• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-crypto.h>
14 #include <linux/blk-crypto-profile.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21 
22 #include "blk-cgroup.h"
23 #include "blk-crypto-internal.h"
24 
25 static unsigned int num_prealloc_bounce_pg = 32;
26 module_param(num_prealloc_bounce_pg, uint, 0);
27 MODULE_PARM_DESC(num_prealloc_bounce_pg,
28 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29 
30 static unsigned int blk_crypto_num_keyslots = 100;
31 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32 MODULE_PARM_DESC(num_keyslots,
33 		 "Number of keyslots for the blk-crypto crypto API fallback");
34 
35 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39 
40 struct bio_fallback_crypt_ctx {
41 	struct bio_crypt_ctx crypt_ctx;
42 	/*
43 	 * Copy of the bvec_iter when this bio was submitted.
44 	 * We only want to en/decrypt the part of the bio as described by the
45 	 * bvec_iter upon submission because bio might be split before being
46 	 * resubmitted
47 	 */
48 	struct bvec_iter crypt_iter;
49 	union {
50 		struct {
51 			struct work_struct work;
52 			struct bio *bio;
53 		};
54 		struct {
55 			void *bi_private_orig;
56 			bio_end_io_t *bi_end_io_orig;
57 		};
58 	};
59 };
60 
61 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62 static mempool_t *bio_fallback_crypt_ctx_pool;
63 
64 /*
65  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66  * all of a mode's tfms when that mode starts being used. Since each mode may
67  * need all the keyslots at some point, each mode needs its own tfm for each
68  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69  * match the behavior of real inline encryption hardware (which only supports a
70  * single encryption context per keyslot), we only allow one tfm per keyslot to
71  * be used at a time - the rest of the unused tfms have their keys cleared.
72  */
73 static DEFINE_MUTEX(tfms_init_lock);
74 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75 
76 static struct blk_crypto_fallback_keyslot {
77 	enum blk_crypto_mode_num crypto_mode;
78 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79 } *blk_crypto_keyslots;
80 
81 static struct blk_crypto_profile *blk_crypto_fallback_profile;
82 static struct workqueue_struct *blk_crypto_wq;
83 static mempool_t *blk_crypto_bounce_page_pool;
84 static struct bio_set crypto_bio_split;
85 
86 /*
87  * This is the key we set when evicting a keyslot. This *should* be the all 0's
88  * key, but AES-XTS rejects that key, so we use some random bytes instead.
89  */
90 static u8 blank_key[BLK_CRYPTO_MAX_STANDARD_KEY_SIZE];
91 
blk_crypto_fallback_evict_keyslot(unsigned int slot)92 static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93 {
94 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96 	int err;
97 
98 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99 
100 	/* Clear the key in the skcipher */
101 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102 				     blk_crypto_modes[crypto_mode].keysize);
103 	WARN_ON(err);
104 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105 }
106 
107 static int
blk_crypto_fallback_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)108 blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109 				    const struct blk_crypto_key *key,
110 				    unsigned int slot)
111 {
112 	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113 	const enum blk_crypto_mode_num crypto_mode =
114 						key->crypto_cfg.crypto_mode;
115 	int err;
116 
117 	if (crypto_mode != slotp->crypto_mode &&
118 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119 		blk_crypto_fallback_evict_keyslot(slot);
120 
121 	slotp->crypto_mode = crypto_mode;
122 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123 				     key->size);
124 	if (err) {
125 		blk_crypto_fallback_evict_keyslot(slot);
126 		return err;
127 	}
128 	return 0;
129 }
130 
blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)131 static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132 					     const struct blk_crypto_key *key,
133 					     unsigned int slot)
134 {
135 	blk_crypto_fallback_evict_keyslot(slot);
136 	return 0;
137 }
138 
139 static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140 	.keyslot_program        = blk_crypto_fallback_keyslot_program,
141 	.keyslot_evict          = blk_crypto_fallback_keyslot_evict,
142 };
143 
blk_crypto_fallback_encrypt_endio(struct bio * enc_bio)144 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145 {
146 	struct bio *src_bio = enc_bio->bi_private;
147 	int i;
148 
149 	for (i = 0; i < enc_bio->bi_vcnt; i++)
150 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
151 			     blk_crypto_bounce_page_pool);
152 
153 	src_bio->bi_status = enc_bio->bi_status;
154 
155 	bio_uninit(enc_bio);
156 	kfree(enc_bio);
157 	bio_endio(src_bio);
158 }
159 
blk_crypto_fallback_clone_bio(struct bio * bio_src)160 static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161 {
162 	unsigned int nr_segs = bio_segments(bio_src);
163 	struct bvec_iter iter;
164 	struct bio_vec bv;
165 	struct bio *bio;
166 
167 	bio = bio_kmalloc(nr_segs, GFP_NOIO);
168 	if (!bio)
169 		return NULL;
170 	bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171 		 bio_src->bi_opf);
172 	if (bio_flagged(bio_src, BIO_REMAPPED))
173 		bio_set_flag(bio, BIO_REMAPPED);
174 	bio->bi_ioprio		= bio_src->bi_ioprio;
175 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
176 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
177 
178 	bio_for_each_segment(bv, bio_src, iter)
179 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
180 
181 	bio_clone_blkg_association(bio, bio_src);
182 
183 	bio_clone_skip_dm_default_key(bio, bio_src);
184 
185 	return bio;
186 }
187 
188 static bool
blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot * slot,struct skcipher_request ** ciph_req_ret,struct crypto_wait * wait)189 blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
190 				     struct skcipher_request **ciph_req_ret,
191 				     struct crypto_wait *wait)
192 {
193 	struct skcipher_request *ciph_req;
194 	const struct blk_crypto_fallback_keyslot *slotp;
195 	int keyslot_idx = blk_crypto_keyslot_index(slot);
196 
197 	slotp = &blk_crypto_keyslots[keyslot_idx];
198 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
199 					  GFP_NOIO);
200 	if (!ciph_req)
201 		return false;
202 
203 	skcipher_request_set_callback(ciph_req,
204 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
205 				      CRYPTO_TFM_REQ_MAY_SLEEP,
206 				      crypto_req_done, wait);
207 	*ciph_req_ret = ciph_req;
208 
209 	return true;
210 }
211 
blk_crypto_fallback_split_bio_if_needed(struct bio ** bio_ptr)212 static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
213 {
214 	struct bio *bio = *bio_ptr;
215 	unsigned int i = 0;
216 	unsigned int num_sectors = 0;
217 	struct bio_vec bv;
218 	struct bvec_iter iter;
219 
220 	bio_for_each_segment(bv, bio, iter) {
221 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
222 		if (++i == BIO_MAX_VECS)
223 			break;
224 	}
225 	if (num_sectors < bio_sectors(bio)) {
226 		struct bio *split_bio;
227 
228 		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
229 				      &crypto_bio_split);
230 		if (!split_bio) {
231 			bio->bi_status = BLK_STS_RESOURCE;
232 			return false;
233 		}
234 		bio_chain(split_bio, bio);
235 		submit_bio_noacct(bio);
236 		*bio_ptr = split_bio;
237 	}
238 
239 	return true;
240 }
241 
242 union blk_crypto_iv {
243 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
244 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
245 };
246 
blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],union blk_crypto_iv * iv)247 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
248 				 union blk_crypto_iv *iv)
249 {
250 	int i;
251 
252 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
253 		iv->dun[i] = cpu_to_le64(dun[i]);
254 }
255 
256 /*
257  * The crypto API fallback's encryption routine.
258  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
259  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
260  * large. Returns true on success. Returns false and sets bio->bi_status on
261  * error.
262  */
blk_crypto_fallback_encrypt_bio(struct bio ** bio_ptr)263 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
264 {
265 	struct bio *src_bio, *enc_bio;
266 	struct bio_crypt_ctx *bc;
267 	struct blk_crypto_keyslot *slot;
268 	int data_unit_size;
269 	struct skcipher_request *ciph_req = NULL;
270 	DECLARE_CRYPTO_WAIT(wait);
271 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
272 	struct scatterlist src, dst;
273 	union blk_crypto_iv iv;
274 	unsigned int i, j;
275 	bool ret = false;
276 	blk_status_t blk_st;
277 
278 	/* Split the bio if it's too big for single page bvec */
279 	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
280 		return false;
281 
282 	src_bio = *bio_ptr;
283 	bc = src_bio->bi_crypt_context;
284 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
285 
286 	/* Allocate bounce bio for encryption */
287 	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
288 	if (!enc_bio) {
289 		src_bio->bi_status = BLK_STS_RESOURCE;
290 		return false;
291 	}
292 
293 	/*
294 	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
295 	 * this bio's algorithm and key.
296 	 */
297 	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
298 					bc->bc_key, &slot);
299 	if (blk_st != BLK_STS_OK) {
300 		src_bio->bi_status = blk_st;
301 		goto out_put_enc_bio;
302 	}
303 
304 	/* and then allocate an skcipher_request for it */
305 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
306 		src_bio->bi_status = BLK_STS_RESOURCE;
307 		goto out_release_keyslot;
308 	}
309 
310 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
311 	sg_init_table(&src, 1);
312 	sg_init_table(&dst, 1);
313 
314 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
315 				   iv.bytes);
316 
317 	/* Encrypt each page in the bounce bio */
318 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
319 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
320 		struct page *plaintext_page = enc_bvec->bv_page;
321 		struct page *ciphertext_page =
322 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
323 
324 		enc_bvec->bv_page = ciphertext_page;
325 
326 		if (!ciphertext_page) {
327 			src_bio->bi_status = BLK_STS_RESOURCE;
328 			goto out_free_bounce_pages;
329 		}
330 
331 		sg_set_page(&src, plaintext_page, data_unit_size,
332 			    enc_bvec->bv_offset);
333 		sg_set_page(&dst, ciphertext_page, data_unit_size,
334 			    enc_bvec->bv_offset);
335 
336 		/* Encrypt each data unit in this page */
337 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
338 			blk_crypto_dun_to_iv(curr_dun, &iv);
339 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
340 					    &wait)) {
341 				i++;
342 				src_bio->bi_status = BLK_STS_IOERR;
343 				goto out_free_bounce_pages;
344 			}
345 			bio_crypt_dun_increment(curr_dun, 1);
346 			src.offset += data_unit_size;
347 			dst.offset += data_unit_size;
348 		}
349 	}
350 
351 	enc_bio->bi_private = src_bio;
352 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
353 	*bio_ptr = enc_bio;
354 	ret = true;
355 
356 	enc_bio = NULL;
357 	goto out_free_ciph_req;
358 
359 out_free_bounce_pages:
360 	while (i > 0)
361 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
362 			     blk_crypto_bounce_page_pool);
363 out_free_ciph_req:
364 	skcipher_request_free(ciph_req);
365 out_release_keyslot:
366 	blk_crypto_put_keyslot(slot);
367 out_put_enc_bio:
368 	if (enc_bio)
369 		bio_uninit(enc_bio);
370 	kfree(enc_bio);
371 	return ret;
372 }
373 
374 /*
375  * The crypto API fallback's main decryption routine.
376  * Decrypts input bio in place, and calls bio_endio on the bio.
377  */
blk_crypto_fallback_decrypt_bio(struct work_struct * work)378 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
379 {
380 	struct bio_fallback_crypt_ctx *f_ctx =
381 		container_of(work, struct bio_fallback_crypt_ctx, work);
382 	struct bio *bio = f_ctx->bio;
383 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
384 	struct blk_crypto_keyslot *slot;
385 	struct skcipher_request *ciph_req = NULL;
386 	DECLARE_CRYPTO_WAIT(wait);
387 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
388 	union blk_crypto_iv iv;
389 	struct scatterlist sg;
390 	struct bio_vec bv;
391 	struct bvec_iter iter;
392 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
393 	unsigned int i;
394 	blk_status_t blk_st;
395 
396 	/*
397 	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
398 	 * this bio's algorithm and key.
399 	 */
400 	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
401 					bc->bc_key, &slot);
402 	if (blk_st != BLK_STS_OK) {
403 		bio->bi_status = blk_st;
404 		goto out_no_keyslot;
405 	}
406 
407 	/* and then allocate an skcipher_request for it */
408 	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
409 		bio->bi_status = BLK_STS_RESOURCE;
410 		goto out;
411 	}
412 
413 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
414 	sg_init_table(&sg, 1);
415 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
416 				   iv.bytes);
417 
418 	/* Decrypt each segment in the bio */
419 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
420 		struct page *page = bv.bv_page;
421 
422 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
423 
424 		/* Decrypt each data unit in the segment */
425 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
426 			blk_crypto_dun_to_iv(curr_dun, &iv);
427 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
428 					    &wait)) {
429 				bio->bi_status = BLK_STS_IOERR;
430 				goto out;
431 			}
432 			bio_crypt_dun_increment(curr_dun, 1);
433 			sg.offset += data_unit_size;
434 		}
435 	}
436 
437 out:
438 	skcipher_request_free(ciph_req);
439 	blk_crypto_put_keyslot(slot);
440 out_no_keyslot:
441 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
442 	bio_endio(bio);
443 }
444 
445 /**
446  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
447  *
448  * @bio: the bio to queue
449  *
450  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
451  * workqueue, since this function will be called from an atomic context.
452  */
blk_crypto_fallback_decrypt_endio(struct bio * bio)453 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
454 {
455 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
456 
457 	bio->bi_private = f_ctx->bi_private_orig;
458 	bio->bi_end_io = f_ctx->bi_end_io_orig;
459 
460 	/* If there was an IO error, don't queue for decrypt. */
461 	if (bio->bi_status) {
462 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
463 		bio_endio(bio);
464 		return;
465 	}
466 
467 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
468 	f_ctx->bio = bio;
469 	queue_work(blk_crypto_wq, &f_ctx->work);
470 }
471 
472 /**
473  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
474  *
475  * @bio_ptr: pointer to the bio to prepare
476  *
477  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
478  * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
479  * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
480  * the bounce bio.
481  *
482  * For a READ operation, we mark the bio for decryption by using bi_private and
483  * bi_end_io.
484  *
485  * In either case, this function will make the bio look like a regular bio (i.e.
486  * as if no encryption context was ever specified) for the purposes of the rest
487  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
488  * currently supported together).
489  *
490  * Return: true on success. Sets bio->bi_status and returns false on error.
491  */
blk_crypto_fallback_bio_prep(struct bio ** bio_ptr)492 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
493 {
494 	struct bio *bio = *bio_ptr;
495 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
496 	struct bio_fallback_crypt_ctx *f_ctx;
497 
498 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
499 		/* User didn't call blk_crypto_start_using_key() first */
500 		bio->bi_status = BLK_STS_IOERR;
501 		return false;
502 	}
503 
504 	if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
505 					&bc->bc_key->crypto_cfg)) {
506 		bio->bi_status = BLK_STS_NOTSUPP;
507 		return false;
508 	}
509 
510 	if (bio_data_dir(bio) == WRITE)
511 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
512 
513 	/*
514 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
515 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
516 	 */
517 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
518 	f_ctx->crypt_ctx = *bc;
519 	f_ctx->crypt_iter = bio->bi_iter;
520 	f_ctx->bi_private_orig = bio->bi_private;
521 	f_ctx->bi_end_io_orig = bio->bi_end_io;
522 	bio->bi_private = (void *)f_ctx;
523 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
524 	bio_crypt_free_ctx(bio);
525 
526 	return true;
527 }
528 
blk_crypto_fallback_evict_key(const struct blk_crypto_key * key)529 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
530 {
531 	return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
532 }
533 
534 static bool blk_crypto_fallback_inited;
blk_crypto_fallback_init(void)535 static int blk_crypto_fallback_init(void)
536 {
537 	int i;
538 	int err;
539 
540 	if (blk_crypto_fallback_inited)
541 		return 0;
542 
543 	get_random_bytes(blank_key, sizeof(blank_key));
544 
545 	err = bioset_init(&crypto_bio_split, 64, 0, 0);
546 	if (err)
547 		goto out;
548 
549 	/* Dynamic allocation is needed because of lockdep_register_key(). */
550 	blk_crypto_fallback_profile =
551 		kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
552 	if (!blk_crypto_fallback_profile) {
553 		err = -ENOMEM;
554 		goto fail_free_bioset;
555 	}
556 
557 	err = blk_crypto_profile_init(blk_crypto_fallback_profile,
558 				      blk_crypto_num_keyslots);
559 	if (err)
560 		goto fail_free_profile;
561 	err = -ENOMEM;
562 
563 	blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
564 	blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
565 	blk_crypto_fallback_profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_STANDARD;
566 
567 	/* All blk-crypto modes have a crypto API fallback. */
568 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
569 		blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
570 	blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
571 
572 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
573 					WQ_UNBOUND | WQ_HIGHPRI |
574 					WQ_MEM_RECLAIM, num_online_cpus());
575 	if (!blk_crypto_wq)
576 		goto fail_destroy_profile;
577 
578 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
579 				      sizeof(blk_crypto_keyslots[0]),
580 				      GFP_KERNEL);
581 	if (!blk_crypto_keyslots)
582 		goto fail_free_wq;
583 
584 	blk_crypto_bounce_page_pool =
585 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
586 	if (!blk_crypto_bounce_page_pool)
587 		goto fail_free_keyslots;
588 
589 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
590 	if (!bio_fallback_crypt_ctx_cache)
591 		goto fail_free_bounce_page_pool;
592 
593 	bio_fallback_crypt_ctx_pool =
594 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
595 					 bio_fallback_crypt_ctx_cache);
596 	if (!bio_fallback_crypt_ctx_pool)
597 		goto fail_free_crypt_ctx_cache;
598 
599 	blk_crypto_fallback_inited = true;
600 
601 	return 0;
602 fail_free_crypt_ctx_cache:
603 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
604 fail_free_bounce_page_pool:
605 	mempool_destroy(blk_crypto_bounce_page_pool);
606 fail_free_keyslots:
607 	kfree(blk_crypto_keyslots);
608 fail_free_wq:
609 	destroy_workqueue(blk_crypto_wq);
610 fail_destroy_profile:
611 	blk_crypto_profile_destroy(blk_crypto_fallback_profile);
612 fail_free_profile:
613 	kfree(blk_crypto_fallback_profile);
614 fail_free_bioset:
615 	bioset_exit(&crypto_bio_split);
616 out:
617 	return err;
618 }
619 
620 /*
621  * Prepare blk-crypto-fallback for the specified crypto mode.
622  * Returns -ENOPKG if the needed crypto API support is missing.
623  */
blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)624 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
625 {
626 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
627 	struct blk_crypto_fallback_keyslot *slotp;
628 	unsigned int i;
629 	int err = 0;
630 
631 	/*
632 	 * Fast path
633 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
634 	 * for each i are visible before we try to access them.
635 	 */
636 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
637 		return 0;
638 
639 	mutex_lock(&tfms_init_lock);
640 	if (tfms_inited[mode_num])
641 		goto out;
642 
643 	err = blk_crypto_fallback_init();
644 	if (err)
645 		goto out;
646 
647 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
648 		slotp = &blk_crypto_keyslots[i];
649 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
650 		if (IS_ERR(slotp->tfms[mode_num])) {
651 			err = PTR_ERR(slotp->tfms[mode_num]);
652 			if (err == -ENOENT) {
653 				pr_warn_once("Missing crypto API support for \"%s\"\n",
654 					     cipher_str);
655 				err = -ENOPKG;
656 			}
657 			slotp->tfms[mode_num] = NULL;
658 			goto out_free_tfms;
659 		}
660 
661 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
662 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
663 	}
664 
665 	/*
666 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
667 	 * for each i are visible before we set tfms_inited[mode_num].
668 	 */
669 	smp_store_release(&tfms_inited[mode_num], true);
670 	goto out;
671 
672 out_free_tfms:
673 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
674 		slotp = &blk_crypto_keyslots[i];
675 		crypto_free_skcipher(slotp->tfms[mode_num]);
676 		slotp->tfms[mode_num] = NULL;
677 	}
678 out:
679 	mutex_unlock(&tfms_init_lock);
680 	return err;
681 }
682