1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #ifndef __GENKSYMS__
49 #include "blk-mq-debugfs.h"
50 #endif
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-cgroup.h"
54 #include "blk-throttle.h"
55
56 struct dentry *blk_debugfs_root;
57
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
68 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
69 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
70
71 DEFINE_IDA(blk_queue_ida);
72
73 /*
74 * For queue allocation
75 */
76 struct kmem_cache *blk_requestq_cachep;
77 struct kmem_cache *blk_requestq_srcu_cachep;
78
79 /*
80 * Controlling structure to kblockd
81 */
82 static struct workqueue_struct *kblockd_workqueue;
83
84 /**
85 * blk_queue_flag_set - atomically set a queue flag
86 * @flag: flag to be set
87 * @q: request queue
88 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)89 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
90 {
91 set_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_set);
94
95 /**
96 * blk_queue_flag_clear - atomically clear a queue flag
97 * @flag: flag to be cleared
98 * @q: request queue
99 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)100 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
101 {
102 clear_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL(blk_queue_flag_clear);
105
106 /**
107 * blk_queue_flag_test_and_set - atomically test and set a queue flag
108 * @flag: flag to be set
109 * @q: request queue
110 *
111 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
112 * the flag was already set.
113 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)114 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
115 {
116 return test_and_set_bit(flag, &q->queue_flags);
117 }
118 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
119
120 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
121 static const char *const blk_op_name[] = {
122 REQ_OP_NAME(READ),
123 REQ_OP_NAME(WRITE),
124 REQ_OP_NAME(FLUSH),
125 REQ_OP_NAME(DISCARD),
126 REQ_OP_NAME(SECURE_ERASE),
127 REQ_OP_NAME(ZONE_RESET),
128 REQ_OP_NAME(ZONE_RESET_ALL),
129 REQ_OP_NAME(ZONE_OPEN),
130 REQ_OP_NAME(ZONE_CLOSE),
131 REQ_OP_NAME(ZONE_FINISH),
132 REQ_OP_NAME(ZONE_APPEND),
133 REQ_OP_NAME(WRITE_ZEROES),
134 REQ_OP_NAME(DRV_IN),
135 REQ_OP_NAME(DRV_OUT),
136 };
137 #undef REQ_OP_NAME
138
139 /**
140 * blk_op_str - Return string XXX in the REQ_OP_XXX.
141 * @op: REQ_OP_XXX.
142 *
143 * Description: Centralize block layer function to convert REQ_OP_XXX into
144 * string format. Useful in the debugging and tracing bio or request. For
145 * invalid REQ_OP_XXX it returns string "UNKNOWN".
146 */
blk_op_str(enum req_op op)147 inline const char *blk_op_str(enum req_op op)
148 {
149 const char *op_str = "UNKNOWN";
150
151 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
152 op_str = blk_op_name[op];
153
154 return op_str;
155 }
156 EXPORT_SYMBOL_GPL(blk_op_str);
157
158 static const struct {
159 int errno;
160 const char *name;
161 } blk_errors[] = {
162 [BLK_STS_OK] = { 0, "" },
163 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
164 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
165 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
166 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
167 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
168 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
169 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
170 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
171 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
172 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
173 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
174 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
175
176 /* device mapper special case, should not leak out: */
177 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
178
179 /* zone device specific errors */
180 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
181 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
182
183 /* everything else not covered above: */
184 [BLK_STS_IOERR] = { -EIO, "I/O" },
185 };
186
errno_to_blk_status(int errno)187 blk_status_t errno_to_blk_status(int errno)
188 {
189 int i;
190
191 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
192 if (blk_errors[i].errno == errno)
193 return (__force blk_status_t)i;
194 }
195
196 return BLK_STS_IOERR;
197 }
198 EXPORT_SYMBOL_GPL(errno_to_blk_status);
199
blk_status_to_errno(blk_status_t status)200 int blk_status_to_errno(blk_status_t status)
201 {
202 int idx = (__force int)status;
203
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return -EIO;
206 return blk_errors[idx].errno;
207 }
208 EXPORT_SYMBOL_GPL(blk_status_to_errno);
209
blk_status_to_str(blk_status_t status)210 const char *blk_status_to_str(blk_status_t status)
211 {
212 int idx = (__force int)status;
213
214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 return "<null>";
216 return blk_errors[idx].name;
217 }
218
219 /**
220 * blk_sync_queue - cancel any pending callbacks on a queue
221 * @q: the queue
222 *
223 * Description:
224 * The block layer may perform asynchronous callback activity
225 * on a queue, such as calling the unplug function after a timeout.
226 * A block device may call blk_sync_queue to ensure that any
227 * such activity is cancelled, thus allowing it to release resources
228 * that the callbacks might use. The caller must already have made sure
229 * that its ->submit_bio will not re-add plugging prior to calling
230 * this function.
231 *
232 * This function does not cancel any asynchronous activity arising
233 * out of elevator or throttling code. That would require elevator_exit()
234 * and blkcg_exit_queue() to be called with queue lock initialized.
235 *
236 */
blk_sync_queue(struct request_queue * q)237 void blk_sync_queue(struct request_queue *q)
238 {
239 del_timer_sync(&q->timeout);
240 cancel_work_sync(&q->timeout_work);
241 }
242 EXPORT_SYMBOL(blk_sync_queue);
243
244 /**
245 * blk_set_pm_only - increment pm_only counter
246 * @q: request queue pointer
247 */
blk_set_pm_only(struct request_queue * q)248 void blk_set_pm_only(struct request_queue *q)
249 {
250 atomic_inc(&q->pm_only);
251 }
252 EXPORT_SYMBOL_GPL(blk_set_pm_only);
253
blk_clear_pm_only(struct request_queue * q)254 void blk_clear_pm_only(struct request_queue *q)
255 {
256 int pm_only;
257
258 pm_only = atomic_dec_return(&q->pm_only);
259 WARN_ON_ONCE(pm_only < 0);
260 if (pm_only == 0)
261 wake_up_all(&q->mq_freeze_wq);
262 }
263 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
264
265 /**
266 * blk_put_queue - decrement the request_queue refcount
267 * @q: the request_queue structure to decrement the refcount for
268 *
269 * Decrements the refcount of the request_queue kobject. When this reaches 0
270 * we'll have blk_release_queue() called.
271 *
272 * Context: Any context, but the last reference must not be dropped from
273 * atomic context.
274 */
blk_put_queue(struct request_queue * q)275 void blk_put_queue(struct request_queue *q)
276 {
277 kobject_put(&q->kobj);
278 }
279 EXPORT_SYMBOL(blk_put_queue);
280
blk_queue_start_drain(struct request_queue * q)281 void blk_queue_start_drain(struct request_queue *q)
282 {
283 /*
284 * When queue DYING flag is set, we need to block new req
285 * entering queue, so we call blk_freeze_queue_start() to
286 * prevent I/O from crossing blk_queue_enter().
287 */
288 blk_freeze_queue_start(q);
289 if (queue_is_mq(q))
290 blk_mq_wake_waiters(q);
291 /* Make blk_queue_enter() reexamine the DYING flag. */
292 wake_up_all(&q->mq_freeze_wq);
293 }
294
295 /**
296 * blk_queue_enter() - try to increase q->q_usage_counter
297 * @q: request queue pointer
298 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
299 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)300 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
301 {
302 const bool pm = flags & BLK_MQ_REQ_PM;
303
304 while (!blk_try_enter_queue(q, pm)) {
305 if (flags & BLK_MQ_REQ_NOWAIT)
306 return -EAGAIN;
307
308 /*
309 * read pair of barrier in blk_freeze_queue_start(), we need to
310 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
311 * reading .mq_freeze_depth or queue dying flag, otherwise the
312 * following wait may never return if the two reads are
313 * reordered.
314 */
315 smp_rmb();
316 wait_event(q->mq_freeze_wq,
317 (!q->mq_freeze_depth &&
318 blk_pm_resume_queue(pm, q)) ||
319 blk_queue_dying(q));
320 if (blk_queue_dying(q))
321 return -ENODEV;
322 }
323
324 return 0;
325 }
326
__bio_queue_enter(struct request_queue * q,struct bio * bio)327 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
328 {
329 while (!blk_try_enter_queue(q, false)) {
330 struct gendisk *disk = bio->bi_bdev->bd_disk;
331
332 if (bio->bi_opf & REQ_NOWAIT) {
333 if (test_bit(GD_DEAD, &disk->state))
334 goto dead;
335 bio_wouldblock_error(bio);
336 return -EAGAIN;
337 }
338
339 /*
340 * read pair of barrier in blk_freeze_queue_start(), we need to
341 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
342 * reading .mq_freeze_depth or queue dying flag, otherwise the
343 * following wait may never return if the two reads are
344 * reordered.
345 */
346 smp_rmb();
347 wait_event(q->mq_freeze_wq,
348 (!q->mq_freeze_depth &&
349 blk_pm_resume_queue(false, q)) ||
350 test_bit(GD_DEAD, &disk->state));
351 if (test_bit(GD_DEAD, &disk->state))
352 goto dead;
353 }
354
355 return 0;
356 dead:
357 bio_io_error(bio);
358 return -ENODEV;
359 }
360
blk_queue_exit(struct request_queue * q)361 void blk_queue_exit(struct request_queue *q)
362 {
363 percpu_ref_put(&q->q_usage_counter);
364 }
365
blk_queue_usage_counter_release(struct percpu_ref * ref)366 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
367 {
368 struct request_queue *q =
369 container_of(ref, struct request_queue, q_usage_counter);
370
371 wake_up_all(&q->mq_freeze_wq);
372 }
373
blk_rq_timed_out_timer(struct timer_list * t)374 static void blk_rq_timed_out_timer(struct timer_list *t)
375 {
376 struct request_queue *q = from_timer(q, t, timeout);
377
378 kblockd_schedule_work(&q->timeout_work);
379 }
380
blk_timeout_work(struct work_struct * work)381 static void blk_timeout_work(struct work_struct *work)
382 {
383 }
384
blk_alloc_queue(int node_id,bool alloc_srcu)385 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
386 {
387 struct request_queue *q;
388
389 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
390 GFP_KERNEL | __GFP_ZERO, node_id);
391 if (!q)
392 return NULL;
393
394 if (alloc_srcu) {
395 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
396 if (init_srcu_struct(q->srcu) != 0)
397 goto fail_q;
398 }
399
400 q->last_merge = NULL;
401
402 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
403 if (q->id < 0)
404 goto fail_srcu;
405
406 q->stats = blk_alloc_queue_stats();
407 if (!q->stats)
408 goto fail_id;
409
410 q->node = node_id;
411
412 atomic_set(&q->nr_active_requests_shared_tags, 0);
413
414 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
415 INIT_WORK(&q->timeout_work, blk_timeout_work);
416 INIT_LIST_HEAD(&q->icq_list);
417
418 kobject_init(&q->kobj, &blk_queue_ktype);
419
420 mutex_init(&q->debugfs_mutex);
421 mutex_init(&q->sysfs_lock);
422 mutex_init(&q->sysfs_dir_lock);
423 spin_lock_init(&q->queue_lock);
424
425 init_waitqueue_head(&q->mq_freeze_wq);
426 mutex_init(&q->mq_freeze_lock);
427
428 /*
429 * Init percpu_ref in atomic mode so that it's faster to shutdown.
430 * See blk_register_queue() for details.
431 */
432 if (percpu_ref_init(&q->q_usage_counter,
433 blk_queue_usage_counter_release,
434 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
435 goto fail_stats;
436
437 blk_set_default_limits(&q->limits);
438 q->nr_requests = BLKDEV_DEFAULT_RQ;
439
440 return q;
441
442 fail_stats:
443 blk_free_queue_stats(q->stats);
444 fail_id:
445 ida_free(&blk_queue_ida, q->id);
446 fail_srcu:
447 if (alloc_srcu)
448 cleanup_srcu_struct(q->srcu);
449 fail_q:
450 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
451 return NULL;
452 }
453
454 /**
455 * blk_get_queue - increment the request_queue refcount
456 * @q: the request_queue structure to increment the refcount for
457 *
458 * Increment the refcount of the request_queue kobject.
459 *
460 * Context: Any context.
461 */
blk_get_queue(struct request_queue * q)462 bool blk_get_queue(struct request_queue *q)
463 {
464 if (unlikely(blk_queue_dying(q)))
465 return false;
466 kobject_get(&q->kobj);
467 return true;
468 }
469 EXPORT_SYMBOL(blk_get_queue);
470
471 #ifdef CONFIG_FAIL_MAKE_REQUEST
472
473 static DECLARE_FAULT_ATTR(fail_make_request);
474
setup_fail_make_request(char * str)475 static int __init setup_fail_make_request(char *str)
476 {
477 return setup_fault_attr(&fail_make_request, str);
478 }
479 __setup("fail_make_request=", setup_fail_make_request);
480
should_fail_request(struct block_device * part,unsigned int bytes)481 bool should_fail_request(struct block_device *part, unsigned int bytes)
482 {
483 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
484 }
485
fail_make_request_debugfs(void)486 static int __init fail_make_request_debugfs(void)
487 {
488 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
489 NULL, &fail_make_request);
490
491 return PTR_ERR_OR_ZERO(dir);
492 }
493
494 late_initcall(fail_make_request_debugfs);
495 #endif /* CONFIG_FAIL_MAKE_REQUEST */
496
bio_check_ro(struct bio * bio)497 static inline void bio_check_ro(struct bio *bio)
498 {
499 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
500 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
501 return;
502 pr_warn_ratelimited("Trying to write to read-only block-device %pg\n",
503 bio->bi_bdev);
504 /* Older lvm-tools actually trigger this */
505 }
506 }
507
should_fail_bio(struct bio * bio)508 static noinline int should_fail_bio(struct bio *bio)
509 {
510 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
511 return -EIO;
512 return 0;
513 }
514 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
515
516 /*
517 * Check whether this bio extends beyond the end of the device or partition.
518 * This may well happen - the kernel calls bread() without checking the size of
519 * the device, e.g., when mounting a file system.
520 */
bio_check_eod(struct bio * bio)521 static inline int bio_check_eod(struct bio *bio)
522 {
523 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
524 unsigned int nr_sectors = bio_sectors(bio);
525
526 if (nr_sectors && maxsector &&
527 (nr_sectors > maxsector ||
528 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
529 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
530 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
531 current->comm, bio->bi_bdev, bio->bi_opf,
532 bio->bi_iter.bi_sector, nr_sectors, maxsector);
533 return -EIO;
534 }
535 return 0;
536 }
537
538 /*
539 * Remap block n of partition p to block n+start(p) of the disk.
540 */
blk_partition_remap(struct bio * bio)541 static int blk_partition_remap(struct bio *bio)
542 {
543 struct block_device *p = bio->bi_bdev;
544
545 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
546 return -EIO;
547 if (bio_sectors(bio)) {
548 bio->bi_iter.bi_sector += p->bd_start_sect;
549 trace_block_bio_remap(bio, p->bd_dev,
550 bio->bi_iter.bi_sector -
551 p->bd_start_sect);
552 }
553 bio_set_flag(bio, BIO_REMAPPED);
554 return 0;
555 }
556
557 /*
558 * Check write append to a zoned block device.
559 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)560 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
561 struct bio *bio)
562 {
563 int nr_sectors = bio_sectors(bio);
564
565 /* Only applicable to zoned block devices */
566 if (!bdev_is_zoned(bio->bi_bdev))
567 return BLK_STS_NOTSUPP;
568
569 /* The bio sector must point to the start of a sequential zone */
570 if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) ||
571 !bio_zone_is_seq(bio))
572 return BLK_STS_IOERR;
573
574 /*
575 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
576 * split and could result in non-contiguous sectors being written in
577 * different zones.
578 */
579 if (nr_sectors > q->limits.chunk_sectors)
580 return BLK_STS_IOERR;
581
582 /* Make sure the BIO is small enough and will not get split */
583 if (nr_sectors > q->limits.max_zone_append_sectors)
584 return BLK_STS_IOERR;
585
586 bio->bi_opf |= REQ_NOMERGE;
587
588 return BLK_STS_OK;
589 }
590
__submit_bio(struct bio * bio)591 static void __submit_bio(struct bio *bio)
592 {
593 struct gendisk *disk = bio->bi_bdev->bd_disk;
594
595 if (unlikely(!blk_crypto_bio_prep(&bio)))
596 return;
597
598 if (!disk->fops->submit_bio) {
599 blk_mq_submit_bio(bio);
600 } else if (likely(bio_queue_enter(bio) == 0)) {
601 disk->fops->submit_bio(bio);
602 blk_queue_exit(disk->queue);
603 }
604 }
605
606 /*
607 * The loop in this function may be a bit non-obvious, and so deserves some
608 * explanation:
609 *
610 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
611 * that), so we have a list with a single bio.
612 * - We pretend that we have just taken it off a longer list, so we assign
613 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
614 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
615 * bios through a recursive call to submit_bio_noacct. If it did, we find a
616 * non-NULL value in bio_list and re-enter the loop from the top.
617 * - In this case we really did just take the bio of the top of the list (no
618 * pretending) and so remove it from bio_list, and call into ->submit_bio()
619 * again.
620 *
621 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
622 * bio_list_on_stack[1] contains bios that were submitted before the current
623 * ->submit_bio, but that haven't been processed yet.
624 */
__submit_bio_noacct(struct bio * bio)625 static void __submit_bio_noacct(struct bio *bio)
626 {
627 struct bio_list bio_list_on_stack[2];
628
629 BUG_ON(bio->bi_next);
630
631 bio_list_init(&bio_list_on_stack[0]);
632 current->bio_list = bio_list_on_stack;
633
634 do {
635 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
636 struct bio_list lower, same;
637
638 /*
639 * Create a fresh bio_list for all subordinate requests.
640 */
641 bio_list_on_stack[1] = bio_list_on_stack[0];
642 bio_list_init(&bio_list_on_stack[0]);
643
644 __submit_bio(bio);
645
646 /*
647 * Sort new bios into those for a lower level and those for the
648 * same level.
649 */
650 bio_list_init(&lower);
651 bio_list_init(&same);
652 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
653 if (q == bdev_get_queue(bio->bi_bdev))
654 bio_list_add(&same, bio);
655 else
656 bio_list_add(&lower, bio);
657
658 /*
659 * Now assemble so we handle the lowest level first.
660 */
661 bio_list_merge(&bio_list_on_stack[0], &lower);
662 bio_list_merge(&bio_list_on_stack[0], &same);
663 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
664 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
665
666 current->bio_list = NULL;
667 }
668
__submit_bio_noacct_mq(struct bio * bio)669 static void __submit_bio_noacct_mq(struct bio *bio)
670 {
671 struct bio_list bio_list[2] = { };
672
673 current->bio_list = bio_list;
674
675 do {
676 __submit_bio(bio);
677 } while ((bio = bio_list_pop(&bio_list[0])));
678
679 current->bio_list = NULL;
680 }
681
submit_bio_noacct_nocheck(struct bio * bio)682 void submit_bio_noacct_nocheck(struct bio *bio)
683 {
684 blk_cgroup_bio_start(bio);
685 blkcg_bio_issue_init(bio);
686
687 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
688 trace_block_bio_queue(bio);
689 /*
690 * Now that enqueuing has been traced, we need to trace
691 * completion as well.
692 */
693 bio_set_flag(bio, BIO_TRACE_COMPLETION);
694 }
695
696 /*
697 * We only want one ->submit_bio to be active at a time, else stack
698 * usage with stacked devices could be a problem. Use current->bio_list
699 * to collect a list of requests submited by a ->submit_bio method while
700 * it is active, and then process them after it returned.
701 */
702 if (current->bio_list)
703 bio_list_add(¤t->bio_list[0], bio);
704 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
705 __submit_bio_noacct_mq(bio);
706 else
707 __submit_bio_noacct(bio);
708 }
709
710 /**
711 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
712 * @bio: The bio describing the location in memory and on the device.
713 *
714 * This is a version of submit_bio() that shall only be used for I/O that is
715 * resubmitted to lower level drivers by stacking block drivers. All file
716 * systems and other upper level users of the block layer should use
717 * submit_bio() instead.
718 */
submit_bio_noacct(struct bio * bio)719 void submit_bio_noacct(struct bio *bio)
720 {
721 struct block_device *bdev = bio->bi_bdev;
722 struct request_queue *q = bdev_get_queue(bdev);
723 blk_status_t status = BLK_STS_IOERR;
724 struct blk_plug *plug;
725
726 might_sleep();
727
728 plug = blk_mq_plug(bio);
729 if (plug && plug->nowait)
730 bio->bi_opf |= REQ_NOWAIT;
731
732 /*
733 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
734 * if queue does not support NOWAIT.
735 */
736 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
737 goto not_supported;
738
739 if (should_fail_bio(bio))
740 goto end_io;
741 bio_check_ro(bio);
742 if (!bio_flagged(bio, BIO_REMAPPED)) {
743 if (unlikely(bio_check_eod(bio)))
744 goto end_io;
745 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
746 goto end_io;
747 }
748
749 /*
750 * Filter flush bio's early so that bio based drivers without flush
751 * support don't have to worry about them.
752 */
753 if (op_is_flush(bio->bi_opf) &&
754 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
755 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
756 if (!bio_sectors(bio)) {
757 status = BLK_STS_OK;
758 goto end_io;
759 }
760 }
761
762 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
763 bio_clear_polled(bio);
764
765 switch (bio_op(bio)) {
766 case REQ_OP_DISCARD:
767 if (!bdev_max_discard_sectors(bdev))
768 goto not_supported;
769 break;
770 case REQ_OP_SECURE_ERASE:
771 if (!bdev_max_secure_erase_sectors(bdev))
772 goto not_supported;
773 break;
774 case REQ_OP_ZONE_APPEND:
775 status = blk_check_zone_append(q, bio);
776 if (status != BLK_STS_OK)
777 goto end_io;
778 break;
779 case REQ_OP_ZONE_RESET:
780 case REQ_OP_ZONE_OPEN:
781 case REQ_OP_ZONE_CLOSE:
782 case REQ_OP_ZONE_FINISH:
783 if (!bdev_is_zoned(bio->bi_bdev))
784 goto not_supported;
785 break;
786 case REQ_OP_ZONE_RESET_ALL:
787 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
788 goto not_supported;
789 break;
790 case REQ_OP_WRITE_ZEROES:
791 if (!q->limits.max_write_zeroes_sectors)
792 goto not_supported;
793 break;
794 default:
795 break;
796 }
797
798 if (blk_throtl_bio(bio))
799 return;
800 submit_bio_noacct_nocheck(bio);
801 return;
802
803 not_supported:
804 status = BLK_STS_NOTSUPP;
805 end_io:
806 bio->bi_status = status;
807 bio_endio(bio);
808 }
809 EXPORT_SYMBOL(submit_bio_noacct);
810
811 /**
812 * submit_bio - submit a bio to the block device layer for I/O
813 * @bio: The &struct bio which describes the I/O
814 *
815 * submit_bio() is used to submit I/O requests to block devices. It is passed a
816 * fully set up &struct bio that describes the I/O that needs to be done. The
817 * bio will be send to the device described by the bi_bdev field.
818 *
819 * The success/failure status of the request, along with notification of
820 * completion, is delivered asynchronously through the ->bi_end_io() callback
821 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
822 * been called.
823 */
submit_bio(struct bio * bio)824 void submit_bio(struct bio *bio)
825 {
826 if (blkcg_punt_bio_submit(bio))
827 return;
828
829 if (bio_op(bio) == REQ_OP_READ) {
830 task_io_account_read(bio->bi_iter.bi_size);
831 count_vm_events(PGPGIN, bio_sectors(bio));
832 } else if (bio_op(bio) == REQ_OP_WRITE) {
833 count_vm_events(PGPGOUT, bio_sectors(bio));
834 }
835
836 submit_bio_noacct(bio);
837 }
838 EXPORT_SYMBOL(submit_bio);
839
840 /**
841 * bio_poll - poll for BIO completions
842 * @bio: bio to poll for
843 * @iob: batches of IO
844 * @flags: BLK_POLL_* flags that control the behavior
845 *
846 * Poll for completions on queue associated with the bio. Returns number of
847 * completed entries found.
848 *
849 * Note: the caller must either be the context that submitted @bio, or
850 * be in a RCU critical section to prevent freeing of @bio.
851 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)852 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
853 {
854 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
855 struct block_device *bdev;
856 struct request_queue *q;
857 int ret = 0;
858
859 bdev = READ_ONCE(bio->bi_bdev);
860 if (!bdev)
861 return 0;
862
863 q = bdev_get_queue(bdev);
864 if (cookie == BLK_QC_T_NONE ||
865 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
866 return 0;
867
868 /*
869 * As the requests that require a zone lock are not plugged in the
870 * first place, directly accessing the plug instead of using
871 * blk_mq_plug() should not have any consequences during flushing for
872 * zoned devices.
873 */
874 blk_flush_plug(current->plug, false);
875
876 /*
877 * We need to be able to enter a frozen queue, similar to how
878 * timeouts also need to do that. If that is blocked, then we can
879 * have pending IO when a queue freeze is started, and then the
880 * wait for the freeze to finish will wait for polled requests to
881 * timeout as the poller is preventer from entering the queue and
882 * completing them. As long as we prevent new IO from being queued,
883 * that should be all that matters.
884 */
885 if (!percpu_ref_tryget(&q->q_usage_counter))
886 return 0;
887 if (queue_is_mq(q)) {
888 ret = blk_mq_poll(q, cookie, iob, flags);
889 } else {
890 struct gendisk *disk = q->disk;
891
892 if (disk && disk->fops->poll_bio)
893 ret = disk->fops->poll_bio(bio, iob, flags);
894 }
895 blk_queue_exit(q);
896 return ret;
897 }
898 EXPORT_SYMBOL_GPL(bio_poll);
899
900 /*
901 * Helper to implement file_operations.iopoll. Requires the bio to be stored
902 * in iocb->private, and cleared before freeing the bio.
903 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)904 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
905 unsigned int flags)
906 {
907 struct bio *bio;
908 int ret = 0;
909
910 /*
911 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
912 * point to a freshly allocated bio at this point. If that happens
913 * we have a few cases to consider:
914 *
915 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
916 * simply nothing in this case
917 * 2) the bio points to a not poll enabled device. bio_poll will catch
918 * this and return 0
919 * 3) the bio points to a poll capable device, including but not
920 * limited to the one that the original bio pointed to. In this
921 * case we will call into the actual poll method and poll for I/O,
922 * even if we don't need to, but it won't cause harm either.
923 *
924 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
925 * is still allocated. Because partitions hold a reference to the whole
926 * device bdev and thus disk, the disk is also still valid. Grabbing
927 * a reference to the queue in bio_poll() ensures the hctxs and requests
928 * are still valid as well.
929 */
930 rcu_read_lock();
931 bio = READ_ONCE(kiocb->private);
932 if (bio)
933 ret = bio_poll(bio, iob, flags);
934 rcu_read_unlock();
935
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
939
update_io_ticks(struct block_device * part,unsigned long now,bool end)940 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
941 {
942 unsigned long stamp;
943 again:
944 stamp = READ_ONCE(part->bd_stamp);
945 if (unlikely(time_after(now, stamp))) {
946 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
947 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
948 }
949 if (part->bd_partno) {
950 part = bdev_whole(part);
951 goto again;
952 }
953 }
954
bdev_start_io_acct(struct block_device * bdev,unsigned int sectors,enum req_op op,unsigned long start_time)955 unsigned long bdev_start_io_acct(struct block_device *bdev,
956 unsigned int sectors, enum req_op op,
957 unsigned long start_time)
958 {
959 const int sgrp = op_stat_group(op);
960
961 part_stat_lock();
962 update_io_ticks(bdev, start_time, false);
963 part_stat_inc(bdev, ios[sgrp]);
964 part_stat_add(bdev, sectors[sgrp], sectors);
965 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
966 part_stat_unlock();
967
968 return start_time;
969 }
970 EXPORT_SYMBOL(bdev_start_io_acct);
971
972 /**
973 * bio_start_io_acct_time - start I/O accounting for bio based drivers
974 * @bio: bio to start account for
975 * @start_time: start time that should be passed back to bio_end_io_acct().
976 */
bio_start_io_acct_time(struct bio * bio,unsigned long start_time)977 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
978 {
979 bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
980 bio_op(bio), start_time);
981 }
982 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
983
984 /**
985 * bio_start_io_acct - start I/O accounting for bio based drivers
986 * @bio: bio to start account for
987 *
988 * Returns the start time that should be passed back to bio_end_io_acct().
989 */
bio_start_io_acct(struct bio * bio)990 unsigned long bio_start_io_acct(struct bio *bio)
991 {
992 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
993 bio_op(bio), jiffies);
994 }
995 EXPORT_SYMBOL_GPL(bio_start_io_acct);
996
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)997 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
998 unsigned long start_time)
999 {
1000 const int sgrp = op_stat_group(op);
1001 unsigned long now = READ_ONCE(jiffies);
1002 unsigned long duration = now - start_time;
1003
1004 part_stat_lock();
1005 update_io_ticks(bdev, now, true);
1006 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1007 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1008 part_stat_unlock();
1009 }
1010 EXPORT_SYMBOL(bdev_end_io_acct);
1011
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1012 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1013 struct block_device *orig_bdev)
1014 {
1015 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
1016 }
1017 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1018
1019 /**
1020 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1021 * @q : the queue of the device being checked
1022 *
1023 * Description:
1024 * Check if underlying low-level drivers of a device are busy.
1025 * If the drivers want to export their busy state, they must set own
1026 * exporting function using blk_queue_lld_busy() first.
1027 *
1028 * Basically, this function is used only by request stacking drivers
1029 * to stop dispatching requests to underlying devices when underlying
1030 * devices are busy. This behavior helps more I/O merging on the queue
1031 * of the request stacking driver and prevents I/O throughput regression
1032 * on burst I/O load.
1033 *
1034 * Return:
1035 * 0 - Not busy (The request stacking driver should dispatch request)
1036 * 1 - Busy (The request stacking driver should stop dispatching request)
1037 */
blk_lld_busy(struct request_queue * q)1038 int blk_lld_busy(struct request_queue *q)
1039 {
1040 if (queue_is_mq(q) && q->mq_ops->busy)
1041 return q->mq_ops->busy(q);
1042
1043 return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(blk_lld_busy);
1046
kblockd_schedule_work(struct work_struct * work)1047 int kblockd_schedule_work(struct work_struct *work)
1048 {
1049 return queue_work(kblockd_workqueue, work);
1050 }
1051 EXPORT_SYMBOL(kblockd_schedule_work);
1052
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1053 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1054 unsigned long delay)
1055 {
1056 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1057 }
1058 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1059
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1060 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1061 {
1062 struct task_struct *tsk = current;
1063
1064 /*
1065 * If this is a nested plug, don't actually assign it.
1066 */
1067 if (tsk->plug)
1068 return;
1069
1070 plug->mq_list = NULL;
1071 plug->cached_rq = NULL;
1072 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1073 plug->rq_count = 0;
1074 plug->multiple_queues = false;
1075 plug->has_elevator = false;
1076 plug->nowait = false;
1077 INIT_LIST_HEAD(&plug->cb_list);
1078
1079 /*
1080 * Store ordering should not be needed here, since a potential
1081 * preempt will imply a full memory barrier
1082 */
1083 tsk->plug = plug;
1084 }
1085
1086 /**
1087 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1088 * @plug: The &struct blk_plug that needs to be initialized
1089 *
1090 * Description:
1091 * blk_start_plug() indicates to the block layer an intent by the caller
1092 * to submit multiple I/O requests in a batch. The block layer may use
1093 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1094 * is called. However, the block layer may choose to submit requests
1095 * before a call to blk_finish_plug() if the number of queued I/Os
1096 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1097 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1098 * the task schedules (see below).
1099 *
1100 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1101 * pending I/O should the task end up blocking between blk_start_plug() and
1102 * blk_finish_plug(). This is important from a performance perspective, but
1103 * also ensures that we don't deadlock. For instance, if the task is blocking
1104 * for a memory allocation, memory reclaim could end up wanting to free a
1105 * page belonging to that request that is currently residing in our private
1106 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1107 * this kind of deadlock.
1108 */
blk_start_plug(struct blk_plug * plug)1109 void blk_start_plug(struct blk_plug *plug)
1110 {
1111 blk_start_plug_nr_ios(plug, 1);
1112 }
1113 EXPORT_SYMBOL(blk_start_plug);
1114
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1115 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1116 {
1117 LIST_HEAD(callbacks);
1118
1119 while (!list_empty(&plug->cb_list)) {
1120 list_splice_init(&plug->cb_list, &callbacks);
1121
1122 while (!list_empty(&callbacks)) {
1123 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1124 struct blk_plug_cb,
1125 list);
1126 list_del(&cb->list);
1127 cb->callback(cb, from_schedule);
1128 }
1129 }
1130 }
1131
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1132 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1133 int size)
1134 {
1135 struct blk_plug *plug = current->plug;
1136 struct blk_plug_cb *cb;
1137
1138 if (!plug)
1139 return NULL;
1140
1141 list_for_each_entry(cb, &plug->cb_list, list)
1142 if (cb->callback == unplug && cb->data == data)
1143 return cb;
1144
1145 /* Not currently on the callback list */
1146 BUG_ON(size < sizeof(*cb));
1147 cb = kzalloc(size, GFP_ATOMIC);
1148 if (cb) {
1149 cb->data = data;
1150 cb->callback = unplug;
1151 list_add(&cb->list, &plug->cb_list);
1152 }
1153 return cb;
1154 }
1155 EXPORT_SYMBOL(blk_check_plugged);
1156
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1157 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1158 {
1159 if (!list_empty(&plug->cb_list))
1160 flush_plug_callbacks(plug, from_schedule);
1161 blk_mq_flush_plug_list(plug, from_schedule);
1162 /*
1163 * Unconditionally flush out cached requests, even if the unplug
1164 * event came from schedule. Since we know hold references to the
1165 * queue for cached requests, we don't want a blocked task holding
1166 * up a queue freeze/quiesce event.
1167 */
1168 if (unlikely(!rq_list_empty(plug->cached_rq)))
1169 blk_mq_free_plug_rqs(plug);
1170 }
1171
1172 /**
1173 * blk_finish_plug - mark the end of a batch of submitted I/O
1174 * @plug: The &struct blk_plug passed to blk_start_plug()
1175 *
1176 * Description:
1177 * Indicate that a batch of I/O submissions is complete. This function
1178 * must be paired with an initial call to blk_start_plug(). The intent
1179 * is to allow the block layer to optimize I/O submission. See the
1180 * documentation for blk_start_plug() for more information.
1181 */
blk_finish_plug(struct blk_plug * plug)1182 void blk_finish_plug(struct blk_plug *plug)
1183 {
1184 if (plug == current->plug) {
1185 __blk_flush_plug(plug, false);
1186 current->plug = NULL;
1187 }
1188 }
1189 EXPORT_SYMBOL(blk_finish_plug);
1190
blk_io_schedule(void)1191 void blk_io_schedule(void)
1192 {
1193 /* Prevent hang_check timer from firing at us during very long I/O */
1194 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1195
1196 if (timeout)
1197 io_schedule_timeout(timeout);
1198 else
1199 io_schedule();
1200 }
1201 EXPORT_SYMBOL_GPL(blk_io_schedule);
1202
blk_dev_init(void)1203 int __init blk_dev_init(void)
1204 {
1205 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1206 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1207 sizeof_field(struct request, cmd_flags));
1208 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1209 sizeof_field(struct bio, bi_opf));
1210 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1211 __alignof__(struct request_queue)) !=
1212 sizeof(struct request_queue));
1213
1214 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1215 kblockd_workqueue = alloc_workqueue("kblockd",
1216 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1217 if (!kblockd_workqueue)
1218 panic("Failed to create kblockd\n");
1219
1220 blk_requestq_cachep = kmem_cache_create("request_queue",
1221 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1222
1223 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1224 sizeof(struct request_queue) +
1225 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1226
1227 blk_debugfs_root = debugfs_create_dir("block", NULL);
1228 blk_mq_debugfs_init();
1229
1230 return 0;
1231 }
1232