1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754 struct urb *urb;
755 int length;
756 int status;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 if (urb->transfer_buffer_length >= length) {
775 status = 0;
776 } else {
777 status = -EOVERFLOW;
778 length = urb->transfer_buffer_length;
779 }
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, status);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802 /* timer callback */
rh_timer_func(struct timer_list * t)803 static void rh_timer_func (struct timer_list *t)
804 {
805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806
807 usb_hcd_poll_rh_status(_hcd);
808 }
809
810 /*-------------------------------------------------------------------------*/
811
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814 int retval;
815 unsigned long flags;
816 unsigned len = 1 + (urb->dev->maxchild / 8);
817
818 spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 retval = -EINVAL;
822 goto done;
823 }
824
825 retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 if (retval)
827 goto done;
828
829 hcd->status_urb = urb;
830 urb->hcpriv = hcd; /* indicate it's queued */
831 if (!hcd->uses_new_polling)
832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833
834 /* If a status change has already occurred, report it ASAP */
835 else if (HCD_POLL_PENDING(hcd))
836 mod_timer(&hcd->rh_timer, jiffies);
837 retval = 0;
838 done:
839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 return retval;
841 }
842
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845 if (usb_endpoint_xfer_int(&urb->ep->desc))
846 return rh_queue_status (hcd, urb);
847 if (usb_endpoint_xfer_control(&urb->ep->desc))
848 return rh_call_control (hcd, urb);
849 return -EINVAL;
850 }
851
852 /*-------------------------------------------------------------------------*/
853
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855 * since these URBs always execute synchronously.
856 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859 unsigned long flags;
860 int rc;
861
862 spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 if (rc)
865 goto done;
866
867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
868 ; /* Do nothing */
869
870 } else { /* Status URB */
871 if (!hcd->uses_new_polling)
872 del_timer (&hcd->rh_timer);
873 if (urb == hcd->status_urb) {
874 hcd->status_urb = NULL;
875 usb_hcd_unlink_urb_from_ep(hcd, urb);
876 usb_hcd_giveback_urb(hcd, urb, status);
877 }
878 }
879 done:
880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 return rc;
882 }
883
884
885 /*-------------------------------------------------------------------------*/
886
887 /**
888 * usb_bus_init - shared initialization code
889 * @bus: the bus structure being initialized
890 *
891 * This code is used to initialize a usb_bus structure, memory for which is
892 * separately managed.
893 */
usb_bus_init(struct usb_bus * bus)894 static void usb_bus_init (struct usb_bus *bus)
895 {
896 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897
898 bus->devnum_next = 1;
899
900 bus->root_hub = NULL;
901 bus->busnum = -1;
902 bus->bandwidth_allocated = 0;
903 bus->bandwidth_int_reqs = 0;
904 bus->bandwidth_isoc_reqs = 0;
905 mutex_init(&bus->devnum_next_mutex);
906 }
907
908 /*-------------------------------------------------------------------------*/
909
910 /**
911 * usb_register_bus - registers the USB host controller with the usb core
912 * @bus: pointer to the bus to register
913 *
914 * Context: task context, might sleep.
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 *
950 * Context: task context, might sleep.
951 *
952 * Recycles the bus number, and unlinks the controller from usbcore data
953 * structures so that it won't be seen by scanning the bus list.
954 */
usb_deregister_bus(struct usb_bus * bus)955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958
959 /*
960 * NOTE: make sure that all the devices are removed by the
961 * controller code, as well as having it call this when cleaning
962 * itself up
963 */
964 mutex_lock(&usb_bus_idr_lock);
965 idr_remove(&usb_bus_idr, bus->busnum);
966 mutex_unlock(&usb_bus_idr_lock);
967
968 usb_notify_remove_bus(bus);
969 }
970
971 /**
972 * register_root_hub - called by usb_add_hcd() to register a root hub
973 * @hcd: host controller for this root hub
974 *
975 * This function registers the root hub with the USB subsystem. It sets up
976 * the device properly in the device tree and then calls usb_new_device()
977 * to register the usb device. It also assigns the root hub's USB address
978 * (always 1).
979 *
980 * Return: 0 if successful. A negative error code otherwise.
981 */
register_root_hub(struct usb_hcd * hcd)982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984 struct device *parent_dev = hcd->self.controller;
985 struct usb_device *usb_dev = hcd->self.root_hub;
986 struct usb_device_descriptor *descr;
987 const int devnum = 1;
988 int retval;
989
990 usb_dev->devnum = devnum;
991 usb_dev->bus->devnum_next = devnum + 1;
992 set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994
995 mutex_lock(&usb_bus_idr_lock);
996
997 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 descr = usb_get_device_descriptor(usb_dev);
999 if (IS_ERR(descr)) {
1000 retval = PTR_ERR(descr);
1001 mutex_unlock(&usb_bus_idr_lock);
1002 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1003 dev_name(&usb_dev->dev), retval);
1004 return retval;
1005 }
1006 usb_dev->descriptor = *descr;
1007 kfree(descr);
1008
1009 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1010 retval = usb_get_bos_descriptor(usb_dev);
1011 if (!retval) {
1012 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1013 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1014 mutex_unlock(&usb_bus_idr_lock);
1015 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1016 dev_name(&usb_dev->dev), retval);
1017 return retval;
1018 }
1019 }
1020
1021 retval = usb_new_device (usb_dev);
1022 if (retval) {
1023 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 } else {
1026 spin_lock_irq (&hcd_root_hub_lock);
1027 hcd->rh_registered = 1;
1028 spin_unlock_irq (&hcd_root_hub_lock);
1029
1030 /* Did the HC die before the root hub was registered? */
1031 if (HCD_DEAD(hcd))
1032 usb_hc_died (hcd); /* This time clean up */
1033 }
1034 mutex_unlock(&usb_bus_idr_lock);
1035
1036 return retval;
1037 }
1038
1039 /*
1040 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1041 * @bus: the bus which the root hub belongs to
1042 * @portnum: the port which is being resumed
1043 *
1044 * HCDs should call this function when they know that a resume signal is
1045 * being sent to a root-hub port. The root hub will be prevented from
1046 * going into autosuspend until usb_hcd_end_port_resume() is called.
1047 *
1048 * The bus's private lock must be held by the caller.
1049 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1050 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1051 {
1052 unsigned bit = 1 << portnum;
1053
1054 if (!(bus->resuming_ports & bit)) {
1055 bus->resuming_ports |= bit;
1056 pm_runtime_get_noresume(&bus->root_hub->dev);
1057 }
1058 }
1059 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1060
1061 /*
1062 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1063 * @bus: the bus which the root hub belongs to
1064 * @portnum: the port which is being resumed
1065 *
1066 * HCDs should call this function when they know that a resume signal has
1067 * stopped being sent to a root-hub port. The root hub will be allowed to
1068 * autosuspend again.
1069 *
1070 * The bus's private lock must be held by the caller.
1071 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1072 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1073 {
1074 unsigned bit = 1 << portnum;
1075
1076 if (bus->resuming_ports & bit) {
1077 bus->resuming_ports &= ~bit;
1078 pm_runtime_put_noidle(&bus->root_hub->dev);
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1082
1083 /*-------------------------------------------------------------------------*/
1084
1085 /**
1086 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1087 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1088 * @is_input: true iff the transaction sends data to the host
1089 * @isoc: true for isochronous transactions, false for interrupt ones
1090 * @bytecount: how many bytes in the transaction.
1091 *
1092 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1093 *
1094 * Note:
1095 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1096 * scheduled in software, this function is only used for such scheduling.
1097 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1098 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1099 {
1100 unsigned long tmp;
1101
1102 switch (speed) {
1103 case USB_SPEED_LOW: /* INTR only */
1104 if (is_input) {
1105 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1107 } else {
1108 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1110 }
1111 case USB_SPEED_FULL: /* ISOC or INTR */
1112 if (isoc) {
1113 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1114 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1115 } else {
1116 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1117 return 9107L + BW_HOST_DELAY + tmp;
1118 }
1119 case USB_SPEED_HIGH: /* ISOC or INTR */
1120 /* FIXME adjust for input vs output */
1121 if (isoc)
1122 tmp = HS_NSECS_ISO (bytecount);
1123 else
1124 tmp = HS_NSECS (bytecount);
1125 return tmp;
1126 default:
1127 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1128 return -1;
1129 }
1130 }
1131 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1132
1133
1134 /*-------------------------------------------------------------------------*/
1135
1136 /*
1137 * Generic HC operations.
1138 */
1139
1140 /*-------------------------------------------------------------------------*/
1141
1142 /**
1143 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1144 * @hcd: host controller to which @urb was submitted
1145 * @urb: URB being submitted
1146 *
1147 * Host controller drivers should call this routine in their enqueue()
1148 * method. The HCD's private spinlock must be held and interrupts must
1149 * be disabled. The actions carried out here are required for URB
1150 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1151 *
1152 * Return: 0 for no error, otherwise a negative error code (in which case
1153 * the enqueue() method must fail). If no error occurs but enqueue() fails
1154 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1155 * the private spinlock and returning.
1156 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1157 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1158 {
1159 int rc = 0;
1160
1161 spin_lock(&hcd_urb_list_lock);
1162
1163 /* Check that the URB isn't being killed */
1164 if (unlikely(atomic_read(&urb->reject))) {
1165 rc = -EPERM;
1166 goto done;
1167 }
1168
1169 if (unlikely(!urb->ep->enabled)) {
1170 rc = -ENOENT;
1171 goto done;
1172 }
1173
1174 if (unlikely(!urb->dev->can_submit)) {
1175 rc = -EHOSTUNREACH;
1176 goto done;
1177 }
1178
1179 /*
1180 * Check the host controller's state and add the URB to the
1181 * endpoint's queue.
1182 */
1183 if (HCD_RH_RUNNING(hcd)) {
1184 urb->unlinked = 0;
1185 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1186 } else {
1187 rc = -ESHUTDOWN;
1188 goto done;
1189 }
1190 done:
1191 spin_unlock(&hcd_urb_list_lock);
1192 return rc;
1193 }
1194 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1195
1196 /**
1197 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1198 * @hcd: host controller to which @urb was submitted
1199 * @urb: URB being checked for unlinkability
1200 * @status: error code to store in @urb if the unlink succeeds
1201 *
1202 * Host controller drivers should call this routine in their dequeue()
1203 * method. The HCD's private spinlock must be held and interrupts must
1204 * be disabled. The actions carried out here are required for making
1205 * sure than an unlink is valid.
1206 *
1207 * Return: 0 for no error, otherwise a negative error code (in which case
1208 * the dequeue() method must fail). The possible error codes are:
1209 *
1210 * -EIDRM: @urb was not submitted or has already completed.
1211 * The completion function may not have been called yet.
1212 *
1213 * -EBUSY: @urb has already been unlinked.
1214 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1215 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1216 int status)
1217 {
1218 struct list_head *tmp;
1219
1220 /* insist the urb is still queued */
1221 list_for_each(tmp, &urb->ep->urb_list) {
1222 if (tmp == &urb->urb_list)
1223 break;
1224 }
1225 if (tmp != &urb->urb_list)
1226 return -EIDRM;
1227
1228 /* Any status except -EINPROGRESS means something already started to
1229 * unlink this URB from the hardware. So there's no more work to do.
1230 */
1231 if (urb->unlinked)
1232 return -EBUSY;
1233 urb->unlinked = status;
1234 return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1237
1238 /**
1239 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1240 * @hcd: host controller to which @urb was submitted
1241 * @urb: URB being unlinked
1242 *
1243 * Host controller drivers should call this routine before calling
1244 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1245 * interrupts must be disabled. The actions carried out here are required
1246 * for URB completion.
1247 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1248 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1249 {
1250 /* clear all state linking urb to this dev (and hcd) */
1251 spin_lock(&hcd_urb_list_lock);
1252 list_del_init(&urb->urb_list);
1253 spin_unlock(&hcd_urb_list_lock);
1254 }
1255 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1256
1257 /*
1258 * Some usb host controllers can only perform dma using a small SRAM area,
1259 * or have restrictions on addressable DRAM.
1260 * The usb core itself is however optimized for host controllers that can dma
1261 * using regular system memory - like pci devices doing bus mastering.
1262 *
1263 * To support host controllers with limited dma capabilities we provide dma
1264 * bounce buffers. This feature can be enabled by initializing
1265 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1266 *
1267 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1268 * data for dma using the genalloc API.
1269 *
1270 * So, to summarize...
1271 *
1272 * - We need "local" memory, canonical example being
1273 * a small SRAM on a discrete controller being the
1274 * only memory that the controller can read ...
1275 * (a) "normal" kernel memory is no good, and
1276 * (b) there's not enough to share
1277 *
1278 * - So we use that, even though the primary requirement
1279 * is that the memory be "local" (hence addressable
1280 * by that device), not "coherent".
1281 *
1282 */
1283
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1284 static int hcd_alloc_coherent(struct usb_bus *bus,
1285 gfp_t mem_flags, dma_addr_t *dma_handle,
1286 void **vaddr_handle, size_t size,
1287 enum dma_data_direction dir)
1288 {
1289 unsigned char *vaddr;
1290
1291 if (*vaddr_handle == NULL) {
1292 WARN_ON_ONCE(1);
1293 return -EFAULT;
1294 }
1295
1296 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1297 mem_flags, dma_handle);
1298 if (!vaddr)
1299 return -ENOMEM;
1300
1301 /*
1302 * Store the virtual address of the buffer at the end
1303 * of the allocated dma buffer. The size of the buffer
1304 * may be uneven so use unaligned functions instead
1305 * of just rounding up. It makes sense to optimize for
1306 * memory footprint over access speed since the amount
1307 * of memory available for dma may be limited.
1308 */
1309 put_unaligned((unsigned long)*vaddr_handle,
1310 (unsigned long *)(vaddr + size));
1311
1312 if (dir == DMA_TO_DEVICE)
1313 memcpy(vaddr, *vaddr_handle, size);
1314
1315 *vaddr_handle = vaddr;
1316 return 0;
1317 }
1318
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1319 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1320 void **vaddr_handle, size_t size,
1321 enum dma_data_direction dir)
1322 {
1323 unsigned char *vaddr = *vaddr_handle;
1324
1325 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1326
1327 if (dir == DMA_FROM_DEVICE)
1328 memcpy(vaddr, *vaddr_handle, size);
1329
1330 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1331
1332 *vaddr_handle = vaddr;
1333 *dma_handle = 0;
1334 }
1335
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1336 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1339 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1340 dma_unmap_single(hcd->self.sysdev,
1341 urb->setup_dma,
1342 sizeof(struct usb_ctrlrequest),
1343 DMA_TO_DEVICE);
1344 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1345 hcd_free_coherent(urb->dev->bus,
1346 &urb->setup_dma,
1347 (void **) &urb->setup_packet,
1348 sizeof(struct usb_ctrlrequest),
1349 DMA_TO_DEVICE);
1350
1351 /* Make it safe to call this routine more than once */
1352 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1353 }
1354 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1355
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1356 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1357 {
1358 if (hcd->driver->unmap_urb_for_dma)
1359 hcd->driver->unmap_urb_for_dma(hcd, urb);
1360 else
1361 usb_hcd_unmap_urb_for_dma(hcd, urb);
1362 }
1363
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1364 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1365 {
1366 enum dma_data_direction dir;
1367
1368 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1369
1370 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1371 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372 (urb->transfer_flags & URB_DMA_MAP_SG))
1373 dma_unmap_sg(hcd->self.sysdev,
1374 urb->sg,
1375 urb->num_sgs,
1376 dir);
1377 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1378 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1379 dma_unmap_page(hcd->self.sysdev,
1380 urb->transfer_dma,
1381 urb->transfer_buffer_length,
1382 dir);
1383 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1384 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1385 dma_unmap_single(hcd->self.sysdev,
1386 urb->transfer_dma,
1387 urb->transfer_buffer_length,
1388 dir);
1389 else if (urb->transfer_flags & URB_MAP_LOCAL)
1390 hcd_free_coherent(urb->dev->bus,
1391 &urb->transfer_dma,
1392 &urb->transfer_buffer,
1393 urb->transfer_buffer_length,
1394 dir);
1395
1396 /* Make it safe to call this routine more than once */
1397 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1398 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1399 }
1400 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1401
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1402 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1403 gfp_t mem_flags)
1404 {
1405 if (hcd->driver->map_urb_for_dma)
1406 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1407 else
1408 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1409 }
1410
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1411 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1412 gfp_t mem_flags)
1413 {
1414 enum dma_data_direction dir;
1415 int ret = 0;
1416
1417 /* Map the URB's buffers for DMA access.
1418 * Lower level HCD code should use *_dma exclusively,
1419 * unless it uses pio or talks to another transport,
1420 * or uses the provided scatter gather list for bulk.
1421 */
1422
1423 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1424 if (hcd->self.uses_pio_for_control)
1425 return ret;
1426 if (hcd->localmem_pool) {
1427 ret = hcd_alloc_coherent(
1428 urb->dev->bus, mem_flags,
1429 &urb->setup_dma,
1430 (void **)&urb->setup_packet,
1431 sizeof(struct usb_ctrlrequest),
1432 DMA_TO_DEVICE);
1433 if (ret)
1434 return ret;
1435 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1436 } else if (hcd_uses_dma(hcd)) {
1437 if (object_is_on_stack(urb->setup_packet)) {
1438 WARN_ONCE(1, "setup packet is on stack\n");
1439 return -EAGAIN;
1440 }
1441
1442 urb->setup_dma = dma_map_single(
1443 hcd->self.sysdev,
1444 urb->setup_packet,
1445 sizeof(struct usb_ctrlrequest),
1446 DMA_TO_DEVICE);
1447 if (dma_mapping_error(hcd->self.sysdev,
1448 urb->setup_dma))
1449 return -EAGAIN;
1450 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1451 }
1452 }
1453
1454 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1455 if (urb->transfer_buffer_length != 0
1456 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1457 if (hcd->localmem_pool) {
1458 ret = hcd_alloc_coherent(
1459 urb->dev->bus, mem_flags,
1460 &urb->transfer_dma,
1461 &urb->transfer_buffer,
1462 urb->transfer_buffer_length,
1463 dir);
1464 if (ret == 0)
1465 urb->transfer_flags |= URB_MAP_LOCAL;
1466 } else if (hcd_uses_dma(hcd)) {
1467 if (urb->num_sgs) {
1468 int n;
1469
1470 /* We don't support sg for isoc transfers ! */
1471 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1472 WARN_ON(1);
1473 return -EINVAL;
1474 }
1475
1476 n = dma_map_sg(
1477 hcd->self.sysdev,
1478 urb->sg,
1479 urb->num_sgs,
1480 dir);
1481 if (!n)
1482 ret = -EAGAIN;
1483 else
1484 urb->transfer_flags |= URB_DMA_MAP_SG;
1485 urb->num_mapped_sgs = n;
1486 if (n != urb->num_sgs)
1487 urb->transfer_flags |=
1488 URB_DMA_SG_COMBINED;
1489 } else if (urb->sg) {
1490 struct scatterlist *sg = urb->sg;
1491 urb->transfer_dma = dma_map_page(
1492 hcd->self.sysdev,
1493 sg_page(sg),
1494 sg->offset,
1495 urb->transfer_buffer_length,
1496 dir);
1497 if (dma_mapping_error(hcd->self.sysdev,
1498 urb->transfer_dma))
1499 ret = -EAGAIN;
1500 else
1501 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1502 } else if (object_is_on_stack(urb->transfer_buffer)) {
1503 WARN_ONCE(1, "transfer buffer is on stack\n");
1504 ret = -EAGAIN;
1505 } else {
1506 urb->transfer_dma = dma_map_single(
1507 hcd->self.sysdev,
1508 urb->transfer_buffer,
1509 urb->transfer_buffer_length,
1510 dir);
1511 if (dma_mapping_error(hcd->self.sysdev,
1512 urb->transfer_dma))
1513 ret = -EAGAIN;
1514 else
1515 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516 }
1517 }
1518 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1519 URB_SETUP_MAP_LOCAL)))
1520 usb_hcd_unmap_urb_for_dma(hcd, urb);
1521 }
1522 return ret;
1523 }
1524 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1525
1526 /*-------------------------------------------------------------------------*/
1527
1528 /* may be called in any context with a valid urb->dev usecount
1529 * caller surrenders "ownership" of urb
1530 * expects usb_submit_urb() to have sanity checked and conditioned all
1531 * inputs in the urb
1532 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1533 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1534 {
1535 int status;
1536 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1537
1538 /* increment urb's reference count as part of giving it to the HCD
1539 * (which will control it). HCD guarantees that it either returns
1540 * an error or calls giveback(), but not both.
1541 */
1542 usb_get_urb(urb);
1543 atomic_inc(&urb->use_count);
1544 atomic_inc(&urb->dev->urbnum);
1545 usbmon_urb_submit(&hcd->self, urb);
1546
1547 /* NOTE requirements on root-hub callers (usbfs and the hub
1548 * driver, for now): URBs' urb->transfer_buffer must be
1549 * valid and usb_buffer_{sync,unmap}() not be needed, since
1550 * they could clobber root hub response data. Also, control
1551 * URBs must be submitted in process context with interrupts
1552 * enabled.
1553 */
1554
1555 if (is_root_hub(urb->dev)) {
1556 status = rh_urb_enqueue(hcd, urb);
1557 } else {
1558 status = map_urb_for_dma(hcd, urb, mem_flags);
1559 if (likely(status == 0)) {
1560 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1561 if (unlikely(status))
1562 unmap_urb_for_dma(hcd, urb);
1563 }
1564 }
1565
1566 if (unlikely(status)) {
1567 usbmon_urb_submit_error(&hcd->self, urb, status);
1568 urb->hcpriv = NULL;
1569 INIT_LIST_HEAD(&urb->urb_list);
1570 atomic_dec(&urb->use_count);
1571 /*
1572 * Order the write of urb->use_count above before the read
1573 * of urb->reject below. Pairs with the memory barriers in
1574 * usb_kill_urb() and usb_poison_urb().
1575 */
1576 smp_mb__after_atomic();
1577
1578 atomic_dec(&urb->dev->urbnum);
1579 if (atomic_read(&urb->reject))
1580 wake_up(&usb_kill_urb_queue);
1581 usb_put_urb(urb);
1582 }
1583 return status;
1584 }
1585
1586 /*-------------------------------------------------------------------------*/
1587
1588 /* this makes the hcd giveback() the urb more quickly, by kicking it
1589 * off hardware queues (which may take a while) and returning it as
1590 * soon as practical. we've already set up the urb's return status,
1591 * but we can't know if the callback completed already.
1592 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1593 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1594 {
1595 int value;
1596
1597 if (is_root_hub(urb->dev))
1598 value = usb_rh_urb_dequeue(hcd, urb, status);
1599 else {
1600
1601 /* The only reason an HCD might fail this call is if
1602 * it has not yet fully queued the urb to begin with.
1603 * Such failures should be harmless. */
1604 value = hcd->driver->urb_dequeue(hcd, urb, status);
1605 }
1606 return value;
1607 }
1608
1609 /*
1610 * called in any context
1611 *
1612 * caller guarantees urb won't be recycled till both unlink()
1613 * and the urb's completion function return
1614 */
usb_hcd_unlink_urb(struct urb * urb,int status)1615 int usb_hcd_unlink_urb (struct urb *urb, int status)
1616 {
1617 struct usb_hcd *hcd;
1618 struct usb_device *udev = urb->dev;
1619 int retval = -EIDRM;
1620 unsigned long flags;
1621
1622 /* Prevent the device and bus from going away while
1623 * the unlink is carried out. If they are already gone
1624 * then urb->use_count must be 0, since disconnected
1625 * devices can't have any active URBs.
1626 */
1627 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1628 if (atomic_read(&urb->use_count) > 0) {
1629 retval = 0;
1630 usb_get_dev(udev);
1631 }
1632 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1633 if (retval == 0) {
1634 hcd = bus_to_hcd(urb->dev->bus);
1635 retval = unlink1(hcd, urb, status);
1636 if (retval == 0)
1637 retval = -EINPROGRESS;
1638 else if (retval != -EIDRM && retval != -EBUSY)
1639 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1640 urb, retval);
1641 usb_put_dev(udev);
1642 }
1643 return retval;
1644 }
1645
1646 /*-------------------------------------------------------------------------*/
1647
__usb_hcd_giveback_urb(struct urb * urb)1648 static void __usb_hcd_giveback_urb(struct urb *urb)
1649 {
1650 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1651 struct usb_anchor *anchor = urb->anchor;
1652 int status = urb->unlinked;
1653
1654 urb->hcpriv = NULL;
1655 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1656 urb->actual_length < urb->transfer_buffer_length &&
1657 !status))
1658 status = -EREMOTEIO;
1659
1660 unmap_urb_for_dma(hcd, urb);
1661 usbmon_urb_complete(&hcd->self, urb, status);
1662 usb_anchor_suspend_wakeups(anchor);
1663 usb_unanchor_urb(urb);
1664 if (likely(status == 0))
1665 usb_led_activity(USB_LED_EVENT_HOST);
1666
1667 /* pass ownership to the completion handler */
1668 urb->status = status;
1669 /*
1670 * This function can be called in task context inside another remote
1671 * coverage collection section, but kcov doesn't support that kind of
1672 * recursion yet. Only collect coverage in softirq context for now.
1673 */
1674 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1675 urb->complete(urb);
1676 kcov_remote_stop_softirq();
1677
1678 usb_anchor_resume_wakeups(anchor);
1679 atomic_dec(&urb->use_count);
1680 /*
1681 * Order the write of urb->use_count above before the read
1682 * of urb->reject below. Pairs with the memory barriers in
1683 * usb_kill_urb() and usb_poison_urb().
1684 */
1685 smp_mb__after_atomic();
1686
1687 if (unlikely(atomic_read(&urb->reject)))
1688 wake_up(&usb_kill_urb_queue);
1689 usb_put_urb(urb);
1690 }
1691
usb_giveback_urb_bh(struct tasklet_struct * t)1692 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1693 {
1694 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1695 struct list_head local_list;
1696
1697 spin_lock_irq(&bh->lock);
1698 bh->running = true;
1699 list_replace_init(&bh->head, &local_list);
1700 spin_unlock_irq(&bh->lock);
1701
1702 while (!list_empty(&local_list)) {
1703 struct urb *urb;
1704
1705 urb = list_entry(local_list.next, struct urb, urb_list);
1706 list_del_init(&urb->urb_list);
1707 bh->completing_ep = urb->ep;
1708 __usb_hcd_giveback_urb(urb);
1709 bh->completing_ep = NULL;
1710 }
1711
1712 /*
1713 * giveback new URBs next time to prevent this function
1714 * from not exiting for a long time.
1715 */
1716 spin_lock_irq(&bh->lock);
1717 if (!list_empty(&bh->head)) {
1718 if (bh->high_prio)
1719 tasklet_hi_schedule(&bh->bh);
1720 else
1721 tasklet_schedule(&bh->bh);
1722 }
1723 bh->running = false;
1724 spin_unlock_irq(&bh->lock);
1725 }
1726
1727 /**
1728 * usb_hcd_giveback_urb - return URB from HCD to device driver
1729 * @hcd: host controller returning the URB
1730 * @urb: urb being returned to the USB device driver.
1731 * @status: completion status code for the URB.
1732 *
1733 * Context: atomic. The completion callback is invoked in caller's context.
1734 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1735 * context (except for URBs submitted to the root hub which always complete in
1736 * caller's context).
1737 *
1738 * This hands the URB from HCD to its USB device driver, using its
1739 * completion function. The HCD has freed all per-urb resources
1740 * (and is done using urb->hcpriv). It also released all HCD locks;
1741 * the device driver won't cause problems if it frees, modifies,
1742 * or resubmits this URB.
1743 *
1744 * If @urb was unlinked, the value of @status will be overridden by
1745 * @urb->unlinked. Erroneous short transfers are detected in case
1746 * the HCD hasn't checked for them.
1747 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1748 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1749 {
1750 struct giveback_urb_bh *bh;
1751 bool running;
1752
1753 /* pass status to tasklet via unlinked */
1754 if (likely(!urb->unlinked))
1755 urb->unlinked = status;
1756
1757 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1758 __usb_hcd_giveback_urb(urb);
1759 return;
1760 }
1761
1762 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1763 bh = &hcd->high_prio_bh;
1764 else
1765 bh = &hcd->low_prio_bh;
1766
1767 spin_lock(&bh->lock);
1768 list_add_tail(&urb->urb_list, &bh->head);
1769 running = bh->running;
1770 spin_unlock(&bh->lock);
1771
1772 if (running)
1773 ;
1774 else if (bh->high_prio)
1775 tasklet_hi_schedule(&bh->bh);
1776 else
1777 tasklet_schedule(&bh->bh);
1778 }
1779 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1780
1781 /*-------------------------------------------------------------------------*/
1782
1783 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1784 * queue to drain completely. The caller must first insure that no more
1785 * URBs can be submitted for this endpoint.
1786 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1787 void usb_hcd_flush_endpoint(struct usb_device *udev,
1788 struct usb_host_endpoint *ep)
1789 {
1790 struct usb_hcd *hcd;
1791 struct urb *urb;
1792
1793 if (!ep)
1794 return;
1795 might_sleep();
1796 hcd = bus_to_hcd(udev->bus);
1797
1798 /* No more submits can occur */
1799 spin_lock_irq(&hcd_urb_list_lock);
1800 rescan:
1801 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1802 int is_in;
1803
1804 if (urb->unlinked)
1805 continue;
1806 usb_get_urb (urb);
1807 is_in = usb_urb_dir_in(urb);
1808 spin_unlock(&hcd_urb_list_lock);
1809
1810 /* kick hcd */
1811 unlink1(hcd, urb, -ESHUTDOWN);
1812 dev_dbg (hcd->self.controller,
1813 "shutdown urb %pK ep%d%s-%s\n",
1814 urb, usb_endpoint_num(&ep->desc),
1815 is_in ? "in" : "out",
1816 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1817 usb_put_urb (urb);
1818
1819 /* list contents may have changed */
1820 spin_lock(&hcd_urb_list_lock);
1821 goto rescan;
1822 }
1823 spin_unlock_irq(&hcd_urb_list_lock);
1824
1825 /* Wait until the endpoint queue is completely empty */
1826 while (!list_empty (&ep->urb_list)) {
1827 spin_lock_irq(&hcd_urb_list_lock);
1828
1829 /* The list may have changed while we acquired the spinlock */
1830 urb = NULL;
1831 if (!list_empty (&ep->urb_list)) {
1832 urb = list_entry (ep->urb_list.prev, struct urb,
1833 urb_list);
1834 usb_get_urb (urb);
1835 }
1836 spin_unlock_irq(&hcd_urb_list_lock);
1837
1838 if (urb) {
1839 usb_kill_urb (urb);
1840 usb_put_urb (urb);
1841 }
1842 }
1843 }
1844
1845 /**
1846 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1847 * the bus bandwidth
1848 * @udev: target &usb_device
1849 * @new_config: new configuration to install
1850 * @cur_alt: the current alternate interface setting
1851 * @new_alt: alternate interface setting that is being installed
1852 *
1853 * To change configurations, pass in the new configuration in new_config,
1854 * and pass NULL for cur_alt and new_alt.
1855 *
1856 * To reset a device's configuration (put the device in the ADDRESSED state),
1857 * pass in NULL for new_config, cur_alt, and new_alt.
1858 *
1859 * To change alternate interface settings, pass in NULL for new_config,
1860 * pass in the current alternate interface setting in cur_alt,
1861 * and pass in the new alternate interface setting in new_alt.
1862 *
1863 * Return: An error if the requested bandwidth change exceeds the
1864 * bus bandwidth or host controller internal resources.
1865 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1866 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1867 struct usb_host_config *new_config,
1868 struct usb_host_interface *cur_alt,
1869 struct usb_host_interface *new_alt)
1870 {
1871 int num_intfs, i, j;
1872 struct usb_host_interface *alt = NULL;
1873 int ret = 0;
1874 struct usb_hcd *hcd;
1875 struct usb_host_endpoint *ep;
1876
1877 hcd = bus_to_hcd(udev->bus);
1878 if (!hcd->driver->check_bandwidth)
1879 return 0;
1880
1881 /* Configuration is being removed - set configuration 0 */
1882 if (!new_config && !cur_alt) {
1883 for (i = 1; i < 16; ++i) {
1884 ep = udev->ep_out[i];
1885 if (ep)
1886 hcd->driver->drop_endpoint(hcd, udev, ep);
1887 ep = udev->ep_in[i];
1888 if (ep)
1889 hcd->driver->drop_endpoint(hcd, udev, ep);
1890 }
1891 hcd->driver->check_bandwidth(hcd, udev);
1892 return 0;
1893 }
1894 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1895 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1896 * of the bus. There will always be bandwidth for endpoint 0, so it's
1897 * ok to exclude it.
1898 */
1899 if (new_config) {
1900 num_intfs = new_config->desc.bNumInterfaces;
1901 /* Remove endpoints (except endpoint 0, which is always on the
1902 * schedule) from the old config from the schedule
1903 */
1904 for (i = 1; i < 16; ++i) {
1905 ep = udev->ep_out[i];
1906 if (ep) {
1907 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1908 if (ret < 0)
1909 goto reset;
1910 }
1911 ep = udev->ep_in[i];
1912 if (ep) {
1913 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914 if (ret < 0)
1915 goto reset;
1916 }
1917 }
1918 for (i = 0; i < num_intfs; ++i) {
1919 struct usb_host_interface *first_alt;
1920 int iface_num;
1921
1922 first_alt = &new_config->intf_cache[i]->altsetting[0];
1923 iface_num = first_alt->desc.bInterfaceNumber;
1924 /* Set up endpoints for alternate interface setting 0 */
1925 alt = usb_find_alt_setting(new_config, iface_num, 0);
1926 if (!alt)
1927 /* No alt setting 0? Pick the first setting. */
1928 alt = first_alt;
1929
1930 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1931 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1932 if (ret < 0)
1933 goto reset;
1934 }
1935 }
1936 }
1937 if (cur_alt && new_alt) {
1938 struct usb_interface *iface = usb_ifnum_to_if(udev,
1939 cur_alt->desc.bInterfaceNumber);
1940
1941 if (!iface)
1942 return -EINVAL;
1943 if (iface->resetting_device) {
1944 /*
1945 * The USB core just reset the device, so the xHCI host
1946 * and the device will think alt setting 0 is installed.
1947 * However, the USB core will pass in the alternate
1948 * setting installed before the reset as cur_alt. Dig
1949 * out the alternate setting 0 structure, or the first
1950 * alternate setting if a broken device doesn't have alt
1951 * setting 0.
1952 */
1953 cur_alt = usb_altnum_to_altsetting(iface, 0);
1954 if (!cur_alt)
1955 cur_alt = &iface->altsetting[0];
1956 }
1957
1958 /* Drop all the endpoints in the current alt setting */
1959 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1960 ret = hcd->driver->drop_endpoint(hcd, udev,
1961 &cur_alt->endpoint[i]);
1962 if (ret < 0)
1963 goto reset;
1964 }
1965 /* Add all the endpoints in the new alt setting */
1966 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1967 ret = hcd->driver->add_endpoint(hcd, udev,
1968 &new_alt->endpoint[i]);
1969 if (ret < 0)
1970 goto reset;
1971 }
1972 }
1973 ret = hcd->driver->check_bandwidth(hcd, udev);
1974 reset:
1975 if (ret < 0)
1976 hcd->driver->reset_bandwidth(hcd, udev);
1977 return ret;
1978 }
1979
1980 /* Disables the endpoint: synchronizes with the hcd to make sure all
1981 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1982 * have been called previously. Use for set_configuration, set_interface,
1983 * driver removal, physical disconnect.
1984 *
1985 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1986 * type, maxpacket size, toggle, halt status, and scheduling.
1987 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1988 void usb_hcd_disable_endpoint(struct usb_device *udev,
1989 struct usb_host_endpoint *ep)
1990 {
1991 struct usb_hcd *hcd;
1992
1993 might_sleep();
1994 hcd = bus_to_hcd(udev->bus);
1995 if (hcd->driver->endpoint_disable)
1996 hcd->driver->endpoint_disable(hcd, ep);
1997 }
1998
1999 /**
2000 * usb_hcd_reset_endpoint - reset host endpoint state
2001 * @udev: USB device.
2002 * @ep: the endpoint to reset.
2003 *
2004 * Resets any host endpoint state such as the toggle bit, sequence
2005 * number and current window.
2006 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2007 void usb_hcd_reset_endpoint(struct usb_device *udev,
2008 struct usb_host_endpoint *ep)
2009 {
2010 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2011
2012 if (hcd->driver->endpoint_reset)
2013 hcd->driver->endpoint_reset(hcd, ep);
2014 else {
2015 int epnum = usb_endpoint_num(&ep->desc);
2016 int is_out = usb_endpoint_dir_out(&ep->desc);
2017 int is_control = usb_endpoint_xfer_control(&ep->desc);
2018
2019 usb_settoggle(udev, epnum, is_out, 0);
2020 if (is_control)
2021 usb_settoggle(udev, epnum, !is_out, 0);
2022 }
2023 }
2024
2025 /**
2026 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2027 * @interface: alternate setting that includes all endpoints.
2028 * @eps: array of endpoints that need streams.
2029 * @num_eps: number of endpoints in the array.
2030 * @num_streams: number of streams to allocate.
2031 * @mem_flags: flags hcd should use to allocate memory.
2032 *
2033 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2034 * Drivers may queue multiple transfers to different stream IDs, which may
2035 * complete in a different order than they were queued.
2036 *
2037 * Return: On success, the number of allocated streams. On failure, a negative
2038 * error code.
2039 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2040 int usb_alloc_streams(struct usb_interface *interface,
2041 struct usb_host_endpoint **eps, unsigned int num_eps,
2042 unsigned int num_streams, gfp_t mem_flags)
2043 {
2044 struct usb_hcd *hcd;
2045 struct usb_device *dev;
2046 int i, ret;
2047
2048 dev = interface_to_usbdev(interface);
2049 hcd = bus_to_hcd(dev->bus);
2050 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2051 return -EINVAL;
2052 if (dev->speed < USB_SPEED_SUPER)
2053 return -EINVAL;
2054 if (dev->state < USB_STATE_CONFIGURED)
2055 return -ENODEV;
2056
2057 for (i = 0; i < num_eps; i++) {
2058 /* Streams only apply to bulk endpoints. */
2059 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2060 return -EINVAL;
2061 /* Re-alloc is not allowed */
2062 if (eps[i]->streams)
2063 return -EINVAL;
2064 }
2065
2066 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2067 num_streams, mem_flags);
2068 if (ret < 0)
2069 return ret;
2070
2071 for (i = 0; i < num_eps; i++)
2072 eps[i]->streams = ret;
2073
2074 return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2077
2078 /**
2079 * usb_free_streams - free bulk endpoint stream IDs.
2080 * @interface: alternate setting that includes all endpoints.
2081 * @eps: array of endpoints to remove streams from.
2082 * @num_eps: number of endpoints in the array.
2083 * @mem_flags: flags hcd should use to allocate memory.
2084 *
2085 * Reverts a group of bulk endpoints back to not using stream IDs.
2086 * Can fail if we are given bad arguments, or HCD is broken.
2087 *
2088 * Return: 0 on success. On failure, a negative error code.
2089 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2090 int usb_free_streams(struct usb_interface *interface,
2091 struct usb_host_endpoint **eps, unsigned int num_eps,
2092 gfp_t mem_flags)
2093 {
2094 struct usb_hcd *hcd;
2095 struct usb_device *dev;
2096 int i, ret;
2097
2098 dev = interface_to_usbdev(interface);
2099 hcd = bus_to_hcd(dev->bus);
2100 if (dev->speed < USB_SPEED_SUPER)
2101 return -EINVAL;
2102
2103 /* Double-free is not allowed */
2104 for (i = 0; i < num_eps; i++)
2105 if (!eps[i] || !eps[i]->streams)
2106 return -EINVAL;
2107
2108 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2109 if (ret < 0)
2110 return ret;
2111
2112 for (i = 0; i < num_eps; i++)
2113 eps[i]->streams = 0;
2114
2115 return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(usb_free_streams);
2118
2119 /* Protect against drivers that try to unlink URBs after the device
2120 * is gone, by waiting until all unlinks for @udev are finished.
2121 * Since we don't currently track URBs by device, simply wait until
2122 * nothing is running in the locked region of usb_hcd_unlink_urb().
2123 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2124 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2125 {
2126 spin_lock_irq(&hcd_urb_unlink_lock);
2127 spin_unlock_irq(&hcd_urb_unlink_lock);
2128 }
2129
2130 /*-------------------------------------------------------------------------*/
2131
2132 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2133 int usb_hcd_get_frame_number (struct usb_device *udev)
2134 {
2135 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2136
2137 if (!HCD_RH_RUNNING(hcd))
2138 return -ESHUTDOWN;
2139 return hcd->driver->get_frame_number (hcd);
2140 }
2141
2142 /*-------------------------------------------------------------------------*/
2143 #ifdef CONFIG_USB_HCD_TEST_MODE
2144
usb_ehset_completion(struct urb * urb)2145 static void usb_ehset_completion(struct urb *urb)
2146 {
2147 struct completion *done = urb->context;
2148
2149 complete(done);
2150 }
2151 /*
2152 * Allocate and initialize a control URB. This request will be used by the
2153 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2154 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2155 * Return NULL if failed.
2156 */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2157 static struct urb *request_single_step_set_feature_urb(
2158 struct usb_device *udev,
2159 void *dr,
2160 void *buf,
2161 struct completion *done)
2162 {
2163 struct urb *urb;
2164 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2165
2166 urb = usb_alloc_urb(0, GFP_KERNEL);
2167 if (!urb)
2168 return NULL;
2169
2170 urb->pipe = usb_rcvctrlpipe(udev, 0);
2171
2172 urb->ep = &udev->ep0;
2173 urb->dev = udev;
2174 urb->setup_packet = (void *)dr;
2175 urb->transfer_buffer = buf;
2176 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2177 urb->complete = usb_ehset_completion;
2178 urb->status = -EINPROGRESS;
2179 urb->actual_length = 0;
2180 urb->transfer_flags = URB_DIR_IN;
2181 usb_get_urb(urb);
2182 atomic_inc(&urb->use_count);
2183 atomic_inc(&urb->dev->urbnum);
2184 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2185 usb_put_urb(urb);
2186 usb_free_urb(urb);
2187 return NULL;
2188 }
2189
2190 urb->context = done;
2191 return urb;
2192 }
2193
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2194 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2195 {
2196 int retval = -ENOMEM;
2197 struct usb_ctrlrequest *dr;
2198 struct urb *urb;
2199 struct usb_device *udev;
2200 struct usb_device_descriptor *buf;
2201 DECLARE_COMPLETION_ONSTACK(done);
2202
2203 /* Obtain udev of the rhub's child port */
2204 udev = usb_hub_find_child(hcd->self.root_hub, port);
2205 if (!udev) {
2206 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2207 return -ENODEV;
2208 }
2209 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2210 if (!buf)
2211 return -ENOMEM;
2212
2213 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2214 if (!dr) {
2215 kfree(buf);
2216 return -ENOMEM;
2217 }
2218
2219 /* Fill Setup packet for GetDescriptor */
2220 dr->bRequestType = USB_DIR_IN;
2221 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2222 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2223 dr->wIndex = 0;
2224 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2225 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2226 if (!urb)
2227 goto cleanup;
2228
2229 /* Submit just the SETUP stage */
2230 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2231 if (retval)
2232 goto out1;
2233 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2234 usb_kill_urb(urb);
2235 retval = -ETIMEDOUT;
2236 dev_err(hcd->self.controller,
2237 "%s SETUP stage timed out on ep0\n", __func__);
2238 goto out1;
2239 }
2240 msleep(15 * 1000);
2241
2242 /* Complete remaining DATA and STATUS stages using the same URB */
2243 urb->status = -EINPROGRESS;
2244 usb_get_urb(urb);
2245 atomic_inc(&urb->use_count);
2246 atomic_inc(&urb->dev->urbnum);
2247 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2248 if (!retval && !wait_for_completion_timeout(&done,
2249 msecs_to_jiffies(2000))) {
2250 usb_kill_urb(urb);
2251 retval = -ETIMEDOUT;
2252 dev_err(hcd->self.controller,
2253 "%s IN stage timed out on ep0\n", __func__);
2254 }
2255 out1:
2256 usb_free_urb(urb);
2257 cleanup:
2258 kfree(dr);
2259 kfree(buf);
2260 return retval;
2261 }
2262 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2263 #endif /* CONFIG_USB_HCD_TEST_MODE */
2264
2265 /*-------------------------------------------------------------------------*/
2266
2267 #ifdef CONFIG_PM
2268
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2269 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2270 {
2271 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2272 int status;
2273 int old_state = hcd->state;
2274
2275 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2276 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2277 rhdev->do_remote_wakeup);
2278 if (HCD_DEAD(hcd)) {
2279 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2280 return 0;
2281 }
2282
2283 if (!hcd->driver->bus_suspend) {
2284 status = -ENOENT;
2285 } else {
2286 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2287 hcd->state = HC_STATE_QUIESCING;
2288 status = hcd->driver->bus_suspend(hcd);
2289 }
2290 if (status == 0) {
2291 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2292 hcd->state = HC_STATE_SUSPENDED;
2293
2294 if (!PMSG_IS_AUTO(msg))
2295 usb_phy_roothub_suspend(hcd->self.sysdev,
2296 hcd->phy_roothub);
2297
2298 /* Did we race with a root-hub wakeup event? */
2299 if (rhdev->do_remote_wakeup) {
2300 char buffer[6];
2301
2302 status = hcd->driver->hub_status_data(hcd, buffer);
2303 if (status != 0) {
2304 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2305 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2306 status = -EBUSY;
2307 }
2308 }
2309 } else {
2310 spin_lock_irq(&hcd_root_hub_lock);
2311 if (!HCD_DEAD(hcd)) {
2312 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2313 hcd->state = old_state;
2314 }
2315 spin_unlock_irq(&hcd_root_hub_lock);
2316 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2317 "suspend", status);
2318 }
2319 return status;
2320 }
2321
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2322 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2323 {
2324 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2325 int status;
2326 int old_state = hcd->state;
2327
2328 dev_dbg(&rhdev->dev, "usb %sresume\n",
2329 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2330 if (HCD_DEAD(hcd)) {
2331 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2332 return 0;
2333 }
2334
2335 if (!PMSG_IS_AUTO(msg)) {
2336 status = usb_phy_roothub_resume(hcd->self.sysdev,
2337 hcd->phy_roothub);
2338 if (status)
2339 return status;
2340 }
2341
2342 if (!hcd->driver->bus_resume)
2343 return -ENOENT;
2344 if (HCD_RH_RUNNING(hcd))
2345 return 0;
2346
2347 hcd->state = HC_STATE_RESUMING;
2348 status = hcd->driver->bus_resume(hcd);
2349 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2350 if (status == 0)
2351 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2352
2353 if (status == 0) {
2354 struct usb_device *udev;
2355 int port1;
2356
2357 spin_lock_irq(&hcd_root_hub_lock);
2358 if (!HCD_DEAD(hcd)) {
2359 usb_set_device_state(rhdev, rhdev->actconfig
2360 ? USB_STATE_CONFIGURED
2361 : USB_STATE_ADDRESS);
2362 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2363 hcd->state = HC_STATE_RUNNING;
2364 }
2365 spin_unlock_irq(&hcd_root_hub_lock);
2366
2367 /*
2368 * Check whether any of the enabled ports on the root hub are
2369 * unsuspended. If they are then a TRSMRCY delay is needed
2370 * (this is what the USB-2 spec calls a "global resume").
2371 * Otherwise we can skip the delay.
2372 */
2373 usb_hub_for_each_child(rhdev, port1, udev) {
2374 if (udev->state != USB_STATE_NOTATTACHED &&
2375 !udev->port_is_suspended) {
2376 usleep_range(10000, 11000); /* TRSMRCY */
2377 break;
2378 }
2379 }
2380 } else {
2381 hcd->state = old_state;
2382 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2383 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2384 "resume", status);
2385 if (status != -ESHUTDOWN)
2386 usb_hc_died(hcd);
2387 }
2388 return status;
2389 }
2390
2391 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2392 static void hcd_resume_work(struct work_struct *work)
2393 {
2394 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2395 struct usb_device *udev = hcd->self.root_hub;
2396
2397 usb_remote_wakeup(udev);
2398 }
2399
2400 /**
2401 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2402 * @hcd: host controller for this root hub
2403 *
2404 * The USB host controller calls this function when its root hub is
2405 * suspended (with the remote wakeup feature enabled) and a remote
2406 * wakeup request is received. The routine submits a workqueue request
2407 * to resume the root hub (that is, manage its downstream ports again).
2408 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2409 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2410 {
2411 unsigned long flags;
2412
2413 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2414 if (hcd->rh_registered) {
2415 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2416 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2417 queue_work(pm_wq, &hcd->wakeup_work);
2418 }
2419 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2420 }
2421 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2422
2423 #endif /* CONFIG_PM */
2424
2425 /*-------------------------------------------------------------------------*/
2426
2427 #ifdef CONFIG_USB_OTG
2428
2429 /**
2430 * usb_bus_start_enum - start immediate enumeration (for OTG)
2431 * @bus: the bus (must use hcd framework)
2432 * @port_num: 1-based number of port; usually bus->otg_port
2433 * Context: atomic
2434 *
2435 * Starts enumeration, with an immediate reset followed later by
2436 * hub_wq identifying and possibly configuring the device.
2437 * This is needed by OTG controller drivers, where it helps meet
2438 * HNP protocol timing requirements for starting a port reset.
2439 *
2440 * Return: 0 if successful.
2441 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2442 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2443 {
2444 struct usb_hcd *hcd;
2445 int status = -EOPNOTSUPP;
2446
2447 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2448 * boards with root hubs hooked up to internal devices (instead of
2449 * just the OTG port) may need more attention to resetting...
2450 */
2451 hcd = bus_to_hcd(bus);
2452 if (port_num && hcd->driver->start_port_reset)
2453 status = hcd->driver->start_port_reset(hcd, port_num);
2454
2455 /* allocate hub_wq shortly after (first) root port reset finishes;
2456 * it may issue others, until at least 50 msecs have passed.
2457 */
2458 if (status == 0)
2459 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2460 return status;
2461 }
2462 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2463
2464 #endif
2465
2466 /*-------------------------------------------------------------------------*/
2467
2468 /**
2469 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2470 * @irq: the IRQ being raised
2471 * @__hcd: pointer to the HCD whose IRQ is being signaled
2472 *
2473 * If the controller isn't HALTed, calls the driver's irq handler.
2474 * Checks whether the controller is now dead.
2475 *
2476 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2477 */
usb_hcd_irq(int irq,void * __hcd)2478 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2479 {
2480 struct usb_hcd *hcd = __hcd;
2481 irqreturn_t rc;
2482
2483 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2484 rc = IRQ_NONE;
2485 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2486 rc = IRQ_NONE;
2487 else
2488 rc = IRQ_HANDLED;
2489
2490 return rc;
2491 }
2492 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2493
2494 /*-------------------------------------------------------------------------*/
2495
2496 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2497 static void hcd_died_work(struct work_struct *work)
2498 {
2499 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2500 static char *env[] = {
2501 "ERROR=DEAD",
2502 NULL
2503 };
2504
2505 /* Notify user space that the host controller has died */
2506 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2507 }
2508
2509 /**
2510 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2511 * @hcd: pointer to the HCD representing the controller
2512 *
2513 * This is called by bus glue to report a USB host controller that died
2514 * while operations may still have been pending. It's called automatically
2515 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2516 *
2517 * Only call this function with the primary HCD.
2518 */
usb_hc_died(struct usb_hcd * hcd)2519 void usb_hc_died (struct usb_hcd *hcd)
2520 {
2521 unsigned long flags;
2522
2523 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2524
2525 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2526 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2527 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2528 if (hcd->rh_registered) {
2529 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2530
2531 /* make hub_wq clean up old urbs and devices */
2532 usb_set_device_state (hcd->self.root_hub,
2533 USB_STATE_NOTATTACHED);
2534 usb_kick_hub_wq(hcd->self.root_hub);
2535 }
2536 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2537 hcd = hcd->shared_hcd;
2538 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2539 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2540 if (hcd->rh_registered) {
2541 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2542
2543 /* make hub_wq clean up old urbs and devices */
2544 usb_set_device_state(hcd->self.root_hub,
2545 USB_STATE_NOTATTACHED);
2546 usb_kick_hub_wq(hcd->self.root_hub);
2547 }
2548 }
2549
2550 /* Handle the case where this function gets called with a shared HCD */
2551 if (usb_hcd_is_primary_hcd(hcd))
2552 schedule_work(&hcd->died_work);
2553 else
2554 schedule_work(&hcd->primary_hcd->died_work);
2555
2556 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2557 /* Make sure that the other roothub is also deallocated. */
2558 }
2559 EXPORT_SYMBOL_GPL (usb_hc_died);
2560
2561 /*-------------------------------------------------------------------------*/
2562
init_giveback_urb_bh(struct giveback_urb_bh * bh)2563 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2564 {
2565
2566 spin_lock_init(&bh->lock);
2567 INIT_LIST_HEAD(&bh->head);
2568 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2569 }
2570
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2571 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2572 struct device *sysdev, struct device *dev, const char *bus_name,
2573 struct usb_hcd *primary_hcd)
2574 {
2575 struct usb_hcd *hcd;
2576
2577 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2578 if (!hcd)
2579 return NULL;
2580 if (primary_hcd == NULL) {
2581 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2582 GFP_KERNEL);
2583 if (!hcd->address0_mutex) {
2584 kfree(hcd);
2585 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2586 return NULL;
2587 }
2588 mutex_init(hcd->address0_mutex);
2589 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2590 GFP_KERNEL);
2591 if (!hcd->bandwidth_mutex) {
2592 kfree(hcd->address0_mutex);
2593 kfree(hcd);
2594 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2595 return NULL;
2596 }
2597 mutex_init(hcd->bandwidth_mutex);
2598 dev_set_drvdata(dev, hcd);
2599 } else {
2600 mutex_lock(&usb_port_peer_mutex);
2601 hcd->address0_mutex = primary_hcd->address0_mutex;
2602 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2603 hcd->primary_hcd = primary_hcd;
2604 primary_hcd->primary_hcd = primary_hcd;
2605 hcd->shared_hcd = primary_hcd;
2606 primary_hcd->shared_hcd = hcd;
2607 mutex_unlock(&usb_port_peer_mutex);
2608 }
2609
2610 kref_init(&hcd->kref);
2611
2612 usb_bus_init(&hcd->self);
2613 hcd->self.controller = dev;
2614 hcd->self.sysdev = sysdev;
2615 hcd->self.bus_name = bus_name;
2616
2617 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2618 #ifdef CONFIG_PM
2619 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2620 #endif
2621
2622 INIT_WORK(&hcd->died_work, hcd_died_work);
2623
2624 hcd->driver = driver;
2625 hcd->speed = driver->flags & HCD_MASK;
2626 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2627 "USB Host Controller";
2628 return hcd;
2629 }
2630 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2631
2632 /**
2633 * usb_create_shared_hcd - create and initialize an HCD structure
2634 * @driver: HC driver that will use this hcd
2635 * @dev: device for this HC, stored in hcd->self.controller
2636 * @bus_name: value to store in hcd->self.bus_name
2637 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2638 * PCI device. Only allocate certain resources for the primary HCD
2639 *
2640 * Context: task context, might sleep.
2641 *
2642 * Allocate a struct usb_hcd, with extra space at the end for the
2643 * HC driver's private data. Initialize the generic members of the
2644 * hcd structure.
2645 *
2646 * Return: On success, a pointer to the created and initialized HCD structure.
2647 * On failure (e.g. if memory is unavailable), %NULL.
2648 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2649 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2650 struct device *dev, const char *bus_name,
2651 struct usb_hcd *primary_hcd)
2652 {
2653 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2654 }
2655 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2656
2657 /**
2658 * usb_create_hcd - create and initialize an HCD structure
2659 * @driver: HC driver that will use this hcd
2660 * @dev: device for this HC, stored in hcd->self.controller
2661 * @bus_name: value to store in hcd->self.bus_name
2662 *
2663 * Context: task context, might sleep.
2664 *
2665 * Allocate a struct usb_hcd, with extra space at the end for the
2666 * HC driver's private data. Initialize the generic members of the
2667 * hcd structure.
2668 *
2669 * Return: On success, a pointer to the created and initialized HCD
2670 * structure. On failure (e.g. if memory is unavailable), %NULL.
2671 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2672 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2673 struct device *dev, const char *bus_name)
2674 {
2675 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2676 }
2677 EXPORT_SYMBOL_GPL(usb_create_hcd);
2678
2679 /*
2680 * Roothubs that share one PCI device must also share the bandwidth mutex.
2681 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2682 * deallocated.
2683 *
2684 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2685 * freed. When hcd_release() is called for either hcd in a peer set,
2686 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2687 */
hcd_release(struct kref * kref)2688 static void hcd_release(struct kref *kref)
2689 {
2690 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2691
2692 mutex_lock(&usb_port_peer_mutex);
2693 if (hcd->shared_hcd) {
2694 struct usb_hcd *peer = hcd->shared_hcd;
2695
2696 peer->shared_hcd = NULL;
2697 peer->primary_hcd = NULL;
2698 } else {
2699 kfree(hcd->address0_mutex);
2700 kfree(hcd->bandwidth_mutex);
2701 }
2702 mutex_unlock(&usb_port_peer_mutex);
2703 kfree(hcd);
2704 }
2705
usb_get_hcd(struct usb_hcd * hcd)2706 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2707 {
2708 if (hcd)
2709 kref_get (&hcd->kref);
2710 return hcd;
2711 }
2712 EXPORT_SYMBOL_GPL(usb_get_hcd);
2713
usb_put_hcd(struct usb_hcd * hcd)2714 void usb_put_hcd (struct usb_hcd *hcd)
2715 {
2716 if (hcd)
2717 kref_put (&hcd->kref, hcd_release);
2718 }
2719 EXPORT_SYMBOL_GPL(usb_put_hcd);
2720
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2721 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2722 {
2723 if (!hcd->primary_hcd)
2724 return 1;
2725 return hcd == hcd->primary_hcd;
2726 }
2727 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2728
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2729 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2730 {
2731 if (!hcd->driver->find_raw_port_number)
2732 return port1;
2733
2734 return hcd->driver->find_raw_port_number(hcd, port1);
2735 }
2736
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2737 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2738 unsigned int irqnum, unsigned long irqflags)
2739 {
2740 int retval;
2741
2742 if (hcd->driver->irq) {
2743
2744 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2745 hcd->driver->description, hcd->self.busnum);
2746 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2747 hcd->irq_descr, hcd);
2748 if (retval != 0) {
2749 dev_err(hcd->self.controller,
2750 "request interrupt %d failed\n",
2751 irqnum);
2752 return retval;
2753 }
2754 hcd->irq = irqnum;
2755 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2756 (hcd->driver->flags & HCD_MEMORY) ?
2757 "io mem" : "io port",
2758 (unsigned long long)hcd->rsrc_start);
2759 } else {
2760 hcd->irq = 0;
2761 if (hcd->rsrc_start)
2762 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2763 (hcd->driver->flags & HCD_MEMORY) ?
2764 "io mem" : "io port",
2765 (unsigned long long)hcd->rsrc_start);
2766 }
2767 return 0;
2768 }
2769
2770 /*
2771 * Before we free this root hub, flush in-flight peering attempts
2772 * and disable peer lookups
2773 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2774 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2775 {
2776 struct usb_device *rhdev;
2777
2778 mutex_lock(&usb_port_peer_mutex);
2779 rhdev = hcd->self.root_hub;
2780 hcd->self.root_hub = NULL;
2781 mutex_unlock(&usb_port_peer_mutex);
2782 usb_put_dev(rhdev);
2783 }
2784
2785 /**
2786 * usb_stop_hcd - Halt the HCD
2787 * @hcd: the usb_hcd that has to be halted
2788 *
2789 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2790 */
usb_stop_hcd(struct usb_hcd * hcd)2791 static void usb_stop_hcd(struct usb_hcd *hcd)
2792 {
2793 hcd->rh_pollable = 0;
2794 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2795 del_timer_sync(&hcd->rh_timer);
2796
2797 hcd->driver->stop(hcd);
2798 hcd->state = HC_STATE_HALT;
2799
2800 /* In case the HCD restarted the timer, stop it again. */
2801 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2802 del_timer_sync(&hcd->rh_timer);
2803 }
2804
2805 /**
2806 * usb_add_hcd - finish generic HCD structure initialization and register
2807 * @hcd: the usb_hcd structure to initialize
2808 * @irqnum: Interrupt line to allocate
2809 * @irqflags: Interrupt type flags
2810 *
2811 * Finish the remaining parts of generic HCD initialization: allocate the
2812 * buffers of consistent memory, register the bus, request the IRQ line,
2813 * and call the driver's reset() and start() routines.
2814 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2815 int usb_add_hcd(struct usb_hcd *hcd,
2816 unsigned int irqnum, unsigned long irqflags)
2817 {
2818 int retval;
2819 struct usb_device *rhdev;
2820 struct usb_hcd *shared_hcd;
2821
2822 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2823 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2824 if (IS_ERR(hcd->phy_roothub))
2825 return PTR_ERR(hcd->phy_roothub);
2826
2827 retval = usb_phy_roothub_init(hcd->phy_roothub);
2828 if (retval)
2829 return retval;
2830
2831 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2832 PHY_MODE_USB_HOST_SS);
2833 if (retval)
2834 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2835 PHY_MODE_USB_HOST);
2836 if (retval)
2837 goto err_usb_phy_roothub_power_on;
2838
2839 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2840 if (retval)
2841 goto err_usb_phy_roothub_power_on;
2842 }
2843
2844 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2845
2846 switch (authorized_default) {
2847 case USB_AUTHORIZE_NONE:
2848 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2849 break;
2850
2851 case USB_AUTHORIZE_ALL:
2852 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2853 break;
2854
2855 case USB_AUTHORIZE_INTERNAL:
2856 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2857 break;
2858
2859 case USB_AUTHORIZE_WIRED:
2860 default:
2861 hcd->dev_policy = hcd->wireless ?
2862 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2863 break;
2864 }
2865
2866 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2867
2868 /* per default all interfaces are authorized */
2869 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2870
2871 /* HC is in reset state, but accessible. Now do the one-time init,
2872 * bottom up so that hcds can customize the root hubs before hub_wq
2873 * starts talking to them. (Note, bus id is assigned early too.)
2874 */
2875 retval = hcd_buffer_create(hcd);
2876 if (retval != 0) {
2877 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2878 goto err_create_buf;
2879 }
2880
2881 retval = usb_register_bus(&hcd->self);
2882 if (retval < 0)
2883 goto err_register_bus;
2884
2885 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2886 if (rhdev == NULL) {
2887 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2888 retval = -ENOMEM;
2889 goto err_allocate_root_hub;
2890 }
2891 mutex_lock(&usb_port_peer_mutex);
2892 hcd->self.root_hub = rhdev;
2893 mutex_unlock(&usb_port_peer_mutex);
2894
2895 rhdev->rx_lanes = 1;
2896 rhdev->tx_lanes = 1;
2897 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2898
2899 switch (hcd->speed) {
2900 case HCD_USB11:
2901 rhdev->speed = USB_SPEED_FULL;
2902 break;
2903 case HCD_USB2:
2904 rhdev->speed = USB_SPEED_HIGH;
2905 break;
2906 case HCD_USB25:
2907 rhdev->speed = USB_SPEED_WIRELESS;
2908 break;
2909 case HCD_USB3:
2910 rhdev->speed = USB_SPEED_SUPER;
2911 break;
2912 case HCD_USB32:
2913 rhdev->rx_lanes = 2;
2914 rhdev->tx_lanes = 2;
2915 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2916 rhdev->speed = USB_SPEED_SUPER_PLUS;
2917 break;
2918 case HCD_USB31:
2919 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2920 rhdev->speed = USB_SPEED_SUPER_PLUS;
2921 break;
2922 default:
2923 retval = -EINVAL;
2924 goto err_set_rh_speed;
2925 }
2926
2927 /* wakeup flag init defaults to "everything works" for root hubs,
2928 * but drivers can override it in reset() if needed, along with
2929 * recording the overall controller's system wakeup capability.
2930 */
2931 device_set_wakeup_capable(&rhdev->dev, 1);
2932
2933 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2934 * registered. But since the controller can die at any time,
2935 * let's initialize the flag before touching the hardware.
2936 */
2937 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2938
2939 /* "reset" is misnamed; its role is now one-time init. the controller
2940 * should already have been reset (and boot firmware kicked off etc).
2941 */
2942 if (hcd->driver->reset) {
2943 retval = hcd->driver->reset(hcd);
2944 if (retval < 0) {
2945 dev_err(hcd->self.controller, "can't setup: %d\n",
2946 retval);
2947 goto err_hcd_driver_setup;
2948 }
2949 }
2950 hcd->rh_pollable = 1;
2951
2952 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2953 if (retval)
2954 goto err_hcd_driver_setup;
2955
2956 /* NOTE: root hub and controller capabilities may not be the same */
2957 if (device_can_wakeup(hcd->self.controller)
2958 && device_can_wakeup(&hcd->self.root_hub->dev))
2959 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2960
2961 /* initialize tasklets */
2962 init_giveback_urb_bh(&hcd->high_prio_bh);
2963 hcd->high_prio_bh.high_prio = true;
2964 init_giveback_urb_bh(&hcd->low_prio_bh);
2965
2966 /* enable irqs just before we start the controller,
2967 * if the BIOS provides legacy PCI irqs.
2968 */
2969 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2970 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2971 if (retval)
2972 goto err_request_irq;
2973 }
2974
2975 hcd->state = HC_STATE_RUNNING;
2976 retval = hcd->driver->start(hcd);
2977 if (retval < 0) {
2978 dev_err(hcd->self.controller, "startup error %d\n", retval);
2979 goto err_hcd_driver_start;
2980 }
2981
2982 /* starting here, usbcore will pay attention to the shared HCD roothub */
2983 shared_hcd = hcd->shared_hcd;
2984 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2985 retval = register_root_hub(shared_hcd);
2986 if (retval != 0)
2987 goto err_register_root_hub;
2988
2989 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2990 usb_hcd_poll_rh_status(shared_hcd);
2991 }
2992
2993 /* starting here, usbcore will pay attention to this root hub */
2994 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2995 retval = register_root_hub(hcd);
2996 if (retval != 0)
2997 goto err_register_root_hub;
2998
2999 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3000 usb_hcd_poll_rh_status(hcd);
3001 }
3002
3003 return retval;
3004
3005 err_register_root_hub:
3006 usb_stop_hcd(hcd);
3007 err_hcd_driver_start:
3008 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3009 free_irq(irqnum, hcd);
3010 err_request_irq:
3011 err_hcd_driver_setup:
3012 err_set_rh_speed:
3013 usb_put_invalidate_rhdev(hcd);
3014 err_allocate_root_hub:
3015 usb_deregister_bus(&hcd->self);
3016 err_register_bus:
3017 hcd_buffer_destroy(hcd);
3018 err_create_buf:
3019 usb_phy_roothub_power_off(hcd->phy_roothub);
3020 err_usb_phy_roothub_power_on:
3021 usb_phy_roothub_exit(hcd->phy_roothub);
3022
3023 return retval;
3024 }
3025 EXPORT_SYMBOL_GPL(usb_add_hcd);
3026
3027 /**
3028 * usb_remove_hcd - shutdown processing for generic HCDs
3029 * @hcd: the usb_hcd structure to remove
3030 *
3031 * Context: task context, might sleep.
3032 *
3033 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3034 * invoking the HCD's stop() method.
3035 */
usb_remove_hcd(struct usb_hcd * hcd)3036 void usb_remove_hcd(struct usb_hcd *hcd)
3037 {
3038 struct usb_device *rhdev;
3039 bool rh_registered;
3040
3041 if (!hcd) {
3042 pr_debug("%s: hcd is NULL\n", __func__);
3043 return;
3044 }
3045 rhdev = hcd->self.root_hub;
3046
3047 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3048
3049 usb_get_dev(rhdev);
3050 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3051 if (HC_IS_RUNNING (hcd->state))
3052 hcd->state = HC_STATE_QUIESCING;
3053
3054 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3055 spin_lock_irq (&hcd_root_hub_lock);
3056 rh_registered = hcd->rh_registered;
3057 hcd->rh_registered = 0;
3058 spin_unlock_irq (&hcd_root_hub_lock);
3059
3060 #ifdef CONFIG_PM
3061 cancel_work_sync(&hcd->wakeup_work);
3062 #endif
3063 cancel_work_sync(&hcd->died_work);
3064
3065 mutex_lock(&usb_bus_idr_lock);
3066 if (rh_registered)
3067 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3068 mutex_unlock(&usb_bus_idr_lock);
3069
3070 /*
3071 * tasklet_kill() isn't needed here because:
3072 * - driver's disconnect() called from usb_disconnect() should
3073 * make sure its URBs are completed during the disconnect()
3074 * callback
3075 *
3076 * - it is too late to run complete() here since driver may have
3077 * been removed already now
3078 */
3079
3080 /* Prevent any more root-hub status calls from the timer.
3081 * The HCD might still restart the timer (if a port status change
3082 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3083 * the hub_status_data() callback.
3084 */
3085 usb_stop_hcd(hcd);
3086
3087 if (usb_hcd_is_primary_hcd(hcd)) {
3088 if (hcd->irq > 0)
3089 free_irq(hcd->irq, hcd);
3090 }
3091
3092 usb_deregister_bus(&hcd->self);
3093 hcd_buffer_destroy(hcd);
3094
3095 usb_phy_roothub_power_off(hcd->phy_roothub);
3096 usb_phy_roothub_exit(hcd->phy_roothub);
3097
3098 usb_put_invalidate_rhdev(hcd);
3099 hcd->flags = 0;
3100 }
3101 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3102
3103 void
usb_hcd_platform_shutdown(struct platform_device * dev)3104 usb_hcd_platform_shutdown(struct platform_device *dev)
3105 {
3106 struct usb_hcd *hcd = platform_get_drvdata(dev);
3107
3108 /* No need for pm_runtime_put(), we're shutting down */
3109 pm_runtime_get_sync(&dev->dev);
3110
3111 if (hcd->driver->shutdown)
3112 hcd->driver->shutdown(hcd);
3113 }
3114 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3115
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3116 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3117 dma_addr_t dma, size_t size)
3118 {
3119 int err;
3120 void *local_mem;
3121
3122 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3123 dev_to_node(hcd->self.sysdev),
3124 dev_name(hcd->self.sysdev));
3125 if (IS_ERR(hcd->localmem_pool))
3126 return PTR_ERR(hcd->localmem_pool);
3127
3128 /*
3129 * if a physical SRAM address was passed, map it, otherwise
3130 * allocate system memory as a buffer.
3131 */
3132 if (phys_addr)
3133 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3134 size, MEMREMAP_WC);
3135 else
3136 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3137 GFP_KERNEL,
3138 DMA_ATTR_WRITE_COMBINE);
3139
3140 if (IS_ERR_OR_NULL(local_mem)) {
3141 if (!local_mem)
3142 return -ENOMEM;
3143
3144 return PTR_ERR(local_mem);
3145 }
3146
3147 /*
3148 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3149 * It's not backed by system memory and thus there's no kernel mapping
3150 * for it.
3151 */
3152 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3153 dma, size, dev_to_node(hcd->self.sysdev));
3154 if (err < 0) {
3155 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3156 err);
3157 return err;
3158 }
3159
3160 return 0;
3161 }
3162 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3163
3164 /*-------------------------------------------------------------------------*/
3165
3166 #if IS_ENABLED(CONFIG_USB_MON)
3167
3168 const struct usb_mon_operations *mon_ops;
3169
3170 /*
3171 * The registration is unlocked.
3172 * We do it this way because we do not want to lock in hot paths.
3173 *
3174 * Notice that the code is minimally error-proof. Because usbmon needs
3175 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3176 */
3177
usb_mon_register(const struct usb_mon_operations * ops)3178 int usb_mon_register(const struct usb_mon_operations *ops)
3179 {
3180
3181 if (mon_ops)
3182 return -EBUSY;
3183
3184 mon_ops = ops;
3185 mb();
3186 return 0;
3187 }
3188 EXPORT_SYMBOL_GPL (usb_mon_register);
3189
usb_mon_deregister(void)3190 void usb_mon_deregister (void)
3191 {
3192
3193 if (mon_ops == NULL) {
3194 printk(KERN_ERR "USB: monitor was not registered\n");
3195 return;
3196 }
3197 mon_ops = NULL;
3198 mb();
3199 }
3200 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3201
3202 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3203