update_memslots(), e.g.
1689 * to free its resources and for arch specific behavior. This needs to
1690 * happen *after* (re)acquiring slots_arch_lock.
1691 */
1692 slot = id_to_memslot(slots, new->id);
1693 if (slot) {
1694 old = *slot;
1695 } else {
1696 WARN_ON_ONCE(change != KVM_MR_CREATE);
1697 memset(&old, 0, sizeof(old));
1698 old.id = new->id;
1699 old.as_id = as_id;
1700 }
1701
1702 /* Copy the arch-specific data, again after (re)acquiring slots_arch_lock. */
1703 memcpy(&new->arch, &old.arch, sizeof(old.arch));
1704
1705 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1706 if (r)
1707 goto out_slots;
1708
1709 update_memslots(slots, new, change);
1710 slots = install_new_memslots(kvm, as_id, slots);
1711
1712 kvm_arch_commit_memory_region(kvm, mem, &old, new, change);
1713
1714 /* Free the old memslot's metadata. Note, this is the full copy!!! */
1715 if (change == KVM_MR_DELETE)
1716 kvm_free_memslot(kvm, &old);
1717
1718 kvfree(slots);
1719 return 0;
1720
1721 out_slots:
1722 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1723 slot = id_to_memslot(slots, new->id);
1724 slot->flags &= ~KVM_MEMSLOT_INVALID;
1725 slots = install_new_memslots(kvm, as_id, slots);
1726 } else {
1727 mutex_unlock(&kvm->slots_arch_lock);
1728 }
1729 kvfree(slots);
1730 return r;
1731 }
1732
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1733 static int kvm_delete_memslot(struct kvm *kvm,
1734 const struct kvm_userspace_memory_region *mem,
1735 struct kvm_memory_slot *old, int as_id)
1736 {
1737 struct kvm_memory_slot new;
1738
1739 if (!old->npages)
1740 return -EINVAL;
1741
1742 memset(&new, 0, sizeof(new));
1743 new.id = old->id;
1744 /*
1745 * This is only for debugging purpose; it should never be referenced
1746 * for a removed memslot.
1747 */
1748 new.as_id = as_id;
1749
1750 return kvm_set_memslot(kvm, mem, &new, as_id, KVM_MR_DELETE);
1751 }
1752
1753 /*
1754 * Allocate some memory and give it an address in the guest physical address
1755 * space.
1756 *
1757 * Discontiguous memory is allowed, mostly for framebuffers.
1758 *
1759 * Must be called holding kvm->slots_lock for write.
1760 */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1761 int __kvm_set_memory_region(struct kvm *kvm,
1762 const struct kvm_userspace_memory_region *mem)
1763 {
1764 struct kvm_memory_slot old, new;
1765 struct kvm_memory_slot *tmp;
1766 enum kvm_mr_change change;
1767 int as_id, id;
1768 int r;
1769
1770 r = check_memory_region_flags(mem);
1771 if (r)
1772 return r;
1773
1774 as_id = mem->slot >> 16;
1775 id = (u16)mem->slot;
1776
1777 /* General sanity checks */
1778 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1779 (mem->memory_size != (unsigned long)mem->memory_size))
1780 return -EINVAL;
1781 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1782 return -EINVAL;
1783 /* We can read the guest memory with __xxx_user() later on. */
1784 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1785 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1786 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1787 mem->memory_size))
1788 return -EINVAL;
1789 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1790 return -EINVAL;
1791 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1792 return -EINVAL;
1793
1794 /*
1795 * Make a full copy of the old memslot, the pointer will become stale
1796 * when the memslots are re-sorted by update_memslots(), and the old
1797 * memslot needs to be referenced after calling update_memslots(), e.g.
1798 * to free its resources and for arch specific behavior.
1799 */
1800 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1801 if (tmp) {
1802 old = *tmp;
1803 tmp = NULL;
1804 } else {
1805 memset(&old, 0, sizeof(old));
1806 old.id = id;
1807 }
1808
1809 if (!mem->memory_size)
1810 return kvm_delete_memslot(kvm, mem, &old, as_id);
1811
1812 new.as_id = as_id;
1813 new.id = id;
1814 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1815 new.npages = mem->memory_size >> PAGE_SHIFT;
1816 new.flags = mem->flags;
1817 new.userspace_addr = mem->userspace_addr;
1818
1819 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1820 return -EINVAL;
1821
1822 if (!old.npages) {
1823 change = KVM_MR_CREATE;
1824 new.dirty_bitmap = NULL;
1825 } else { /* Modify an existing slot. */
1826 if ((new.userspace_addr != old.userspace_addr) ||
1827 (new.npages != old.npages) ||
1828 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1829 return -EINVAL;
1830
1831 if (new.base_gfn != old.base_gfn)
1832 change = KVM_MR_MOVE;
1833 else if (new.flags != old.flags)
1834 change = KVM_MR_FLAGS_ONLY;
1835 else /* Nothing to change. */
1836 return 0;
1837
1838 /* Copy dirty_bitmap from the current memslot. */
1839 new.dirty_bitmap = old.dirty_bitmap;
1840 }
1841
1842 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1843 /* Check for overlaps */
1844 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1845 if (tmp->id == id)
1846 continue;
1847 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1848 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1849 return -EEXIST;
1850 }
1851 }
1852
1853 /* Allocate/free page dirty bitmap as needed */
1854 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1855 new.dirty_bitmap = NULL;
1856 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1857 r = kvm_alloc_dirty_bitmap(&new);
1858 if (r)
1859 return r;
1860
1861 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1862 bitmap_set(new.dirty_bitmap, 0, new.npages);
1863 }
1864
1865 r = kvm_set_memslot(kvm, mem, &new, as_id, change);
1866 if (r)
1867 goto out_bitmap;
1868
1869 if (old.dirty_bitmap && !new.dirty_bitmap)
1870 kvm_destroy_dirty_bitmap(&old);
1871 return 0;
1872
1873 out_bitmap:
1874 if (new.dirty_bitmap && !old.dirty_bitmap)
1875 kvm_destroy_dirty_bitmap(&new);
1876 return r;
1877 }
1878 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1879
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1880 int kvm_set_memory_region(struct kvm *kvm,
1881 const struct kvm_userspace_memory_region *mem)
1882 {
1883 int r;
1884
1885 mutex_lock(&kvm->slots_lock);
1886 r = __kvm_set_memory_region(kvm, mem);
1887 mutex_unlock(&kvm->slots_lock);
1888 return r;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1891
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1892 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1893 struct kvm_userspace_memory_region *mem)
1894 {
1895 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1896 return -EINVAL;
1897
1898 return kvm_set_memory_region(kvm, mem);
1899 }
1900
1901 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1902 /**
1903 * kvm_get_dirty_log - get a snapshot of dirty pages
1904 * @kvm: pointer to kvm instance
1905 * @log: slot id and address to which we copy the log
1906 * @is_dirty: set to '1' if any dirty pages were found
1907 * @memslot: set to the associated memslot, always valid on success
1908 */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1909 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1910 int *is_dirty, struct kvm_memory_slot **memslot)
1911 {
1912 struct kvm_memslots *slots;
1913 int i, as_id, id;
1914 unsigned long n;
1915 unsigned long any = 0;
1916
1917 /* Dirty ring tracking is exclusive to dirty log tracking */
1918 if (kvm->dirty_ring_size)
1919 return -ENXIO;
1920
1921 *memslot = NULL;
1922 *is_dirty = 0;
1923
1924 as_id = log->slot >> 16;
1925 id = (u16)log->slot;
1926 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1927 return -EINVAL;
1928
1929 slots = __kvm_memslots(kvm, as_id);
1930 *memslot = id_to_memslot(slots, id);
1931 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1932 return -ENOENT;
1933
1934 kvm_arch_sync_dirty_log(kvm, *memslot);
1935
1936 n = kvm_dirty_bitmap_bytes(*memslot);
1937
1938 for (i = 0; !any && i < n/sizeof(long); ++i)
1939 any = (*memslot)->dirty_bitmap[i];
1940
1941 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1942 return -EFAULT;
1943
1944 if (any)
1945 *is_dirty = 1;
1946 return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1949
1950 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1951 /**
1952 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1953 * and reenable dirty page tracking for the corresponding pages.
1954 * @kvm: pointer to kvm instance
1955 * @log: slot id and address to which we copy the log
1956 *
1957 * We need to keep it in mind that VCPU threads can write to the bitmap
1958 * concurrently. So, to avoid losing track of dirty pages we keep the
1959 * following order:
1960 *
1961 * 1. Take a snapshot of the bit and clear it if needed.
1962 * 2. Write protect the corresponding page.
1963 * 3. Copy the snapshot to the userspace.
1964 * 4. Upon return caller flushes TLB's if needed.
1965 *
1966 * Between 2 and 4, the guest may write to the page using the remaining TLB
1967 * entry. This is not a problem because the page is reported dirty using
1968 * the snapshot taken before and step 4 ensures that writes done after
1969 * exiting to userspace will be logged for the next call.
1970 *
1971 */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1972 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1973 {
1974 struct kvm_memslots *slots;
1975 struct kvm_memory_slot *memslot;
1976 int i, as_id, id;
1977 unsigned long n;
1978 unsigned long *dirty_bitmap;
1979 unsigned long *dirty_bitmap_buffer;
1980 bool flush;
1981
1982 /* Dirty ring tracking is exclusive to dirty log tracking */
1983 if (kvm->dirty_ring_size)
1984 return -ENXIO;
1985
1986 as_id = log->slot >> 16;
1987 id = (u16)log->slot;
1988 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1989 return -EINVAL;
1990
1991 slots = __kvm_memslots(kvm, as_id);
1992 memslot = id_to_memslot(slots, id);
1993 if (!memslot || !memslot->dirty_bitmap)
1994 return -ENOENT;
1995
1996 dirty_bitmap = memslot->dirty_bitmap;
1997
1998 kvm_arch_sync_dirty_log(kvm, memslot);
1999
2000 n = kvm_dirty_bitmap_bytes(memslot);
2001 flush = false;
2002 if (kvm->manual_dirty_log_protect) {
2003 /*
2004 * Unlike kvm_get_dirty_log, we always return false in *flush,
2005 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2006 * is some code duplication between this function and
2007 * kvm_get_dirty_log, but hopefully all architecture
2008 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2009 * can be eliminated.
2010 */
2011 dirty_bitmap_buffer = dirty_bitmap;
2012 } else {
2013 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2014 memset(dirty_bitmap_buffer, 0, n);
2015
2016 KVM_MMU_LOCK(kvm);
2017 for (i = 0; i < n / sizeof(long); i++) {
2018 unsigned long mask;
2019 gfn_t offset;
2020
2021 if (!dirty_bitmap[i])
2022 continue;
2023
2024 flush = true;
2025 mask = xchg(&dirty_bitmap[i], 0);
2026 dirty_bitmap_buffer[i] = mask;
2027
2028 offset = i * BITS_PER_LONG;
2029 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2030 offset, mask);
2031 }
2032 KVM_MMU_UNLOCK(kvm);
2033 }
2034
2035 if (flush)
2036 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2037
2038 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2039 return -EFAULT;
2040 return 0;
2041 }
2042
2043
2044 /**
2045 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2046 * @kvm: kvm instance
2047 * @log: slot id and address to which we copy the log
2048 *
2049 * Steps 1-4 below provide general overview of dirty page logging. See
2050 * kvm_get_dirty_log_protect() function description for additional details.
2051 *
2052 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2053 * always flush the TLB (step 4) even if previous step failed and the dirty
2054 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2055 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2056 * writes will be marked dirty for next log read.
2057 *
2058 * 1. Take a snapshot of the bit and clear it if needed.
2059 * 2. Write protect the corresponding page.
2060 * 3. Copy the snapshot to the userspace.
2061 * 4. Flush TLB's if needed.
2062 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2063 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2064 struct kvm_dirty_log *log)
2065 {
2066 int r;
2067
2068 mutex_lock(&kvm->slots_lock);
2069
2070 r = kvm_get_dirty_log_protect(kvm, log);
2071
2072 mutex_unlock(&kvm->slots_lock);
2073 return r;
2074 }
2075
2076 /**
2077 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2078 * and reenable dirty page tracking for the corresponding pages.
2079 * @kvm: pointer to kvm instance
2080 * @log: slot id and address from which to fetch the bitmap of dirty pages
2081 */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2082 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2083 struct kvm_clear_dirty_log *log)
2084 {
2085 struct kvm_memslots *slots;
2086 struct kvm_memory_slot *memslot;
2087 int as_id, id;
2088 gfn_t offset;
2089 unsigned long i, n;
2090 unsigned long *dirty_bitmap;
2091 unsigned long *dirty_bitmap_buffer;
2092 bool flush;
2093
2094 /* Dirty ring tracking is exclusive to dirty log tracking */
2095 if (kvm->dirty_ring_size)
2096 return -ENXIO;
2097
2098 as_id = log->slot >> 16;
2099 id = (u16)log->slot;
2100 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2101 return -EINVAL;
2102
2103 if (log->first_page & 63)
2104 return -EINVAL;
2105
2106 slots = __kvm_memslots(kvm, as_id);
2107 memslot = id_to_memslot(slots, id);
2108 if (!memslot || !memslot->dirty_bitmap)
2109 return -ENOENT;
2110
2111 dirty_bitmap = memslot->dirty_bitmap;
2112
2113 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2114
2115 if (log->first_page > memslot->npages ||
2116 log->num_pages > memslot->npages - log->first_page ||
2117 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2118 return -EINVAL;
2119
2120 kvm_arch_sync_dirty_log(kvm, memslot);
2121
2122 flush = false;
2123 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2124 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2125 return -EFAULT;
2126
2127 KVM_MMU_LOCK(kvm);
2128 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2129 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2130 i++, offset += BITS_PER_LONG) {
2131 unsigned long mask = *dirty_bitmap_buffer++;
2132 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2133 if (!mask)
2134 continue;
2135
2136 mask &= atomic_long_fetch_andnot(mask, p);
2137
2138 /*
2139 * mask contains the bits that really have been cleared. This
2140 * never includes any bits beyond the length of the memslot (if
2141 * the length is not aligned to 64 pages), therefore it is not
2142 * a problem if userspace sets them in log->dirty_bitmap.
2143 */
2144 if (mask) {
2145 flush = true;
2146 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2147 offset, mask);
2148 }
2149 }
2150 KVM_MMU_UNLOCK(kvm);
2151
2152 if (flush)
2153 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2154
2155 return 0;
2156 }
2157
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2158 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2159 struct kvm_clear_dirty_log *log)
2160 {
2161 int r;
2162
2163 mutex_lock(&kvm->slots_lock);
2164
2165 r = kvm_clear_dirty_log_protect(kvm, log);
2166
2167 mutex_unlock(&kvm->slots_lock);
2168 return r;
2169 }
2170 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2171
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2172 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2173 {
2174 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2175 }
2176 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2177
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2178 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2179 {
2180 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2181 struct kvm_memory_slot *slot;
2182 int slot_index;
2183
2184 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2185 if (slot)
2186 return slot;
2187
2188 /*
2189 * Fall back to searching all memslots. We purposely use
2190 * search_memslots() instead of __gfn_to_memslot() to avoid
2191 * thrashing the VM-wide last_used_index in kvm_memslots.
2192 */
2193 slot = search_memslots(slots, gfn, &slot_index);
2194 if (slot) {
2195 vcpu->last_used_slot = slot_index;
2196 return slot;
2197 }
2198
2199 return NULL;
2200 }
2201
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2202 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2203 {
2204 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2205
2206 return kvm_is_visible_memslot(memslot);
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2209
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2210 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2211 {
2212 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2213
2214 return kvm_is_visible_memslot(memslot);
2215 }
2216 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2217
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2218 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2219 {
2220 struct vm_area_struct *vma;
2221 unsigned long addr, size;
2222
2223 size = PAGE_SIZE;
2224
2225 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2226 if (kvm_is_error_hva(addr))
2227 return PAGE_SIZE;
2228
2229 mmap_read_lock(current->mm);
2230 vma = find_vma(current->mm, addr);
2231 if (!vma)
2232 goto out;
2233
2234 size = vma_kernel_pagesize(vma);
2235
2236 out:
2237 mmap_read_unlock(current->mm);
2238
2239 return size;
2240 }
2241
memslot_is_readonly(struct kvm_memory_slot * slot)2242 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2243 {
2244 return slot->flags & KVM_MEM_READONLY;
2245 }
2246
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2247 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2248 gfn_t *nr_pages, bool write)
2249 {
2250 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2251 return KVM_HVA_ERR_BAD;
2252
2253 if (memslot_is_readonly(slot) && write)
2254 return KVM_HVA_ERR_RO_BAD;
2255
2256 if (nr_pages)
2257 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2258
2259 return __gfn_to_hva_memslot(slot, gfn);
2260 }
2261
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2262 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2263 gfn_t *nr_pages)
2264 {
2265 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2266 }
2267
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2268 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2269 gfn_t gfn)
2270 {
2271 return gfn_to_hva_many(slot, gfn, NULL);
2272 }
2273 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2274
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2275 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2276 {
2277 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2278 }
2279 EXPORT_SYMBOL_GPL(gfn_to_hva);
2280
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2281 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2282 {
2283 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2284 }
2285 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2286
2287 /*
2288 * Return the hva of a @gfn and the R/W attribute if possible.
2289 *
2290 * @slot: the kvm_memory_slot which contains @gfn
2291 * @gfn: the gfn to be translated
2292 * @writable: used to return the read/write attribute of the @slot if the hva
2293 * is valid and @writable is not NULL
2294 */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2295 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2296 gfn_t gfn, bool *writable)
2297 {
2298 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2299
2300 if (!kvm_is_error_hva(hva) && writable)
2301 *writable = !memslot_is_readonly(slot);
2302
2303 return hva;
2304 }
2305
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2306 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2307 {
2308 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2309
2310 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2311 }
2312
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2313 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2314 {
2315 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2316
2317 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2318 }
2319
check_user_page_hwpoison(unsigned long addr)2320 static inline int check_user_page_hwpoison(unsigned long addr)
2321 {
2322 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2323
2324 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2325 return rc == -EHWPOISON;
2326 }
2327
2328 /*
2329 * The fast path to get the writable pfn which will be stored in @pfn,
2330 * true indicates success, otherwise false is returned. It's also the
2331 * only part that runs if we can in atomic context.
2332 */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2333 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2334 bool *writable, kvm_pfn_t *pfn)
2335 {
2336 struct page *page[1];
2337
2338 /*
2339 * Fast pin a writable pfn only if it is a write fault request
2340 * or the caller allows to map a writable pfn for a read fault
2341 * request.
2342 */
2343 if (!(write_fault || writable))
2344 return false;
2345
2346 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2347 *pfn = page_to_pfn(page[0]);
2348
2349 if (writable)
2350 *writable = true;
2351 return true;
2352 }
2353
2354 return false;
2355 }
2356
2357 /*
2358 * The slow path to get the pfn of the specified host virtual address,
2359 * 1 indicates success, -errno is returned if error is detected.
2360 */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)2361 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2362 bool *writable, kvm_pfn_t *pfn)
2363 {
2364 unsigned int flags = FOLL_HWPOISON;
2365 struct page *page;
2366 int npages = 0;
2367
2368 might_sleep();
2369
2370 if (writable)
2371 *writable = write_fault;
2372
2373 if (write_fault)
2374 flags |= FOLL_WRITE;
2375 if (async)
2376 flags |= FOLL_NOWAIT;
2377
2378 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2379 if (npages != 1)
2380 return npages;
2381
2382 /* map read fault as writable if possible */
2383 if (unlikely(!write_fault) && writable) {
2384 struct page *wpage;
2385
2386 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2387 *writable = true;
2388 put_page(page);
2389 page = wpage;
2390 }
2391 }
2392 *pfn = page_to_pfn(page);
2393 return npages;
2394 }
2395
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2396 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2397 {
2398 if (unlikely(!(vma->vm_flags & VM_READ)))
2399 return false;
2400
2401 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2402 return false;
2403
2404 return true;
2405 }
2406
kvm_try_get_pfn(kvm_pfn_t pfn)2407 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2408 {
2409 if (kvm_is_reserved_pfn(pfn))
2410 return 1;
2411 return get_page_unless_zero(pfn_to_page(pfn));
2412 }
2413
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2414 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2415 unsigned long addr, bool *async,
2416 bool write_fault, bool *writable,
2417 kvm_pfn_t *p_pfn)
2418 {
2419 kvm_pfn_t pfn;
2420 pte_t *ptep;
2421 spinlock_t *ptl;
2422 int r;
2423
2424 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2425 if (r) {
2426 /*
2427 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2428 * not call the fault handler, so do it here.
2429 */
2430 bool unlocked = false;
2431 r = fixup_user_fault(current->mm, addr,
2432 (write_fault ? FAULT_FLAG_WRITE : 0),
2433 &unlocked);
2434 if (unlocked)
2435 return -EAGAIN;
2436 if (r)
2437 return r;
2438
2439 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2440 if (r)
2441 return r;
2442 }
2443
2444 if (write_fault && !pte_write(*ptep)) {
2445 pfn = KVM_PFN_ERR_RO_FAULT;
2446 goto out;
2447 }
2448
2449 if (writable)
2450 *writable = pte_write(*ptep);
2451 pfn = pte_pfn(*ptep);
2452
2453 /*
2454 * Get a reference here because callers of *hva_to_pfn* and
2455 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2456 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2457 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2458 * simply do nothing for reserved pfns.
2459 *
2460 * Whoever called remap_pfn_range is also going to call e.g.
2461 * unmap_mapping_range before the underlying pages are freed,
2462 * causing a call to our MMU notifier.
2463 *
2464 * Certain IO or PFNMAP mappings can be backed with valid
2465 * struct pages, but be allocated without refcounting e.g.,
2466 * tail pages of non-compound higher order allocations, which
2467 * would then underflow the refcount when the caller does the
2468 * required put_page. Don't allow those pages here.
2469 */
2470 if (!kvm_try_get_pfn(pfn))
2471 r = -EFAULT;
2472
2473 out:
2474 pte_unmap_unlock(ptep, ptl);
2475 *p_pfn = pfn;
2476
2477 return r;
2478 }
2479
2480 /*
2481 * Pin guest page in memory and return its pfn.
2482 * @addr: host virtual address which maps memory to the guest
2483 * @atomic: whether this function can sleep
2484 * @async: whether this function need to wait IO complete if the
2485 * host page is not in the memory
2486 * @write_fault: whether we should get a writable host page
2487 * @writable: whether it allows to map a writable host page for !@write_fault
2488 *
2489 * The function will map a writable host page for these two cases:
2490 * 1): @write_fault = true
2491 * 2): @write_fault = false && @writable, @writable will tell the caller
2492 * whether the mapping is writable.
2493 */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2494 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2495 bool write_fault, bool *writable)
2496 {
2497 struct vm_area_struct *vma;
2498 kvm_pfn_t pfn = 0;
2499 int npages, r;
2500
2501 /* we can do it either atomically or asynchronously, not both */
2502 BUG_ON(atomic && async);
2503
2504 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2505 return pfn;
2506
2507 if (atomic)
2508 return KVM_PFN_ERR_FAULT;
2509
2510 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2511 if (npages == 1)
2512 return pfn;
2513
2514 mmap_read_lock(current->mm);
2515 if (npages == -EHWPOISON ||
2516 (!async && check_user_page_hwpoison(addr))) {
2517 pfn = KVM_PFN_ERR_HWPOISON;
2518 goto exit;
2519 }
2520
2521 retry:
2522 vma = vma_lookup(current->mm, addr);
2523
2524 if (vma == NULL)
2525 pfn = KVM_PFN_ERR_FAULT;
2526 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2527 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2528 if (r == -EAGAIN)
2529 goto retry;
2530 if (r < 0)
2531 pfn = KVM_PFN_ERR_FAULT;
2532 } else {
2533 if (async && vma_is_valid(vma, write_fault))
2534 *async = true;
2535 pfn = KVM_PFN_ERR_FAULT;
2536 }
2537 exit:
2538 mmap_read_unlock(current->mm);
2539 return pfn;
2540 }
2541
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable,hva_t * hva)2542 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2543 bool atomic, bool *async, bool write_fault,
2544 bool *writable, hva_t *hva)
2545 {
2546 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2547
2548 if (hva)
2549 *hva = addr;
2550
2551 if (addr == KVM_HVA_ERR_RO_BAD) {
2552 if (writable)
2553 *writable = false;
2554 return KVM_PFN_ERR_RO_FAULT;
2555 }
2556
2557 if (kvm_is_error_hva(addr)) {
2558 if (writable)
2559 *writable = false;
2560 return KVM_PFN_NOSLOT;
2561 }
2562
2563 /* Do not map writable pfn in the readonly memslot. */
2564 if (writable && memslot_is_readonly(slot)) {
2565 *writable = false;
2566 writable = NULL;
2567 }
2568
2569 return hva_to_pfn(addr, atomic, async, write_fault,
2570 writable);
2571 }
2572 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2573
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2574 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2575 bool *writable)
2576 {
2577 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2578 write_fault, writable, NULL);
2579 }
2580 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2581
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2582 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2583 {
2584 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2585 }
2586 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2587
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2588 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2589 {
2590 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2591 }
2592 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2593
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2594 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2595 {
2596 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2597 }
2598 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2599
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2600 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2601 {
2602 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2603 }
2604 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2605
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2606 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2607 {
2608 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2611
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2612 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2613 struct page **pages, int nr_pages)
2614 {
2615 unsigned long addr;
2616 gfn_t entry = 0;
2617
2618 addr = gfn_to_hva_many(slot, gfn, &entry);
2619 if (kvm_is_error_hva(addr))
2620 return -1;
2621
2622 if (entry < nr_pages)
2623 return 0;
2624
2625 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2626 }
2627 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2628
kvm_pfn_to_page(kvm_pfn_t pfn)2629 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2630 {
2631 if (is_error_noslot_pfn(pfn))
2632 return KVM_ERR_PTR_BAD_PAGE;
2633
2634 if (kvm_is_reserved_pfn(pfn)) {
2635 WARN_ON(1);
2636 return KVM_ERR_PTR_BAD_PAGE;
2637 }
2638
2639 return pfn_to_page(pfn);
2640 }
2641
gfn_to_page(struct kvm * kvm,gfn_t gfn)2642 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2643 {
2644 kvm_pfn_t pfn;
2645
2646 pfn = gfn_to_pfn(kvm, gfn);
2647
2648 return kvm_pfn_to_page(pfn);
2649 }
2650 EXPORT_SYMBOL_GPL(gfn_to_page);
2651
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2652 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2653 {
2654 if (pfn == 0)
2655 return;
2656
2657 if (cache)
2658 cache->pfn = cache->gfn = 0;
2659
2660 if (dirty)
2661 kvm_release_pfn_dirty(pfn);
2662 else
2663 kvm_release_pfn_clean(pfn);
2664 }
2665
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2666 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2667 struct gfn_to_pfn_cache *cache, u64 gen)
2668 {
2669 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2670
2671 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2672 cache->gfn = gfn;
2673 cache->dirty = false;
2674 cache->generation = gen;
2675 }
2676
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2677 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2678 struct kvm_host_map *map,
2679 struct gfn_to_pfn_cache *cache,
2680 bool atomic)
2681 {
2682 kvm_pfn_t pfn;
2683 void *hva = NULL;
2684 struct page *page = KVM_UNMAPPED_PAGE;
2685 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2686 u64 gen = slots->generation;
2687
2688 if (!map)
2689 return -EINVAL;
2690
2691 if (cache) {
2692 if (!cache->pfn || cache->gfn != gfn ||
2693 cache->generation != gen) {
2694 if (atomic)
2695 return -EAGAIN;
2696 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2697 }
2698 pfn = cache->pfn;
2699 } else {
2700 if (atomic)
2701 return -EAGAIN;
2702 pfn = gfn_to_pfn_memslot(slot, gfn);
2703 }
2704 if (is_error_noslot_pfn(pfn))
2705 return -EINVAL;
2706
2707 if (pfn_valid(pfn)) {
2708 page = pfn_to_page(pfn);
2709 if (atomic)
2710 hva = kmap_atomic(page);
2711 else
2712 hva = kmap(page);
2713 #ifdef CONFIG_HAS_IOMEM
2714 } else if (!atomic) {
2715 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2716 } else {
2717 return -EINVAL;
2718 #endif
2719 }
2720
2721 if (!hva)
2722 return -EFAULT;
2723
2724 map->page = page;
2725 map->hva = hva;
2726 map->pfn = pfn;
2727 map->gfn = gfn;
2728
2729 return 0;
2730 }
2731
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2732 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2733 struct gfn_to_pfn_cache *cache, bool atomic)
2734 {
2735 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2736 cache, atomic);
2737 }
2738 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2739
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2740 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2741 {
2742 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2743 NULL, false);
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2746
__kvm_unmap_gfn(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2747 static void __kvm_unmap_gfn(struct kvm *kvm,
2748 struct kvm_memory_slot *memslot,
2749 struct kvm_host_map *map,
2750 struct gfn_to_pfn_cache *cache,
2751 bool dirty, bool atomic)
2752 {
2753 if (!map)
2754 return;
2755
2756 if (!map->hva)
2757 return;
2758
2759 if (map->page != KVM_UNMAPPED_PAGE) {
2760 if (atomic)
2761 kunmap_atomic(map->hva);
2762 else
2763 kunmap(map->page);
2764 }
2765 #ifdef CONFIG_HAS_IOMEM
2766 else if (!atomic)
2767 memunmap(map->hva);
2768 else
2769 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2770 #endif
2771
2772 if (dirty)
2773 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2774
2775 if (cache)
2776 cache->dirty |= dirty;
2777 else
2778 kvm_release_pfn(map->pfn, dirty, NULL);
2779
2780 map->hva = NULL;
2781 map->page = NULL;
2782 }
2783
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2784 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2785 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2786 {
2787 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2788 cache, dirty, atomic);
2789 return 0;
2790 }
2791 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2792
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2793 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2794 {
2795 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2796 map, NULL, dirty, false);
2797 }
2798 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2799
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2800 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2801 {
2802 kvm_pfn_t pfn;
2803
2804 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2805
2806 return kvm_pfn_to_page(pfn);
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2809
kvm_release_page_clean(struct page * page)2810 void kvm_release_page_clean(struct page *page)
2811 {
2812 WARN_ON(is_error_page(page));
2813
2814 kvm_release_pfn_clean(page_to_pfn(page));
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2817
kvm_release_pfn_clean(kvm_pfn_t pfn)2818 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2819 {
2820 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2821 put_page(pfn_to_page(pfn));
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2824
kvm_release_page_dirty(struct page * page)2825 void kvm_release_page_dirty(struct page *page)
2826 {
2827 WARN_ON(is_error_page(page));
2828
2829 kvm_release_pfn_dirty(page_to_pfn(page));
2830 }
2831 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2832
kvm_release_pfn_dirty(kvm_pfn_t pfn)2833 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2834 {
2835 kvm_set_pfn_dirty(pfn);
2836 kvm_release_pfn_clean(pfn);
2837 }
2838 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2839
kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)2840 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2841 {
2842 if (!pfn_valid(pfn))
2843 return false;
2844
2845 /*
2846 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2847 * touched (e.g. set dirty) except by its owner".
2848 */
2849 return !PageReserved(pfn_to_page(pfn));
2850 }
2851
kvm_set_pfn_dirty(kvm_pfn_t pfn)2852 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2853 {
2854 if (kvm_is_ad_tracked_pfn(pfn))
2855 SetPageDirty(pfn_to_page(pfn));
2856 }
2857 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2858
kvm_set_pfn_accessed(kvm_pfn_t pfn)2859 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2860 {
2861 if (kvm_is_ad_tracked_pfn(pfn))
2862 mark_page_accessed(pfn_to_page(pfn));
2863 }
2864 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2865
next_segment(unsigned long len,int offset)2866 static int next_segment(unsigned long len, int offset)
2867 {
2868 if (len > PAGE_SIZE - offset)
2869 return PAGE_SIZE - offset;
2870 else
2871 return len;
2872 }
2873
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2874 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2875 void *data, int offset, int len)
2876 {
2877 int r;
2878 unsigned long addr;
2879
2880 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2881 if (kvm_is_error_hva(addr))
2882 return -EFAULT;
2883 r = __copy_from_user(data, (void __user *)addr + offset, len);
2884 if (r)
2885 return -EFAULT;
2886 return 0;
2887 }
2888
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2889 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2890 int len)
2891 {
2892 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2893
2894 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2895 }
2896 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2897
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2898 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2899 int offset, int len)
2900 {
2901 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2902
2903 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2904 }
2905 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2906
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2907 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2908 {
2909 gfn_t gfn = gpa >> PAGE_SHIFT;
2910 int seg;
2911 int offset = offset_in_page(gpa);
2912 int ret;
2913
2914 while ((seg = next_segment(len, offset)) != 0) {
2915 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2916 if (ret < 0)
2917 return ret;
2918 offset = 0;
2919 len -= seg;
2920 data += seg;
2921 ++gfn;
2922 }
2923 return 0;
2924 }
2925 EXPORT_SYMBOL_GPL(kvm_read_guest);
2926
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2927 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2928 {
2929 gfn_t gfn = gpa >> PAGE_SHIFT;
2930 int seg;
2931 int offset = offset_in_page(gpa);
2932 int ret;
2933
2934 while ((seg = next_segment(len, offset)) != 0) {
2935 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2936 if (ret < 0)
2937 return ret;
2938 offset = 0;
2939 len -= seg;
2940 data += seg;
2941 ++gfn;
2942 }
2943 return 0;
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2946
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2947 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2948 void *data, int offset, unsigned long len)
2949 {
2950 int r;
2951 unsigned long addr;
2952
2953 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2954 if (kvm_is_error_hva(addr))
2955 return -EFAULT;
2956 pagefault_disable();
2957 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2958 pagefault_enable();
2959 if (r)
2960 return -EFAULT;
2961 return 0;
2962 }
2963
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2964 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2965 void *data, unsigned long len)
2966 {
2967 gfn_t gfn = gpa >> PAGE_SHIFT;
2968 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2969 int offset = offset_in_page(gpa);
2970
2971 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2974
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2975 static int __kvm_write_guest_page(struct kvm *kvm,
2976 struct kvm_memory_slot *memslot, gfn_t gfn,
2977 const void *data, int offset, int len)
2978 {
2979 int r;
2980 unsigned long addr;
2981
2982 addr = gfn_to_hva_memslot(memslot, gfn);
2983 if (kvm_is_error_hva(addr))
2984 return -EFAULT;
2985 r = __copy_to_user((void __user *)addr + offset, data, len);
2986 if (r)
2987 return -EFAULT;
2988 mark_page_dirty_in_slot(kvm, memslot, gfn);
2989 return 0;
2990 }
2991
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2992 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2993 const void *data, int offset, int len)
2994 {
2995 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2996
2997 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3000
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3001 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3002 const void *data, int offset, int len)
3003 {
3004 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005
3006 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3009
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3010 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3011 unsigned long len)
3012 {
3013 gfn_t gfn = gpa >> PAGE_SHIFT;
3014 int seg;
3015 int offset = offset_in_page(gpa);
3016 int ret;
3017
3018 while ((seg = next_segment(len, offset)) != 0) {
3019 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3020 if (ret < 0)
3021 return ret;
3022 offset = 0;
3023 len -= seg;
3024 data += seg;
3025 ++gfn;
3026 }
3027 return 0;
3028 }
3029 EXPORT_SYMBOL_GPL(kvm_write_guest);
3030
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3031 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3032 unsigned long len)
3033 {
3034 gfn_t gfn = gpa >> PAGE_SHIFT;
3035 int seg;
3036 int offset = offset_in_page(gpa);
3037 int ret;
3038
3039 while ((seg = next_segment(len, offset)) != 0) {
3040 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3041 if (ret < 0)
3042 return ret;
3043 offset = 0;
3044 len -= seg;
3045 data += seg;
3046 ++gfn;
3047 }
3048 return 0;
3049 }
3050 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3051
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3052 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3053 struct gfn_to_hva_cache *ghc,
3054 gpa_t gpa, unsigned long len)
3055 {
3056 int offset = offset_in_page(gpa);
3057 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3058 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3059 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3060 gfn_t nr_pages_avail;
3061
3062 /* Update ghc->generation before performing any error checks. */
3063 ghc->generation = slots->generation;
3064
3065 if (start_gfn > end_gfn) {
3066 ghc->hva = KVM_HVA_ERR_BAD;
3067 return -EINVAL;
3068 }
3069
3070 /*
3071 * If the requested region crosses two memslots, we still
3072 * verify that the entire region is valid here.
3073 */
3074 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3075 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3076 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3077 &nr_pages_avail);
3078 if (kvm_is_error_hva(ghc->hva))
3079 return -EFAULT;
3080 }
3081
3082 /* Use the slow path for cross page reads and writes. */
3083 if (nr_pages_needed == 1)
3084 ghc->hva += offset;
3085 else
3086 ghc->memslot = NULL;
3087
3088 ghc->gpa = gpa;
3089 ghc->len = len;
3090 return 0;
3091 }
3092
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3093 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3094 gpa_t gpa, unsigned long len)
3095 {
3096 struct kvm_memslots *slots = kvm_memslots(kvm);
3097 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3098 }
3099 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3100
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3101 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3102 void *data, unsigned int offset,
3103 unsigned long len)
3104 {
3105 struct kvm_memslots *slots = kvm_memslots(kvm);
3106 int r;
3107 gpa_t gpa = ghc->gpa + offset;
3108
3109 if (WARN_ON_ONCE(len + offset > ghc->len))
3110 return -EINVAL;
3111
3112 if (slots->generation != ghc->generation) {
3113 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3114 return -EFAULT;
3115 }
3116
3117 if (kvm_is_error_hva(ghc->hva))
3118 return -EFAULT;
3119
3120 if (unlikely(!ghc->memslot))
3121 return kvm_write_guest(kvm, gpa, data, len);
3122
3123 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3124 if (r)
3125 return -EFAULT;
3126 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3127
3128 return 0;
3129 }
3130 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3131
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3132 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3133 void *data, unsigned long len)
3134 {
3135 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3136 }
3137 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3138
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3139 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3140 void *data, unsigned int offset,
3141 unsigned long len)
3142 {
3143 struct kvm_memslots *slots = kvm_memslots(kvm);
3144 int r;
3145 gpa_t gpa = ghc->gpa + offset;
3146
3147 if (WARN_ON_ONCE(len + offset > ghc->len))
3148 return -EINVAL;
3149
3150 if (slots->generation != ghc->generation) {
3151 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3152 return -EFAULT;
3153 }
3154
3155 if (kvm_is_error_hva(ghc->hva))
3156 return -EFAULT;
3157
3158 if (unlikely(!ghc->memslot))
3159 return kvm_read_guest(kvm, gpa, data, len);
3160
3161 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3162 if (r)
3163 return -EFAULT;
3164
3165 return 0;
3166 }
3167 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3168
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3169 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3170 void *data, unsigned long len)
3171 {
3172 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3173 }
3174 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3175
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3176 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3177 {
3178 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3179 gfn_t gfn = gpa >> PAGE_SHIFT;
3180 int seg;
3181 int offset = offset_in_page(gpa);
3182 int ret;
3183
3184 while ((seg = next_segment(len, offset)) != 0) {
3185 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3186 if (ret < 0)
3187 return ret;
3188 offset = 0;
3189 len -= seg;
3190 ++gfn;
3191 }
3192 return 0;
3193 }
3194 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3195
mark_page_dirty_in_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn)3196 void mark_page_dirty_in_slot(struct kvm *kvm,
3197 struct kvm_memory_slot *memslot,
3198 gfn_t gfn)
3199 {
3200 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3201 unsigned long rel_gfn = gfn - memslot->base_gfn;
3202 u32 slot = (memslot->as_id << 16) | memslot->id;
3203
3204 if (kvm->dirty_ring_size)
3205 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3206 slot, rel_gfn);
3207 else
3208 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3209 }
3210 }
3211 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3212
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3213 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3214 {
3215 struct kvm_memory_slot *memslot;
3216
3217 memslot = gfn_to_memslot(kvm, gfn);
3218 mark_page_dirty_in_slot(kvm, memslot, gfn);
3219 }
3220 EXPORT_SYMBOL_GPL(mark_page_dirty);
3221
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3222 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3223 {
3224 struct kvm_memory_slot *memslot;
3225
3226 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3227 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3228 }
3229 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3230
kvm_sigset_activate(struct kvm_vcpu * vcpu)3231 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3232 {
3233 if (!vcpu->sigset_active)
3234 return;
3235
3236 /*
3237 * This does a lockless modification of ->real_blocked, which is fine
3238 * because, only current can change ->real_blocked and all readers of
3239 * ->real_blocked don't care as long ->real_blocked is always a subset
3240 * of ->blocked.
3241 */
3242 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3243 }
3244
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3245 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3246 {
3247 if (!vcpu->sigset_active)
3248 return;
3249
3250 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3251 sigemptyset(¤t->real_blocked);
3252 }
3253
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3254 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3255 {
3256 unsigned int old, val, grow, grow_start;
3257
3258 old = val = vcpu->halt_poll_ns;
3259 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3260 grow = READ_ONCE(halt_poll_ns_grow);
3261 if (!grow)
3262 goto out;
3263
3264 val *= grow;
3265 if (val < grow_start)
3266 val = grow_start;
3267
3268 if (val > vcpu->kvm->max_halt_poll_ns)
3269 val = vcpu->kvm->max_halt_poll_ns;
3270
3271 vcpu->halt_poll_ns = val;
3272 out:
3273 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3274 }
3275
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3276 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3277 {
3278 unsigned int old, val, shrink, grow_start;
3279
3280 old = val = vcpu->halt_poll_ns;
3281 shrink = READ_ONCE(halt_poll_ns_shrink);
3282 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3283 if (shrink == 0)
3284 val = 0;
3285 else
3286 val /= shrink;
3287
3288 if (val < grow_start)
3289 val = 0;
3290
3291 vcpu->halt_poll_ns = val;
3292 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3293 }
3294
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3296 {
3297 int ret = -EINTR;
3298 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3299
3300 if (kvm_arch_vcpu_runnable(vcpu)) {
3301 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3302 goto out;
3303 }
3304 if (kvm_cpu_has_pending_timer(vcpu))
3305 goto out;
3306 if (signal_pending(current))
3307 goto out;
3308 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3309 goto out;
3310
3311 ret = 0;
3312 out:
3313 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3314 return ret;
3315 }
3316
3317 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)3318 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3319 {
3320 if (waited)
3321 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3322 else
3323 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3324 }
3325
3326 /*
3327 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3328 */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3329 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3330 {
3331 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3332 ktime_t start, cur, poll_end;
3333 bool waited = false;
3334 u64 block_ns;
3335
3336 kvm_arch_vcpu_blocking(vcpu);
3337
3338 start = cur = poll_end = ktime_get();
3339 if (vcpu->halt_poll_ns && halt_poll_allowed) {
3340 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3341
3342 ++vcpu->stat.generic.halt_attempted_poll;
3343 do {
3344 /*
3345 * This sets KVM_REQ_UNHALT if an interrupt
3346 * arrives.
3347 */
3348 if (kvm_vcpu_check_block(vcpu) < 0) {
3349 ++vcpu->stat.generic.halt_successful_poll;
3350 if (!vcpu_valid_wakeup(vcpu))
3351 ++vcpu->stat.generic.halt_poll_invalid;
3352
3353 KVM_STATS_LOG_HIST_UPDATE(
3354 vcpu->stat.generic.halt_poll_success_hist,
3355 ktime_to_ns(ktime_get()) -
3356 ktime_to_ns(start));
3357 goto out;
3358 }
3359 cpu_relax();
3360 poll_end = cur = ktime_get();
3361 } while (kvm_vcpu_can_poll(cur, stop));
3362
3363 KVM_STATS_LOG_HIST_UPDATE(
3364 vcpu->stat.generic.halt_poll_fail_hist,
3365 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3366 }
3367
3368
3369 prepare_to_rcuwait(&vcpu->wait);
3370 for (;;) {
3371 set_current_state(TASK_INTERRUPTIBLE);
3372
3373 if (kvm_vcpu_check_block(vcpu) < 0)
3374 break;
3375
3376 waited = true;
3377 schedule();
3378 }
3379 finish_rcuwait(&vcpu->wait);
3380 cur = ktime_get();
3381 if (waited) {
3382 vcpu->stat.generic.halt_wait_ns +=
3383 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3384 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3385 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3386 }
3387 out:
3388 kvm_arch_vcpu_unblocking(vcpu);
3389 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3390
3391 update_halt_poll_stats(
3392 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3393
3394 if (halt_poll_allowed) {
3395 if (!vcpu_valid_wakeup(vcpu)) {
3396 shrink_halt_poll_ns(vcpu);
3397 } else if (vcpu->kvm->max_halt_poll_ns) {
3398 if (block_ns <= vcpu->halt_poll_ns)
3399 ;
3400 /* we had a long block, shrink polling */
3401 else if (vcpu->halt_poll_ns &&
3402 block_ns > vcpu->kvm->max_halt_poll_ns)
3403 shrink_halt_poll_ns(vcpu);
3404 /* we had a short halt and our poll time is too small */
3405 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3406 block_ns < vcpu->kvm->max_halt_poll_ns)
3407 grow_halt_poll_ns(vcpu);
3408 } else {
3409 vcpu->halt_poll_ns = 0;
3410 }
3411 }
3412
3413 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3414 kvm_arch_vcpu_block_finish(vcpu);
3415 }
3416 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3417
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3418 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3419 {
3420 struct rcuwait *waitp;
3421
3422 waitp = kvm_arch_vcpu_get_wait(vcpu);
3423 if (rcuwait_wake_up(waitp)) {
3424 WRITE_ONCE(vcpu->ready, true);
3425 ++vcpu->stat.generic.halt_wakeup;
3426 return true;
3427 }
3428
3429 return false;
3430 }
3431 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3432
3433 #ifndef CONFIG_S390
3434 /*
3435 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3436 */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3437 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3438 {
3439 int me, cpu;
3440
3441 if (kvm_vcpu_wake_up(vcpu))
3442 return;
3443
3444 /*
3445 * Note, the vCPU could get migrated to a different pCPU at any point
3446 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3447 * IPI to the previous pCPU. But, that's ok because the purpose of the
3448 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3449 * vCPU also requires it to leave IN_GUEST_MODE.
3450 */
3451 me = get_cpu();
3452 if (kvm_arch_vcpu_should_kick(vcpu)) {
3453 cpu = READ_ONCE(vcpu->cpu);
3454 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3455 smp_send_reschedule(cpu);
3456 }
3457 put_cpu();
3458 }
3459 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3460 #endif /* !CONFIG_S390 */
3461
kvm_vcpu_yield_to(struct kvm_vcpu * target)3462 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3463 {
3464 struct pid *pid;
3465 struct task_struct *task = NULL;
3466 int ret = 0;
3467
3468 rcu_read_lock();
3469 pid = rcu_dereference(target->pid);
3470 if (pid)
3471 task = get_pid_task(pid, PIDTYPE_PID);
3472 rcu_read_unlock();
3473 if (!task)
3474 return ret;
3475 ret = yield_to(task, 1);
3476 put_task_struct(task);
3477
3478 return ret;
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3481
3482 /*
3483 * Helper that checks whether a VCPU is eligible for directed yield.
3484 * Most eligible candidate to yield is decided by following heuristics:
3485 *
3486 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3487 * (preempted lock holder), indicated by @in_spin_loop.
3488 * Set at the beginning and cleared at the end of interception/PLE handler.
3489 *
3490 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3491 * chance last time (mostly it has become eligible now since we have probably
3492 * yielded to lockholder in last iteration. This is done by toggling
3493 * @dy_eligible each time a VCPU checked for eligibility.)
3494 *
3495 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3496 * to preempted lock-holder could result in wrong VCPU selection and CPU
3497 * burning. Giving priority for a potential lock-holder increases lock
3498 * progress.
3499 *
3500 * Since algorithm is based on heuristics, accessing another VCPU data without
3501 * locking does not harm. It may result in trying to yield to same VCPU, fail
3502 * and continue with next VCPU and so on.
3503 */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3504 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3505 {
3506 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3507 bool eligible;
3508
3509 eligible = !vcpu->spin_loop.in_spin_loop ||
3510 vcpu->spin_loop.dy_eligible;
3511
3512 if (vcpu->spin_loop.in_spin_loop)
3513 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3514
3515 return eligible;
3516 #else
3517 return true;
3518 #endif
3519 }
3520
3521 /*
3522 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3523 * a vcpu_load/vcpu_put pair. However, for most architectures
3524 * kvm_arch_vcpu_runnable does not require vcpu_load.
3525 */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3526 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3527 {
3528 return kvm_arch_vcpu_runnable(vcpu);
3529 }
3530
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3531 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3532 {
3533 if (kvm_arch_dy_runnable(vcpu))
3534 return true;
3535
3536 #ifdef CONFIG_KVM_ASYNC_PF
3537 if (!list_empty_careful(&vcpu->async_pf.done))
3538 return true;
3539 #endif
3540
3541 return false;
3542 }
3543
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3544 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3545 {
3546 return false;
3547 }
3548
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3549 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3550 {
3551 struct kvm *kvm = me->kvm;
3552 struct kvm_vcpu *vcpu;
3553 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3554 unsigned long i;
3555 int yielded = 0;
3556 int try = 3;
3557 int pass;
3558
3559 kvm_vcpu_set_in_spin_loop(me, true);
3560 /*
3561 * We boost the priority of a VCPU that is runnable but not
3562 * currently running, because it got preempted by something
3563 * else and called schedule in __vcpu_run. Hopefully that
3564 * VCPU is holding the lock that we need and will release it.
3565 * We approximate round-robin by starting at the last boosted VCPU.
3566 */
3567 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3568 kvm_for_each_vcpu(i, vcpu, kvm) {
3569 if (!pass && i <= last_boosted_vcpu) {
3570 i = last_boosted_vcpu;
3571 continue;
3572 } else if (pass && i > last_boosted_vcpu)
3573 break;
3574 if (!READ_ONCE(vcpu->ready))
3575 continue;
3576 if (vcpu == me)
3577 continue;
3578 if (rcuwait_active(&vcpu->wait) &&
3579 !vcpu_dy_runnable(vcpu))
3580 continue;
3581 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3582 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3583 !kvm_arch_vcpu_in_kernel(vcpu))
3584 continue;
3585 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3586 continue;
3587
3588 yielded = kvm_vcpu_yield_to(vcpu);
3589 if (yielded > 0) {
3590 kvm->last_boosted_vcpu = i;
3591 break;
3592 } else if (yielded < 0) {
3593 try--;
3594 if (!try)
3595 break;
3596 }
3597 }
3598 }
3599 kvm_vcpu_set_in_spin_loop(me, false);
3600
3601 /* Ensure vcpu is not eligible during next spinloop */
3602 kvm_vcpu_set_dy_eligible(me, false);
3603 }
3604 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3605
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3606 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3607 {
3608 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3609 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3610 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3611 kvm->dirty_ring_size / PAGE_SIZE);
3612 #else
3613 return false;
3614 #endif
3615 }
3616
kvm_vcpu_fault(struct vm_fault * vmf)3617 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3618 {
3619 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3620 struct page *page;
3621
3622 if (vmf->pgoff == 0)
3623 page = virt_to_page(vcpu->run);
3624 #ifdef CONFIG_X86
3625 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3626 page = virt_to_page(vcpu->arch.pio_data);
3627 #endif
3628 #ifdef CONFIG_KVM_MMIO
3629 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3630 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3631 #endif
3632 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3633 page = kvm_dirty_ring_get_page(
3634 &vcpu->dirty_ring,
3635 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3636 else
3637 return kvm_arch_vcpu_fault(vcpu, vmf);
3638 get_page(page);
3639 vmf->page = page;
3640 return 0;
3641 }
3642
3643 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3644 .fault = kvm_vcpu_fault,
3645 };
3646
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3647 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3648 {
3649 struct kvm_vcpu *vcpu = file->private_data;
3650 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3651
3652 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3653 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3654 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3655 return -EINVAL;
3656
3657 vma->vm_ops = &kvm_vcpu_vm_ops;
3658 return 0;
3659 }
3660
kvm_vcpu_release(struct inode * inode,struct file * filp)3661 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3662 {
3663 struct kvm_vcpu *vcpu = filp->private_data;
3664
3665 kvm_put_kvm(vcpu->kvm);
3666 return 0;
3667 }
3668
3669 static struct file_operations kvm_vcpu_fops = {
3670 .release = kvm_vcpu_release,
3671 .unlocked_ioctl = kvm_vcpu_ioctl,
3672 .mmap = kvm_vcpu_mmap,
3673 .llseek = noop_llseek,
3674 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3675 };
3676
3677 /*
3678 * Allocates an inode for the vcpu.
3679 */
create_vcpu_fd(struct kvm_vcpu * vcpu)3680 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3681 {
3682 char name[8 + 1 + ITOA_MAX_LEN + 1];
3683
3684 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3685 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3686 }
3687
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3688 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3689 {
3690 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3691 struct dentry *debugfs_dentry;
3692 char dir_name[ITOA_MAX_LEN * 2];
3693
3694 if (!debugfs_initialized())
3695 return;
3696
3697 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3698 debugfs_dentry = debugfs_create_dir(dir_name,
3699 vcpu->kvm->debugfs_dentry);
3700
3701 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3702 #endif
3703 }
3704
3705 /*
3706 * Creates some virtual cpus. Good luck creating more than one.
3707 */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3708 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3709 {
3710 int r;
3711 struct kvm_vcpu *vcpu;
3712 struct page *page;
3713
3714 if (id >= KVM_MAX_VCPU_ID)
3715 return -EINVAL;
3716
3717 mutex_lock(&kvm->lock);
3718 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3719 mutex_unlock(&kvm->lock);
3720 return -EINVAL;
3721 }
3722
3723 kvm->created_vcpus++;
3724 mutex_unlock(&kvm->lock);
3725
3726 r = kvm_arch_vcpu_precreate(kvm, id);
3727 if (r)
3728 goto vcpu_decrement;
3729
3730 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3731 if (!vcpu) {
3732 r = -ENOMEM;
3733 goto vcpu_decrement;
3734 }
3735
3736 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3737 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3738 if (!page) {
3739 r = -ENOMEM;
3740 goto vcpu_free;
3741 }
3742 vcpu->run = page_address(page);
3743
3744 kvm_vcpu_init(vcpu, kvm, id);
3745
3746 r = kvm_arch_vcpu_create(vcpu);
3747 if (r)
3748 goto vcpu_free_run_page;
3749
3750 if (kvm->dirty_ring_size) {
3751 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3752 id, kvm->dirty_ring_size);
3753 if (r)
3754 goto arch_vcpu_destroy;
3755 }
3756
3757 mutex_lock(&kvm->lock);
3758 if (kvm_get_vcpu_by_id(kvm, id)) {
3759 r = -EEXIST;
3760 goto unlock_vcpu_destroy;
3761 }
3762
3763 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3764 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3765 if (r)
3766 goto unlock_vcpu_destroy;
3767
3768 /* Fill the stats id string for the vcpu */
3769 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3770 task_pid_nr(current), id);
3771
3772 /* Now it's all set up, let userspace reach it */
3773 kvm_get_kvm(kvm);
3774 r = create_vcpu_fd(vcpu);
3775 if (r < 0)
3776 goto kvm_put_xa_release;
3777
3778 if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3779 r = -EINVAL;
3780 goto kvm_put_xa_release;
3781 }
3782
3783 /*
3784 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3785 * pointer before kvm->online_vcpu's incremented value.
3786 */
3787 smp_wmb();
3788 atomic_inc(&kvm->online_vcpus);
3789
3790 mutex_unlock(&kvm->lock);
3791 kvm_arch_vcpu_postcreate(vcpu);
3792 kvm_create_vcpu_debugfs(vcpu);
3793 return r;
3794
3795 kvm_put_xa_release:
3796 kvm_put_kvm_no_destroy(kvm);
3797 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
3798 unlock_vcpu_destroy:
3799 mutex_unlock(&kvm->lock);
3800 kvm_dirty_ring_free(&vcpu->dirty_ring);
3801 arch_vcpu_destroy:
3802 kvm_arch_vcpu_destroy(vcpu);
3803 vcpu_free_run_page:
3804 free_page((unsigned long)vcpu->run);
3805 vcpu_free:
3806 kmem_cache_free(kvm_vcpu_cache, vcpu);
3807 vcpu_decrement:
3808 mutex_lock(&kvm->lock);
3809 kvm->created_vcpus--;
3810 mutex_unlock(&kvm->lock);
3811 return r;
3812 }
3813
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3814 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3815 {
3816 if (sigset) {
3817 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3818 vcpu->sigset_active = 1;
3819 vcpu->sigset = *sigset;
3820 } else
3821 vcpu->sigset_active = 0;
3822 return 0;
3823 }
3824
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)3825 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3826 size_t size, loff_t *offset)
3827 {
3828 struct kvm_vcpu *vcpu = file->private_data;
3829
3830 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3831 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3832 sizeof(vcpu->stat), user_buffer, size, offset);
3833 }
3834
kvm_vcpu_stats_release(struct inode * inode,struct file * file)3835 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
3836 {
3837 struct kvm_vcpu *vcpu = file->private_data;
3838
3839 kvm_put_kvm(vcpu->kvm);
3840 return 0;
3841 }
3842
3843 static const struct file_operations kvm_vcpu_stats_fops = {
3844 .read = kvm_vcpu_stats_read,
3845 .release = kvm_vcpu_stats_release,
3846 .llseek = noop_llseek,
3847 };
3848
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)3849 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3850 {
3851 int fd;
3852 struct file *file;
3853 char name[15 + ITOA_MAX_LEN + 1];
3854
3855 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3856
3857 fd = get_unused_fd_flags(O_CLOEXEC);
3858 if (fd < 0)
3859 return fd;
3860
3861 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3862 if (IS_ERR(file)) {
3863 put_unused_fd(fd);
3864 return PTR_ERR(file);
3865 }
3866
3867 kvm_get_kvm(vcpu->kvm);
3868
3869 file->f_mode |= FMODE_PREAD;
3870 fd_install(fd, file);
3871
3872 return fd;
3873 }
3874
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3875 static long kvm_vcpu_ioctl(struct file *filp,
3876 unsigned int ioctl, unsigned long arg)
3877 {
3878 struct kvm_vcpu *vcpu = filp->private_data;
3879 void __user *argp = (void __user *)arg;
3880 int r;
3881 struct kvm_fpu *fpu = NULL;
3882 struct kvm_sregs *kvm_sregs = NULL;
3883
3884 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3885 return -EIO;
3886
3887 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3888 return -EINVAL;
3889
3890 /*
3891 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3892 * execution; mutex_lock() would break them.
3893 */
3894 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3895 if (r != -ENOIOCTLCMD)
3896 return r;
3897
3898 if (mutex_lock_killable(&vcpu->mutex))
3899 return -EINTR;
3900 switch (ioctl) {
3901 case KVM_RUN: {
3902 struct pid *oldpid;
3903 r = -EINVAL;
3904 if (arg)
3905 goto out;
3906 oldpid = rcu_access_pointer(vcpu->pid);
3907 if (unlikely(oldpid != task_pid(current))) {
3908 /* The thread running this VCPU changed. */
3909 struct pid *newpid;
3910
3911 r = kvm_arch_vcpu_run_pid_change(vcpu);
3912 if (r)
3913 break;
3914
3915 newpid = get_task_pid(current, PIDTYPE_PID);
3916 rcu_assign_pointer(vcpu->pid, newpid);
3917 if (oldpid)
3918 synchronize_rcu();
3919 put_pid(oldpid);
3920 }
3921 r = kvm_arch_vcpu_ioctl_run(vcpu);
3922 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3923 break;
3924 }
3925 case KVM_GET_REGS: {
3926 struct kvm_regs *kvm_regs;
3927
3928 r = -ENOMEM;
3929 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3930 if (!kvm_regs)
3931 goto out;
3932 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3933 if (r)
3934 goto out_free1;
3935 r = -EFAULT;
3936 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3937 goto out_free1;
3938 r = 0;
3939 out_free1:
3940 kfree(kvm_regs);
3941 break;
3942 }
3943 case KVM_SET_REGS: {
3944 struct kvm_regs *kvm_regs;
3945
3946 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3947 if (IS_ERR(kvm_regs)) {
3948 r = PTR_ERR(kvm_regs);
3949 goto out;
3950 }
3951 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3952 kfree(kvm_regs);
3953 break;
3954 }
3955 case KVM_GET_SREGS: {
3956 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3957 GFP_KERNEL_ACCOUNT);
3958 r = -ENOMEM;
3959 if (!kvm_sregs)
3960 goto out;
3961 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3962 if (r)
3963 goto out;
3964 r = -EFAULT;
3965 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3966 goto out;
3967 r = 0;
3968 break;
3969 }
3970 case KVM_SET_SREGS: {
3971 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3972 if (IS_ERR(kvm_sregs)) {
3973 r = PTR_ERR(kvm_sregs);
3974 kvm_sregs = NULL;
3975 goto out;
3976 }
3977 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3978 break;
3979 }
3980 case KVM_GET_MP_STATE: {
3981 struct kvm_mp_state mp_state;
3982
3983 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3984 if (r)
3985 goto out;
3986 r = -EFAULT;
3987 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3988 goto out;
3989 r = 0;
3990 break;
3991 }
3992 case KVM_SET_MP_STATE: {
3993 struct kvm_mp_state mp_state;
3994
3995 r = -EFAULT;
3996 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3997 goto out;
3998 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3999 break;
4000 }
4001 case KVM_TRANSLATE: {
4002 struct kvm_translation tr;
4003
4004 r = -EFAULT;
4005 if (copy_from_user(&tr, argp, sizeof(tr)))
4006 goto out;
4007 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4008 if (r)
4009 goto out;
4010 r = -EFAULT;
4011 if (copy_to_user(argp, &tr, sizeof(tr)))
4012 goto out;
4013 r = 0;
4014 break;
4015 }
4016 case KVM_SET_GUEST_DEBUG: {
4017 struct kvm_guest_debug dbg;
4018
4019 r = -EFAULT;
4020 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4021 goto out;
4022 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4023 break;
4024 }
4025 case KVM_SET_SIGNAL_MASK: {
4026 struct kvm_signal_mask __user *sigmask_arg = argp;
4027 struct kvm_signal_mask kvm_sigmask;
4028 sigset_t sigset, *p;
4029
4030 p = NULL;
4031 if (argp) {
4032 r = -EFAULT;
4033 if (copy_from_user(&kvm_sigmask, argp,
4034 sizeof(kvm_sigmask)))
4035 goto out;
4036 r = -EINVAL;
4037 if (kvm_sigmask.len != sizeof(sigset))
4038 goto out;
4039 r = -EFAULT;
4040 if (copy_from_user(&sigset, sigmask_arg->sigset,
4041 sizeof(sigset)))
4042 goto out;
4043 p = &sigset;
4044 }
4045 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4046 break;
4047 }
4048 case KVM_GET_FPU: {
4049 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4050 r = -ENOMEM;
4051 if (!fpu)
4052 goto out;
4053 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4054 if (r)
4055 goto out;
4056 r = -EFAULT;
4057 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4058 goto out;
4059 r = 0;
4060 break;
4061 }
4062 case KVM_SET_FPU: {
4063 fpu = memdup_user(argp, sizeof(*fpu));
4064 if (IS_ERR(fpu)) {
4065 r = PTR_ERR(fpu);
4066 fpu = NULL;
4067 goto out;
4068 }
4069 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4070 break;
4071 }
4072 case KVM_GET_STATS_FD: {
4073 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4074 break;
4075 }
4076 default:
4077 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4078 }
4079 out:
4080 mutex_unlock(&vcpu->mutex);
4081 kfree(fpu);
4082 kfree(kvm_sregs);
4083 return r;
4084 }
4085
4086 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4087 static long kvm_vcpu_compat_ioctl(struct file *filp,
4088 unsigned int ioctl, unsigned long arg)
4089 {
4090 struct kvm_vcpu *vcpu = filp->private_data;
4091 void __user *argp = compat_ptr(arg);
4092 int r;
4093
4094 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
4095 return -EIO;
4096
4097 switch (ioctl) {
4098 case KVM_SET_SIGNAL_MASK: {
4099 struct kvm_signal_mask __user *sigmask_arg = argp;
4100 struct kvm_signal_mask kvm_sigmask;
4101 sigset_t sigset;
4102
4103 if (argp) {
4104 r = -EFAULT;
4105 if (copy_from_user(&kvm_sigmask, argp,
4106 sizeof(kvm_sigmask)))
4107 goto out;
4108 r = -EINVAL;
4109 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4110 goto out;
4111 r = -EFAULT;
4112 if (get_compat_sigset(&sigset,
4113 (compat_sigset_t __user *)sigmask_arg->sigset))
4114 goto out;
4115 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4116 } else
4117 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4118 break;
4119 }
4120 default:
4121 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4122 }
4123
4124 out:
4125 return r;
4126 }
4127 #endif
4128
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4129 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4130 {
4131 struct kvm_device *dev = filp->private_data;
4132
4133 if (dev->ops->mmap)
4134 return dev->ops->mmap(dev, vma);
4135
4136 return -ENODEV;
4137 }
4138
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4139 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4140 int (*accessor)(struct kvm_device *dev,
4141 struct kvm_device_attr *attr),
4142 unsigned long arg)
4143 {
4144 struct kvm_device_attr attr;
4145
4146 if (!accessor)
4147 return -EPERM;
4148
4149 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4150 return -EFAULT;
4151
4152 return accessor(dev, &attr);
4153 }
4154
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4155 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4156 unsigned long arg)
4157 {
4158 struct kvm_device *dev = filp->private_data;
4159
4160 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4161 return -EIO;
4162
4163 switch (ioctl) {
4164 case KVM_SET_DEVICE_ATTR:
4165 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4166 case KVM_GET_DEVICE_ATTR:
4167 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4168 case KVM_HAS_DEVICE_ATTR:
4169 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4170 default:
4171 if (dev->ops->ioctl)
4172 return dev->ops->ioctl(dev, ioctl, arg);
4173
4174 return -ENOTTY;
4175 }
4176 }
4177
kvm_device_release(struct inode * inode,struct file * filp)4178 static int kvm_device_release(struct inode *inode, struct file *filp)
4179 {
4180 struct kvm_device *dev = filp->private_data;
4181 struct kvm *kvm = dev->kvm;
4182
4183 if (dev->ops->release) {
4184 mutex_lock(&kvm->lock);
4185 list_del(&dev->vm_node);
4186 dev->ops->release(dev);
4187 mutex_unlock(&kvm->lock);
4188 }
4189
4190 kvm_put_kvm(kvm);
4191 return 0;
4192 }
4193
4194 static const struct file_operations kvm_device_fops = {
4195 .unlocked_ioctl = kvm_device_ioctl,
4196 .release = kvm_device_release,
4197 KVM_COMPAT(kvm_device_ioctl),
4198 .mmap = kvm_device_mmap,
4199 };
4200
kvm_device_from_filp(struct file * filp)4201 struct kvm_device *kvm_device_from_filp(struct file *filp)
4202 {
4203 if (filp->f_op != &kvm_device_fops)
4204 return NULL;
4205
4206 return filp->private_data;
4207 }
4208
4209 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4210 #ifdef CONFIG_KVM_MPIC
4211 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4212 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4213 #endif
4214 };
4215
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4216 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4217 {
4218 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4219 return -ENOSPC;
4220
4221 if (kvm_device_ops_table[type] != NULL)
4222 return -EEXIST;
4223
4224 kvm_device_ops_table[type] = ops;
4225 return 0;
4226 }
4227
kvm_unregister_device_ops(u32 type)4228 void kvm_unregister_device_ops(u32 type)
4229 {
4230 if (kvm_device_ops_table[type] != NULL)
4231 kvm_device_ops_table[type] = NULL;
4232 }
4233
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4234 static int kvm_ioctl_create_device(struct kvm *kvm,
4235 struct kvm_create_device *cd)
4236 {
4237 const struct kvm_device_ops *ops = NULL;
4238 struct kvm_device *dev;
4239 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4240 int type;
4241 int ret;
4242
4243 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4244 return -ENODEV;
4245
4246 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4247 ops = kvm_device_ops_table[type];
4248 if (ops == NULL)
4249 return -ENODEV;
4250
4251 if (test)
4252 return 0;
4253
4254 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4255 if (!dev)
4256 return -ENOMEM;
4257
4258 dev->ops = ops;
4259 dev->kvm = kvm;
4260
4261 mutex_lock(&kvm->lock);
4262 ret = ops->create(dev, type);
4263 if (ret < 0) {
4264 mutex_unlock(&kvm->lock);
4265 kfree(dev);
4266 return ret;
4267 }
4268 list_add(&dev->vm_node, &kvm->devices);
4269 mutex_unlock(&kvm->lock);
4270
4271 if (ops->init)
4272 ops->init(dev);
4273
4274 kvm_get_kvm(kvm);
4275 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4276 if (ret < 0) {
4277 kvm_put_kvm_no_destroy(kvm);
4278 mutex_lock(&kvm->lock);
4279 list_del(&dev->vm_node);
4280 if (ops->release)
4281 ops->release(dev);
4282 mutex_unlock(&kvm->lock);
4283 if (ops->destroy)
4284 ops->destroy(dev);
4285 return ret;
4286 }
4287
4288 cd->fd = ret;
4289 return 0;
4290 }
4291
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4292 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4293 {
4294 switch (arg) {
4295 case KVM_CAP_USER_MEMORY:
4296 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4297 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4298 case KVM_CAP_INTERNAL_ERROR_DATA:
4299 #ifdef CONFIG_HAVE_KVM_MSI
4300 case KVM_CAP_SIGNAL_MSI:
4301 #endif
4302 #ifdef CONFIG_HAVE_KVM_IRQFD
4303 case KVM_CAP_IRQFD:
4304 case KVM_CAP_IRQFD_RESAMPLE:
4305 #endif
4306 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4307 case KVM_CAP_CHECK_EXTENSION_VM:
4308 case KVM_CAP_ENABLE_CAP_VM:
4309 case KVM_CAP_HALT_POLL:
4310 return 1;
4311 #ifdef CONFIG_KVM_MMIO
4312 case KVM_CAP_COALESCED_MMIO:
4313 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4314 case KVM_CAP_COALESCED_PIO:
4315 return 1;
4316 #endif
4317 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4318 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4319 return KVM_DIRTY_LOG_MANUAL_CAPS;
4320 #endif
4321 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4322 case KVM_CAP_IRQ_ROUTING:
4323 return KVM_MAX_IRQ_ROUTES;
4324 #endif
4325 #if KVM_ADDRESS_SPACE_NUM > 1
4326 case KVM_CAP_MULTI_ADDRESS_SPACE:
4327 return KVM_ADDRESS_SPACE_NUM;
4328 #endif
4329 case KVM_CAP_NR_MEMSLOTS:
4330 return KVM_USER_MEM_SLOTS;
4331 case KVM_CAP_DIRTY_LOG_RING:
4332 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4333 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4334 #else
4335 return 0;
4336 #endif
4337 case KVM_CAP_BINARY_STATS_FD:
4338 return 1;
4339 default:
4340 break;
4341 }
4342 return kvm_vm_ioctl_check_extension(kvm, arg);
4343 }
4344
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4345 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4346 {
4347 int r;
4348
4349 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4350 return -EINVAL;
4351
4352 /* the size should be power of 2 */
4353 if (!size || (size & (size - 1)))
4354 return -EINVAL;
4355
4356 /* Should be bigger to keep the reserved entries, or a page */
4357 if (size < kvm_dirty_ring_get_rsvd_entries() *
4358 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4359 return -EINVAL;
4360
4361 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4362 sizeof(struct kvm_dirty_gfn))
4363 return -E2BIG;
4364
4365 /* We only allow it to set once */
4366 if (kvm->dirty_ring_size)
4367 return -EINVAL;
4368
4369 mutex_lock(&kvm->lock);
4370
4371 if (kvm->created_vcpus) {
4372 /* We don't allow to change this value after vcpu created */
4373 r = -EINVAL;
4374 } else {
4375 kvm->dirty_ring_size = size;
4376 r = 0;
4377 }
4378
4379 mutex_unlock(&kvm->lock);
4380 return r;
4381 }
4382
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4383 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4384 {
4385 unsigned long i;
4386 struct kvm_vcpu *vcpu;
4387 int cleared = 0;
4388
4389 if (!kvm->dirty_ring_size)
4390 return -EINVAL;
4391
4392 mutex_lock(&kvm->slots_lock);
4393
4394 kvm_for_each_vcpu(i, vcpu, kvm)
4395 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4396
4397 mutex_unlock(&kvm->slots_lock);
4398
4399 if (cleared)
4400 kvm_flush_remote_tlbs(kvm);
4401
4402 return cleared;
4403 }
4404
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4405 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4406 struct kvm_enable_cap *cap)
4407 {
4408 return -EINVAL;
4409 }
4410
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4411 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4412 struct kvm_enable_cap *cap)
4413 {
4414 switch (cap->cap) {
4415 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4416 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4417 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4418
4419 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4420 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4421
4422 if (cap->flags || (cap->args[0] & ~allowed_options))
4423 return -EINVAL;
4424 kvm->manual_dirty_log_protect = cap->args[0];
4425 return 0;
4426 }
4427 #endif
4428 case KVM_CAP_HALT_POLL: {
4429 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4430 return -EINVAL;
4431
4432 kvm->max_halt_poll_ns = cap->args[0];
4433 return 0;
4434 }
4435 case KVM_CAP_DIRTY_LOG_RING:
4436 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4437 default:
4438 return kvm_vm_ioctl_enable_cap(kvm, cap);
4439 }
4440 }
4441
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4442 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4443 size_t size, loff_t *offset)
4444 {
4445 struct kvm *kvm = file->private_data;
4446
4447 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4448 &kvm_vm_stats_desc[0], &kvm->stat,
4449 sizeof(kvm->stat), user_buffer, size, offset);
4450 }
4451
kvm_vm_stats_release(struct inode * inode,struct file * file)4452 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4453 {
4454 struct kvm *kvm = file->private_data;
4455
4456 kvm_put_kvm(kvm);
4457 return 0;
4458 }
4459
4460 static const struct file_operations kvm_vm_stats_fops = {
4461 .read = kvm_vm_stats_read,
4462 .release = kvm_vm_stats_release,
4463 .llseek = noop_llseek,
4464 };
4465
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4466 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4467 {
4468 int fd;
4469 struct file *file;
4470
4471 fd = get_unused_fd_flags(O_CLOEXEC);
4472 if (fd < 0)
4473 return fd;
4474
4475 file = anon_inode_getfile("kvm-vm-stats",
4476 &kvm_vm_stats_fops, kvm, O_RDONLY);
4477 if (IS_ERR(file)) {
4478 put_unused_fd(fd);
4479 return PTR_ERR(file);
4480 }
4481
4482 kvm_get_kvm(kvm);
4483
4484 file->f_mode |= FMODE_PREAD;
4485 fd_install(fd, file);
4486
4487 return fd;
4488 }
4489
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4490 static long kvm_vm_ioctl(struct file *filp,
4491 unsigned int ioctl, unsigned long arg)
4492 {
4493 struct kvm *kvm = filp->private_data;
4494 void __user *argp = (void __user *)arg;
4495 int r;
4496
4497 if (kvm->mm != current->mm || kvm->vm_bugged)
4498 return -EIO;
4499 switch (ioctl) {
4500 case KVM_CREATE_VCPU:
4501 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4502 break;
4503 case KVM_ENABLE_CAP: {
4504 struct kvm_enable_cap cap;
4505
4506 r = -EFAULT;
4507 if (copy_from_user(&cap, argp, sizeof(cap)))
4508 goto out;
4509 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4510 break;
4511 }
4512 case KVM_SET_USER_MEMORY_REGION: {
4513 struct kvm_userspace_memory_region kvm_userspace_mem;
4514
4515 r = -EFAULT;
4516 if (copy_from_user(&kvm_userspace_mem, argp,
4517 sizeof(kvm_userspace_mem)))
4518 goto out;
4519
4520 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4521 break;
4522 }
4523 case KVM_GET_DIRTY_LOG: {
4524 struct kvm_dirty_log log;
4525
4526 r = -EFAULT;
4527 if (copy_from_user(&log, argp, sizeof(log)))
4528 goto out;
4529 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4530 break;
4531 }
4532 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4533 case KVM_CLEAR_DIRTY_LOG: {
4534 struct kvm_clear_dirty_log log;
4535
4536 r = -EFAULT;
4537 if (copy_from_user(&log, argp, sizeof(log)))
4538 goto out;
4539 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4540 break;
4541 }
4542 #endif
4543 #ifdef CONFIG_KVM_MMIO
4544 case KVM_REGISTER_COALESCED_MMIO: {
4545 struct kvm_coalesced_mmio_zone zone;
4546
4547 r = -EFAULT;
4548 if (copy_from_user(&zone, argp, sizeof(zone)))
4549 goto out;
4550 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4551 break;
4552 }
4553 case KVM_UNREGISTER_COALESCED_MMIO: {
4554 struct kvm_coalesced_mmio_zone zone;
4555
4556 r = -EFAULT;
4557 if (copy_from_user(&zone, argp, sizeof(zone)))
4558 goto out;
4559 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4560 break;
4561 }
4562 #endif
4563 case KVM_IRQFD: {
4564 struct kvm_irqfd data;
4565
4566 r = -EFAULT;
4567 if (copy_from_user(&data, argp, sizeof(data)))
4568 goto out;
4569 r = kvm_irqfd(kvm, &data);
4570 break;
4571 }
4572 case KVM_IOEVENTFD: {
4573 struct kvm_ioeventfd data;
4574
4575 r = -EFAULT;
4576 if (copy_from_user(&data, argp, sizeof(data)))
4577 goto out;
4578 r = kvm_ioeventfd(kvm, &data);
4579 break;
4580 }
4581 #ifdef CONFIG_HAVE_KVM_MSI
4582 case KVM_SIGNAL_MSI: {
4583 struct kvm_msi msi;
4584
4585 r = -EFAULT;
4586 if (copy_from_user(&msi, argp, sizeof(msi)))
4587 goto out;
4588 r = kvm_send_userspace_msi(kvm, &msi);
4589 break;
4590 }
4591 #endif
4592 #ifdef __KVM_HAVE_IRQ_LINE
4593 case KVM_IRQ_LINE_STATUS:
4594 case KVM_IRQ_LINE: {
4595 struct kvm_irq_level irq_event;
4596
4597 r = -EFAULT;
4598 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4599 goto out;
4600
4601 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4602 ioctl == KVM_IRQ_LINE_STATUS);
4603 if (r)
4604 goto out;
4605
4606 r = -EFAULT;
4607 if (ioctl == KVM_IRQ_LINE_STATUS) {
4608 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4609 goto out;
4610 }
4611
4612 r = 0;
4613 break;
4614 }
4615 #endif
4616 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4617 case KVM_SET_GSI_ROUTING: {
4618 struct kvm_irq_routing routing;
4619 struct kvm_irq_routing __user *urouting;
4620 struct kvm_irq_routing_entry *entries = NULL;
4621
4622 r = -EFAULT;
4623 if (copy_from_user(&routing, argp, sizeof(routing)))
4624 goto out;
4625 r = -EINVAL;
4626 if (!kvm_arch_can_set_irq_routing(kvm))
4627 goto out;
4628 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4629 goto out;
4630 if (routing.flags)
4631 goto out;
4632 if (routing.nr) {
4633 urouting = argp;
4634 entries = vmemdup_user(urouting->entries,
4635 array_size(sizeof(*entries),
4636 routing.nr));
4637 if (IS_ERR(entries)) {
4638 r = PTR_ERR(entries);
4639 goto out;
4640 }
4641 }
4642 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4643 routing.flags);
4644 kvfree(entries);
4645 break;
4646 }
4647 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4648 case KVM_CREATE_DEVICE: {
4649 struct kvm_create_device cd;
4650
4651 r = -EFAULT;
4652 if (copy_from_user(&cd, argp, sizeof(cd)))
4653 goto out;
4654
4655 r = kvm_ioctl_create_device(kvm, &cd);
4656 if (r)
4657 goto out;
4658
4659 r = -EFAULT;
4660 if (copy_to_user(argp, &cd, sizeof(cd)))
4661 goto out;
4662
4663 r = 0;
4664 break;
4665 }
4666 case KVM_CHECK_EXTENSION:
4667 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4668 break;
4669 case KVM_RESET_DIRTY_RINGS:
4670 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4671 break;
4672 case KVM_GET_STATS_FD:
4673 r = kvm_vm_ioctl_get_stats_fd(kvm);
4674 break;
4675 default:
4676 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4677 }
4678 out:
4679 return r;
4680 }
4681
4682 #ifdef CONFIG_KVM_COMPAT
4683 struct compat_kvm_dirty_log {
4684 __u32 slot;
4685 __u32 padding1;
4686 union {
4687 compat_uptr_t dirty_bitmap; /* one bit per page */
4688 __u64 padding2;
4689 };
4690 };
4691
4692 struct compat_kvm_clear_dirty_log {
4693 __u32 slot;
4694 __u32 num_pages;
4695 __u64 first_page;
4696 union {
4697 compat_uptr_t dirty_bitmap; /* one bit per page */
4698 __u64 padding2;
4699 };
4700 };
4701
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4702 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4703 unsigned long arg)
4704 {
4705 return -ENOTTY;
4706 }
4707
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4708 static long kvm_vm_compat_ioctl(struct file *filp,
4709 unsigned int ioctl, unsigned long arg)
4710 {
4711 struct kvm *kvm = filp->private_data;
4712 int r;
4713
4714 if (kvm->mm != current->mm || kvm->vm_bugged)
4715 return -EIO;
4716
4717 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4718 if (r != -ENOTTY)
4719 return r;
4720
4721 switch (ioctl) {
4722 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4723 case KVM_CLEAR_DIRTY_LOG: {
4724 struct compat_kvm_clear_dirty_log compat_log;
4725 struct kvm_clear_dirty_log log;
4726
4727 if (copy_from_user(&compat_log, (void __user *)arg,
4728 sizeof(compat_log)))
4729 return -EFAULT;
4730 log.slot = compat_log.slot;
4731 log.num_pages = compat_log.num_pages;
4732 log.first_page = compat_log.first_page;
4733 log.padding2 = compat_log.padding2;
4734 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4735
4736 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4737 break;
4738 }
4739 #endif
4740 case KVM_GET_DIRTY_LOG: {
4741 struct compat_kvm_dirty_log compat_log;
4742 struct kvm_dirty_log log;
4743
4744 if (copy_from_user(&compat_log, (void __user *)arg,
4745 sizeof(compat_log)))
4746 return -EFAULT;
4747 log.slot = compat_log.slot;
4748 log.padding1 = compat_log.padding1;
4749 log.padding2 = compat_log.padding2;
4750 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4751
4752 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4753 break;
4754 }
4755 default:
4756 r = kvm_vm_ioctl(filp, ioctl, arg);
4757 }
4758 return r;
4759 }
4760 #endif
4761
4762 static struct file_operations kvm_vm_fops = {
4763 .release = kvm_vm_release,
4764 .unlocked_ioctl = kvm_vm_ioctl,
4765 .llseek = noop_llseek,
4766 KVM_COMPAT(kvm_vm_compat_ioctl),
4767 };
4768
file_is_kvm(struct file * file)4769 bool file_is_kvm(struct file *file)
4770 {
4771 return file && file->f_op == &kvm_vm_fops;
4772 }
4773 EXPORT_SYMBOL_GPL(file_is_kvm);
4774
kvm_dev_ioctl_create_vm(unsigned long type)4775 static int kvm_dev_ioctl_create_vm(unsigned long type)
4776 {
4777 int r;
4778 struct kvm *kvm;
4779 struct file *file;
4780
4781 kvm = kvm_create_vm(type);
4782 if (IS_ERR(kvm))
4783 return PTR_ERR(kvm);
4784 #ifdef CONFIG_KVM_MMIO
4785 r = kvm_coalesced_mmio_init(kvm);
4786 if (r < 0)
4787 goto put_kvm;
4788 #endif
4789 r = get_unused_fd_flags(O_CLOEXEC);
4790 if (r < 0)
4791 goto put_kvm;
4792
4793 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4794 "kvm-%d", task_pid_nr(current));
4795
4796 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4797 if (IS_ERR(file)) {
4798 put_unused_fd(r);
4799 r = PTR_ERR(file);
4800 goto put_kvm;
4801 }
4802
4803 /*
4804 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4805 * already set, with ->release() being kvm_vm_release(). In error
4806 * cases it will be called by the final fput(file) and will take
4807 * care of doing kvm_put_kvm(kvm).
4808 */
4809 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4810 put_unused_fd(r);
4811 fput(file);
4812 return -ENOMEM;
4813 }
4814 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4815
4816 fd_install(r, file);
4817 return r;
4818
4819 put_kvm:
4820 kvm_put_kvm(kvm);
4821 return r;
4822 }
4823
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4824 static long kvm_dev_ioctl(struct file *filp,
4825 unsigned int ioctl, unsigned long arg)
4826 {
4827 long r = -EINVAL;
4828
4829 switch (ioctl) {
4830 case KVM_GET_API_VERSION:
4831 if (arg)
4832 goto out;
4833 r = KVM_API_VERSION;
4834 break;
4835 case KVM_CREATE_VM:
4836 r = kvm_dev_ioctl_create_vm(arg);
4837 break;
4838 case KVM_CHECK_EXTENSION:
4839 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4840 break;
4841 case KVM_GET_VCPU_MMAP_SIZE:
4842 if (arg)
4843 goto out;
4844 r = PAGE_SIZE; /* struct kvm_run */
4845 #ifdef CONFIG_X86
4846 r += PAGE_SIZE; /* pio data page */
4847 #endif
4848 #ifdef CONFIG_KVM_MMIO
4849 r += PAGE_SIZE; /* coalesced mmio ring page */
4850 #endif
4851 break;
4852 case KVM_TRACE_ENABLE:
4853 case KVM_TRACE_PAUSE:
4854 case KVM_TRACE_DISABLE:
4855 r = -EOPNOTSUPP;
4856 break;
4857 default:
4858 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4859 }
4860 out:
4861 return r;
4862 }
4863
4864 static struct file_operations kvm_chardev_ops = {
4865 .unlocked_ioctl = kvm_dev_ioctl,
4866 .llseek = noop_llseek,
4867 KVM_COMPAT(kvm_dev_ioctl),
4868 };
4869
4870 static struct miscdevice kvm_dev = {
4871 KVM_MINOR,
4872 "kvm",
4873 &kvm_chardev_ops,
4874 };
4875
hardware_enable_nolock(void * junk)4876 static void hardware_enable_nolock(void *junk)
4877 {
4878 int cpu = raw_smp_processor_id();
4879 int r;
4880
4881 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4882 return;
4883
4884 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4885
4886 r = kvm_arch_hardware_enable();
4887
4888 if (r) {
4889 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4890 atomic_inc(&hardware_enable_failed);
4891 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4892 }
4893 }
4894
kvm_starting_cpu(unsigned int cpu)4895 static int kvm_starting_cpu(unsigned int cpu)
4896 {
4897 raw_spin_lock(&kvm_count_lock);
4898 if (kvm_usage_count)
4899 hardware_enable_nolock(NULL);
4900 raw_spin_unlock(&kvm_count_lock);
4901 return 0;
4902 }
4903
hardware_disable_nolock(void * junk)4904 static void hardware_disable_nolock(void *junk)
4905 {
4906 int cpu = raw_smp_processor_id();
4907
4908 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4909 return;
4910 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4911 kvm_arch_hardware_disable();
4912 }
4913
kvm_dying_cpu(unsigned int cpu)4914 static int kvm_dying_cpu(unsigned int cpu)
4915 {
4916 raw_spin_lock(&kvm_count_lock);
4917 if (kvm_usage_count)
4918 hardware_disable_nolock(NULL);
4919 raw_spin_unlock(&kvm_count_lock);
4920 return 0;
4921 }
4922
hardware_disable_all_nolock(void)4923 static void hardware_disable_all_nolock(void)
4924 {
4925 BUG_ON(!kvm_usage_count);
4926
4927 kvm_usage_count--;
4928 if (!kvm_usage_count)
4929 on_each_cpu(hardware_disable_nolock, NULL, 1);
4930 }
4931
hardware_disable_all(void)4932 static void hardware_disable_all(void)
4933 {
4934 raw_spin_lock(&kvm_count_lock);
4935 hardware_disable_all_nolock();
4936 raw_spin_unlock(&kvm_count_lock);
4937 }
4938
hardware_enable_all(void)4939 static int hardware_enable_all(void)
4940 {
4941 int r = 0;
4942
4943 raw_spin_lock(&kvm_count_lock);
4944
4945 kvm_usage_count++;
4946 if (kvm_usage_count == 1) {
4947 atomic_set(&hardware_enable_failed, 0);
4948 on_each_cpu(hardware_enable_nolock, NULL, 1);
4949
4950 if (atomic_read(&hardware_enable_failed)) {
4951 hardware_disable_all_nolock();
4952 r = -EBUSY;
4953 }
4954 }
4955
4956 raw_spin_unlock(&kvm_count_lock);
4957
4958 return r;
4959 }
4960
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4961 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4962 void *v)
4963 {
4964 /*
4965 * Some (well, at least mine) BIOSes hang on reboot if
4966 * in vmx root mode.
4967 *
4968 * And Intel TXT required VMX off for all cpu when system shutdown.
4969 */
4970 pr_info("kvm: exiting hardware virtualization\n");
4971 kvm_rebooting = true;
4972 on_each_cpu(hardware_disable_nolock, NULL, 1);
4973 return NOTIFY_OK;
4974 }
4975
4976 static struct notifier_block kvm_reboot_notifier = {
4977 .notifier_call = kvm_reboot,
4978 .priority = 0,
4979 };
4980
kvm_io_bus_destroy(struct kvm_io_bus * bus)4981 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4982 {
4983 int i;
4984
4985 for (i = 0; i < bus->dev_count; i++) {
4986 struct kvm_io_device *pos = bus->range[i].dev;
4987
4988 kvm_iodevice_destructor(pos);
4989 }
4990 kfree(bus);
4991 }
4992
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4993 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4994 const struct kvm_io_range *r2)
4995 {
4996 gpa_t addr1 = r1->addr;
4997 gpa_t addr2 = r2->addr;
4998
4999 if (addr1 < addr2)
5000 return -1;
5001
5002 /* If r2->len == 0, match the exact address. If r2->len != 0,
5003 * accept any overlapping write. Any order is acceptable for
5004 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5005 * we process all of them.
5006 */
5007 if (r2->len) {
5008 addr1 += r1->len;
5009 addr2 += r2->len;
5010 }
5011
5012 if (addr1 > addr2)
5013 return 1;
5014
5015 return 0;
5016 }
5017
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5018 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5019 {
5020 return kvm_io_bus_cmp(p1, p2);
5021 }
5022
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5023 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5024 gpa_t addr, int len)
5025 {
5026 struct kvm_io_range *range, key;
5027 int off;
5028
5029 key = (struct kvm_io_range) {
5030 .addr = addr,
5031 .len = len,
5032 };
5033
5034 range = bsearch(&key, bus->range, bus->dev_count,
5035 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5036 if (range == NULL)
5037 return -ENOENT;
5038
5039 off = range - bus->range;
5040
5041 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5042 off--;
5043
5044 return off;
5045 }
5046
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5047 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5048 struct kvm_io_range *range, const void *val)
5049 {
5050 int idx;
5051
5052 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5053 if (idx < 0)
5054 return -EOPNOTSUPP;
5055
5056 while (idx < bus->dev_count &&
5057 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5058 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5059 range->len, val))
5060 return idx;
5061 idx++;
5062 }
5063
5064 return -EOPNOTSUPP;
5065 }
5066
5067 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5068 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5069 int len, const void *val)
5070 {
5071 struct kvm_io_bus *bus;
5072 struct kvm_io_range range;
5073 int r;
5074
5075 range = (struct kvm_io_range) {
5076 .addr = addr,
5077 .len = len,
5078 };
5079
5080 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5081 if (!bus)
5082 return -ENOMEM;
5083 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5084 return r < 0 ? r : 0;
5085 }
5086 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5087
5088 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5089 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5090 gpa_t addr, int len, const void *val, long cookie)
5091 {
5092 struct kvm_io_bus *bus;
5093 struct kvm_io_range range;
5094
5095 range = (struct kvm_io_range) {
5096 .addr = addr,
5097 .len = len,
5098 };
5099
5100 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5101 if (!bus)
5102 return -ENOMEM;
5103
5104 /* First try the device referenced by cookie. */
5105 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5106 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5107 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5108 val))
5109 return cookie;
5110
5111 /*
5112 * cookie contained garbage; fall back to search and return the
5113 * correct cookie value.
5114 */
5115 return __kvm_io_bus_write(vcpu, bus, &range, val);
5116 }
5117
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5118 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5119 struct kvm_io_range *range, void *val)
5120 {
5121 int idx;
5122
5123 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5124 if (idx < 0)
5125 return -EOPNOTSUPP;
5126
5127 while (idx < bus->dev_count &&
5128 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5129 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5130 range->len, val))
5131 return idx;
5132 idx++;
5133 }
5134
5135 return -EOPNOTSUPP;
5136 }
5137
5138 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5139 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5140 int len, void *val)
5141 {
5142 struct kvm_io_bus *bus;
5143 struct kvm_io_range range;
5144 int r;
5145
5146 range = (struct kvm_io_range) {
5147 .addr = addr,
5148 .len = len,
5149 };
5150
5151 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5152 if (!bus)
5153 return -ENOMEM;
5154 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5155 return r < 0 ? r : 0;
5156 }
5157
5158 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5159 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5160 int len, struct kvm_io_device *dev)
5161 {
5162 int i;
5163 struct kvm_io_bus *new_bus, *bus;
5164 struct kvm_io_range range;
5165
5166 bus = kvm_get_bus(kvm, bus_idx);
5167 if (!bus)
5168 return -ENOMEM;
5169
5170 /* exclude ioeventfd which is limited by maximum fd */
5171 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5172 return -ENOSPC;
5173
5174 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5175 GFP_KERNEL_ACCOUNT);
5176 if (!new_bus)
5177 return -ENOMEM;
5178
5179 range = (struct kvm_io_range) {
5180 .addr = addr,
5181 .len = len,
5182 .dev = dev,
5183 };
5184
5185 for (i = 0; i < bus->dev_count; i++)
5186 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5187 break;
5188
5189 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5190 new_bus->dev_count++;
5191 new_bus->range[i] = range;
5192 memcpy(new_bus->range + i + 1, bus->range + i,
5193 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5194 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5195 synchronize_srcu_expedited(&kvm->srcu);
5196 kfree(bus);
5197
5198 return 0;
5199 }
5200
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5201 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5202 struct kvm_io_device *dev)
5203 {
5204 int i, j;
5205 struct kvm_io_bus *new_bus, *bus;
5206
5207 lockdep_assert_held(&kvm->slots_lock);
5208
5209 bus = kvm_get_bus(kvm, bus_idx);
5210 if (!bus)
5211 return 0;
5212
5213 for (i = 0; i < bus->dev_count; i++) {
5214 if (bus->range[i].dev == dev) {
5215 break;
5216 }
5217 }
5218
5219 if (i == bus->dev_count)
5220 return 0;
5221
5222 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5223 GFP_KERNEL_ACCOUNT);
5224 if (new_bus) {
5225 memcpy(new_bus, bus, struct_size(bus, range, i));
5226 new_bus->dev_count--;
5227 memcpy(new_bus->range + i, bus->range + i + 1,
5228 flex_array_size(new_bus, range, new_bus->dev_count - i));
5229 }
5230
5231 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5232 synchronize_srcu_expedited(&kvm->srcu);
5233
5234 /* Destroy the old bus _after_ installing the (null) bus. */
5235 if (!new_bus) {
5236 pr_err("kvm: failed to shrink bus, removing it completely\n");
5237 for (j = 0; j < bus->dev_count; j++) {
5238 if (j == i)
5239 continue;
5240 kvm_iodevice_destructor(bus->range[j].dev);
5241 }
5242 }
5243
5244 kfree(bus);
5245 return new_bus ? 0 : -ENOMEM;
5246 }
5247
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5248 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5249 gpa_t addr)
5250 {
5251 struct kvm_io_bus *bus;
5252 int dev_idx, srcu_idx;
5253 struct kvm_io_device *iodev = NULL;
5254
5255 srcu_idx = srcu_read_lock(&kvm->srcu);
5256
5257 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5258 if (!bus)
5259 goto out_unlock;
5260
5261 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5262 if (dev_idx < 0)
5263 goto out_unlock;
5264
5265 iodev = bus->range[dev_idx].dev;
5266
5267 out_unlock:
5268 srcu_read_unlock(&kvm->srcu, srcu_idx);
5269
5270 return iodev;
5271 }
5272 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5273
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5274 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5275 int (*get)(void *, u64 *), int (*set)(void *, u64),
5276 const char *fmt)
5277 {
5278 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5279 inode->i_private;
5280
5281 /*
5282 * The debugfs files are a reference to the kvm struct which
5283 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5284 * avoids the race between open and the removal of the debugfs directory.
5285 */
5286 if (!kvm_get_kvm_safe(stat_data->kvm))
5287 return -ENOENT;
5288
5289 if (simple_attr_open(inode, file, get,
5290 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5291 ? set : NULL,
5292 fmt)) {
5293 kvm_put_kvm(stat_data->kvm);
5294 return -ENOMEM;
5295 }
5296
5297 return 0;
5298 }
5299
kvm_debugfs_release(struct inode * inode,struct file * file)5300 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5301 {
5302 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5303 inode->i_private;
5304
5305 simple_attr_release(inode, file);
5306 kvm_put_kvm(stat_data->kvm);
5307
5308 return 0;
5309 }
5310
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5311 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5312 {
5313 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5314
5315 return 0;
5316 }
5317
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5318 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5319 {
5320 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5321
5322 return 0;
5323 }
5324
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5325 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5326 {
5327 unsigned long i;
5328 struct kvm_vcpu *vcpu;
5329
5330 *val = 0;
5331
5332 kvm_for_each_vcpu(i, vcpu, kvm)
5333 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5334
5335 return 0;
5336 }
5337
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5338 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5339 {
5340 unsigned long i;
5341 struct kvm_vcpu *vcpu;
5342
5343 kvm_for_each_vcpu(i, vcpu, kvm)
5344 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5345
5346 return 0;
5347 }
5348
kvm_stat_data_get(void * data,u64 * val)5349 static int kvm_stat_data_get(void *data, u64 *val)
5350 {
5351 int r = -EFAULT;
5352 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5353
5354 switch (stat_data->kind) {
5355 case KVM_STAT_VM:
5356 r = kvm_get_stat_per_vm(stat_data->kvm,
5357 stat_data->desc->desc.offset, val);
5358 break;
5359 case KVM_STAT_VCPU:
5360 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5361 stat_data->desc->desc.offset, val);
5362 break;
5363 }
5364
5365 return r;
5366 }
5367
kvm_stat_data_clear(void * data,u64 val)5368 static int kvm_stat_data_clear(void *data, u64 val)
5369 {
5370 int r = -EFAULT;
5371 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5372
5373 if (val)
5374 return -EINVAL;
5375
5376 switch (stat_data->kind) {
5377 case KVM_STAT_VM:
5378 r = kvm_clear_stat_per_vm(stat_data->kvm,
5379 stat_data->desc->desc.offset);
5380 break;
5381 case KVM_STAT_VCPU:
5382 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5383 stat_data->desc->desc.offset);
5384 break;
5385 }
5386
5387 return r;
5388 }
5389
kvm_stat_data_open(struct inode * inode,struct file * file)5390 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5391 {
5392 __simple_attr_check_format("%llu\n", 0ull);
5393 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5394 kvm_stat_data_clear, "%llu\n");
5395 }
5396
5397 static const struct file_operations stat_fops_per_vm = {
5398 .owner = THIS_MODULE,
5399 .open = kvm_stat_data_open,
5400 .release = kvm_debugfs_release,
5401 .read = simple_attr_read,
5402 .write = simple_attr_write,
5403 .llseek = no_llseek,
5404 };
5405
vm_stat_get(void * _offset,u64 * val)5406 static int vm_stat_get(void *_offset, u64 *val)
5407 {
5408 unsigned offset = (long)_offset;
5409 struct kvm *kvm;
5410 u64 tmp_val;
5411
5412 *val = 0;
5413 mutex_lock(&kvm_lock);
5414 list_for_each_entry(kvm, &vm_list, vm_list) {
5415 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5416 *val += tmp_val;
5417 }
5418 mutex_unlock(&kvm_lock);
5419 return 0;
5420 }
5421
vm_stat_clear(void * _offset,u64 val)5422 static int vm_stat_clear(void *_offset, u64 val)
5423 {
5424 unsigned offset = (long)_offset;
5425 struct kvm *kvm;
5426
5427 if (val)
5428 return -EINVAL;
5429
5430 mutex_lock(&kvm_lock);
5431 list_for_each_entry(kvm, &vm_list, vm_list) {
5432 kvm_clear_stat_per_vm(kvm, offset);
5433 }
5434 mutex_unlock(&kvm_lock);
5435
5436 return 0;
5437 }
5438
5439 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5440 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5441
vcpu_stat_get(void * _offset,u64 * val)5442 static int vcpu_stat_get(void *_offset, u64 *val)
5443 {
5444 unsigned offset = (long)_offset;
5445 struct kvm *kvm;
5446 u64 tmp_val;
5447
5448 *val = 0;
5449 mutex_lock(&kvm_lock);
5450 list_for_each_entry(kvm, &vm_list, vm_list) {
5451 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5452 *val += tmp_val;
5453 }
5454 mutex_unlock(&kvm_lock);
5455 return 0;
5456 }
5457
vcpu_stat_clear(void * _offset,u64 val)5458 static int vcpu_stat_clear(void *_offset, u64 val)
5459 {
5460 unsigned offset = (long)_offset;
5461 struct kvm *kvm;
5462
5463 if (val)
5464 return -EINVAL;
5465
5466 mutex_lock(&kvm_lock);
5467 list_for_each_entry(kvm, &vm_list, vm_list) {
5468 kvm_clear_stat_per_vcpu(kvm, offset);
5469 }
5470 mutex_unlock(&kvm_lock);
5471
5472 return 0;
5473 }
5474
5475 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5476 "%llu\n");
5477 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5478
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5479 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5480 {
5481 struct kobj_uevent_env *env;
5482 unsigned long long created, active;
5483
5484 if (!kvm_dev.this_device || !kvm)
5485 return;
5486
5487 mutex_lock(&kvm_lock);
5488 if (type == KVM_EVENT_CREATE_VM) {
5489 kvm_createvm_count++;
5490 kvm_active_vms++;
5491 } else if (type == KVM_EVENT_DESTROY_VM) {
5492 kvm_active_vms--;
5493 }
5494 created = kvm_createvm_count;
5495 active = kvm_active_vms;
5496 mutex_unlock(&kvm_lock);
5497
5498 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5499 if (!env)
5500 return;
5501
5502 add_uevent_var(env, "CREATED=%llu", created);
5503 add_uevent_var(env, "COUNT=%llu", active);
5504
5505 if (type == KVM_EVENT_CREATE_VM) {
5506 add_uevent_var(env, "EVENT=create");
5507 kvm->userspace_pid = task_pid_nr(current);
5508 } else if (type == KVM_EVENT_DESTROY_VM) {
5509 add_uevent_var(env, "EVENT=destroy");
5510 }
5511 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5512
5513 if (!IS_ERR(kvm->debugfs_dentry)) {
5514 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5515
5516 if (p) {
5517 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5518 if (!IS_ERR(tmp))
5519 add_uevent_var(env, "STATS_PATH=%s", tmp);
5520 kfree(p);
5521 }
5522 }
5523 /* no need for checks, since we are adding at most only 5 keys */
5524 env->envp[env->envp_idx++] = NULL;
5525 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5526 kfree(env);
5527 }
5528
kvm_init_debug(void)5529 static void kvm_init_debug(void)
5530 {
5531 const struct file_operations *fops;
5532 const struct _kvm_stats_desc *pdesc;
5533 int i;
5534
5535 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5536
5537 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5538 pdesc = &kvm_vm_stats_desc[i];
5539 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5540 fops = &vm_stat_fops;
5541 else
5542 fops = &vm_stat_readonly_fops;
5543 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5544 kvm_debugfs_dir,
5545 (void *)(long)pdesc->desc.offset, fops);
5546 }
5547
5548 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5549 pdesc = &kvm_vcpu_stats_desc[i];
5550 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5551 fops = &vcpu_stat_fops;
5552 else
5553 fops = &vcpu_stat_readonly_fops;
5554 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5555 kvm_debugfs_dir,
5556 (void *)(long)pdesc->desc.offset, fops);
5557 }
5558 }
5559
kvm_suspend(void)5560 static int kvm_suspend(void)
5561 {
5562 if (kvm_usage_count)
5563 hardware_disable_nolock(NULL);
5564 return 0;
5565 }
5566
kvm_resume(void)5567 static void kvm_resume(void)
5568 {
5569 if (kvm_usage_count) {
5570 lockdep_assert_not_held(&kvm_count_lock);
5571 hardware_enable_nolock(NULL);
5572 }
5573 }
5574
5575 static struct syscore_ops kvm_syscore_ops = {
5576 .suspend = kvm_suspend,
5577 .resume = kvm_resume,
5578 };
5579
5580 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5581 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5582 {
5583 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5584 }
5585
kvm_sched_in(struct preempt_notifier * pn,int cpu)5586 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5587 {
5588 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5589
5590 WRITE_ONCE(vcpu->preempted, false);
5591 WRITE_ONCE(vcpu->ready, false);
5592
5593 __this_cpu_write(kvm_running_vcpu, vcpu);
5594 kvm_arch_sched_in(vcpu, cpu);
5595 kvm_arch_vcpu_load(vcpu, cpu);
5596 }
5597
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5598 static void kvm_sched_out(struct preempt_notifier *pn,
5599 struct task_struct *next)
5600 {
5601 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5602
5603 if (current->on_rq) {
5604 WRITE_ONCE(vcpu->preempted, true);
5605 WRITE_ONCE(vcpu->ready, true);
5606 }
5607 kvm_arch_vcpu_put(vcpu);
5608 __this_cpu_write(kvm_running_vcpu, NULL);
5609 }
5610
5611 /**
5612 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5613 *
5614 * We can disable preemption locally around accessing the per-CPU variable,
5615 * and use the resolved vcpu pointer after enabling preemption again,
5616 * because even if the current thread is migrated to another CPU, reading
5617 * the per-CPU value later will give us the same value as we update the
5618 * per-CPU variable in the preempt notifier handlers.
5619 */
kvm_get_running_vcpu(void)5620 struct kvm_vcpu *kvm_get_running_vcpu(void)
5621 {
5622 struct kvm_vcpu *vcpu;
5623
5624 preempt_disable();
5625 vcpu = __this_cpu_read(kvm_running_vcpu);
5626 preempt_enable();
5627
5628 return vcpu;
5629 }
5630 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5631
5632 /**
5633 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5634 */
kvm_get_running_vcpus(void)5635 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5636 {
5637 return &kvm_running_vcpu;
5638 }
5639
5640 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)5641 static unsigned int kvm_guest_state(void)
5642 {
5643 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5644 unsigned int state;
5645
5646 if (!kvm_arch_pmi_in_guest(vcpu))
5647 return 0;
5648
5649 state = PERF_GUEST_ACTIVE;
5650 if (!kvm_arch_vcpu_in_kernel(vcpu))
5651 state |= PERF_GUEST_USER;
5652
5653 return state;
5654 }
5655
kvm_guest_get_ip(void)5656 static unsigned long kvm_guest_get_ip(void)
5657 {
5658 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5659
5660 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5661 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5662 return 0;
5663
5664 return kvm_arch_vcpu_get_ip(vcpu);
5665 }
5666
5667 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5668 .state = kvm_guest_state,
5669 .get_ip = kvm_guest_get_ip,
5670 .handle_intel_pt_intr = NULL,
5671 };
5672
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))5673 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5674 {
5675 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5676 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5677 }
kvm_unregister_perf_callbacks(void)5678 void kvm_unregister_perf_callbacks(void)
5679 {
5680 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5681 }
5682 #endif
5683
5684 struct kvm_cpu_compat_check {
5685 void *opaque;
5686 int *ret;
5687 };
5688
check_processor_compat(void * data)5689 static void check_processor_compat(void *data)
5690 {
5691 struct kvm_cpu_compat_check *c = data;
5692
5693 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5694 }
5695
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)5696 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5697 struct module *module)
5698 {
5699 struct kvm_cpu_compat_check c;
5700 int r;
5701 int cpu;
5702
5703 r = kvm_arch_init(opaque);
5704 if (r)
5705 goto out_fail;
5706
5707 /*
5708 * kvm_arch_init makes sure there's at most one caller
5709 * for architectures that support multiple implementations,
5710 * like intel and amd on x86.
5711 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5712 * conflicts in case kvm is already setup for another implementation.
5713 */
5714 r = kvm_irqfd_init();
5715 if (r)
5716 goto out_irqfd;
5717
5718 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5719 r = -ENOMEM;
5720 goto out_free_0;
5721 }
5722
5723 r = kvm_arch_hardware_setup(opaque);
5724 if (r < 0)
5725 goto out_free_1;
5726
5727 c.ret = &r;
5728 c.opaque = opaque;
5729 for_each_online_cpu(cpu) {
5730 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5731 if (r < 0)
5732 goto out_free_2;
5733 }
5734
5735 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5736 kvm_starting_cpu, kvm_dying_cpu);
5737 if (r)
5738 goto out_free_2;
5739 register_reboot_notifier(&kvm_reboot_notifier);
5740
5741 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5742 if (!vcpu_align)
5743 vcpu_align = __alignof__(struct kvm_vcpu);
5744 kvm_vcpu_cache =
5745 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5746 SLAB_ACCOUNT,
5747 offsetof(struct kvm_vcpu, arch),
5748 offsetofend(struct kvm_vcpu, stats_id)
5749 - offsetof(struct kvm_vcpu, arch),
5750 NULL);
5751 if (!kvm_vcpu_cache) {
5752 r = -ENOMEM;
5753 goto out_free_3;
5754 }
5755
5756 for_each_possible_cpu(cpu) {
5757 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5758 GFP_KERNEL, cpu_to_node(cpu))) {
5759 r = -ENOMEM;
5760 goto out_free_4;
5761 }
5762 }
5763
5764 r = kvm_async_pf_init();
5765 if (r)
5766 goto out_free_4;
5767
5768 kvm_chardev_ops.owner = module;
5769 kvm_vm_fops.owner = module;
5770 kvm_vcpu_fops.owner = module;
5771
5772 register_syscore_ops(&kvm_syscore_ops);
5773
5774 kvm_preempt_ops.sched_in = kvm_sched_in;
5775 kvm_preempt_ops.sched_out = kvm_sched_out;
5776
5777 kvm_init_debug();
5778
5779 r = kvm_vfio_ops_init();
5780 if (WARN_ON_ONCE(r))
5781 goto err_vfio;
5782
5783 /*
5784 * Registration _must_ be the very last thing done, as this exposes
5785 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5786 */
5787 r = misc_register(&kvm_dev);
5788 if (r) {
5789 pr_err("kvm: misc device register failed\n");
5790 goto err_register;
5791 }
5792
5793 return 0;
5794
5795 err_register:
5796 kvm_vfio_ops_exit();
5797 err_vfio:
5798 kvm_async_pf_deinit();
5799 out_free_4:
5800 for_each_possible_cpu(cpu)
5801 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5802 kmem_cache_destroy(kvm_vcpu_cache);
5803 out_free_3:
5804 unregister_reboot_notifier(&kvm_reboot_notifier);
5805 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5806 out_free_2:
5807 kvm_arch_hardware_unsetup();
5808 out_free_1:
5809 free_cpumask_var(cpus_hardware_enabled);
5810 out_free_0:
5811 kvm_irqfd_exit();
5812 out_irqfd:
5813 kvm_arch_exit();
5814 out_fail:
5815 return r;
5816 }
5817 EXPORT_SYMBOL_GPL(kvm_init);
5818
kvm_exit(void)5819 void kvm_exit(void)
5820 {
5821 int cpu;
5822
5823 /*
5824 * Note, unregistering /dev/kvm doesn't strictly need to come first,
5825 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5826 * to KVM while the module is being stopped.
5827 */
5828 misc_deregister(&kvm_dev);
5829
5830 debugfs_remove_recursive(kvm_debugfs_dir);
5831 for_each_possible_cpu(cpu)
5832 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5833 kmem_cache_destroy(kvm_vcpu_cache);
5834 kvm_async_pf_deinit();
5835 unregister_syscore_ops(&kvm_syscore_ops);
5836 unregister_reboot_notifier(&kvm_reboot_notifier);
5837 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5838 on_each_cpu(hardware_disable_nolock, NULL, 1);
5839 kvm_arch_hardware_unsetup();
5840 kvm_arch_exit();
5841 kvm_irqfd_exit();
5842 free_cpumask_var(cpus_hardware_enabled);
5843 kvm_vfio_ops_exit();
5844 }
5845 EXPORT_SYMBOL_GPL(kvm_exit);
5846
5847 struct kvm_vm_worker_thread_context {
5848 struct kvm *kvm;
5849 struct task_struct *parent;
5850 struct completion init_done;
5851 kvm_vm_thread_fn_t thread_fn;
5852 uintptr_t data;
5853 int err;
5854 };
5855
kvm_vm_worker_thread(void * context)5856 static int kvm_vm_worker_thread(void *context)
5857 {
5858 /*
5859 * The init_context is allocated on the stack of the parent thread, so
5860 * we have to locally copy anything that is needed beyond initialization
5861 */
5862 struct kvm_vm_worker_thread_context *init_context = context;
5863 struct kvm *kvm = init_context->kvm;
5864 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5865 uintptr_t data = init_context->data;
5866 int err;
5867
5868 err = kthread_park(current);
5869 /* kthread_park(current) is never supposed to return an error */
5870 WARN_ON(err != 0);
5871 if (err)
5872 goto init_complete;
5873
5874 err = cgroup_attach_task_all(init_context->parent, current);
5875 if (err) {
5876 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5877 __func__, err);
5878 goto init_complete;
5879 }
5880
5881 set_user_nice(current, task_nice(init_context->parent));
5882
5883 init_complete:
5884 init_context->err = err;
5885 complete(&init_context->init_done);
5886 init_context = NULL;
5887
5888 if (err)
5889 return err;
5890
5891 /* Wait to be woken up by the spawner before proceeding. */
5892 kthread_parkme();
5893
5894 if (!kthread_should_stop())
5895 err = thread_fn(kvm, data);
5896
5897 return err;
5898 }
5899
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5900 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5901 uintptr_t data, const char *name,
5902 struct task_struct **thread_ptr)
5903 {
5904 struct kvm_vm_worker_thread_context init_context = {};
5905 struct task_struct *thread;
5906
5907 *thread_ptr = NULL;
5908 init_context.kvm = kvm;
5909 init_context.parent = current;
5910 init_context.thread_fn = thread_fn;
5911 init_context.data = data;
5912 init_completion(&init_context.init_done);
5913
5914 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5915 "%s-%d", name, task_pid_nr(current));
5916 if (IS_ERR(thread))
5917 return PTR_ERR(thread);
5918
5919 /* kthread_run is never supposed to return NULL */
5920 WARN_ON(thread == NULL);
5921
5922 wait_for_completion(&init_context.init_done);
5923
5924 if (!init_context.err)
5925 *thread_ptr = thread;
5926
5927 return init_context.err;
5928 }
5929