• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11 
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35 
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40 
41 #include "usb.h"
42 #include "phy.h"
43 
44 
45 /*-------------------------------------------------------------------------*/
46 
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74  *		associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76  */
77 
78 /*-------------------------------------------------------------------------*/
79 
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83 
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87 
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS		64
90 
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94 
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97 
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100 
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103 
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106 
107 /*-------------------------------------------------------------------------*/
108 
109 /*
110  * Sharable chunks of root hub code.
111  */
112 
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
116 
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 	0x12,       /*  __u8  bLength; */
120 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122 
123 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124 	0x00,	    /*  __u8  bDeviceSubClass; */
125 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127 
128 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131 
132 	0x03,       /*  __u8  iManufacturer; */
133 	0x02,       /*  __u8  iProduct; */
134 	0x01,       /*  __u8  iSerialNumber; */
135 	0x01        /*  __u8  bNumConfigurations; */
136 };
137 
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 	0x12,       /*  __u8  bLength; */
141 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143 
144 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145 	0x00,	    /*  __u8  bDeviceSubClass; */
146 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148 
149 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152 
153 	0x03,       /*  __u8  iManufacturer; */
154 	0x02,       /*  __u8  iProduct; */
155 	0x01,       /*  __u8  iSerialNumber; */
156 	0x01        /*  __u8  bNumConfigurations; */
157 };
158 
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 	0x12,       /*  __u8  bLength; */
162 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
164 
165 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166 	0x00,	    /*  __u8  bDeviceSubClass; */
167 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169 
170 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173 
174 	0x03,       /*  __u8  iManufacturer; */
175 	0x02,       /*  __u8  iProduct; */
176 	0x01,       /*  __u8  iSerialNumber; */
177 	0x01        /*  __u8  bNumConfigurations; */
178 };
179 
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 	0x12,       /*  __u8  bLength; */
183 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
185 
186 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
187 	0x00,	    /*  __u8  bDeviceSubClass; */
188 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
189 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
190 
191 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
192 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
193 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
194 
195 	0x03,       /*  __u8  iManufacturer; */
196 	0x02,       /*  __u8  iProduct; */
197 	0x01,       /*  __u8  iSerialNumber; */
198 	0x01        /*  __u8  bNumConfigurations; */
199 };
200 
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202 
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 	0x12,       /*  __u8  bLength; */
206 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
208 
209 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
210 	0x00,	    /*  __u8  bDeviceSubClass; */
211 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
212 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
213 
214 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
215 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
216 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
217 
218 	0x03,       /*  __u8  iManufacturer; */
219 	0x02,       /*  __u8  iProduct; */
220 	0x01,       /*  __u8  iSerialNumber; */
221 	0x01        /*  __u8  bNumConfigurations; */
222 };
223 
224 
225 /*-------------------------------------------------------------------------*/
226 
227 /* Configuration descriptors for our root hubs */
228 
229 static const u8 fs_rh_config_descriptor[] = {
230 
231 	/* one configuration */
232 	0x09,       /*  __u8  bLength; */
233 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 	0x19, 0x00, /*  __le16 wTotalLength; */
235 	0x01,       /*  __u8  bNumInterfaces; (1) */
236 	0x01,       /*  __u8  bConfigurationValue; */
237 	0x00,       /*  __u8  iConfiguration; */
238 	0xc0,       /*  __u8  bmAttributes;
239 				 Bit 7: must be set,
240 				     6: Self-powered,
241 				     5: Remote wakeup,
242 				     4..0: resvd */
243 	0x00,       /*  __u8  MaxPower; */
244 
245 	/* USB 1.1:
246 	 * USB 2.0, single TT organization (mandatory):
247 	 *	one interface, protocol 0
248 	 *
249 	 * USB 2.0, multiple TT organization (optional):
250 	 *	two interfaces, protocols 1 (like single TT)
251 	 *	and 2 (multiple TT mode) ... config is
252 	 *	sometimes settable
253 	 *	NOT IMPLEMENTED
254 	 */
255 
256 	/* one interface */
257 	0x09,       /*  __u8  if_bLength; */
258 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
259 	0x00,       /*  __u8  if_bInterfaceNumber; */
260 	0x00,       /*  __u8  if_bAlternateSetting; */
261 	0x01,       /*  __u8  if_bNumEndpoints; */
262 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
263 	0x00,       /*  __u8  if_bInterfaceSubClass; */
264 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
265 	0x00,       /*  __u8  if_iInterface; */
266 
267 	/* one endpoint (status change endpoint) */
268 	0x07,       /*  __u8  ep_bLength; */
269 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
271 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
272 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275 
276 static const u8 hs_rh_config_descriptor[] = {
277 
278 	/* one configuration */
279 	0x09,       /*  __u8  bLength; */
280 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 	0x19, 0x00, /*  __le16 wTotalLength; */
282 	0x01,       /*  __u8  bNumInterfaces; (1) */
283 	0x01,       /*  __u8  bConfigurationValue; */
284 	0x00,       /*  __u8  iConfiguration; */
285 	0xc0,       /*  __u8  bmAttributes;
286 				 Bit 7: must be set,
287 				     6: Self-powered,
288 				     5: Remote wakeup,
289 				     4..0: resvd */
290 	0x00,       /*  __u8  MaxPower; */
291 
292 	/* USB 1.1:
293 	 * USB 2.0, single TT organization (mandatory):
294 	 *	one interface, protocol 0
295 	 *
296 	 * USB 2.0, multiple TT organization (optional):
297 	 *	two interfaces, protocols 1 (like single TT)
298 	 *	and 2 (multiple TT mode) ... config is
299 	 *	sometimes settable
300 	 *	NOT IMPLEMENTED
301 	 */
302 
303 	/* one interface */
304 	0x09,       /*  __u8  if_bLength; */
305 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 	0x00,       /*  __u8  if_bInterfaceNumber; */
307 	0x00,       /*  __u8  if_bAlternateSetting; */
308 	0x01,       /*  __u8  if_bNumEndpoints; */
309 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
310 	0x00,       /*  __u8  if_bInterfaceSubClass; */
311 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
312 	0x00,       /*  __u8  if_iInterface; */
313 
314 	/* one endpoint (status change endpoint) */
315 	0x07,       /*  __u8  ep_bLength; */
316 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
318 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
319 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 		     * see hub.c:hub_configure() for details. */
321 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324 
325 static const u8 ss_rh_config_descriptor[] = {
326 	/* one configuration */
327 	0x09,       /*  __u8  bLength; */
328 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 	0x1f, 0x00, /*  __le16 wTotalLength; */
330 	0x01,       /*  __u8  bNumInterfaces; (1) */
331 	0x01,       /*  __u8  bConfigurationValue; */
332 	0x00,       /*  __u8  iConfiguration; */
333 	0xc0,       /*  __u8  bmAttributes;
334 				 Bit 7: must be set,
335 				     6: Self-powered,
336 				     5: Remote wakeup,
337 				     4..0: resvd */
338 	0x00,       /*  __u8  MaxPower; */
339 
340 	/* one interface */
341 	0x09,       /*  __u8  if_bLength; */
342 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 	0x00,       /*  __u8  if_bInterfaceNumber; */
344 	0x00,       /*  __u8  if_bAlternateSetting; */
345 	0x01,       /*  __u8  if_bNumEndpoints; */
346 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
347 	0x00,       /*  __u8  if_bInterfaceSubClass; */
348 	0x00,       /*  __u8  if_bInterfaceProtocol; */
349 	0x00,       /*  __u8  if_iInterface; */
350 
351 	/* one endpoint (status change endpoint) */
352 	0x07,       /*  __u8  ep_bLength; */
353 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
355 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
356 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 		     * see hub.c:hub_configure() for details. */
358 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
360 
361 	/* one SuperSpeed endpoint companion descriptor */
362 	0x06,        /* __u8 ss_bLength */
363 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 		     /* Companion */
365 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
367 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369 
370 /* authorized_default behaviour:
371  * -1 is authorized for all devices except wireless (old behaviour)
372  * 0 is unauthorized for all devices
373  * 1 is authorized for all devices
374  * 2 is authorized for internal devices
375  */
376 #define USB_AUTHORIZE_WIRED	-1
377 #define USB_AUTHORIZE_NONE	0
378 #define USB_AUTHORIZE_ALL	1
379 #define USB_AUTHORIZE_INTERNAL	2
380 
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 		"Default USB device authorization: 0 is not authorized, 1 is "
385 		"authorized, 2 is authorized for internal devices, -1 is "
386 		"authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388 
389 /**
390  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391  * @s: Null-terminated ASCII (actually ISO-8859-1) string
392  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393  * @len: Length (in bytes; may be odd) of descriptor buffer.
394  *
395  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396  * whichever is less.
397  *
398  * Note:
399  * USB String descriptors can contain at most 126 characters; input
400  * strings longer than that are truncated.
401  */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 	unsigned n, t = 2 + 2*strlen(s);
406 
407 	if (t > 254)
408 		t = 254;	/* Longest possible UTF string descriptor */
409 	if (len > t)
410 		len = t;
411 
412 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
413 
414 	n = len;
415 	while (n--) {
416 		*buf++ = t;
417 		if (!n--)
418 			break;
419 		*buf++ = t >> 8;
420 		t = (unsigned char)*s++;
421 	}
422 	return len;
423 }
424 
425 /**
426  * rh_string() - provides string descriptors for root hub
427  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428  * @hcd: the host controller for this root hub
429  * @data: buffer for output packet
430  * @len: length of the provided buffer
431  *
432  * Produces either a manufacturer, product or serial number string for the
433  * virtual root hub device.
434  *
435  * Return: The number of bytes filled in: the length of the descriptor or
436  * of the provided buffer, whichever is less.
437  */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 	char buf[100];
442 	char const *s;
443 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444 
445 	/* language ids */
446 	switch (id) {
447 	case 0:
448 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 		if (len > 4)
451 			len = 4;
452 		memcpy(data, langids, len);
453 		return len;
454 	case 1:
455 		/* Serial number */
456 		s = hcd->self.bus_name;
457 		break;
458 	case 2:
459 		/* Product name */
460 		s = hcd->product_desc;
461 		break;
462 	case 3:
463 		/* Manufacturer */
464 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 			init_utsname()->release, hcd->driver->description);
466 		s = buf;
467 		break;
468 	default:
469 		/* Can't happen; caller guarantees it */
470 		return 0;
471 	}
472 
473 	return ascii2desc(s, data, len);
474 }
475 
476 
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 	struct usb_ctrlrequest *cmd;
481 	u16		typeReq, wValue, wIndex, wLength;
482 	u8		*ubuf = urb->transfer_buffer;
483 	unsigned	len = 0;
484 	int		status;
485 	u8		patch_wakeup = 0;
486 	u8		patch_protocol = 0;
487 	u16		tbuf_size;
488 	u8		*tbuf = NULL;
489 	const u8	*bufp;
490 
491 	might_sleep();
492 
493 	spin_lock_irq(&hcd_root_hub_lock);
494 	status = usb_hcd_link_urb_to_ep(hcd, urb);
495 	spin_unlock_irq(&hcd_root_hub_lock);
496 	if (status)
497 		return status;
498 	urb->hcpriv = hcd;	/* Indicate it's queued */
499 
500 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
502 	wValue   = le16_to_cpu (cmd->wValue);
503 	wIndex   = le16_to_cpu (cmd->wIndex);
504 	wLength  = le16_to_cpu (cmd->wLength);
505 
506 	if (wLength > urb->transfer_buffer_length)
507 		goto error;
508 
509 	/*
510 	 * tbuf should be at least as big as the
511 	 * USB hub descriptor.
512 	 */
513 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 	if (!tbuf) {
516 		status = -ENOMEM;
517 		goto err_alloc;
518 	}
519 
520 	bufp = tbuf;
521 
522 
523 	urb->actual_length = 0;
524 	switch (typeReq) {
525 
526 	/* DEVICE REQUESTS */
527 
528 	/* The root hub's remote wakeup enable bit is implemented using
529 	 * driver model wakeup flags.  If this system supports wakeup
530 	 * through USB, userspace may change the default "allow wakeup"
531 	 * policy through sysfs or these calls.
532 	 *
533 	 * Most root hubs support wakeup from downstream devices, for
534 	 * runtime power management (disabling USB clocks and reducing
535 	 * VBUS power usage).  However, not all of them do so; silicon,
536 	 * board, and BIOS bugs here are not uncommon, so these can't
537 	 * be treated quite like external hubs.
538 	 *
539 	 * Likewise, not all root hubs will pass wakeup events upstream,
540 	 * to wake up the whole system.  So don't assume root hub and
541 	 * controller capabilities are identical.
542 	 */
543 
544 	case DeviceRequest | USB_REQ_GET_STATUS:
545 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 					<< USB_DEVICE_REMOTE_WAKEUP)
547 				| (1 << USB_DEVICE_SELF_POWERED);
548 		tbuf[1] = 0;
549 		len = 2;
550 		break;
551 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 		else
555 			goto error;
556 		break;
557 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 		if (device_can_wakeup(&hcd->self.root_hub->dev)
559 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
560 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 		else
562 			goto error;
563 		break;
564 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 		tbuf[0] = 1;
566 		len = 1;
567 		fallthrough;
568 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 		break;
570 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 		switch (wValue & 0xff00) {
572 		case USB_DT_DEVICE << 8:
573 			switch (hcd->speed) {
574 			case HCD_USB32:
575 			case HCD_USB31:
576 				bufp = usb31_rh_dev_descriptor;
577 				break;
578 			case HCD_USB3:
579 				bufp = usb3_rh_dev_descriptor;
580 				break;
581 			case HCD_USB25:
582 				bufp = usb25_rh_dev_descriptor;
583 				break;
584 			case HCD_USB2:
585 				bufp = usb2_rh_dev_descriptor;
586 				break;
587 			case HCD_USB11:
588 				bufp = usb11_rh_dev_descriptor;
589 				break;
590 			default:
591 				goto error;
592 			}
593 			len = 18;
594 			if (hcd->has_tt)
595 				patch_protocol = 1;
596 			break;
597 		case USB_DT_CONFIG << 8:
598 			switch (hcd->speed) {
599 			case HCD_USB32:
600 			case HCD_USB31:
601 			case HCD_USB3:
602 				bufp = ss_rh_config_descriptor;
603 				len = sizeof ss_rh_config_descriptor;
604 				break;
605 			case HCD_USB25:
606 			case HCD_USB2:
607 				bufp = hs_rh_config_descriptor;
608 				len = sizeof hs_rh_config_descriptor;
609 				break;
610 			case HCD_USB11:
611 				bufp = fs_rh_config_descriptor;
612 				len = sizeof fs_rh_config_descriptor;
613 				break;
614 			default:
615 				goto error;
616 			}
617 			if (device_can_wakeup(&hcd->self.root_hub->dev))
618 				patch_wakeup = 1;
619 			break;
620 		case USB_DT_STRING << 8:
621 			if ((wValue & 0xff) < 4)
622 				urb->actual_length = rh_string(wValue & 0xff,
623 						hcd, ubuf, wLength);
624 			else /* unsupported IDs --> "protocol stall" */
625 				goto error;
626 			break;
627 		case USB_DT_BOS << 8:
628 			goto nongeneric;
629 		default:
630 			goto error;
631 		}
632 		break;
633 	case DeviceRequest | USB_REQ_GET_INTERFACE:
634 		tbuf[0] = 0;
635 		len = 1;
636 		fallthrough;
637 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 		break;
639 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 		/* wValue == urb->dev->devaddr */
641 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 			wValue);
643 		break;
644 
645 	/* INTERFACE REQUESTS (no defined feature/status flags) */
646 
647 	/* ENDPOINT REQUESTS */
648 
649 	case EndpointRequest | USB_REQ_GET_STATUS:
650 		/* ENDPOINT_HALT flag */
651 		tbuf[0] = 0;
652 		tbuf[1] = 0;
653 		len = 2;
654 		fallthrough;
655 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 		break;
659 
660 	/* CLASS REQUESTS (and errors) */
661 
662 	default:
663 nongeneric:
664 		/* non-generic request */
665 		switch (typeReq) {
666 		case GetHubStatus:
667 			len = 4;
668 			break;
669 		case GetPortStatus:
670 			if (wValue == HUB_PORT_STATUS)
671 				len = 4;
672 			else
673 				/* other port status types return 8 bytes */
674 				len = 8;
675 			break;
676 		case GetHubDescriptor:
677 			len = sizeof (struct usb_hub_descriptor);
678 			break;
679 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 			/* len is returned by hub_control */
681 			break;
682 		}
683 		status = hcd->driver->hub_control (hcd,
684 			typeReq, wValue, wIndex,
685 			tbuf, wLength);
686 
687 		if (typeReq == GetHubDescriptor)
688 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 				(struct usb_hub_descriptor *)tbuf);
690 		break;
691 error:
692 		/* "protocol stall" on error */
693 		status = -EPIPE;
694 	}
695 
696 	if (status < 0) {
697 		len = 0;
698 		if (status != -EPIPE) {
699 			dev_dbg (hcd->self.controller,
700 				"CTRL: TypeReq=0x%x val=0x%x "
701 				"idx=0x%x len=%d ==> %d\n",
702 				typeReq, wValue, wIndex,
703 				wLength, status);
704 		}
705 	} else if (status > 0) {
706 		/* hub_control may return the length of data copied. */
707 		len = status;
708 		status = 0;
709 	}
710 	if (len) {
711 		if (urb->transfer_buffer_length < len)
712 			len = urb->transfer_buffer_length;
713 		urb->actual_length = len;
714 		/* always USB_DIR_IN, toward host */
715 		memcpy (ubuf, bufp, len);
716 
717 		/* report whether RH hardware supports remote wakeup */
718 		if (patch_wakeup &&
719 				len > offsetof (struct usb_config_descriptor,
720 						bmAttributes))
721 			((struct usb_config_descriptor *)ubuf)->bmAttributes
722 				|= USB_CONFIG_ATT_WAKEUP;
723 
724 		/* report whether RH hardware has an integrated TT */
725 		if (patch_protocol &&
726 				len > offsetof(struct usb_device_descriptor,
727 						bDeviceProtocol))
728 			((struct usb_device_descriptor *) ubuf)->
729 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 	}
731 
732 	kfree(tbuf);
733  err_alloc:
734 
735 	/* any errors get returned through the urb completion */
736 	spin_lock_irq(&hcd_root_hub_lock);
737 	usb_hcd_unlink_urb_from_ep(hcd, urb);
738 	usb_hcd_giveback_urb(hcd, urb, status);
739 	spin_unlock_irq(&hcd_root_hub_lock);
740 	return 0;
741 }
742 
743 /*-------------------------------------------------------------------------*/
744 
745 /*
746  * Root Hub interrupt transfers are polled using a timer if the
747  * driver requests it; otherwise the driver is responsible for
748  * calling usb_hcd_poll_rh_status() when an event occurs.
749  *
750  * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754 	struct urb	*urb;
755 	int		length;
756 	int		status;
757 	unsigned long	flags;
758 	char		buffer[6];	/* Any root hubs with > 31 ports? */
759 
760 	if (unlikely(!hcd->rh_pollable))
761 		return;
762 	if (!hcd->uses_new_polling && !hcd->status_urb)
763 		return;
764 
765 	length = hcd->driver->hub_status_data(hcd, buffer);
766 	if (length > 0) {
767 
768 		/* try to complete the status urb */
769 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 		urb = hcd->status_urb;
771 		if (urb) {
772 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 			hcd->status_urb = NULL;
774 			if (urb->transfer_buffer_length >= length) {
775 				status = 0;
776 			} else {
777 				status = -EOVERFLOW;
778 				length = urb->transfer_buffer_length;
779 			}
780 			urb->actual_length = length;
781 			memcpy(urb->transfer_buffer, buffer, length);
782 
783 			usb_hcd_unlink_urb_from_ep(hcd, urb);
784 			usb_hcd_giveback_urb(hcd, urb, status);
785 		} else {
786 			length = 0;
787 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 		}
789 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 	}
791 
792 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
793 	 * exceed that limit if HZ is 100. The math is more clunky than
794 	 * maybe expected, this is to make sure that all timers for USB devices
795 	 * fire at the same time to give the CPU a break in between */
796 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 			(length == 0 && hcd->status_urb != NULL))
798 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801 
802 /* timer callback */
rh_timer_func(struct timer_list * t)803 static void rh_timer_func (struct timer_list *t)
804 {
805 	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806 
807 	usb_hcd_poll_rh_status(_hcd);
808 }
809 
810 /*-------------------------------------------------------------------------*/
811 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814 	int		retval;
815 	unsigned long	flags;
816 	unsigned	len = 1 + (urb->dev->maxchild / 8);
817 
818 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 		retval = -EINVAL;
822 		goto done;
823 	}
824 
825 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 	if (retval)
827 		goto done;
828 
829 	hcd->status_urb = urb;
830 	urb->hcpriv = hcd;	/* indicate it's queued */
831 	if (!hcd->uses_new_polling)
832 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833 
834 	/* If a status change has already occurred, report it ASAP */
835 	else if (HCD_POLL_PENDING(hcd))
836 		mod_timer(&hcd->rh_timer, jiffies);
837 	retval = 0;
838  done:
839 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 	return retval;
841 }
842 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845 	if (usb_endpoint_xfer_int(&urb->ep->desc))
846 		return rh_queue_status (hcd, urb);
847 	if (usb_endpoint_xfer_control(&urb->ep->desc))
848 		return rh_call_control (hcd, urb);
849 	return -EINVAL;
850 }
851 
852 /*-------------------------------------------------------------------------*/
853 
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855  * since these URBs always execute synchronously.
856  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859 	unsigned long	flags;
860 	int		rc;
861 
862 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 	if (rc)
865 		goto done;
866 
867 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
868 		;	/* Do nothing */
869 
870 	} else {				/* Status URB */
871 		if (!hcd->uses_new_polling)
872 			del_timer (&hcd->rh_timer);
873 		if (urb == hcd->status_urb) {
874 			hcd->status_urb = NULL;
875 			usb_hcd_unlink_urb_from_ep(hcd, urb);
876 			usb_hcd_giveback_urb(hcd, urb, status);
877 		}
878 	}
879  done:
880 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 	return rc;
882 }
883 
884 
885 /*-------------------------------------------------------------------------*/
886 
887 /**
888  * usb_bus_init - shared initialization code
889  * @bus: the bus structure being initialized
890  *
891  * This code is used to initialize a usb_bus structure, memory for which is
892  * separately managed.
893  */
usb_bus_init(struct usb_bus * bus)894 static void usb_bus_init (struct usb_bus *bus)
895 {
896 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897 
898 	bus->devnum_next = 1;
899 
900 	bus->root_hub = NULL;
901 	bus->busnum = -1;
902 	bus->bandwidth_allocated = 0;
903 	bus->bandwidth_int_reqs  = 0;
904 	bus->bandwidth_isoc_reqs = 0;
905 	mutex_init(&bus->devnum_next_mutex);
906 }
907 
908 /*-------------------------------------------------------------------------*/
909 
910 /**
911  * usb_register_bus - registers the USB host controller with the usb core
912  * @bus: pointer to the bus to register
913  *
914  * Context: task context, might sleep.
915  *
916  * Assigns a bus number, and links the controller into usbcore data
917  * structures so that it can be seen by scanning the bus list.
918  *
919  * Return: 0 if successful. A negative error code otherwise.
920  */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 	int result = -E2BIG;
924 	int busnum;
925 
926 	mutex_lock(&usb_bus_idr_lock);
927 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 	if (busnum < 0) {
929 		pr_err("%s: failed to get bus number\n", usbcore_name);
930 		goto error_find_busnum;
931 	}
932 	bus->busnum = busnum;
933 	mutex_unlock(&usb_bus_idr_lock);
934 
935 	usb_notify_add_bus(bus);
936 
937 	dev_info (bus->controller, "new USB bus registered, assigned bus "
938 		  "number %d\n", bus->busnum);
939 	return 0;
940 
941 error_find_busnum:
942 	mutex_unlock(&usb_bus_idr_lock);
943 	return result;
944 }
945 
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  *
950  * Context: task context, might sleep.
951  *
952  * Recycles the bus number, and unlinks the controller from usbcore data
953  * structures so that it won't be seen by scanning the bus list.
954  */
usb_deregister_bus(struct usb_bus * bus)955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958 
959 	/*
960 	 * NOTE: make sure that all the devices are removed by the
961 	 * controller code, as well as having it call this when cleaning
962 	 * itself up
963 	 */
964 	mutex_lock(&usb_bus_idr_lock);
965 	idr_remove(&usb_bus_idr, bus->busnum);
966 	mutex_unlock(&usb_bus_idr_lock);
967 
968 	usb_notify_remove_bus(bus);
969 }
970 
971 /**
972  * register_root_hub - called by usb_add_hcd() to register a root hub
973  * @hcd: host controller for this root hub
974  *
975  * This function registers the root hub with the USB subsystem.  It sets up
976  * the device properly in the device tree and then calls usb_new_device()
977  * to register the usb device.  It also assigns the root hub's USB address
978  * (always 1).
979  *
980  * Return: 0 if successful. A negative error code otherwise.
981  */
register_root_hub(struct usb_hcd * hcd)982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984 	struct device *parent_dev = hcd->self.controller;
985 	struct usb_device *usb_dev = hcd->self.root_hub;
986 	struct usb_device_descriptor *descr;
987 	const int devnum = 1;
988 	int retval;
989 
990 	usb_dev->devnum = devnum;
991 	usb_dev->bus->devnum_next = devnum + 1;
992 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994 
995 	mutex_lock(&usb_bus_idr_lock);
996 
997 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 	descr = usb_get_device_descriptor(usb_dev);
999 	if (IS_ERR(descr)) {
1000 		retval = PTR_ERR(descr);
1001 		mutex_unlock(&usb_bus_idr_lock);
1002 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1003 				dev_name(&usb_dev->dev), retval);
1004 		return retval;
1005 	}
1006 	usb_dev->descriptor = *descr;
1007 	kfree(descr);
1008 
1009 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1010 		retval = usb_get_bos_descriptor(usb_dev);
1011 		if (!retval) {
1012 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1013 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1014 			mutex_unlock(&usb_bus_idr_lock);
1015 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1016 					dev_name(&usb_dev->dev), retval);
1017 			return retval;
1018 		}
1019 	}
1020 
1021 	retval = usb_new_device (usb_dev);
1022 	if (retval) {
1023 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1024 				dev_name(&usb_dev->dev), retval);
1025 	} else {
1026 		spin_lock_irq (&hcd_root_hub_lock);
1027 		hcd->rh_registered = 1;
1028 		spin_unlock_irq (&hcd_root_hub_lock);
1029 
1030 		/* Did the HC die before the root hub was registered? */
1031 		if (HCD_DEAD(hcd))
1032 			usb_hc_died (hcd);	/* This time clean up */
1033 	}
1034 	mutex_unlock(&usb_bus_idr_lock);
1035 
1036 	return retval;
1037 }
1038 
1039 /*
1040  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1041  * @bus: the bus which the root hub belongs to
1042  * @portnum: the port which is being resumed
1043  *
1044  * HCDs should call this function when they know that a resume signal is
1045  * being sent to a root-hub port.  The root hub will be prevented from
1046  * going into autosuspend until usb_hcd_end_port_resume() is called.
1047  *
1048  * The bus's private lock must be held by the caller.
1049  */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1050 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1051 {
1052 	unsigned bit = 1 << portnum;
1053 
1054 	if (!(bus->resuming_ports & bit)) {
1055 		bus->resuming_ports |= bit;
1056 		pm_runtime_get_noresume(&bus->root_hub->dev);
1057 	}
1058 }
1059 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1060 
1061 /*
1062  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1063  * @bus: the bus which the root hub belongs to
1064  * @portnum: the port which is being resumed
1065  *
1066  * HCDs should call this function when they know that a resume signal has
1067  * stopped being sent to a root-hub port.  The root hub will be allowed to
1068  * autosuspend again.
1069  *
1070  * The bus's private lock must be held by the caller.
1071  */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1072 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1073 {
1074 	unsigned bit = 1 << portnum;
1075 
1076 	if (bus->resuming_ports & bit) {
1077 		bus->resuming_ports &= ~bit;
1078 		pm_runtime_put_noidle(&bus->root_hub->dev);
1079 	}
1080 }
1081 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1082 
1083 /*-------------------------------------------------------------------------*/
1084 
1085 /**
1086  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1087  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1088  * @is_input: true iff the transaction sends data to the host
1089  * @isoc: true for isochronous transactions, false for interrupt ones
1090  * @bytecount: how many bytes in the transaction.
1091  *
1092  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1093  *
1094  * Note:
1095  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1096  * scheduled in software, this function is only used for such scheduling.
1097  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1098 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1099 {
1100 	unsigned long	tmp;
1101 
1102 	switch (speed) {
1103 	case USB_SPEED_LOW: 	/* INTR only */
1104 		if (is_input) {
1105 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1107 		} else {
1108 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1110 		}
1111 	case USB_SPEED_FULL:	/* ISOC or INTR */
1112 		if (isoc) {
1113 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1114 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1115 		} else {
1116 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1117 			return 9107L + BW_HOST_DELAY + tmp;
1118 		}
1119 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1120 		/* FIXME adjust for input vs output */
1121 		if (isoc)
1122 			tmp = HS_NSECS_ISO (bytecount);
1123 		else
1124 			tmp = HS_NSECS (bytecount);
1125 		return tmp;
1126 	default:
1127 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1128 		return -1;
1129 	}
1130 }
1131 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1132 
1133 
1134 /*-------------------------------------------------------------------------*/
1135 
1136 /*
1137  * Generic HC operations.
1138  */
1139 
1140 /*-------------------------------------------------------------------------*/
1141 
1142 /**
1143  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1144  * @hcd: host controller to which @urb was submitted
1145  * @urb: URB being submitted
1146  *
1147  * Host controller drivers should call this routine in their enqueue()
1148  * method.  The HCD's private spinlock must be held and interrupts must
1149  * be disabled.  The actions carried out here are required for URB
1150  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1151  *
1152  * Return: 0 for no error, otherwise a negative error code (in which case
1153  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1154  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1155  * the private spinlock and returning.
1156  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1157 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1158 {
1159 	int		rc = 0;
1160 
1161 	spin_lock(&hcd_urb_list_lock);
1162 
1163 	/* Check that the URB isn't being killed */
1164 	if (unlikely(atomic_read(&urb->reject))) {
1165 		rc = -EPERM;
1166 		goto done;
1167 	}
1168 
1169 	if (unlikely(!urb->ep->enabled)) {
1170 		rc = -ENOENT;
1171 		goto done;
1172 	}
1173 
1174 	if (unlikely(!urb->dev->can_submit)) {
1175 		rc = -EHOSTUNREACH;
1176 		goto done;
1177 	}
1178 
1179 	/*
1180 	 * Check the host controller's state and add the URB to the
1181 	 * endpoint's queue.
1182 	 */
1183 	if (HCD_RH_RUNNING(hcd)) {
1184 		urb->unlinked = 0;
1185 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1186 	} else {
1187 		rc = -ESHUTDOWN;
1188 		goto done;
1189 	}
1190  done:
1191 	spin_unlock(&hcd_urb_list_lock);
1192 	return rc;
1193 }
1194 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1195 
1196 /**
1197  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1198  * @hcd: host controller to which @urb was submitted
1199  * @urb: URB being checked for unlinkability
1200  * @status: error code to store in @urb if the unlink succeeds
1201  *
1202  * Host controller drivers should call this routine in their dequeue()
1203  * method.  The HCD's private spinlock must be held and interrupts must
1204  * be disabled.  The actions carried out here are required for making
1205  * sure than an unlink is valid.
1206  *
1207  * Return: 0 for no error, otherwise a negative error code (in which case
1208  * the dequeue() method must fail).  The possible error codes are:
1209  *
1210  *	-EIDRM: @urb was not submitted or has already completed.
1211  *		The completion function may not have been called yet.
1212  *
1213  *	-EBUSY: @urb has already been unlinked.
1214  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1215 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1216 		int status)
1217 {
1218 	struct list_head	*tmp;
1219 
1220 	/* insist the urb is still queued */
1221 	list_for_each(tmp, &urb->ep->urb_list) {
1222 		if (tmp == &urb->urb_list)
1223 			break;
1224 	}
1225 	if (tmp != &urb->urb_list)
1226 		return -EIDRM;
1227 
1228 	/* Any status except -EINPROGRESS means something already started to
1229 	 * unlink this URB from the hardware.  So there's no more work to do.
1230 	 */
1231 	if (urb->unlinked)
1232 		return -EBUSY;
1233 	urb->unlinked = status;
1234 	return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1237 
1238 /**
1239  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1240  * @hcd: host controller to which @urb was submitted
1241  * @urb: URB being unlinked
1242  *
1243  * Host controller drivers should call this routine before calling
1244  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1245  * interrupts must be disabled.  The actions carried out here are required
1246  * for URB completion.
1247  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1248 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1249 {
1250 	/* clear all state linking urb to this dev (and hcd) */
1251 	spin_lock(&hcd_urb_list_lock);
1252 	list_del_init(&urb->urb_list);
1253 	spin_unlock(&hcd_urb_list_lock);
1254 }
1255 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1256 
1257 /*
1258  * Some usb host controllers can only perform dma using a small SRAM area,
1259  * or have restrictions on addressable DRAM.
1260  * The usb core itself is however optimized for host controllers that can dma
1261  * using regular system memory - like pci devices doing bus mastering.
1262  *
1263  * To support host controllers with limited dma capabilities we provide dma
1264  * bounce buffers. This feature can be enabled by initializing
1265  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1266  *
1267  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1268  * data for dma using the genalloc API.
1269  *
1270  * So, to summarize...
1271  *
1272  * - We need "local" memory, canonical example being
1273  *   a small SRAM on a discrete controller being the
1274  *   only memory that the controller can read ...
1275  *   (a) "normal" kernel memory is no good, and
1276  *   (b) there's not enough to share
1277  *
1278  * - So we use that, even though the primary requirement
1279  *   is that the memory be "local" (hence addressable
1280  *   by that device), not "coherent".
1281  *
1282  */
1283 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1284 static int hcd_alloc_coherent(struct usb_bus *bus,
1285 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1286 			      void **vaddr_handle, size_t size,
1287 			      enum dma_data_direction dir)
1288 {
1289 	unsigned char *vaddr;
1290 
1291 	if (*vaddr_handle == NULL) {
1292 		WARN_ON_ONCE(1);
1293 		return -EFAULT;
1294 	}
1295 
1296 	vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1297 				 mem_flags, dma_handle);
1298 	if (!vaddr)
1299 		return -ENOMEM;
1300 
1301 	/*
1302 	 * Store the virtual address of the buffer at the end
1303 	 * of the allocated dma buffer. The size of the buffer
1304 	 * may be uneven so use unaligned functions instead
1305 	 * of just rounding up. It makes sense to optimize for
1306 	 * memory footprint over access speed since the amount
1307 	 * of memory available for dma may be limited.
1308 	 */
1309 	put_unaligned((unsigned long)*vaddr_handle,
1310 		      (unsigned long *)(vaddr + size));
1311 
1312 	if (dir == DMA_TO_DEVICE)
1313 		memcpy(vaddr, *vaddr_handle, size);
1314 
1315 	*vaddr_handle = vaddr;
1316 	return 0;
1317 }
1318 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1319 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1320 			      void **vaddr_handle, size_t size,
1321 			      enum dma_data_direction dir)
1322 {
1323 	unsigned char *vaddr = *vaddr_handle;
1324 
1325 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1326 
1327 	if (dir == DMA_FROM_DEVICE)
1328 		memcpy(vaddr, *vaddr_handle, size);
1329 
1330 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1331 
1332 	*vaddr_handle = vaddr;
1333 	*dma_handle = 0;
1334 }
1335 
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1336 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1339 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1340 		dma_unmap_single(hcd->self.sysdev,
1341 				urb->setup_dma,
1342 				sizeof(struct usb_ctrlrequest),
1343 				DMA_TO_DEVICE);
1344 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1345 		hcd_free_coherent(urb->dev->bus,
1346 				&urb->setup_dma,
1347 				(void **) &urb->setup_packet,
1348 				sizeof(struct usb_ctrlrequest),
1349 				DMA_TO_DEVICE);
1350 
1351 	/* Make it safe to call this routine more than once */
1352 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1353 }
1354 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1355 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1356 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1357 {
1358 	if (hcd->driver->unmap_urb_for_dma)
1359 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1360 	else
1361 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1362 }
1363 
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1364 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1365 {
1366 	enum dma_data_direction dir;
1367 
1368 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1369 
1370 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1371 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1373 		dma_unmap_sg(hcd->self.sysdev,
1374 				urb->sg,
1375 				urb->num_sgs,
1376 				dir);
1377 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1378 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1379 		dma_unmap_page(hcd->self.sysdev,
1380 				urb->transfer_dma,
1381 				urb->transfer_buffer_length,
1382 				dir);
1383 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1384 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1385 		dma_unmap_single(hcd->self.sysdev,
1386 				urb->transfer_dma,
1387 				urb->transfer_buffer_length,
1388 				dir);
1389 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1390 		hcd_free_coherent(urb->dev->bus,
1391 				&urb->transfer_dma,
1392 				&urb->transfer_buffer,
1393 				urb->transfer_buffer_length,
1394 				dir);
1395 
1396 	/* Make it safe to call this routine more than once */
1397 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1398 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1399 }
1400 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1401 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1402 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1403 			   gfp_t mem_flags)
1404 {
1405 	if (hcd->driver->map_urb_for_dma)
1406 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1407 	else
1408 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1409 }
1410 
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1411 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1412 			    gfp_t mem_flags)
1413 {
1414 	enum dma_data_direction dir;
1415 	int ret = 0;
1416 
1417 	/* Map the URB's buffers for DMA access.
1418 	 * Lower level HCD code should use *_dma exclusively,
1419 	 * unless it uses pio or talks to another transport,
1420 	 * or uses the provided scatter gather list for bulk.
1421 	 */
1422 
1423 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1424 		if (hcd->self.uses_pio_for_control)
1425 			return ret;
1426 		if (hcd->localmem_pool) {
1427 			ret = hcd_alloc_coherent(
1428 					urb->dev->bus, mem_flags,
1429 					&urb->setup_dma,
1430 					(void **)&urb->setup_packet,
1431 					sizeof(struct usb_ctrlrequest),
1432 					DMA_TO_DEVICE);
1433 			if (ret)
1434 				return ret;
1435 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1436 		} else if (hcd_uses_dma(hcd)) {
1437 			if (object_is_on_stack(urb->setup_packet)) {
1438 				WARN_ONCE(1, "setup packet is on stack\n");
1439 				return -EAGAIN;
1440 			}
1441 
1442 			urb->setup_dma = dma_map_single(
1443 					hcd->self.sysdev,
1444 					urb->setup_packet,
1445 					sizeof(struct usb_ctrlrequest),
1446 					DMA_TO_DEVICE);
1447 			if (dma_mapping_error(hcd->self.sysdev,
1448 						urb->setup_dma))
1449 				return -EAGAIN;
1450 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1451 		}
1452 	}
1453 
1454 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1455 	if (urb->transfer_buffer_length != 0
1456 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1457 		if (hcd->localmem_pool) {
1458 			ret = hcd_alloc_coherent(
1459 					urb->dev->bus, mem_flags,
1460 					&urb->transfer_dma,
1461 					&urb->transfer_buffer,
1462 					urb->transfer_buffer_length,
1463 					dir);
1464 			if (ret == 0)
1465 				urb->transfer_flags |= URB_MAP_LOCAL;
1466 		} else if (hcd_uses_dma(hcd)) {
1467 			if (urb->num_sgs) {
1468 				int n;
1469 
1470 				/* We don't support sg for isoc transfers ! */
1471 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1472 					WARN_ON(1);
1473 					return -EINVAL;
1474 				}
1475 
1476 				n = dma_map_sg(
1477 						hcd->self.sysdev,
1478 						urb->sg,
1479 						urb->num_sgs,
1480 						dir);
1481 				if (!n)
1482 					ret = -EAGAIN;
1483 				else
1484 					urb->transfer_flags |= URB_DMA_MAP_SG;
1485 				urb->num_mapped_sgs = n;
1486 				if (n != urb->num_sgs)
1487 					urb->transfer_flags |=
1488 							URB_DMA_SG_COMBINED;
1489 			} else if (urb->sg) {
1490 				struct scatterlist *sg = urb->sg;
1491 				urb->transfer_dma = dma_map_page(
1492 						hcd->self.sysdev,
1493 						sg_page(sg),
1494 						sg->offset,
1495 						urb->transfer_buffer_length,
1496 						dir);
1497 				if (dma_mapping_error(hcd->self.sysdev,
1498 						urb->transfer_dma))
1499 					ret = -EAGAIN;
1500 				else
1501 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1502 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1503 				WARN_ONCE(1, "transfer buffer is on stack\n");
1504 				ret = -EAGAIN;
1505 			} else {
1506 				urb->transfer_dma = dma_map_single(
1507 						hcd->self.sysdev,
1508 						urb->transfer_buffer,
1509 						urb->transfer_buffer_length,
1510 						dir);
1511 				if (dma_mapping_error(hcd->self.sysdev,
1512 						urb->transfer_dma))
1513 					ret = -EAGAIN;
1514 				else
1515 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516 			}
1517 		}
1518 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1519 				URB_SETUP_MAP_LOCAL)))
1520 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1521 	}
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1525 
1526 /*-------------------------------------------------------------------------*/
1527 
1528 /* may be called in any context with a valid urb->dev usecount
1529  * caller surrenders "ownership" of urb
1530  * expects usb_submit_urb() to have sanity checked and conditioned all
1531  * inputs in the urb
1532  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1533 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1534 {
1535 	int			status;
1536 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1537 
1538 	/* increment urb's reference count as part of giving it to the HCD
1539 	 * (which will control it).  HCD guarantees that it either returns
1540 	 * an error or calls giveback(), but not both.
1541 	 */
1542 	usb_get_urb(urb);
1543 	atomic_inc(&urb->use_count);
1544 	atomic_inc(&urb->dev->urbnum);
1545 	usbmon_urb_submit(&hcd->self, urb);
1546 
1547 	/* NOTE requirements on root-hub callers (usbfs and the hub
1548 	 * driver, for now):  URBs' urb->transfer_buffer must be
1549 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1550 	 * they could clobber root hub response data.  Also, control
1551 	 * URBs must be submitted in process context with interrupts
1552 	 * enabled.
1553 	 */
1554 
1555 	if (is_root_hub(urb->dev)) {
1556 		status = rh_urb_enqueue(hcd, urb);
1557 	} else {
1558 		status = map_urb_for_dma(hcd, urb, mem_flags);
1559 		if (likely(status == 0)) {
1560 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1561 			if (unlikely(status))
1562 				unmap_urb_for_dma(hcd, urb);
1563 		}
1564 	}
1565 
1566 	if (unlikely(status)) {
1567 		usbmon_urb_submit_error(&hcd->self, urb, status);
1568 		urb->hcpriv = NULL;
1569 		INIT_LIST_HEAD(&urb->urb_list);
1570 		atomic_dec(&urb->use_count);
1571 		/*
1572 		 * Order the write of urb->use_count above before the read
1573 		 * of urb->reject below.  Pairs with the memory barriers in
1574 		 * usb_kill_urb() and usb_poison_urb().
1575 		 */
1576 		smp_mb__after_atomic();
1577 
1578 		atomic_dec(&urb->dev->urbnum);
1579 		if (atomic_read(&urb->reject))
1580 			wake_up(&usb_kill_urb_queue);
1581 		usb_put_urb(urb);
1582 	}
1583 	return status;
1584 }
1585 
1586 /*-------------------------------------------------------------------------*/
1587 
1588 /* this makes the hcd giveback() the urb more quickly, by kicking it
1589  * off hardware queues (which may take a while) and returning it as
1590  * soon as practical.  we've already set up the urb's return status,
1591  * but we can't know if the callback completed already.
1592  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1593 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1594 {
1595 	int		value;
1596 
1597 	if (is_root_hub(urb->dev))
1598 		value = usb_rh_urb_dequeue(hcd, urb, status);
1599 	else {
1600 
1601 		/* The only reason an HCD might fail this call is if
1602 		 * it has not yet fully queued the urb to begin with.
1603 		 * Such failures should be harmless. */
1604 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1605 	}
1606 	return value;
1607 }
1608 
1609 /*
1610  * called in any context
1611  *
1612  * caller guarantees urb won't be recycled till both unlink()
1613  * and the urb's completion function return
1614  */
usb_hcd_unlink_urb(struct urb * urb,int status)1615 int usb_hcd_unlink_urb (struct urb *urb, int status)
1616 {
1617 	struct usb_hcd		*hcd;
1618 	struct usb_device	*udev = urb->dev;
1619 	int			retval = -EIDRM;
1620 	unsigned long		flags;
1621 
1622 	/* Prevent the device and bus from going away while
1623 	 * the unlink is carried out.  If they are already gone
1624 	 * then urb->use_count must be 0, since disconnected
1625 	 * devices can't have any active URBs.
1626 	 */
1627 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1628 	if (atomic_read(&urb->use_count) > 0) {
1629 		retval = 0;
1630 		usb_get_dev(udev);
1631 	}
1632 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1633 	if (retval == 0) {
1634 		hcd = bus_to_hcd(urb->dev->bus);
1635 		retval = unlink1(hcd, urb, status);
1636 		if (retval == 0)
1637 			retval = -EINPROGRESS;
1638 		else if (retval != -EIDRM && retval != -EBUSY)
1639 			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1640 					urb, retval);
1641 		usb_put_dev(udev);
1642 	}
1643 	return retval;
1644 }
1645 
1646 /*-------------------------------------------------------------------------*/
1647 
__usb_hcd_giveback_urb(struct urb * urb)1648 static void __usb_hcd_giveback_urb(struct urb *urb)
1649 {
1650 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1651 	struct usb_anchor *anchor = urb->anchor;
1652 	int status = urb->unlinked;
1653 
1654 	urb->hcpriv = NULL;
1655 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1656 	    urb->actual_length < urb->transfer_buffer_length &&
1657 	    !status))
1658 		status = -EREMOTEIO;
1659 
1660 	unmap_urb_for_dma(hcd, urb);
1661 	usbmon_urb_complete(&hcd->self, urb, status);
1662 	usb_anchor_suspend_wakeups(anchor);
1663 	usb_unanchor_urb(urb);
1664 	if (likely(status == 0))
1665 		usb_led_activity(USB_LED_EVENT_HOST);
1666 
1667 	/* pass ownership to the completion handler */
1668 	urb->status = status;
1669 	/*
1670 	 * This function can be called in task context inside another remote
1671 	 * coverage collection section, but kcov doesn't support that kind of
1672 	 * recursion yet. Only collect coverage in softirq context for now.
1673 	 */
1674 	kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1675 	urb->complete(urb);
1676 	kcov_remote_stop_softirq();
1677 
1678 	usb_anchor_resume_wakeups(anchor);
1679 	atomic_dec(&urb->use_count);
1680 	/*
1681 	 * Order the write of urb->use_count above before the read
1682 	 * of urb->reject below.  Pairs with the memory barriers in
1683 	 * usb_kill_urb() and usb_poison_urb().
1684 	 */
1685 	smp_mb__after_atomic();
1686 
1687 	if (unlikely(atomic_read(&urb->reject)))
1688 		wake_up(&usb_kill_urb_queue);
1689 	usb_put_urb(urb);
1690 }
1691 
usb_giveback_urb_bh(struct tasklet_struct * t)1692 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1693 {
1694 	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1695 	struct list_head local_list;
1696 
1697 	spin_lock_irq(&bh->lock);
1698 	bh->running = true;
1699 	list_replace_init(&bh->head, &local_list);
1700 	spin_unlock_irq(&bh->lock);
1701 
1702 	while (!list_empty(&local_list)) {
1703 		struct urb *urb;
1704 
1705 		urb = list_entry(local_list.next, struct urb, urb_list);
1706 		list_del_init(&urb->urb_list);
1707 		bh->completing_ep = urb->ep;
1708 		__usb_hcd_giveback_urb(urb);
1709 		bh->completing_ep = NULL;
1710 	}
1711 
1712 	/*
1713 	 * giveback new URBs next time to prevent this function
1714 	 * from not exiting for a long time.
1715 	 */
1716 	spin_lock_irq(&bh->lock);
1717 	if (!list_empty(&bh->head)) {
1718 		if (bh->high_prio)
1719 			tasklet_hi_schedule(&bh->bh);
1720 		else
1721 			tasklet_schedule(&bh->bh);
1722 	}
1723 	bh->running = false;
1724 	spin_unlock_irq(&bh->lock);
1725 }
1726 
1727 /**
1728  * usb_hcd_giveback_urb - return URB from HCD to device driver
1729  * @hcd: host controller returning the URB
1730  * @urb: urb being returned to the USB device driver.
1731  * @status: completion status code for the URB.
1732  *
1733  * Context: atomic. The completion callback is invoked in caller's context.
1734  * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1735  * context (except for URBs submitted to the root hub which always complete in
1736  * caller's context).
1737  *
1738  * This hands the URB from HCD to its USB device driver, using its
1739  * completion function.  The HCD has freed all per-urb resources
1740  * (and is done using urb->hcpriv).  It also released all HCD locks;
1741  * the device driver won't cause problems if it frees, modifies,
1742  * or resubmits this URB.
1743  *
1744  * If @urb was unlinked, the value of @status will be overridden by
1745  * @urb->unlinked.  Erroneous short transfers are detected in case
1746  * the HCD hasn't checked for them.
1747  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1748 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1749 {
1750 	struct giveback_urb_bh *bh;
1751 	bool running;
1752 
1753 	/* pass status to tasklet via unlinked */
1754 	if (likely(!urb->unlinked))
1755 		urb->unlinked = status;
1756 
1757 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1758 		__usb_hcd_giveback_urb(urb);
1759 		return;
1760 	}
1761 
1762 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1763 		bh = &hcd->high_prio_bh;
1764 	else
1765 		bh = &hcd->low_prio_bh;
1766 
1767 	spin_lock(&bh->lock);
1768 	list_add_tail(&urb->urb_list, &bh->head);
1769 	running = bh->running;
1770 	spin_unlock(&bh->lock);
1771 
1772 	if (running)
1773 		;
1774 	else if (bh->high_prio)
1775 		tasklet_hi_schedule(&bh->bh);
1776 	else
1777 		tasklet_schedule(&bh->bh);
1778 }
1779 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1780 
1781 /*-------------------------------------------------------------------------*/
1782 
1783 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1784  * queue to drain completely.  The caller must first insure that no more
1785  * URBs can be submitted for this endpoint.
1786  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1787 void usb_hcd_flush_endpoint(struct usb_device *udev,
1788 		struct usb_host_endpoint *ep)
1789 {
1790 	struct usb_hcd		*hcd;
1791 	struct urb		*urb;
1792 
1793 	if (!ep)
1794 		return;
1795 	might_sleep();
1796 	hcd = bus_to_hcd(udev->bus);
1797 
1798 	/* No more submits can occur */
1799 	spin_lock_irq(&hcd_urb_list_lock);
1800 rescan:
1801 	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1802 		int	is_in;
1803 
1804 		if (urb->unlinked)
1805 			continue;
1806 		usb_get_urb (urb);
1807 		is_in = usb_urb_dir_in(urb);
1808 		spin_unlock(&hcd_urb_list_lock);
1809 
1810 		/* kick hcd */
1811 		unlink1(hcd, urb, -ESHUTDOWN);
1812 		dev_dbg (hcd->self.controller,
1813 			"shutdown urb %pK ep%d%s-%s\n",
1814 			urb, usb_endpoint_num(&ep->desc),
1815 			is_in ? "in" : "out",
1816 			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1817 		usb_put_urb (urb);
1818 
1819 		/* list contents may have changed */
1820 		spin_lock(&hcd_urb_list_lock);
1821 		goto rescan;
1822 	}
1823 	spin_unlock_irq(&hcd_urb_list_lock);
1824 
1825 	/* Wait until the endpoint queue is completely empty */
1826 	while (!list_empty (&ep->urb_list)) {
1827 		spin_lock_irq(&hcd_urb_list_lock);
1828 
1829 		/* The list may have changed while we acquired the spinlock */
1830 		urb = NULL;
1831 		if (!list_empty (&ep->urb_list)) {
1832 			urb = list_entry (ep->urb_list.prev, struct urb,
1833 					urb_list);
1834 			usb_get_urb (urb);
1835 		}
1836 		spin_unlock_irq(&hcd_urb_list_lock);
1837 
1838 		if (urb) {
1839 			usb_kill_urb (urb);
1840 			usb_put_urb (urb);
1841 		}
1842 	}
1843 }
1844 
1845 /**
1846  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1847  *				the bus bandwidth
1848  * @udev: target &usb_device
1849  * @new_config: new configuration to install
1850  * @cur_alt: the current alternate interface setting
1851  * @new_alt: alternate interface setting that is being installed
1852  *
1853  * To change configurations, pass in the new configuration in new_config,
1854  * and pass NULL for cur_alt and new_alt.
1855  *
1856  * To reset a device's configuration (put the device in the ADDRESSED state),
1857  * pass in NULL for new_config, cur_alt, and new_alt.
1858  *
1859  * To change alternate interface settings, pass in NULL for new_config,
1860  * pass in the current alternate interface setting in cur_alt,
1861  * and pass in the new alternate interface setting in new_alt.
1862  *
1863  * Return: An error if the requested bandwidth change exceeds the
1864  * bus bandwidth or host controller internal resources.
1865  */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1866 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1867 		struct usb_host_config *new_config,
1868 		struct usb_host_interface *cur_alt,
1869 		struct usb_host_interface *new_alt)
1870 {
1871 	int num_intfs, i, j;
1872 	struct usb_host_interface *alt = NULL;
1873 	int ret = 0;
1874 	struct usb_hcd *hcd;
1875 	struct usb_host_endpoint *ep;
1876 
1877 	hcd = bus_to_hcd(udev->bus);
1878 	if (!hcd->driver->check_bandwidth)
1879 		return 0;
1880 
1881 	/* Configuration is being removed - set configuration 0 */
1882 	if (!new_config && !cur_alt) {
1883 		for (i = 1; i < 16; ++i) {
1884 			ep = udev->ep_out[i];
1885 			if (ep)
1886 				hcd->driver->drop_endpoint(hcd, udev, ep);
1887 			ep = udev->ep_in[i];
1888 			if (ep)
1889 				hcd->driver->drop_endpoint(hcd, udev, ep);
1890 		}
1891 		hcd->driver->check_bandwidth(hcd, udev);
1892 		return 0;
1893 	}
1894 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1895 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1896 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1897 	 * ok to exclude it.
1898 	 */
1899 	if (new_config) {
1900 		num_intfs = new_config->desc.bNumInterfaces;
1901 		/* Remove endpoints (except endpoint 0, which is always on the
1902 		 * schedule) from the old config from the schedule
1903 		 */
1904 		for (i = 1; i < 16; ++i) {
1905 			ep = udev->ep_out[i];
1906 			if (ep) {
1907 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1908 				if (ret < 0)
1909 					goto reset;
1910 			}
1911 			ep = udev->ep_in[i];
1912 			if (ep) {
1913 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914 				if (ret < 0)
1915 					goto reset;
1916 			}
1917 		}
1918 		for (i = 0; i < num_intfs; ++i) {
1919 			struct usb_host_interface *first_alt;
1920 			int iface_num;
1921 
1922 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1923 			iface_num = first_alt->desc.bInterfaceNumber;
1924 			/* Set up endpoints for alternate interface setting 0 */
1925 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1926 			if (!alt)
1927 				/* No alt setting 0? Pick the first setting. */
1928 				alt = first_alt;
1929 
1930 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1931 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1932 				if (ret < 0)
1933 					goto reset;
1934 			}
1935 		}
1936 	}
1937 	if (cur_alt && new_alt) {
1938 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1939 				cur_alt->desc.bInterfaceNumber);
1940 
1941 		if (!iface)
1942 			return -EINVAL;
1943 		if (iface->resetting_device) {
1944 			/*
1945 			 * The USB core just reset the device, so the xHCI host
1946 			 * and the device will think alt setting 0 is installed.
1947 			 * However, the USB core will pass in the alternate
1948 			 * setting installed before the reset as cur_alt.  Dig
1949 			 * out the alternate setting 0 structure, or the first
1950 			 * alternate setting if a broken device doesn't have alt
1951 			 * setting 0.
1952 			 */
1953 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1954 			if (!cur_alt)
1955 				cur_alt = &iface->altsetting[0];
1956 		}
1957 
1958 		/* Drop all the endpoints in the current alt setting */
1959 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1960 			ret = hcd->driver->drop_endpoint(hcd, udev,
1961 					&cur_alt->endpoint[i]);
1962 			if (ret < 0)
1963 				goto reset;
1964 		}
1965 		/* Add all the endpoints in the new alt setting */
1966 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1967 			ret = hcd->driver->add_endpoint(hcd, udev,
1968 					&new_alt->endpoint[i]);
1969 			if (ret < 0)
1970 				goto reset;
1971 		}
1972 	}
1973 	ret = hcd->driver->check_bandwidth(hcd, udev);
1974 reset:
1975 	if (ret < 0)
1976 		hcd->driver->reset_bandwidth(hcd, udev);
1977 	return ret;
1978 }
1979 
1980 /* Disables the endpoint: synchronizes with the hcd to make sure all
1981  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1982  * have been called previously.  Use for set_configuration, set_interface,
1983  * driver removal, physical disconnect.
1984  *
1985  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1986  * type, maxpacket size, toggle, halt status, and scheduling.
1987  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1988 void usb_hcd_disable_endpoint(struct usb_device *udev,
1989 		struct usb_host_endpoint *ep)
1990 {
1991 	struct usb_hcd		*hcd;
1992 
1993 	might_sleep();
1994 	hcd = bus_to_hcd(udev->bus);
1995 	if (hcd->driver->endpoint_disable)
1996 		hcd->driver->endpoint_disable(hcd, ep);
1997 }
1998 
1999 /**
2000  * usb_hcd_reset_endpoint - reset host endpoint state
2001  * @udev: USB device.
2002  * @ep:   the endpoint to reset.
2003  *
2004  * Resets any host endpoint state such as the toggle bit, sequence
2005  * number and current window.
2006  */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2007 void usb_hcd_reset_endpoint(struct usb_device *udev,
2008 			    struct usb_host_endpoint *ep)
2009 {
2010 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2011 
2012 	if (hcd->driver->endpoint_reset)
2013 		hcd->driver->endpoint_reset(hcd, ep);
2014 	else {
2015 		int epnum = usb_endpoint_num(&ep->desc);
2016 		int is_out = usb_endpoint_dir_out(&ep->desc);
2017 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2018 
2019 		usb_settoggle(udev, epnum, is_out, 0);
2020 		if (is_control)
2021 			usb_settoggle(udev, epnum, !is_out, 0);
2022 	}
2023 }
2024 
2025 /**
2026  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2027  * @interface:		alternate setting that includes all endpoints.
2028  * @eps:		array of endpoints that need streams.
2029  * @num_eps:		number of endpoints in the array.
2030  * @num_streams:	number of streams to allocate.
2031  * @mem_flags:		flags hcd should use to allocate memory.
2032  *
2033  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2034  * Drivers may queue multiple transfers to different stream IDs, which may
2035  * complete in a different order than they were queued.
2036  *
2037  * Return: On success, the number of allocated streams. On failure, a negative
2038  * error code.
2039  */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2040 int usb_alloc_streams(struct usb_interface *interface,
2041 		struct usb_host_endpoint **eps, unsigned int num_eps,
2042 		unsigned int num_streams, gfp_t mem_flags)
2043 {
2044 	struct usb_hcd *hcd;
2045 	struct usb_device *dev;
2046 	int i, ret;
2047 
2048 	dev = interface_to_usbdev(interface);
2049 	hcd = bus_to_hcd(dev->bus);
2050 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2051 		return -EINVAL;
2052 	if (dev->speed < USB_SPEED_SUPER)
2053 		return -EINVAL;
2054 	if (dev->state < USB_STATE_CONFIGURED)
2055 		return -ENODEV;
2056 
2057 	for (i = 0; i < num_eps; i++) {
2058 		/* Streams only apply to bulk endpoints. */
2059 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2060 			return -EINVAL;
2061 		/* Re-alloc is not allowed */
2062 		if (eps[i]->streams)
2063 			return -EINVAL;
2064 	}
2065 
2066 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2067 			num_streams, mem_flags);
2068 	if (ret < 0)
2069 		return ret;
2070 
2071 	for (i = 0; i < num_eps; i++)
2072 		eps[i]->streams = ret;
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2077 
2078 /**
2079  * usb_free_streams - free bulk endpoint stream IDs.
2080  * @interface:	alternate setting that includes all endpoints.
2081  * @eps:	array of endpoints to remove streams from.
2082  * @num_eps:	number of endpoints in the array.
2083  * @mem_flags:	flags hcd should use to allocate memory.
2084  *
2085  * Reverts a group of bulk endpoints back to not using stream IDs.
2086  * Can fail if we are given bad arguments, or HCD is broken.
2087  *
2088  * Return: 0 on success. On failure, a negative error code.
2089  */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2090 int usb_free_streams(struct usb_interface *interface,
2091 		struct usb_host_endpoint **eps, unsigned int num_eps,
2092 		gfp_t mem_flags)
2093 {
2094 	struct usb_hcd *hcd;
2095 	struct usb_device *dev;
2096 	int i, ret;
2097 
2098 	dev = interface_to_usbdev(interface);
2099 	hcd = bus_to_hcd(dev->bus);
2100 	if (dev->speed < USB_SPEED_SUPER)
2101 		return -EINVAL;
2102 
2103 	/* Double-free is not allowed */
2104 	for (i = 0; i < num_eps; i++)
2105 		if (!eps[i] || !eps[i]->streams)
2106 			return -EINVAL;
2107 
2108 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2109 	if (ret < 0)
2110 		return ret;
2111 
2112 	for (i = 0; i < num_eps; i++)
2113 		eps[i]->streams = 0;
2114 
2115 	return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(usb_free_streams);
2118 
2119 /* Protect against drivers that try to unlink URBs after the device
2120  * is gone, by waiting until all unlinks for @udev are finished.
2121  * Since we don't currently track URBs by device, simply wait until
2122  * nothing is running in the locked region of usb_hcd_unlink_urb().
2123  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2124 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2125 {
2126 	spin_lock_irq(&hcd_urb_unlink_lock);
2127 	spin_unlock_irq(&hcd_urb_unlink_lock);
2128 }
2129 
2130 /*-------------------------------------------------------------------------*/
2131 
2132 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2133 int usb_hcd_get_frame_number (struct usb_device *udev)
2134 {
2135 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2136 
2137 	if (!HCD_RH_RUNNING(hcd))
2138 		return -ESHUTDOWN;
2139 	return hcd->driver->get_frame_number (hcd);
2140 }
2141 
2142 /*-------------------------------------------------------------------------*/
2143 #ifdef CONFIG_USB_HCD_TEST_MODE
2144 
usb_ehset_completion(struct urb * urb)2145 static void usb_ehset_completion(struct urb *urb)
2146 {
2147 	struct completion  *done = urb->context;
2148 
2149 	complete(done);
2150 }
2151 /*
2152  * Allocate and initialize a control URB. This request will be used by the
2153  * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2154  * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2155  * Return NULL if failed.
2156  */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2157 static struct urb *request_single_step_set_feature_urb(
2158 	struct usb_device	*udev,
2159 	void			*dr,
2160 	void			*buf,
2161 	struct completion	*done)
2162 {
2163 	struct urb *urb;
2164 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2165 
2166 	urb = usb_alloc_urb(0, GFP_KERNEL);
2167 	if (!urb)
2168 		return NULL;
2169 
2170 	urb->pipe = usb_rcvctrlpipe(udev, 0);
2171 
2172 	urb->ep = &udev->ep0;
2173 	urb->dev = udev;
2174 	urb->setup_packet = (void *)dr;
2175 	urb->transfer_buffer = buf;
2176 	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2177 	urb->complete = usb_ehset_completion;
2178 	urb->status = -EINPROGRESS;
2179 	urb->actual_length = 0;
2180 	urb->transfer_flags = URB_DIR_IN;
2181 	usb_get_urb(urb);
2182 	atomic_inc(&urb->use_count);
2183 	atomic_inc(&urb->dev->urbnum);
2184 	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2185 		usb_put_urb(urb);
2186 		usb_free_urb(urb);
2187 		return NULL;
2188 	}
2189 
2190 	urb->context = done;
2191 	return urb;
2192 }
2193 
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2194 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2195 {
2196 	int retval = -ENOMEM;
2197 	struct usb_ctrlrequest *dr;
2198 	struct urb *urb;
2199 	struct usb_device *udev;
2200 	struct usb_device_descriptor *buf;
2201 	DECLARE_COMPLETION_ONSTACK(done);
2202 
2203 	/* Obtain udev of the rhub's child port */
2204 	udev = usb_hub_find_child(hcd->self.root_hub, port);
2205 	if (!udev) {
2206 		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2207 		return -ENODEV;
2208 	}
2209 	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2210 	if (!buf)
2211 		return -ENOMEM;
2212 
2213 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2214 	if (!dr) {
2215 		kfree(buf);
2216 		return -ENOMEM;
2217 	}
2218 
2219 	/* Fill Setup packet for GetDescriptor */
2220 	dr->bRequestType = USB_DIR_IN;
2221 	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2222 	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2223 	dr->wIndex = 0;
2224 	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2225 	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2226 	if (!urb)
2227 		goto cleanup;
2228 
2229 	/* Submit just the SETUP stage */
2230 	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2231 	if (retval)
2232 		goto out1;
2233 	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2234 		usb_kill_urb(urb);
2235 		retval = -ETIMEDOUT;
2236 		dev_err(hcd->self.controller,
2237 			"%s SETUP stage timed out on ep0\n", __func__);
2238 		goto out1;
2239 	}
2240 	msleep(15 * 1000);
2241 
2242 	/* Complete remaining DATA and STATUS stages using the same URB */
2243 	urb->status = -EINPROGRESS;
2244 	usb_get_urb(urb);
2245 	atomic_inc(&urb->use_count);
2246 	atomic_inc(&urb->dev->urbnum);
2247 	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2248 	if (!retval && !wait_for_completion_timeout(&done,
2249 						msecs_to_jiffies(2000))) {
2250 		usb_kill_urb(urb);
2251 		retval = -ETIMEDOUT;
2252 		dev_err(hcd->self.controller,
2253 			"%s IN stage timed out on ep0\n", __func__);
2254 	}
2255 out1:
2256 	usb_free_urb(urb);
2257 cleanup:
2258 	kfree(dr);
2259 	kfree(buf);
2260 	return retval;
2261 }
2262 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2263 #endif /* CONFIG_USB_HCD_TEST_MODE */
2264 
2265 /*-------------------------------------------------------------------------*/
2266 
2267 #ifdef	CONFIG_PM
2268 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2269 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2270 {
2271 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2272 	int		status;
2273 	int		old_state = hcd->state;
2274 
2275 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2276 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2277 			rhdev->do_remote_wakeup);
2278 	if (HCD_DEAD(hcd)) {
2279 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2280 		return 0;
2281 	}
2282 
2283 	if (!hcd->driver->bus_suspend) {
2284 		status = -ENOENT;
2285 	} else {
2286 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2287 		hcd->state = HC_STATE_QUIESCING;
2288 		status = hcd->driver->bus_suspend(hcd);
2289 	}
2290 	if (status == 0) {
2291 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2292 		hcd->state = HC_STATE_SUSPENDED;
2293 
2294 		if (!PMSG_IS_AUTO(msg))
2295 			usb_phy_roothub_suspend(hcd->self.sysdev,
2296 						hcd->phy_roothub);
2297 
2298 		/* Did we race with a root-hub wakeup event? */
2299 		if (rhdev->do_remote_wakeup) {
2300 			char	buffer[6];
2301 
2302 			status = hcd->driver->hub_status_data(hcd, buffer);
2303 			if (status != 0) {
2304 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2305 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2306 				status = -EBUSY;
2307 			}
2308 		}
2309 	} else {
2310 		spin_lock_irq(&hcd_root_hub_lock);
2311 		if (!HCD_DEAD(hcd)) {
2312 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2313 			hcd->state = old_state;
2314 		}
2315 		spin_unlock_irq(&hcd_root_hub_lock);
2316 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2317 				"suspend", status);
2318 	}
2319 	return status;
2320 }
2321 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2322 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2323 {
2324 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2325 	int		status;
2326 	int		old_state = hcd->state;
2327 
2328 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2329 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2330 	if (HCD_DEAD(hcd)) {
2331 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2332 		return 0;
2333 	}
2334 
2335 	if (!PMSG_IS_AUTO(msg)) {
2336 		status = usb_phy_roothub_resume(hcd->self.sysdev,
2337 						hcd->phy_roothub);
2338 		if (status)
2339 			return status;
2340 	}
2341 
2342 	if (!hcd->driver->bus_resume)
2343 		return -ENOENT;
2344 	if (HCD_RH_RUNNING(hcd))
2345 		return 0;
2346 
2347 	hcd->state = HC_STATE_RESUMING;
2348 	status = hcd->driver->bus_resume(hcd);
2349 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2350 	if (status == 0)
2351 		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2352 
2353 	if (status == 0) {
2354 		struct usb_device *udev;
2355 		int port1;
2356 
2357 		spin_lock_irq(&hcd_root_hub_lock);
2358 		if (!HCD_DEAD(hcd)) {
2359 			usb_set_device_state(rhdev, rhdev->actconfig
2360 					? USB_STATE_CONFIGURED
2361 					: USB_STATE_ADDRESS);
2362 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2363 			hcd->state = HC_STATE_RUNNING;
2364 		}
2365 		spin_unlock_irq(&hcd_root_hub_lock);
2366 
2367 		/*
2368 		 * Check whether any of the enabled ports on the root hub are
2369 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2370 		 * (this is what the USB-2 spec calls a "global resume").
2371 		 * Otherwise we can skip the delay.
2372 		 */
2373 		usb_hub_for_each_child(rhdev, port1, udev) {
2374 			if (udev->state != USB_STATE_NOTATTACHED &&
2375 					!udev->port_is_suspended) {
2376 				usleep_range(10000, 11000);	/* TRSMRCY */
2377 				break;
2378 			}
2379 		}
2380 	} else {
2381 		hcd->state = old_state;
2382 		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2383 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2384 				"resume", status);
2385 		if (status != -ESHUTDOWN)
2386 			usb_hc_died(hcd);
2387 	}
2388 	return status;
2389 }
2390 
2391 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2392 static void hcd_resume_work(struct work_struct *work)
2393 {
2394 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2395 	struct usb_device *udev = hcd->self.root_hub;
2396 
2397 	usb_remote_wakeup(udev);
2398 }
2399 
2400 /**
2401  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2402  * @hcd: host controller for this root hub
2403  *
2404  * The USB host controller calls this function when its root hub is
2405  * suspended (with the remote wakeup feature enabled) and a remote
2406  * wakeup request is received.  The routine submits a workqueue request
2407  * to resume the root hub (that is, manage its downstream ports again).
2408  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2409 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2410 {
2411 	unsigned long flags;
2412 
2413 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2414 	if (hcd->rh_registered) {
2415 		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2416 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2417 		queue_work(pm_wq, &hcd->wakeup_work);
2418 	}
2419 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2420 }
2421 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2422 
2423 #endif	/* CONFIG_PM */
2424 
2425 /*-------------------------------------------------------------------------*/
2426 
2427 #ifdef	CONFIG_USB_OTG
2428 
2429 /**
2430  * usb_bus_start_enum - start immediate enumeration (for OTG)
2431  * @bus: the bus (must use hcd framework)
2432  * @port_num: 1-based number of port; usually bus->otg_port
2433  * Context: atomic
2434  *
2435  * Starts enumeration, with an immediate reset followed later by
2436  * hub_wq identifying and possibly configuring the device.
2437  * This is needed by OTG controller drivers, where it helps meet
2438  * HNP protocol timing requirements for starting a port reset.
2439  *
2440  * Return: 0 if successful.
2441  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2442 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2443 {
2444 	struct usb_hcd		*hcd;
2445 	int			status = -EOPNOTSUPP;
2446 
2447 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2448 	 * boards with root hubs hooked up to internal devices (instead of
2449 	 * just the OTG port) may need more attention to resetting...
2450 	 */
2451 	hcd = bus_to_hcd(bus);
2452 	if (port_num && hcd->driver->start_port_reset)
2453 		status = hcd->driver->start_port_reset(hcd, port_num);
2454 
2455 	/* allocate hub_wq shortly after (first) root port reset finishes;
2456 	 * it may issue others, until at least 50 msecs have passed.
2457 	 */
2458 	if (status == 0)
2459 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2460 	return status;
2461 }
2462 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2463 
2464 #endif
2465 
2466 /*-------------------------------------------------------------------------*/
2467 
2468 /**
2469  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2470  * @irq: the IRQ being raised
2471  * @__hcd: pointer to the HCD whose IRQ is being signaled
2472  *
2473  * If the controller isn't HALTed, calls the driver's irq handler.
2474  * Checks whether the controller is now dead.
2475  *
2476  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2477  */
usb_hcd_irq(int irq,void * __hcd)2478 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2479 {
2480 	struct usb_hcd		*hcd = __hcd;
2481 	irqreturn_t		rc;
2482 
2483 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2484 		rc = IRQ_NONE;
2485 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2486 		rc = IRQ_NONE;
2487 	else
2488 		rc = IRQ_HANDLED;
2489 
2490 	return rc;
2491 }
2492 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2493 
2494 /*-------------------------------------------------------------------------*/
2495 
2496 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2497 static void hcd_died_work(struct work_struct *work)
2498 {
2499 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2500 	static char *env[] = {
2501 		"ERROR=DEAD",
2502 		NULL
2503 	};
2504 
2505 	/* Notify user space that the host controller has died */
2506 	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2507 }
2508 
2509 /**
2510  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2511  * @hcd: pointer to the HCD representing the controller
2512  *
2513  * This is called by bus glue to report a USB host controller that died
2514  * while operations may still have been pending.  It's called automatically
2515  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2516  *
2517  * Only call this function with the primary HCD.
2518  */
usb_hc_died(struct usb_hcd * hcd)2519 void usb_hc_died (struct usb_hcd *hcd)
2520 {
2521 	unsigned long flags;
2522 
2523 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2524 
2525 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2526 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2527 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2528 	if (hcd->rh_registered) {
2529 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2530 
2531 		/* make hub_wq clean up old urbs and devices */
2532 		usb_set_device_state (hcd->self.root_hub,
2533 				USB_STATE_NOTATTACHED);
2534 		usb_kick_hub_wq(hcd->self.root_hub);
2535 	}
2536 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2537 		hcd = hcd->shared_hcd;
2538 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2539 		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2540 		if (hcd->rh_registered) {
2541 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2542 
2543 			/* make hub_wq clean up old urbs and devices */
2544 			usb_set_device_state(hcd->self.root_hub,
2545 					USB_STATE_NOTATTACHED);
2546 			usb_kick_hub_wq(hcd->self.root_hub);
2547 		}
2548 	}
2549 
2550 	/* Handle the case where this function gets called with a shared HCD */
2551 	if (usb_hcd_is_primary_hcd(hcd))
2552 		schedule_work(&hcd->died_work);
2553 	else
2554 		schedule_work(&hcd->primary_hcd->died_work);
2555 
2556 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2557 	/* Make sure that the other roothub is also deallocated. */
2558 }
2559 EXPORT_SYMBOL_GPL (usb_hc_died);
2560 
2561 /*-------------------------------------------------------------------------*/
2562 
init_giveback_urb_bh(struct giveback_urb_bh * bh)2563 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2564 {
2565 
2566 	spin_lock_init(&bh->lock);
2567 	INIT_LIST_HEAD(&bh->head);
2568 	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2569 }
2570 
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2571 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2572 		struct device *sysdev, struct device *dev, const char *bus_name,
2573 		struct usb_hcd *primary_hcd)
2574 {
2575 	struct usb_hcd *hcd;
2576 
2577 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2578 	if (!hcd)
2579 		return NULL;
2580 	if (primary_hcd == NULL) {
2581 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2582 				GFP_KERNEL);
2583 		if (!hcd->address0_mutex) {
2584 			kfree(hcd);
2585 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2586 			return NULL;
2587 		}
2588 		mutex_init(hcd->address0_mutex);
2589 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2590 				GFP_KERNEL);
2591 		if (!hcd->bandwidth_mutex) {
2592 			kfree(hcd->address0_mutex);
2593 			kfree(hcd);
2594 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2595 			return NULL;
2596 		}
2597 		mutex_init(hcd->bandwidth_mutex);
2598 		dev_set_drvdata(dev, hcd);
2599 	} else {
2600 		mutex_lock(&usb_port_peer_mutex);
2601 		hcd->address0_mutex = primary_hcd->address0_mutex;
2602 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2603 		hcd->primary_hcd = primary_hcd;
2604 		primary_hcd->primary_hcd = primary_hcd;
2605 		hcd->shared_hcd = primary_hcd;
2606 		primary_hcd->shared_hcd = hcd;
2607 		mutex_unlock(&usb_port_peer_mutex);
2608 	}
2609 
2610 	kref_init(&hcd->kref);
2611 
2612 	usb_bus_init(&hcd->self);
2613 	hcd->self.controller = dev;
2614 	hcd->self.sysdev = sysdev;
2615 	hcd->self.bus_name = bus_name;
2616 
2617 	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2618 #ifdef CONFIG_PM
2619 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2620 #endif
2621 
2622 	INIT_WORK(&hcd->died_work, hcd_died_work);
2623 
2624 	hcd->driver = driver;
2625 	hcd->speed = driver->flags & HCD_MASK;
2626 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2627 			"USB Host Controller";
2628 	return hcd;
2629 }
2630 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2631 
2632 /**
2633  * usb_create_shared_hcd - create and initialize an HCD structure
2634  * @driver: HC driver that will use this hcd
2635  * @dev: device for this HC, stored in hcd->self.controller
2636  * @bus_name: value to store in hcd->self.bus_name
2637  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2638  *              PCI device.  Only allocate certain resources for the primary HCD
2639  *
2640  * Context: task context, might sleep.
2641  *
2642  * Allocate a struct usb_hcd, with extra space at the end for the
2643  * HC driver's private data.  Initialize the generic members of the
2644  * hcd structure.
2645  *
2646  * Return: On success, a pointer to the created and initialized HCD structure.
2647  * On failure (e.g. if memory is unavailable), %NULL.
2648  */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2649 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2650 		struct device *dev, const char *bus_name,
2651 		struct usb_hcd *primary_hcd)
2652 {
2653 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2654 }
2655 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2656 
2657 /**
2658  * usb_create_hcd - create and initialize an HCD structure
2659  * @driver: HC driver that will use this hcd
2660  * @dev: device for this HC, stored in hcd->self.controller
2661  * @bus_name: value to store in hcd->self.bus_name
2662  *
2663  * Context: task context, might sleep.
2664  *
2665  * Allocate a struct usb_hcd, with extra space at the end for the
2666  * HC driver's private data.  Initialize the generic members of the
2667  * hcd structure.
2668  *
2669  * Return: On success, a pointer to the created and initialized HCD
2670  * structure. On failure (e.g. if memory is unavailable), %NULL.
2671  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2672 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2673 		struct device *dev, const char *bus_name)
2674 {
2675 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2676 }
2677 EXPORT_SYMBOL_GPL(usb_create_hcd);
2678 
2679 /*
2680  * Roothubs that share one PCI device must also share the bandwidth mutex.
2681  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2682  * deallocated.
2683  *
2684  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2685  * freed.  When hcd_release() is called for either hcd in a peer set,
2686  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2687  */
hcd_release(struct kref * kref)2688 static void hcd_release(struct kref *kref)
2689 {
2690 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2691 
2692 	mutex_lock(&usb_port_peer_mutex);
2693 	if (hcd->shared_hcd) {
2694 		struct usb_hcd *peer = hcd->shared_hcd;
2695 
2696 		peer->shared_hcd = NULL;
2697 		peer->primary_hcd = NULL;
2698 	} else {
2699 		kfree(hcd->address0_mutex);
2700 		kfree(hcd->bandwidth_mutex);
2701 	}
2702 	mutex_unlock(&usb_port_peer_mutex);
2703 	kfree(hcd);
2704 }
2705 
usb_get_hcd(struct usb_hcd * hcd)2706 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2707 {
2708 	if (hcd)
2709 		kref_get (&hcd->kref);
2710 	return hcd;
2711 }
2712 EXPORT_SYMBOL_GPL(usb_get_hcd);
2713 
usb_put_hcd(struct usb_hcd * hcd)2714 void usb_put_hcd (struct usb_hcd *hcd)
2715 {
2716 	if (hcd)
2717 		kref_put (&hcd->kref, hcd_release);
2718 }
2719 EXPORT_SYMBOL_GPL(usb_put_hcd);
2720 
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2721 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2722 {
2723 	if (!hcd->primary_hcd)
2724 		return 1;
2725 	return hcd == hcd->primary_hcd;
2726 }
2727 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2728 
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2729 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2730 {
2731 	if (!hcd->driver->find_raw_port_number)
2732 		return port1;
2733 
2734 	return hcd->driver->find_raw_port_number(hcd, port1);
2735 }
2736 
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2737 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2738 		unsigned int irqnum, unsigned long irqflags)
2739 {
2740 	int retval;
2741 
2742 	if (hcd->driver->irq) {
2743 
2744 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2745 				hcd->driver->description, hcd->self.busnum);
2746 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2747 				hcd->irq_descr, hcd);
2748 		if (retval != 0) {
2749 			dev_err(hcd->self.controller,
2750 					"request interrupt %d failed\n",
2751 					irqnum);
2752 			return retval;
2753 		}
2754 		hcd->irq = irqnum;
2755 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2756 				(hcd->driver->flags & HCD_MEMORY) ?
2757 					"io mem" : "io port",
2758 				(unsigned long long)hcd->rsrc_start);
2759 	} else {
2760 		hcd->irq = 0;
2761 		if (hcd->rsrc_start)
2762 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2763 					(hcd->driver->flags & HCD_MEMORY) ?
2764 						"io mem" : "io port",
2765 					(unsigned long long)hcd->rsrc_start);
2766 	}
2767 	return 0;
2768 }
2769 
2770 /*
2771  * Before we free this root hub, flush in-flight peering attempts
2772  * and disable peer lookups
2773  */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2774 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2775 {
2776 	struct usb_device *rhdev;
2777 
2778 	mutex_lock(&usb_port_peer_mutex);
2779 	rhdev = hcd->self.root_hub;
2780 	hcd->self.root_hub = NULL;
2781 	mutex_unlock(&usb_port_peer_mutex);
2782 	usb_put_dev(rhdev);
2783 }
2784 
2785 /**
2786  * usb_stop_hcd - Halt the HCD
2787  * @hcd: the usb_hcd that has to be halted
2788  *
2789  * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2790  */
usb_stop_hcd(struct usb_hcd * hcd)2791 static void usb_stop_hcd(struct usb_hcd *hcd)
2792 {
2793 	hcd->rh_pollable = 0;
2794 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2795 	del_timer_sync(&hcd->rh_timer);
2796 
2797 	hcd->driver->stop(hcd);
2798 	hcd->state = HC_STATE_HALT;
2799 
2800 	/* In case the HCD restarted the timer, stop it again. */
2801 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2802 	del_timer_sync(&hcd->rh_timer);
2803 }
2804 
2805 /**
2806  * usb_add_hcd - finish generic HCD structure initialization and register
2807  * @hcd: the usb_hcd structure to initialize
2808  * @irqnum: Interrupt line to allocate
2809  * @irqflags: Interrupt type flags
2810  *
2811  * Finish the remaining parts of generic HCD initialization: allocate the
2812  * buffers of consistent memory, register the bus, request the IRQ line,
2813  * and call the driver's reset() and start() routines.
2814  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2815 int usb_add_hcd(struct usb_hcd *hcd,
2816 		unsigned int irqnum, unsigned long irqflags)
2817 {
2818 	int retval;
2819 	struct usb_device *rhdev;
2820 	struct usb_hcd *shared_hcd;
2821 
2822 	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2823 		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2824 		if (IS_ERR(hcd->phy_roothub))
2825 			return PTR_ERR(hcd->phy_roothub);
2826 
2827 		retval = usb_phy_roothub_init(hcd->phy_roothub);
2828 		if (retval)
2829 			return retval;
2830 
2831 		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2832 						  PHY_MODE_USB_HOST_SS);
2833 		if (retval)
2834 			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2835 							  PHY_MODE_USB_HOST);
2836 		if (retval)
2837 			goto err_usb_phy_roothub_power_on;
2838 
2839 		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2840 		if (retval)
2841 			goto err_usb_phy_roothub_power_on;
2842 	}
2843 
2844 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2845 
2846 	switch (authorized_default) {
2847 	case USB_AUTHORIZE_NONE:
2848 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2849 		break;
2850 
2851 	case USB_AUTHORIZE_ALL:
2852 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2853 		break;
2854 
2855 	case USB_AUTHORIZE_INTERNAL:
2856 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2857 		break;
2858 
2859 	case USB_AUTHORIZE_WIRED:
2860 	default:
2861 		hcd->dev_policy = hcd->wireless ?
2862 			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2863 		break;
2864 	}
2865 
2866 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2867 
2868 	/* per default all interfaces are authorized */
2869 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2870 
2871 	/* HC is in reset state, but accessible.  Now do the one-time init,
2872 	 * bottom up so that hcds can customize the root hubs before hub_wq
2873 	 * starts talking to them.  (Note, bus id is assigned early too.)
2874 	 */
2875 	retval = hcd_buffer_create(hcd);
2876 	if (retval != 0) {
2877 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2878 		goto err_create_buf;
2879 	}
2880 
2881 	retval = usb_register_bus(&hcd->self);
2882 	if (retval < 0)
2883 		goto err_register_bus;
2884 
2885 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2886 	if (rhdev == NULL) {
2887 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2888 		retval = -ENOMEM;
2889 		goto err_allocate_root_hub;
2890 	}
2891 	mutex_lock(&usb_port_peer_mutex);
2892 	hcd->self.root_hub = rhdev;
2893 	mutex_unlock(&usb_port_peer_mutex);
2894 
2895 	rhdev->rx_lanes = 1;
2896 	rhdev->tx_lanes = 1;
2897 	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2898 
2899 	switch (hcd->speed) {
2900 	case HCD_USB11:
2901 		rhdev->speed = USB_SPEED_FULL;
2902 		break;
2903 	case HCD_USB2:
2904 		rhdev->speed = USB_SPEED_HIGH;
2905 		break;
2906 	case HCD_USB25:
2907 		rhdev->speed = USB_SPEED_WIRELESS;
2908 		break;
2909 	case HCD_USB3:
2910 		rhdev->speed = USB_SPEED_SUPER;
2911 		break;
2912 	case HCD_USB32:
2913 		rhdev->rx_lanes = 2;
2914 		rhdev->tx_lanes = 2;
2915 		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2916 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2917 		break;
2918 	case HCD_USB31:
2919 		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2920 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2921 		break;
2922 	default:
2923 		retval = -EINVAL;
2924 		goto err_set_rh_speed;
2925 	}
2926 
2927 	/* wakeup flag init defaults to "everything works" for root hubs,
2928 	 * but drivers can override it in reset() if needed, along with
2929 	 * recording the overall controller's system wakeup capability.
2930 	 */
2931 	device_set_wakeup_capable(&rhdev->dev, 1);
2932 
2933 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2934 	 * registered.  But since the controller can die at any time,
2935 	 * let's initialize the flag before touching the hardware.
2936 	 */
2937 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2938 
2939 	/* "reset" is misnamed; its role is now one-time init. the controller
2940 	 * should already have been reset (and boot firmware kicked off etc).
2941 	 */
2942 	if (hcd->driver->reset) {
2943 		retval = hcd->driver->reset(hcd);
2944 		if (retval < 0) {
2945 			dev_err(hcd->self.controller, "can't setup: %d\n",
2946 					retval);
2947 			goto err_hcd_driver_setup;
2948 		}
2949 	}
2950 	hcd->rh_pollable = 1;
2951 
2952 	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2953 	if (retval)
2954 		goto err_hcd_driver_setup;
2955 
2956 	/* NOTE: root hub and controller capabilities may not be the same */
2957 	if (device_can_wakeup(hcd->self.controller)
2958 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2959 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2960 
2961 	/* initialize tasklets */
2962 	init_giveback_urb_bh(&hcd->high_prio_bh);
2963 	hcd->high_prio_bh.high_prio = true;
2964 	init_giveback_urb_bh(&hcd->low_prio_bh);
2965 
2966 	/* enable irqs just before we start the controller,
2967 	 * if the BIOS provides legacy PCI irqs.
2968 	 */
2969 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2970 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2971 		if (retval)
2972 			goto err_request_irq;
2973 	}
2974 
2975 	hcd->state = HC_STATE_RUNNING;
2976 	retval = hcd->driver->start(hcd);
2977 	if (retval < 0) {
2978 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2979 		goto err_hcd_driver_start;
2980 	}
2981 
2982 	/* starting here, usbcore will pay attention to the shared HCD roothub */
2983 	shared_hcd = hcd->shared_hcd;
2984 	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2985 		retval = register_root_hub(shared_hcd);
2986 		if (retval != 0)
2987 			goto err_register_root_hub;
2988 
2989 		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2990 			usb_hcd_poll_rh_status(shared_hcd);
2991 	}
2992 
2993 	/* starting here, usbcore will pay attention to this root hub */
2994 	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2995 		retval = register_root_hub(hcd);
2996 		if (retval != 0)
2997 			goto err_register_root_hub;
2998 
2999 		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3000 			usb_hcd_poll_rh_status(hcd);
3001 	}
3002 
3003 	return retval;
3004 
3005 err_register_root_hub:
3006 	usb_stop_hcd(hcd);
3007 err_hcd_driver_start:
3008 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3009 		free_irq(irqnum, hcd);
3010 err_request_irq:
3011 err_hcd_driver_setup:
3012 err_set_rh_speed:
3013 	usb_put_invalidate_rhdev(hcd);
3014 err_allocate_root_hub:
3015 	usb_deregister_bus(&hcd->self);
3016 err_register_bus:
3017 	hcd_buffer_destroy(hcd);
3018 err_create_buf:
3019 	usb_phy_roothub_power_off(hcd->phy_roothub);
3020 err_usb_phy_roothub_power_on:
3021 	usb_phy_roothub_exit(hcd->phy_roothub);
3022 
3023 	return retval;
3024 }
3025 EXPORT_SYMBOL_GPL(usb_add_hcd);
3026 
3027 /**
3028  * usb_remove_hcd - shutdown processing for generic HCDs
3029  * @hcd: the usb_hcd structure to remove
3030  *
3031  * Context: task context, might sleep.
3032  *
3033  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3034  * invoking the HCD's stop() method.
3035  */
usb_remove_hcd(struct usb_hcd * hcd)3036 void usb_remove_hcd(struct usb_hcd *hcd)
3037 {
3038 	struct usb_device *rhdev;
3039 	bool rh_registered;
3040 
3041 	if (!hcd) {
3042 		pr_debug("%s: hcd is NULL\n", __func__);
3043 		return;
3044 	}
3045 	rhdev = hcd->self.root_hub;
3046 
3047 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3048 
3049 	usb_get_dev(rhdev);
3050 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3051 	if (HC_IS_RUNNING (hcd->state))
3052 		hcd->state = HC_STATE_QUIESCING;
3053 
3054 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3055 	spin_lock_irq (&hcd_root_hub_lock);
3056 	rh_registered = hcd->rh_registered;
3057 	hcd->rh_registered = 0;
3058 	spin_unlock_irq (&hcd_root_hub_lock);
3059 
3060 #ifdef CONFIG_PM
3061 	cancel_work_sync(&hcd->wakeup_work);
3062 #endif
3063 	cancel_work_sync(&hcd->died_work);
3064 
3065 	mutex_lock(&usb_bus_idr_lock);
3066 	if (rh_registered)
3067 		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3068 	mutex_unlock(&usb_bus_idr_lock);
3069 
3070 	/*
3071 	 * tasklet_kill() isn't needed here because:
3072 	 * - driver's disconnect() called from usb_disconnect() should
3073 	 *   make sure its URBs are completed during the disconnect()
3074 	 *   callback
3075 	 *
3076 	 * - it is too late to run complete() here since driver may have
3077 	 *   been removed already now
3078 	 */
3079 
3080 	/* Prevent any more root-hub status calls from the timer.
3081 	 * The HCD might still restart the timer (if a port status change
3082 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3083 	 * the hub_status_data() callback.
3084 	 */
3085 	usb_stop_hcd(hcd);
3086 
3087 	if (usb_hcd_is_primary_hcd(hcd)) {
3088 		if (hcd->irq > 0)
3089 			free_irq(hcd->irq, hcd);
3090 	}
3091 
3092 	usb_deregister_bus(&hcd->self);
3093 	hcd_buffer_destroy(hcd);
3094 
3095 	usb_phy_roothub_power_off(hcd->phy_roothub);
3096 	usb_phy_roothub_exit(hcd->phy_roothub);
3097 
3098 	usb_put_invalidate_rhdev(hcd);
3099 	hcd->flags = 0;
3100 }
3101 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3102 
3103 void
usb_hcd_platform_shutdown(struct platform_device * dev)3104 usb_hcd_platform_shutdown(struct platform_device *dev)
3105 {
3106 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3107 
3108 	/* No need for pm_runtime_put(), we're shutting down */
3109 	pm_runtime_get_sync(&dev->dev);
3110 
3111 	if (hcd->driver->shutdown)
3112 		hcd->driver->shutdown(hcd);
3113 }
3114 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3115 
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3116 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3117 			    dma_addr_t dma, size_t size)
3118 {
3119 	int err;
3120 	void *local_mem;
3121 
3122 	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3123 						  dev_to_node(hcd->self.sysdev),
3124 						  dev_name(hcd->self.sysdev));
3125 	if (IS_ERR(hcd->localmem_pool))
3126 		return PTR_ERR(hcd->localmem_pool);
3127 
3128 	/*
3129 	 * if a physical SRAM address was passed, map it, otherwise
3130 	 * allocate system memory as a buffer.
3131 	 */
3132 	if (phys_addr)
3133 		local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3134 					  size, MEMREMAP_WC);
3135 	else
3136 		local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3137 					     GFP_KERNEL,
3138 					     DMA_ATTR_WRITE_COMBINE);
3139 
3140 	if (IS_ERR_OR_NULL(local_mem)) {
3141 		if (!local_mem)
3142 			return -ENOMEM;
3143 
3144 		return PTR_ERR(local_mem);
3145 	}
3146 
3147 	/*
3148 	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3149 	 * It's not backed by system memory and thus there's no kernel mapping
3150 	 * for it.
3151 	 */
3152 	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3153 				dma, size, dev_to_node(hcd->self.sysdev));
3154 	if (err < 0) {
3155 		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3156 			err);
3157 		return err;
3158 	}
3159 
3160 	return 0;
3161 }
3162 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3163 
3164 /*-------------------------------------------------------------------------*/
3165 
3166 #if IS_ENABLED(CONFIG_USB_MON)
3167 
3168 const struct usb_mon_operations *mon_ops;
3169 
3170 /*
3171  * The registration is unlocked.
3172  * We do it this way because we do not want to lock in hot paths.
3173  *
3174  * Notice that the code is minimally error-proof. Because usbmon needs
3175  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3176  */
3177 
usb_mon_register(const struct usb_mon_operations * ops)3178 int usb_mon_register(const struct usb_mon_operations *ops)
3179 {
3180 
3181 	if (mon_ops)
3182 		return -EBUSY;
3183 
3184 	mon_ops = ops;
3185 	mb();
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL_GPL (usb_mon_register);
3189 
usb_mon_deregister(void)3190 void usb_mon_deregister (void)
3191 {
3192 
3193 	if (mon_ops == NULL) {
3194 		printk(KERN_ERR "USB: monitor was not registered\n");
3195 		return;
3196 	}
3197 	mon_ops = NULL;
3198 	mb();
3199 }
3200 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3201 
3202 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3203