1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6 #include <linux/module.h>
7
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13
14 #undef pr_fmt
15 #define pr_fmt(fmt) "null_blk: " fmt
16
17 #define FREE_BATCH 16
18
19 #define TICKS_PER_SEC 50ULL
20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27
mb_per_tick(int mbps)28 static inline u64 mb_per_tick(int mbps)
29 {
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32
33 /*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41 enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46 };
47
48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61 struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73
74 enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78 };
79
80 static bool g_virt_boundary = false;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117
118 static int g_queue_mode = NULL_Q_MQ;
119
null_param_store_val(const char * str,int * val,int min,int max)120 static int null_param_store_val(const char *str, int *val, int min, int max)
121 {
122 int ret, new_val;
123
124 ret = kstrtoint(str, 10, &new_val);
125 if (ret)
126 return -EINVAL;
127
128 if (new_val < min || new_val > max)
129 return -EINVAL;
130
131 *val = new_val;
132 return 0;
133 }
134
null_set_queue_mode(const char * str,const struct kernel_param * kp)135 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
136 {
137 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
138 }
139
140 static const struct kernel_param_ops null_queue_mode_param_ops = {
141 .set = null_set_queue_mode,
142 .get = param_get_int,
143 };
144
145 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
146 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
147
148 static int g_gb = 250;
149 module_param_named(gb, g_gb, int, 0444);
150 MODULE_PARM_DESC(gb, "Size in GB");
151
152 static int g_bs = 512;
153 module_param_named(bs, g_bs, int, 0444);
154 MODULE_PARM_DESC(bs, "Block size (in bytes)");
155
156 static int g_max_sectors;
157 module_param_named(max_sectors, g_max_sectors, int, 0444);
158 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
159
160 static unsigned int g_max_segment_size = BLK_MAX_SEGMENT_SIZE;
161 module_param_named(max_segment_size, g_max_segment_size, int, 0444);
162 MODULE_PARM_DESC(max_segment_size, "Maximum size of a segment in bytes");
163
164 static unsigned int nr_devices = 1;
165 module_param(nr_devices, uint, 0444);
166 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
167
168 static bool g_blocking;
169 module_param_named(blocking, g_blocking, bool, 0444);
170 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
171
172 static bool shared_tags;
173 module_param(shared_tags, bool, 0444);
174 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
175
176 static bool g_shared_tag_bitmap;
177 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
178 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
179
180 static int g_irqmode = NULL_IRQ_SOFTIRQ;
181
null_set_irqmode(const char * str,const struct kernel_param * kp)182 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
183 {
184 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
185 NULL_IRQ_TIMER);
186 }
187
188 static const struct kernel_param_ops null_irqmode_param_ops = {
189 .set = null_set_irqmode,
190 .get = param_get_int,
191 };
192
193 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
194 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
195
196 static unsigned long g_completion_nsec = 10000;
197 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
198 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
199
200 static int g_hw_queue_depth = 64;
201 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
202 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
203
204 static bool g_use_per_node_hctx;
205 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
206 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
207
208 static bool g_memory_backed;
209 module_param_named(memory_backed, g_memory_backed, bool, 0444);
210 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
211
212 static bool g_discard;
213 module_param_named(discard, g_discard, bool, 0444);
214 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
215
216 static unsigned long g_cache_size;
217 module_param_named(cache_size, g_cache_size, ulong, 0444);
218 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
219
220 static unsigned int g_mbps;
221 module_param_named(mbps, g_mbps, uint, 0444);
222 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
223
224 static bool g_zoned;
225 module_param_named(zoned, g_zoned, bool, S_IRUGO);
226 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
227
228 static unsigned long g_zone_size = 256;
229 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
230 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
231
232 static unsigned long g_zone_capacity;
233 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
234 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
235
236 static unsigned int g_zone_nr_conv;
237 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
238 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
239
240 static unsigned int g_zone_max_open;
241 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
242 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
243
244 static unsigned int g_zone_max_active;
245 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
246 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
247
248 static struct nullb_device *null_alloc_dev(void);
249 static void null_free_dev(struct nullb_device *dev);
250 static void null_del_dev(struct nullb *nullb);
251 static int null_add_dev(struct nullb_device *dev);
252 static struct nullb *null_find_dev_by_name(const char *name);
253 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
254
to_nullb_device(struct config_item * item)255 static inline struct nullb_device *to_nullb_device(struct config_item *item)
256 {
257 return item ? container_of(item, struct nullb_device, item) : NULL;
258 }
259
nullb_device_uint_attr_show(unsigned int val,char * page)260 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
261 {
262 return snprintf(page, PAGE_SIZE, "%u\n", val);
263 }
264
nullb_device_ulong_attr_show(unsigned long val,char * page)265 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
266 char *page)
267 {
268 return snprintf(page, PAGE_SIZE, "%lu\n", val);
269 }
270
nullb_device_bool_attr_show(bool val,char * page)271 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
272 {
273 return snprintf(page, PAGE_SIZE, "%u\n", val);
274 }
275
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)276 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
277 const char *page, size_t count)
278 {
279 unsigned int tmp;
280 int result;
281
282 result = kstrtouint(page, 0, &tmp);
283 if (result < 0)
284 return result;
285
286 *val = tmp;
287 return count;
288 }
289
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)290 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
291 const char *page, size_t count)
292 {
293 int result;
294 unsigned long tmp;
295
296 result = kstrtoul(page, 0, &tmp);
297 if (result < 0)
298 return result;
299
300 *val = tmp;
301 return count;
302 }
303
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)304 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
305 size_t count)
306 {
307 bool tmp;
308 int result;
309
310 result = kstrtobool(page, &tmp);
311 if (result < 0)
312 return result;
313
314 *val = tmp;
315 return count;
316 }
317
318 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
319 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
320 static ssize_t \
321 nullb_device_##NAME##_show(struct config_item *item, char *page) \
322 { \
323 return nullb_device_##TYPE##_attr_show( \
324 to_nullb_device(item)->NAME, page); \
325 } \
326 static ssize_t \
327 nullb_device_##NAME##_store(struct config_item *item, const char *page, \
328 size_t count) \
329 { \
330 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
331 struct nullb_device *dev = to_nullb_device(item); \
332 TYPE new_value = 0; \
333 int ret; \
334 \
335 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
336 if (ret < 0) \
337 return ret; \
338 if (apply_fn) \
339 ret = apply_fn(dev, new_value); \
340 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
341 ret = -EBUSY; \
342 if (ret < 0) \
343 return ret; \
344 dev->NAME = new_value; \
345 return count; \
346 } \
347 CONFIGFS_ATTR(nullb_device_, NAME);
348
nullb_update_nr_hw_queues(struct nullb_device * dev,unsigned int submit_queues,unsigned int poll_queues)349 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
350 unsigned int submit_queues,
351 unsigned int poll_queues)
352
353 {
354 struct blk_mq_tag_set *set;
355 int ret, nr_hw_queues;
356
357 if (!dev->nullb)
358 return 0;
359
360 /*
361 * Make sure at least one submit queue exists.
362 */
363 if (!submit_queues)
364 return -EINVAL;
365
366 /*
367 * Make sure that null_init_hctx() does not access nullb->queues[] past
368 * the end of that array.
369 */
370 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
371 return -EINVAL;
372
373 /*
374 * Keep previous and new queue numbers in nullb_device for reference in
375 * the call back function null_map_queues().
376 */
377 dev->prev_submit_queues = dev->submit_queues;
378 dev->prev_poll_queues = dev->poll_queues;
379 dev->submit_queues = submit_queues;
380 dev->poll_queues = poll_queues;
381
382 set = dev->nullb->tag_set;
383 nr_hw_queues = submit_queues + poll_queues;
384 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
385 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
386
387 if (ret) {
388 /* on error, revert the queue numbers */
389 dev->submit_queues = dev->prev_submit_queues;
390 dev->poll_queues = dev->prev_poll_queues;
391 }
392
393 return ret;
394 }
395
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)396 static int nullb_apply_submit_queues(struct nullb_device *dev,
397 unsigned int submit_queues)
398 {
399 return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
400 }
401
nullb_apply_poll_queues(struct nullb_device * dev,unsigned int poll_queues)402 static int nullb_apply_poll_queues(struct nullb_device *dev,
403 unsigned int poll_queues)
404 {
405 return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
406 }
407
408 NULLB_DEVICE_ATTR(size, ulong, NULL);
409 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
410 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
411 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
412 NULLB_DEVICE_ATTR(home_node, uint, NULL);
413 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
414 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
415 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
416 NULLB_DEVICE_ATTR(max_segment_size, uint, NULL);
417 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
418 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
419 NULLB_DEVICE_ATTR(index, uint, NULL);
420 NULLB_DEVICE_ATTR(blocking, bool, NULL);
421 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
422 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
423 NULLB_DEVICE_ATTR(discard, bool, NULL);
424 NULLB_DEVICE_ATTR(mbps, uint, NULL);
425 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
426 NULLB_DEVICE_ATTR(zoned, bool, NULL);
427 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
428 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
429 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
430 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
431 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
432 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
433 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
434 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
435
nullb_device_power_show(struct config_item * item,char * page)436 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
437 {
438 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
439 }
440
nullb_device_power_store(struct config_item * item,const char * page,size_t count)441 static ssize_t nullb_device_power_store(struct config_item *item,
442 const char *page, size_t count)
443 {
444 struct nullb_device *dev = to_nullb_device(item);
445 bool newp = false;
446 ssize_t ret;
447
448 ret = nullb_device_bool_attr_store(&newp, page, count);
449 if (ret < 0)
450 return ret;
451
452 if (!dev->power && newp) {
453 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
454 return count;
455 ret = null_add_dev(dev);
456 if (ret) {
457 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
458 return ret;
459 }
460
461 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
462 dev->power = newp;
463 } else if (dev->power && !newp) {
464 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
465 mutex_lock(&lock);
466 dev->power = newp;
467 null_del_dev(dev->nullb);
468 mutex_unlock(&lock);
469 }
470 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
471 }
472
473 return count;
474 }
475
476 CONFIGFS_ATTR(nullb_device_, power);
477
nullb_device_badblocks_show(struct config_item * item,char * page)478 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
479 {
480 struct nullb_device *t_dev = to_nullb_device(item);
481
482 return badblocks_show(&t_dev->badblocks, page, 0);
483 }
484
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)485 static ssize_t nullb_device_badblocks_store(struct config_item *item,
486 const char *page, size_t count)
487 {
488 struct nullb_device *t_dev = to_nullb_device(item);
489 char *orig, *buf, *tmp;
490 u64 start, end;
491 int ret;
492
493 orig = kstrndup(page, count, GFP_KERNEL);
494 if (!orig)
495 return -ENOMEM;
496
497 buf = strstrip(orig);
498
499 ret = -EINVAL;
500 if (buf[0] != '+' && buf[0] != '-')
501 goto out;
502 tmp = strchr(&buf[1], '-');
503 if (!tmp)
504 goto out;
505 *tmp = '\0';
506 ret = kstrtoull(buf + 1, 0, &start);
507 if (ret)
508 goto out;
509 ret = kstrtoull(tmp + 1, 0, &end);
510 if (ret)
511 goto out;
512 ret = -EINVAL;
513 if (start > end)
514 goto out;
515 /* enable badblocks */
516 cmpxchg(&t_dev->badblocks.shift, -1, 0);
517 if (buf[0] == '+')
518 ret = badblocks_set(&t_dev->badblocks, start,
519 end - start + 1, 1);
520 else
521 ret = badblocks_clear(&t_dev->badblocks, start,
522 end - start + 1);
523 if (ret == 0)
524 ret = count;
525 out:
526 kfree(orig);
527 return ret;
528 }
529 CONFIGFS_ATTR(nullb_device_, badblocks);
530
531 static struct configfs_attribute *nullb_device_attrs[] = {
532 &nullb_device_attr_size,
533 &nullb_device_attr_completion_nsec,
534 &nullb_device_attr_submit_queues,
535 &nullb_device_attr_poll_queues,
536 &nullb_device_attr_home_node,
537 &nullb_device_attr_queue_mode,
538 &nullb_device_attr_blocksize,
539 &nullb_device_attr_max_sectors,
540 &nullb_device_attr_max_segment_size,
541 &nullb_device_attr_irqmode,
542 &nullb_device_attr_hw_queue_depth,
543 &nullb_device_attr_index,
544 &nullb_device_attr_blocking,
545 &nullb_device_attr_use_per_node_hctx,
546 &nullb_device_attr_power,
547 &nullb_device_attr_memory_backed,
548 &nullb_device_attr_discard,
549 &nullb_device_attr_mbps,
550 &nullb_device_attr_cache_size,
551 &nullb_device_attr_badblocks,
552 &nullb_device_attr_zoned,
553 &nullb_device_attr_zone_size,
554 &nullb_device_attr_zone_capacity,
555 &nullb_device_attr_zone_nr_conv,
556 &nullb_device_attr_zone_max_open,
557 &nullb_device_attr_zone_max_active,
558 &nullb_device_attr_virt_boundary,
559 &nullb_device_attr_no_sched,
560 &nullb_device_attr_shared_tag_bitmap,
561 NULL,
562 };
563
nullb_device_release(struct config_item * item)564 static void nullb_device_release(struct config_item *item)
565 {
566 struct nullb_device *dev = to_nullb_device(item);
567
568 null_free_device_storage(dev, false);
569 null_free_dev(dev);
570 }
571
572 static struct configfs_item_operations nullb_device_ops = {
573 .release = nullb_device_release,
574 };
575
576 static const struct config_item_type nullb_device_type = {
577 .ct_item_ops = &nullb_device_ops,
578 .ct_attrs = nullb_device_attrs,
579 .ct_owner = THIS_MODULE,
580 };
581
582 static struct
nullb_group_make_item(struct config_group * group,const char * name)583 config_item *nullb_group_make_item(struct config_group *group, const char *name)
584 {
585 struct nullb_device *dev;
586
587 if (null_find_dev_by_name(name))
588 return ERR_PTR(-EEXIST);
589
590 dev = null_alloc_dev();
591 if (!dev)
592 return ERR_PTR(-ENOMEM);
593
594 config_item_init_type_name(&dev->item, name, &nullb_device_type);
595
596 return &dev->item;
597 }
598
599 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)600 nullb_group_drop_item(struct config_group *group, struct config_item *item)
601 {
602 struct nullb_device *dev = to_nullb_device(item);
603
604 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
605 mutex_lock(&lock);
606 dev->power = false;
607 null_del_dev(dev->nullb);
608 mutex_unlock(&lock);
609 }
610
611 config_item_put(item);
612 }
613
memb_group_features_show(struct config_item * item,char * page)614 static ssize_t memb_group_features_show(struct config_item *item, char *page)
615 {
616 return snprintf(page, PAGE_SIZE,
617 "badblocks,blocking,blocksize,cache_size,"
618 "completion_nsec,discard,home_node,hw_queue_depth,"
619 "irqmode,max_sectors,max_segment_size,mbps,"
620 "memory_backed,no_sched,"
621 "poll_queues,power,queue_mode,shared_tag_bitmap,size,"
622 "submit_queues,use_per_node_hctx,virt_boundary,zoned,"
623 "zone_capacity,zone_max_active,zone_max_open,"
624 "zone_nr_conv,zone_size\n");
625 }
626
627 CONFIGFS_ATTR_RO(memb_group_, features);
628
629 static struct configfs_attribute *nullb_group_attrs[] = {
630 &memb_group_attr_features,
631 NULL,
632 };
633
634 static struct configfs_group_operations nullb_group_ops = {
635 .make_item = nullb_group_make_item,
636 .drop_item = nullb_group_drop_item,
637 };
638
639 static const struct config_item_type nullb_group_type = {
640 .ct_group_ops = &nullb_group_ops,
641 .ct_attrs = nullb_group_attrs,
642 .ct_owner = THIS_MODULE,
643 };
644
645 static struct configfs_subsystem nullb_subsys = {
646 .su_group = {
647 .cg_item = {
648 .ci_namebuf = "nullb",
649 .ci_type = &nullb_group_type,
650 },
651 },
652 };
653
null_cache_active(struct nullb * nullb)654 static inline int null_cache_active(struct nullb *nullb)
655 {
656 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
657 }
658
null_alloc_dev(void)659 static struct nullb_device *null_alloc_dev(void)
660 {
661 struct nullb_device *dev;
662
663 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
664 if (!dev)
665 return NULL;
666 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
667 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
668 if (badblocks_init(&dev->badblocks, 0)) {
669 kfree(dev);
670 return NULL;
671 }
672
673 dev->size = g_gb * 1024;
674 dev->completion_nsec = g_completion_nsec;
675 dev->submit_queues = g_submit_queues;
676 dev->prev_submit_queues = g_submit_queues;
677 dev->poll_queues = g_poll_queues;
678 dev->prev_poll_queues = g_poll_queues;
679 dev->home_node = g_home_node;
680 dev->queue_mode = g_queue_mode;
681 dev->blocksize = g_bs;
682 dev->max_sectors = g_max_sectors;
683 dev->max_segment_size = g_max_segment_size;
684 dev->irqmode = g_irqmode;
685 dev->hw_queue_depth = g_hw_queue_depth;
686 dev->blocking = g_blocking;
687 dev->memory_backed = g_memory_backed;
688 dev->discard = g_discard;
689 dev->cache_size = g_cache_size;
690 dev->mbps = g_mbps;
691 dev->use_per_node_hctx = g_use_per_node_hctx;
692 dev->zoned = g_zoned;
693 dev->zone_size = g_zone_size;
694 dev->zone_capacity = g_zone_capacity;
695 dev->zone_nr_conv = g_zone_nr_conv;
696 dev->zone_max_open = g_zone_max_open;
697 dev->zone_max_active = g_zone_max_active;
698 dev->virt_boundary = g_virt_boundary;
699 dev->no_sched = g_no_sched;
700 dev->shared_tag_bitmap = g_shared_tag_bitmap;
701 return dev;
702 }
703
null_free_dev(struct nullb_device * dev)704 static void null_free_dev(struct nullb_device *dev)
705 {
706 if (!dev)
707 return;
708
709 null_free_zoned_dev(dev);
710 badblocks_exit(&dev->badblocks);
711 kfree(dev);
712 }
713
put_tag(struct nullb_queue * nq,unsigned int tag)714 static void put_tag(struct nullb_queue *nq, unsigned int tag)
715 {
716 clear_bit_unlock(tag, nq->tag_map);
717
718 if (waitqueue_active(&nq->wait))
719 wake_up(&nq->wait);
720 }
721
get_tag(struct nullb_queue * nq)722 static unsigned int get_tag(struct nullb_queue *nq)
723 {
724 unsigned int tag;
725
726 do {
727 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
728 if (tag >= nq->queue_depth)
729 return -1U;
730 } while (test_and_set_bit_lock(tag, nq->tag_map));
731
732 return tag;
733 }
734
free_cmd(struct nullb_cmd * cmd)735 static void free_cmd(struct nullb_cmd *cmd)
736 {
737 put_tag(cmd->nq, cmd->tag);
738 }
739
740 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
741
__alloc_cmd(struct nullb_queue * nq)742 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
743 {
744 struct nullb_cmd *cmd;
745 unsigned int tag;
746
747 tag = get_tag(nq);
748 if (tag != -1U) {
749 cmd = &nq->cmds[tag];
750 cmd->tag = tag;
751 cmd->error = BLK_STS_OK;
752 cmd->nq = nq;
753 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
754 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
755 HRTIMER_MODE_REL);
756 cmd->timer.function = null_cmd_timer_expired;
757 }
758 return cmd;
759 }
760
761 return NULL;
762 }
763
alloc_cmd(struct nullb_queue * nq,struct bio * bio)764 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
765 {
766 struct nullb_cmd *cmd;
767 DEFINE_WAIT(wait);
768
769 do {
770 /*
771 * This avoids multiple return statements, multiple calls to
772 * __alloc_cmd() and a fast path call to prepare_to_wait().
773 */
774 cmd = __alloc_cmd(nq);
775 if (cmd) {
776 cmd->bio = bio;
777 return cmd;
778 }
779 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
780 io_schedule();
781 finish_wait(&nq->wait, &wait);
782 } while (1);
783 }
784
end_cmd(struct nullb_cmd * cmd)785 static void end_cmd(struct nullb_cmd *cmd)
786 {
787 int queue_mode = cmd->nq->dev->queue_mode;
788
789 switch (queue_mode) {
790 case NULL_Q_MQ:
791 blk_mq_end_request(cmd->rq, cmd->error);
792 return;
793 case NULL_Q_BIO:
794 cmd->bio->bi_status = cmd->error;
795 bio_endio(cmd->bio);
796 break;
797 }
798
799 free_cmd(cmd);
800 }
801
null_cmd_timer_expired(struct hrtimer * timer)802 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
803 {
804 end_cmd(container_of(timer, struct nullb_cmd, timer));
805
806 return HRTIMER_NORESTART;
807 }
808
null_cmd_end_timer(struct nullb_cmd * cmd)809 static void null_cmd_end_timer(struct nullb_cmd *cmd)
810 {
811 ktime_t kt = cmd->nq->dev->completion_nsec;
812
813 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
814 }
815
null_complete_rq(struct request * rq)816 static void null_complete_rq(struct request *rq)
817 {
818 end_cmd(blk_mq_rq_to_pdu(rq));
819 }
820
null_alloc_page(void)821 static struct nullb_page *null_alloc_page(void)
822 {
823 struct nullb_page *t_page;
824
825 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
826 if (!t_page)
827 return NULL;
828
829 t_page->page = alloc_pages(GFP_NOIO, 0);
830 if (!t_page->page) {
831 kfree(t_page);
832 return NULL;
833 }
834
835 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
836 return t_page;
837 }
838
null_free_page(struct nullb_page * t_page)839 static void null_free_page(struct nullb_page *t_page)
840 {
841 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
842 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
843 return;
844 __free_page(t_page->page);
845 kfree(t_page);
846 }
847
null_page_empty(struct nullb_page * page)848 static bool null_page_empty(struct nullb_page *page)
849 {
850 int size = MAP_SZ - 2;
851
852 return find_first_bit(page->bitmap, size) == size;
853 }
854
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)855 static void null_free_sector(struct nullb *nullb, sector_t sector,
856 bool is_cache)
857 {
858 unsigned int sector_bit;
859 u64 idx;
860 struct nullb_page *t_page, *ret;
861 struct radix_tree_root *root;
862
863 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
864 idx = sector >> PAGE_SECTORS_SHIFT;
865 sector_bit = (sector & SECTOR_MASK);
866
867 t_page = radix_tree_lookup(root, idx);
868 if (t_page) {
869 __clear_bit(sector_bit, t_page->bitmap);
870
871 if (null_page_empty(t_page)) {
872 ret = radix_tree_delete_item(root, idx, t_page);
873 WARN_ON(ret != t_page);
874 null_free_page(ret);
875 if (is_cache)
876 nullb->dev->curr_cache -= PAGE_SIZE;
877 }
878 }
879 }
880
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)881 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
882 struct nullb_page *t_page, bool is_cache)
883 {
884 struct radix_tree_root *root;
885
886 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
887
888 if (radix_tree_insert(root, idx, t_page)) {
889 null_free_page(t_page);
890 t_page = radix_tree_lookup(root, idx);
891 WARN_ON(!t_page || t_page->page->index != idx);
892 } else if (is_cache)
893 nullb->dev->curr_cache += PAGE_SIZE;
894
895 return t_page;
896 }
897
null_free_device_storage(struct nullb_device * dev,bool is_cache)898 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
899 {
900 unsigned long pos = 0;
901 int nr_pages;
902 struct nullb_page *ret, *t_pages[FREE_BATCH];
903 struct radix_tree_root *root;
904
905 root = is_cache ? &dev->cache : &dev->data;
906
907 do {
908 int i;
909
910 nr_pages = radix_tree_gang_lookup(root,
911 (void **)t_pages, pos, FREE_BATCH);
912
913 for (i = 0; i < nr_pages; i++) {
914 pos = t_pages[i]->page->index;
915 ret = radix_tree_delete_item(root, pos, t_pages[i]);
916 WARN_ON(ret != t_pages[i]);
917 null_free_page(ret);
918 }
919
920 pos++;
921 } while (nr_pages == FREE_BATCH);
922
923 if (is_cache)
924 dev->curr_cache = 0;
925 }
926
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)927 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
928 sector_t sector, bool for_write, bool is_cache)
929 {
930 unsigned int sector_bit;
931 u64 idx;
932 struct nullb_page *t_page;
933 struct radix_tree_root *root;
934
935 idx = sector >> PAGE_SECTORS_SHIFT;
936 sector_bit = (sector & SECTOR_MASK);
937
938 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
939 t_page = radix_tree_lookup(root, idx);
940 WARN_ON(t_page && t_page->page->index != idx);
941
942 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
943 return t_page;
944
945 return NULL;
946 }
947
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)948 static struct nullb_page *null_lookup_page(struct nullb *nullb,
949 sector_t sector, bool for_write, bool ignore_cache)
950 {
951 struct nullb_page *page = NULL;
952
953 if (!ignore_cache)
954 page = __null_lookup_page(nullb, sector, for_write, true);
955 if (page)
956 return page;
957 return __null_lookup_page(nullb, sector, for_write, false);
958 }
959
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)960 static struct nullb_page *null_insert_page(struct nullb *nullb,
961 sector_t sector, bool ignore_cache)
962 __releases(&nullb->lock)
963 __acquires(&nullb->lock)
964 {
965 u64 idx;
966 struct nullb_page *t_page;
967
968 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
969 if (t_page)
970 return t_page;
971
972 spin_unlock_irq(&nullb->lock);
973
974 t_page = null_alloc_page();
975 if (!t_page)
976 goto out_lock;
977
978 if (radix_tree_preload(GFP_NOIO))
979 goto out_freepage;
980
981 spin_lock_irq(&nullb->lock);
982 idx = sector >> PAGE_SECTORS_SHIFT;
983 t_page->page->index = idx;
984 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
985 radix_tree_preload_end();
986
987 return t_page;
988 out_freepage:
989 null_free_page(t_page);
990 out_lock:
991 spin_lock_irq(&nullb->lock);
992 return null_lookup_page(nullb, sector, true, ignore_cache);
993 }
994
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)995 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
996 {
997 int i;
998 unsigned int offset;
999 u64 idx;
1000 struct nullb_page *t_page, *ret;
1001 void *dst, *src;
1002
1003 idx = c_page->page->index;
1004
1005 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1006
1007 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1008 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1009 null_free_page(c_page);
1010 if (t_page && null_page_empty(t_page)) {
1011 ret = radix_tree_delete_item(&nullb->dev->data,
1012 idx, t_page);
1013 null_free_page(t_page);
1014 }
1015 return 0;
1016 }
1017
1018 if (!t_page)
1019 return -ENOMEM;
1020
1021 src = kmap_atomic(c_page->page);
1022 dst = kmap_atomic(t_page->page);
1023
1024 for (i = 0; i < PAGE_SECTORS;
1025 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1026 if (test_bit(i, c_page->bitmap)) {
1027 offset = (i << SECTOR_SHIFT);
1028 memcpy(dst + offset, src + offset,
1029 nullb->dev->blocksize);
1030 __set_bit(i, t_page->bitmap);
1031 }
1032 }
1033
1034 kunmap_atomic(dst);
1035 kunmap_atomic(src);
1036
1037 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1038 null_free_page(ret);
1039 nullb->dev->curr_cache -= PAGE_SIZE;
1040
1041 return 0;
1042 }
1043
null_make_cache_space(struct nullb * nullb,unsigned long n)1044 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1045 {
1046 int i, err, nr_pages;
1047 struct nullb_page *c_pages[FREE_BATCH];
1048 unsigned long flushed = 0, one_round;
1049
1050 again:
1051 if ((nullb->dev->cache_size * 1024 * 1024) >
1052 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1053 return 0;
1054
1055 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1056 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1057 /*
1058 * nullb_flush_cache_page could unlock before using the c_pages. To
1059 * avoid race, we don't allow page free
1060 */
1061 for (i = 0; i < nr_pages; i++) {
1062 nullb->cache_flush_pos = c_pages[i]->page->index;
1063 /*
1064 * We found the page which is being flushed to disk by other
1065 * threads
1066 */
1067 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1068 c_pages[i] = NULL;
1069 else
1070 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1071 }
1072
1073 one_round = 0;
1074 for (i = 0; i < nr_pages; i++) {
1075 if (c_pages[i] == NULL)
1076 continue;
1077 err = null_flush_cache_page(nullb, c_pages[i]);
1078 if (err)
1079 return err;
1080 one_round++;
1081 }
1082 flushed += one_round << PAGE_SHIFT;
1083
1084 if (n > flushed) {
1085 if (nr_pages == 0)
1086 nullb->cache_flush_pos = 0;
1087 if (one_round == 0) {
1088 /* give other threads a chance */
1089 spin_unlock_irq(&nullb->lock);
1090 spin_lock_irq(&nullb->lock);
1091 }
1092 goto again;
1093 }
1094 return 0;
1095 }
1096
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)1097 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1098 unsigned int off, sector_t sector, size_t n, bool is_fua)
1099 {
1100 size_t temp, count = 0;
1101 unsigned int offset;
1102 struct nullb_page *t_page;
1103 void *dst, *src;
1104
1105 while (count < n) {
1106 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1107
1108 if (null_cache_active(nullb) && !is_fua)
1109 null_make_cache_space(nullb, PAGE_SIZE);
1110
1111 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1112 t_page = null_insert_page(nullb, sector,
1113 !null_cache_active(nullb) || is_fua);
1114 if (!t_page)
1115 return -ENOSPC;
1116
1117 src = kmap_atomic(source);
1118 dst = kmap_atomic(t_page->page);
1119 memcpy(dst + offset, src + off + count, temp);
1120 kunmap_atomic(dst);
1121 kunmap_atomic(src);
1122
1123 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1124
1125 if (is_fua)
1126 null_free_sector(nullb, sector, true);
1127
1128 count += temp;
1129 sector += temp >> SECTOR_SHIFT;
1130 }
1131 return 0;
1132 }
1133
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)1134 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1135 unsigned int off, sector_t sector, size_t n)
1136 {
1137 size_t temp, count = 0;
1138 unsigned int offset;
1139 struct nullb_page *t_page;
1140 void *dst, *src;
1141
1142 while (count < n) {
1143 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1144
1145 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1146 t_page = null_lookup_page(nullb, sector, false,
1147 !null_cache_active(nullb));
1148
1149 dst = kmap_atomic(dest);
1150 if (!t_page) {
1151 memset(dst + off + count, 0, temp);
1152 goto next;
1153 }
1154 src = kmap_atomic(t_page->page);
1155 memcpy(dst + off + count, src + offset, temp);
1156 kunmap_atomic(src);
1157 next:
1158 kunmap_atomic(dst);
1159
1160 count += temp;
1161 sector += temp >> SECTOR_SHIFT;
1162 }
1163 return 0;
1164 }
1165
nullb_fill_pattern(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off)1166 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1167 unsigned int len, unsigned int off)
1168 {
1169 void *dst;
1170
1171 dst = kmap_atomic(page);
1172 memset(dst + off, 0xFF, len);
1173 kunmap_atomic(dst);
1174 }
1175
null_handle_discard(struct nullb_device * dev,sector_t sector,sector_t nr_sectors)1176 blk_status_t null_handle_discard(struct nullb_device *dev,
1177 sector_t sector, sector_t nr_sectors)
1178 {
1179 struct nullb *nullb = dev->nullb;
1180 size_t n = nr_sectors << SECTOR_SHIFT;
1181 size_t temp;
1182
1183 spin_lock_irq(&nullb->lock);
1184 while (n > 0) {
1185 temp = min_t(size_t, n, dev->blocksize);
1186 null_free_sector(nullb, sector, false);
1187 if (null_cache_active(nullb))
1188 null_free_sector(nullb, sector, true);
1189 sector += temp >> SECTOR_SHIFT;
1190 n -= temp;
1191 }
1192 spin_unlock_irq(&nullb->lock);
1193
1194 return BLK_STS_OK;
1195 }
1196
null_handle_flush(struct nullb * nullb)1197 static int null_handle_flush(struct nullb *nullb)
1198 {
1199 int err;
1200
1201 if (!null_cache_active(nullb))
1202 return 0;
1203
1204 spin_lock_irq(&nullb->lock);
1205 while (true) {
1206 err = null_make_cache_space(nullb,
1207 nullb->dev->cache_size * 1024 * 1024);
1208 if (err || nullb->dev->curr_cache == 0)
1209 break;
1210 }
1211
1212 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1213 spin_unlock_irq(&nullb->lock);
1214 return err;
1215 }
1216
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1217 static int null_transfer(struct nullb *nullb, struct page *page,
1218 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1219 bool is_fua)
1220 {
1221 struct nullb_device *dev = nullb->dev;
1222 unsigned int valid_len = len;
1223 int err = 0;
1224
1225 WARN_ONCE(len > dev->max_segment_size, "%u > %u\n", len,
1226 dev->max_segment_size);
1227 if (!is_write) {
1228 if (dev->zoned)
1229 valid_len = null_zone_valid_read_len(nullb,
1230 sector, len);
1231
1232 if (valid_len) {
1233 err = copy_from_nullb(nullb, page, off,
1234 sector, valid_len);
1235 off += valid_len;
1236 len -= valid_len;
1237 }
1238
1239 if (len)
1240 nullb_fill_pattern(nullb, page, len, off);
1241 flush_dcache_page(page);
1242 } else {
1243 flush_dcache_page(page);
1244 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1245 }
1246
1247 return err;
1248 }
1249
null_handle_rq(struct nullb_cmd * cmd)1250 static int null_handle_rq(struct nullb_cmd *cmd)
1251 {
1252 struct request *rq = cmd->rq;
1253 struct nullb *nullb = cmd->nq->dev->nullb;
1254 int err;
1255 unsigned int len;
1256 sector_t sector = blk_rq_pos(rq);
1257 struct req_iterator iter;
1258 struct bio_vec bvec;
1259
1260 spin_lock_irq(&nullb->lock);
1261 rq_for_each_segment(bvec, rq, iter) {
1262 len = min(bvec.bv_len, nullb->dev->max_segment_size);
1263 bvec.bv_len = len;
1264 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1265 op_is_write(req_op(rq)), sector,
1266 rq->cmd_flags & REQ_FUA);
1267 if (err) {
1268 spin_unlock_irq(&nullb->lock);
1269 return err;
1270 }
1271 sector += len >> SECTOR_SHIFT;
1272 }
1273 spin_unlock_irq(&nullb->lock);
1274
1275 return 0;
1276 }
1277
null_handle_bio(struct nullb_cmd * cmd)1278 static int null_handle_bio(struct nullb_cmd *cmd)
1279 {
1280 struct bio *bio = cmd->bio;
1281 struct nullb *nullb = cmd->nq->dev->nullb;
1282 int err;
1283 unsigned int len;
1284 sector_t sector = bio->bi_iter.bi_sector;
1285 struct bio_vec bvec;
1286 struct bvec_iter iter;
1287
1288 spin_lock_irq(&nullb->lock);
1289 bio_for_each_segment(bvec, bio, iter) {
1290 len = min(bvec.bv_len, nullb->dev->max_segment_size);
1291 bvec.bv_len = len;
1292 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1293 op_is_write(bio_op(bio)), sector,
1294 bio->bi_opf & REQ_FUA);
1295 if (err) {
1296 spin_unlock_irq(&nullb->lock);
1297 return err;
1298 }
1299 sector += len >> SECTOR_SHIFT;
1300 }
1301 spin_unlock_irq(&nullb->lock);
1302 return 0;
1303 }
1304
null_stop_queue(struct nullb * nullb)1305 static void null_stop_queue(struct nullb *nullb)
1306 {
1307 struct request_queue *q = nullb->q;
1308
1309 if (nullb->dev->queue_mode == NULL_Q_MQ)
1310 blk_mq_stop_hw_queues(q);
1311 }
1312
null_restart_queue_async(struct nullb * nullb)1313 static void null_restart_queue_async(struct nullb *nullb)
1314 {
1315 struct request_queue *q = nullb->q;
1316
1317 if (nullb->dev->queue_mode == NULL_Q_MQ)
1318 blk_mq_start_stopped_hw_queues(q, true);
1319 }
1320
null_handle_throttled(struct nullb_cmd * cmd)1321 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1322 {
1323 struct nullb_device *dev = cmd->nq->dev;
1324 struct nullb *nullb = dev->nullb;
1325 blk_status_t sts = BLK_STS_OK;
1326 struct request *rq = cmd->rq;
1327
1328 if (!hrtimer_active(&nullb->bw_timer))
1329 hrtimer_restart(&nullb->bw_timer);
1330
1331 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1332 null_stop_queue(nullb);
1333 /* race with timer */
1334 if (atomic_long_read(&nullb->cur_bytes) > 0)
1335 null_restart_queue_async(nullb);
1336 /* requeue request */
1337 sts = BLK_STS_DEV_RESOURCE;
1338 }
1339 return sts;
1340 }
1341
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors)1342 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1343 sector_t sector,
1344 sector_t nr_sectors)
1345 {
1346 struct badblocks *bb = &cmd->nq->dev->badblocks;
1347 sector_t first_bad;
1348 int bad_sectors;
1349
1350 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1351 return BLK_STS_IOERR;
1352
1353 return BLK_STS_OK;
1354 }
1355
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_op op,sector_t sector,sector_t nr_sectors)1356 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1357 enum req_op op,
1358 sector_t sector,
1359 sector_t nr_sectors)
1360 {
1361 struct nullb_device *dev = cmd->nq->dev;
1362 int err;
1363
1364 if (op == REQ_OP_DISCARD)
1365 return null_handle_discard(dev, sector, nr_sectors);
1366
1367 if (dev->queue_mode == NULL_Q_BIO)
1368 err = null_handle_bio(cmd);
1369 else
1370 err = null_handle_rq(cmd);
1371
1372 return errno_to_blk_status(err);
1373 }
1374
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1375 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1376 {
1377 struct nullb_device *dev = cmd->nq->dev;
1378 struct bio *bio;
1379
1380 if (dev->memory_backed)
1381 return;
1382
1383 if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1384 zero_fill_bio(cmd->bio);
1385 } else if (req_op(cmd->rq) == REQ_OP_READ) {
1386 __rq_for_each_bio(bio, cmd->rq)
1387 zero_fill_bio(bio);
1388 }
1389 }
1390
nullb_complete_cmd(struct nullb_cmd * cmd)1391 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1392 {
1393 /*
1394 * Since root privileges are required to configure the null_blk
1395 * driver, it is fine that this driver does not initialize the
1396 * data buffers of read commands. Zero-initialize these buffers
1397 * anyway if KMSAN is enabled to prevent that KMSAN complains
1398 * about null_blk not initializing read data buffers.
1399 */
1400 if (IS_ENABLED(CONFIG_KMSAN))
1401 nullb_zero_read_cmd_buffer(cmd);
1402
1403 /* Complete IO by inline, softirq or timer */
1404 switch (cmd->nq->dev->irqmode) {
1405 case NULL_IRQ_SOFTIRQ:
1406 switch (cmd->nq->dev->queue_mode) {
1407 case NULL_Q_MQ:
1408 blk_mq_complete_request(cmd->rq);
1409 break;
1410 case NULL_Q_BIO:
1411 /*
1412 * XXX: no proper submitting cpu information available.
1413 */
1414 end_cmd(cmd);
1415 break;
1416 }
1417 break;
1418 case NULL_IRQ_NONE:
1419 end_cmd(cmd);
1420 break;
1421 case NULL_IRQ_TIMER:
1422 null_cmd_end_timer(cmd);
1423 break;
1424 }
1425 }
1426
null_process_cmd(struct nullb_cmd * cmd,enum req_op op,sector_t sector,unsigned int nr_sectors)1427 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1428 sector_t sector, unsigned int nr_sectors)
1429 {
1430 struct nullb_device *dev = cmd->nq->dev;
1431 blk_status_t ret;
1432
1433 if (dev->badblocks.shift != -1) {
1434 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1435 if (ret != BLK_STS_OK)
1436 return ret;
1437 }
1438
1439 if (dev->memory_backed)
1440 return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1441
1442 return BLK_STS_OK;
1443 }
1444
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_op op)1445 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1446 sector_t nr_sectors, enum req_op op)
1447 {
1448 struct nullb_device *dev = cmd->nq->dev;
1449 struct nullb *nullb = dev->nullb;
1450 blk_status_t sts;
1451
1452 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1453 sts = null_handle_throttled(cmd);
1454 if (sts != BLK_STS_OK)
1455 return sts;
1456 }
1457
1458 if (op == REQ_OP_FLUSH) {
1459 cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1460 goto out;
1461 }
1462
1463 if (dev->zoned)
1464 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1465 else
1466 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1467
1468 /* Do not overwrite errors (e.g. timeout errors) */
1469 if (cmd->error == BLK_STS_OK)
1470 cmd->error = sts;
1471
1472 out:
1473 nullb_complete_cmd(cmd);
1474 return BLK_STS_OK;
1475 }
1476
nullb_bwtimer_fn(struct hrtimer * timer)1477 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1478 {
1479 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1480 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1481 unsigned int mbps = nullb->dev->mbps;
1482
1483 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1484 return HRTIMER_NORESTART;
1485
1486 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1487 null_restart_queue_async(nullb);
1488
1489 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1490
1491 return HRTIMER_RESTART;
1492 }
1493
nullb_setup_bwtimer(struct nullb * nullb)1494 static void nullb_setup_bwtimer(struct nullb *nullb)
1495 {
1496 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1497
1498 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1499 nullb->bw_timer.function = nullb_bwtimer_fn;
1500 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1501 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1502 }
1503
nullb_to_queue(struct nullb * nullb)1504 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1505 {
1506 int index = 0;
1507
1508 if (nullb->nr_queues != 1)
1509 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1510
1511 return &nullb->queues[index];
1512 }
1513
null_submit_bio(struct bio * bio)1514 static void null_submit_bio(struct bio *bio)
1515 {
1516 sector_t sector = bio->bi_iter.bi_sector;
1517 sector_t nr_sectors = bio_sectors(bio);
1518 struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
1519 struct nullb_queue *nq = nullb_to_queue(nullb);
1520
1521 null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
1522 }
1523
should_timeout_request(struct request * rq)1524 static bool should_timeout_request(struct request *rq)
1525 {
1526 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1527 if (g_timeout_str[0])
1528 return should_fail(&null_timeout_attr, 1);
1529 #endif
1530 return false;
1531 }
1532
should_requeue_request(struct request * rq)1533 static bool should_requeue_request(struct request *rq)
1534 {
1535 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1536 if (g_requeue_str[0])
1537 return should_fail(&null_requeue_attr, 1);
1538 #endif
1539 return false;
1540 }
1541
null_map_queues(struct blk_mq_tag_set * set)1542 static void null_map_queues(struct blk_mq_tag_set *set)
1543 {
1544 struct nullb *nullb = set->driver_data;
1545 int i, qoff;
1546 unsigned int submit_queues = g_submit_queues;
1547 unsigned int poll_queues = g_poll_queues;
1548
1549 if (nullb) {
1550 struct nullb_device *dev = nullb->dev;
1551
1552 /*
1553 * Refer nr_hw_queues of the tag set to check if the expected
1554 * number of hardware queues are prepared. If block layer failed
1555 * to prepare them, use previous numbers of submit queues and
1556 * poll queues to map queues.
1557 */
1558 if (set->nr_hw_queues ==
1559 dev->submit_queues + dev->poll_queues) {
1560 submit_queues = dev->submit_queues;
1561 poll_queues = dev->poll_queues;
1562 } else if (set->nr_hw_queues ==
1563 dev->prev_submit_queues + dev->prev_poll_queues) {
1564 submit_queues = dev->prev_submit_queues;
1565 poll_queues = dev->prev_poll_queues;
1566 } else {
1567 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1568 set->nr_hw_queues);
1569 WARN_ON_ONCE(true);
1570 submit_queues = 1;
1571 poll_queues = 0;
1572 }
1573 }
1574
1575 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1576 struct blk_mq_queue_map *map = &set->map[i];
1577
1578 switch (i) {
1579 case HCTX_TYPE_DEFAULT:
1580 map->nr_queues = submit_queues;
1581 break;
1582 case HCTX_TYPE_READ:
1583 map->nr_queues = 0;
1584 continue;
1585 case HCTX_TYPE_POLL:
1586 map->nr_queues = poll_queues;
1587 break;
1588 }
1589 map->queue_offset = qoff;
1590 qoff += map->nr_queues;
1591 blk_mq_map_queues(map);
1592 }
1593 }
1594
null_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1595 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1596 {
1597 struct nullb_queue *nq = hctx->driver_data;
1598 LIST_HEAD(list);
1599 int nr = 0;
1600 struct request *rq;
1601
1602 spin_lock(&nq->poll_lock);
1603 list_splice_init(&nq->poll_list, &list);
1604 list_for_each_entry(rq, &list, queuelist)
1605 blk_mq_set_request_complete(rq);
1606 spin_unlock(&nq->poll_lock);
1607
1608 while (!list_empty(&list)) {
1609 struct nullb_cmd *cmd;
1610 struct request *req;
1611
1612 req = list_first_entry(&list, struct request, queuelist);
1613 list_del_init(&req->queuelist);
1614 cmd = blk_mq_rq_to_pdu(req);
1615 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1616 blk_rq_sectors(req));
1617 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1618 blk_mq_end_request_batch))
1619 end_cmd(cmd);
1620 nr++;
1621 }
1622
1623 return nr;
1624 }
1625
null_timeout_rq(struct request * rq)1626 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1627 {
1628 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1629 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1630
1631 if (hctx->type == HCTX_TYPE_POLL) {
1632 struct nullb_queue *nq = hctx->driver_data;
1633
1634 spin_lock(&nq->poll_lock);
1635 /* The request may have completed meanwhile. */
1636 if (blk_mq_request_completed(rq)) {
1637 spin_unlock(&nq->poll_lock);
1638 return BLK_EH_DONE;
1639 }
1640 list_del_init(&rq->queuelist);
1641 spin_unlock(&nq->poll_lock);
1642 }
1643
1644 pr_info("rq %p timed out\n", rq);
1645
1646 /*
1647 * If the device is marked as blocking (i.e. memory backed or zoned
1648 * device), the submission path may be blocked waiting for resources
1649 * and cause real timeouts. For these real timeouts, the submission
1650 * path will complete the request using blk_mq_complete_request().
1651 * Only fake timeouts need to execute blk_mq_complete_request() here.
1652 */
1653 cmd->error = BLK_STS_TIMEOUT;
1654 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1655 blk_mq_complete_request(rq);
1656 return BLK_EH_DONE;
1657 }
1658
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1659 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1660 const struct blk_mq_queue_data *bd)
1661 {
1662 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1663 struct nullb_queue *nq = hctx->driver_data;
1664 sector_t nr_sectors = blk_rq_sectors(bd->rq);
1665 sector_t sector = blk_rq_pos(bd->rq);
1666 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1667
1668 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1669
1670 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1671 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1672 cmd->timer.function = null_cmd_timer_expired;
1673 }
1674 cmd->rq = bd->rq;
1675 cmd->error = BLK_STS_OK;
1676 cmd->nq = nq;
1677 cmd->fake_timeout = should_timeout_request(bd->rq) ||
1678 blk_should_fake_timeout(bd->rq->q);
1679
1680 blk_mq_start_request(bd->rq);
1681
1682 if (should_requeue_request(bd->rq)) {
1683 /*
1684 * Alternate between hitting the core BUSY path, and the
1685 * driver driven requeue path
1686 */
1687 nq->requeue_selection++;
1688 if (nq->requeue_selection & 1)
1689 return BLK_STS_RESOURCE;
1690 else {
1691 blk_mq_requeue_request(bd->rq, true);
1692 return BLK_STS_OK;
1693 }
1694 }
1695
1696 if (is_poll) {
1697 spin_lock(&nq->poll_lock);
1698 list_add_tail(&bd->rq->queuelist, &nq->poll_list);
1699 spin_unlock(&nq->poll_lock);
1700 return BLK_STS_OK;
1701 }
1702 if (cmd->fake_timeout)
1703 return BLK_STS_OK;
1704
1705 return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1706 }
1707
cleanup_queue(struct nullb_queue * nq)1708 static void cleanup_queue(struct nullb_queue *nq)
1709 {
1710 bitmap_free(nq->tag_map);
1711 kfree(nq->cmds);
1712 }
1713
cleanup_queues(struct nullb * nullb)1714 static void cleanup_queues(struct nullb *nullb)
1715 {
1716 int i;
1717
1718 for (i = 0; i < nullb->nr_queues; i++)
1719 cleanup_queue(&nullb->queues[i]);
1720
1721 kfree(nullb->queues);
1722 }
1723
null_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)1724 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1725 {
1726 struct nullb_queue *nq = hctx->driver_data;
1727 struct nullb *nullb = nq->dev->nullb;
1728
1729 nullb->nr_queues--;
1730 }
1731
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1732 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1733 {
1734 init_waitqueue_head(&nq->wait);
1735 nq->queue_depth = nullb->queue_depth;
1736 nq->dev = nullb->dev;
1737 INIT_LIST_HEAD(&nq->poll_list);
1738 spin_lock_init(&nq->poll_lock);
1739 }
1740
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1741 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1742 unsigned int hctx_idx)
1743 {
1744 struct nullb *nullb = hctx->queue->queuedata;
1745 struct nullb_queue *nq;
1746
1747 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1748 if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1749 return -EFAULT;
1750 #endif
1751
1752 nq = &nullb->queues[hctx_idx];
1753 hctx->driver_data = nq;
1754 null_init_queue(nullb, nq);
1755 nullb->nr_queues++;
1756
1757 return 0;
1758 }
1759
1760 static const struct blk_mq_ops null_mq_ops = {
1761 .queue_rq = null_queue_rq,
1762 .complete = null_complete_rq,
1763 .timeout = null_timeout_rq,
1764 .poll = null_poll,
1765 .map_queues = null_map_queues,
1766 .init_hctx = null_init_hctx,
1767 .exit_hctx = null_exit_hctx,
1768 };
1769
null_del_dev(struct nullb * nullb)1770 static void null_del_dev(struct nullb *nullb)
1771 {
1772 struct nullb_device *dev;
1773
1774 if (!nullb)
1775 return;
1776
1777 dev = nullb->dev;
1778
1779 ida_simple_remove(&nullb_indexes, nullb->index);
1780
1781 list_del_init(&nullb->list);
1782
1783 del_gendisk(nullb->disk);
1784
1785 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1786 hrtimer_cancel(&nullb->bw_timer);
1787 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1788 null_restart_queue_async(nullb);
1789 }
1790
1791 put_disk(nullb->disk);
1792 if (dev->queue_mode == NULL_Q_MQ &&
1793 nullb->tag_set == &nullb->__tag_set)
1794 blk_mq_free_tag_set(nullb->tag_set);
1795 cleanup_queues(nullb);
1796 if (null_cache_active(nullb))
1797 null_free_device_storage(nullb->dev, true);
1798 kfree(nullb);
1799 dev->nullb = NULL;
1800 }
1801
null_config_discard(struct nullb * nullb)1802 static void null_config_discard(struct nullb *nullb)
1803 {
1804 if (nullb->dev->discard == false)
1805 return;
1806
1807 if (!nullb->dev->memory_backed) {
1808 nullb->dev->discard = false;
1809 pr_info("discard option is ignored without memory backing\n");
1810 return;
1811 }
1812
1813 if (nullb->dev->zoned) {
1814 nullb->dev->discard = false;
1815 pr_info("discard option is ignored in zoned mode\n");
1816 return;
1817 }
1818
1819 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1820 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1821 }
1822
1823 static const struct block_device_operations null_bio_ops = {
1824 .owner = THIS_MODULE,
1825 .submit_bio = null_submit_bio,
1826 .report_zones = null_report_zones,
1827 };
1828
1829 static const struct block_device_operations null_rq_ops = {
1830 .owner = THIS_MODULE,
1831 .report_zones = null_report_zones,
1832 };
1833
setup_commands(struct nullb_queue * nq)1834 static int setup_commands(struct nullb_queue *nq)
1835 {
1836 struct nullb_cmd *cmd;
1837 int i;
1838
1839 nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1840 if (!nq->cmds)
1841 return -ENOMEM;
1842
1843 nq->tag_map = bitmap_zalloc(nq->queue_depth, GFP_KERNEL);
1844 if (!nq->tag_map) {
1845 kfree(nq->cmds);
1846 return -ENOMEM;
1847 }
1848
1849 for (i = 0; i < nq->queue_depth; i++) {
1850 cmd = &nq->cmds[i];
1851 cmd->tag = -1U;
1852 }
1853
1854 return 0;
1855 }
1856
setup_queues(struct nullb * nullb)1857 static int setup_queues(struct nullb *nullb)
1858 {
1859 int nqueues = nr_cpu_ids;
1860
1861 if (g_poll_queues)
1862 nqueues += g_poll_queues;
1863
1864 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1865 GFP_KERNEL);
1866 if (!nullb->queues)
1867 return -ENOMEM;
1868
1869 nullb->queue_depth = nullb->dev->hw_queue_depth;
1870 return 0;
1871 }
1872
init_driver_queues(struct nullb * nullb)1873 static int init_driver_queues(struct nullb *nullb)
1874 {
1875 struct nullb_queue *nq;
1876 int i, ret = 0;
1877
1878 for (i = 0; i < nullb->dev->submit_queues; i++) {
1879 nq = &nullb->queues[i];
1880
1881 null_init_queue(nullb, nq);
1882
1883 ret = setup_commands(nq);
1884 if (ret)
1885 return ret;
1886 nullb->nr_queues++;
1887 }
1888 return 0;
1889 }
1890
null_gendisk_register(struct nullb * nullb)1891 static int null_gendisk_register(struct nullb *nullb)
1892 {
1893 sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1894 struct gendisk *disk = nullb->disk;
1895
1896 set_capacity(disk, size);
1897
1898 disk->major = null_major;
1899 disk->first_minor = nullb->index;
1900 disk->minors = 1;
1901 if (queue_is_mq(nullb->q))
1902 disk->fops = &null_rq_ops;
1903 else
1904 disk->fops = &null_bio_ops;
1905 disk->private_data = nullb;
1906 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1907
1908 if (nullb->dev->zoned) {
1909 int ret = null_register_zoned_dev(nullb);
1910
1911 if (ret)
1912 return ret;
1913 }
1914
1915 return add_disk(disk);
1916 }
1917
null_init_tag_set(struct nullb * nullb,struct blk_mq_tag_set * set)1918 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1919 {
1920 unsigned int flags = BLK_MQ_F_SHOULD_MERGE;
1921 int hw_queues, numa_node;
1922 unsigned int queue_depth;
1923 int poll_queues;
1924
1925 if (nullb) {
1926 hw_queues = nullb->dev->submit_queues;
1927 poll_queues = nullb->dev->poll_queues;
1928 queue_depth = nullb->dev->hw_queue_depth;
1929 numa_node = nullb->dev->home_node;
1930 if (nullb->dev->no_sched)
1931 flags |= BLK_MQ_F_NO_SCHED;
1932 if (nullb->dev->shared_tag_bitmap)
1933 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1934 if (nullb->dev->blocking)
1935 flags |= BLK_MQ_F_BLOCKING;
1936 } else {
1937 hw_queues = g_submit_queues;
1938 poll_queues = g_poll_queues;
1939 queue_depth = g_hw_queue_depth;
1940 numa_node = g_home_node;
1941 if (g_no_sched)
1942 flags |= BLK_MQ_F_NO_SCHED;
1943 if (g_shared_tag_bitmap)
1944 flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1945 if (g_blocking)
1946 flags |= BLK_MQ_F_BLOCKING;
1947 }
1948
1949 set->ops = &null_mq_ops;
1950 set->cmd_size = sizeof(struct nullb_cmd);
1951 set->flags = flags;
1952 set->driver_data = nullb;
1953 set->nr_hw_queues = hw_queues;
1954 set->queue_depth = queue_depth;
1955 set->numa_node = numa_node;
1956 if (poll_queues) {
1957 set->nr_hw_queues += poll_queues;
1958 set->nr_maps = 3;
1959 } else {
1960 set->nr_maps = 1;
1961 }
1962
1963 return blk_mq_alloc_tag_set(set);
1964 }
1965
null_validate_conf(struct nullb_device * dev)1966 static int null_validate_conf(struct nullb_device *dev)
1967 {
1968 if (dev->queue_mode == NULL_Q_RQ) {
1969 pr_err("legacy IO path is no longer available\n");
1970 return -EINVAL;
1971 }
1972
1973 dev->blocksize = round_down(dev->blocksize, 512);
1974 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1975
1976 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1977 if (dev->submit_queues != nr_online_nodes)
1978 dev->submit_queues = nr_online_nodes;
1979 } else if (dev->submit_queues > nr_cpu_ids)
1980 dev->submit_queues = nr_cpu_ids;
1981 else if (dev->submit_queues == 0)
1982 dev->submit_queues = 1;
1983 dev->prev_submit_queues = dev->submit_queues;
1984
1985 if (dev->poll_queues > g_poll_queues)
1986 dev->poll_queues = g_poll_queues;
1987 dev->prev_poll_queues = dev->poll_queues;
1988
1989 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1990 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1991
1992 /* Do memory allocation, so set blocking */
1993 if (dev->memory_backed)
1994 dev->blocking = true;
1995 else /* cache is meaningless */
1996 dev->cache_size = 0;
1997 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1998 dev->cache_size);
1999 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
2000 /* can not stop a queue */
2001 if (dev->queue_mode == NULL_Q_BIO)
2002 dev->mbps = 0;
2003
2004 if (dev->zoned &&
2005 (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
2006 pr_err("zone_size must be power-of-two\n");
2007 return -EINVAL;
2008 }
2009
2010 return 0;
2011 }
2012
2013 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)2014 static bool __null_setup_fault(struct fault_attr *attr, char *str)
2015 {
2016 if (!str[0])
2017 return true;
2018
2019 if (!setup_fault_attr(attr, str))
2020 return false;
2021
2022 attr->verbose = 0;
2023 return true;
2024 }
2025 #endif
2026
null_setup_fault(void)2027 static bool null_setup_fault(void)
2028 {
2029 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
2030 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
2031 return false;
2032 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
2033 return false;
2034 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
2035 return false;
2036 #endif
2037 return true;
2038 }
2039
null_add_dev(struct nullb_device * dev)2040 static int null_add_dev(struct nullb_device *dev)
2041 {
2042 struct nullb *nullb;
2043 int rv;
2044
2045 rv = null_validate_conf(dev);
2046 if (rv)
2047 return rv;
2048
2049 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
2050 if (!nullb) {
2051 rv = -ENOMEM;
2052 goto out;
2053 }
2054 nullb->dev = dev;
2055 dev->nullb = nullb;
2056
2057 spin_lock_init(&nullb->lock);
2058
2059 rv = setup_queues(nullb);
2060 if (rv)
2061 goto out_free_nullb;
2062
2063 if (dev->queue_mode == NULL_Q_MQ) {
2064 if (shared_tags) {
2065 nullb->tag_set = &tag_set;
2066 rv = 0;
2067 } else {
2068 nullb->tag_set = &nullb->__tag_set;
2069 rv = null_init_tag_set(nullb, nullb->tag_set);
2070 }
2071
2072 if (rv)
2073 goto out_cleanup_queues;
2074
2075 if (!null_setup_fault())
2076 goto out_cleanup_tags;
2077
2078 nullb->tag_set->timeout = 5 * HZ;
2079 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
2080 if (IS_ERR(nullb->disk)) {
2081 rv = PTR_ERR(nullb->disk);
2082 goto out_cleanup_tags;
2083 }
2084 nullb->q = nullb->disk->queue;
2085 } else if (dev->queue_mode == NULL_Q_BIO) {
2086 rv = -ENOMEM;
2087 nullb->disk = blk_alloc_disk(nullb->dev->home_node);
2088 if (!nullb->disk)
2089 goto out_cleanup_queues;
2090
2091 nullb->q = nullb->disk->queue;
2092 rv = init_driver_queues(nullb);
2093 if (rv)
2094 goto out_cleanup_disk;
2095 }
2096
2097 if (dev->mbps) {
2098 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2099 nullb_setup_bwtimer(nullb);
2100 }
2101
2102 if (dev->cache_size > 0) {
2103 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
2104 blk_queue_write_cache(nullb->q, true, true);
2105 }
2106
2107 if (dev->zoned) {
2108 rv = null_init_zoned_dev(dev, nullb->q);
2109 if (rv)
2110 goto out_cleanup_disk;
2111 }
2112
2113 nullb->q->queuedata = nullb;
2114 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
2115 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
2116
2117 mutex_lock(&lock);
2118 rv = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
2119 if (rv < 0) {
2120 mutex_unlock(&lock);
2121 goto out_cleanup_zone;
2122 }
2123 nullb->index = rv;
2124 dev->index = rv;
2125 mutex_unlock(&lock);
2126
2127 blk_queue_logical_block_size(nullb->q, dev->blocksize);
2128 blk_queue_physical_block_size(nullb->q, dev->blocksize);
2129 if (dev->max_sectors)
2130 blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
2131 blk_queue_max_segment_size(nullb->q, dev->max_segment_size);
2132
2133 if (dev->virt_boundary)
2134 blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
2135
2136 null_config_discard(nullb);
2137
2138 if (config_item_name(&dev->item)) {
2139 /* Use configfs dir name as the device name */
2140 snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2141 "%s", config_item_name(&dev->item));
2142 } else {
2143 sprintf(nullb->disk_name, "nullb%d", nullb->index);
2144 }
2145
2146 rv = null_gendisk_register(nullb);
2147 if (rv)
2148 goto out_ida_free;
2149
2150 mutex_lock(&lock);
2151 list_add_tail(&nullb->list, &nullb_list);
2152 mutex_unlock(&lock);
2153
2154 pr_info("disk %s created\n", nullb->disk_name);
2155
2156 return 0;
2157
2158 out_ida_free:
2159 ida_free(&nullb_indexes, nullb->index);
2160 out_cleanup_zone:
2161 null_free_zoned_dev(dev);
2162 out_cleanup_disk:
2163 put_disk(nullb->disk);
2164 out_cleanup_tags:
2165 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
2166 blk_mq_free_tag_set(nullb->tag_set);
2167 out_cleanup_queues:
2168 cleanup_queues(nullb);
2169 out_free_nullb:
2170 kfree(nullb);
2171 dev->nullb = NULL;
2172 out:
2173 return rv;
2174 }
2175
null_find_dev_by_name(const char * name)2176 static struct nullb *null_find_dev_by_name(const char *name)
2177 {
2178 struct nullb *nullb = NULL, *nb;
2179
2180 mutex_lock(&lock);
2181 list_for_each_entry(nb, &nullb_list, list) {
2182 if (strcmp(nb->disk_name, name) == 0) {
2183 nullb = nb;
2184 break;
2185 }
2186 }
2187 mutex_unlock(&lock);
2188
2189 return nullb;
2190 }
2191
null_create_dev(void)2192 static int null_create_dev(void)
2193 {
2194 struct nullb_device *dev;
2195 int ret;
2196
2197 dev = null_alloc_dev();
2198 if (!dev)
2199 return -ENOMEM;
2200
2201 ret = null_add_dev(dev);
2202 if (ret) {
2203 null_free_dev(dev);
2204 return ret;
2205 }
2206
2207 return 0;
2208 }
2209
null_destroy_dev(struct nullb * nullb)2210 static void null_destroy_dev(struct nullb *nullb)
2211 {
2212 struct nullb_device *dev = nullb->dev;
2213
2214 null_del_dev(nullb);
2215 null_free_device_storage(dev, false);
2216 null_free_dev(dev);
2217 }
2218
null_init(void)2219 static int __init null_init(void)
2220 {
2221 int ret = 0;
2222 unsigned int i;
2223 struct nullb *nullb;
2224
2225 if (g_bs > PAGE_SIZE) {
2226 pr_warn("invalid block size\n");
2227 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2228 g_bs = PAGE_SIZE;
2229 }
2230
2231 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2232 pr_err("invalid home_node value\n");
2233 g_home_node = NUMA_NO_NODE;
2234 }
2235
2236 if (g_queue_mode == NULL_Q_RQ) {
2237 pr_err("legacy IO path is no longer available\n");
2238 return -EINVAL;
2239 }
2240
2241 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
2242 if (g_submit_queues != nr_online_nodes) {
2243 pr_warn("submit_queues param is set to %u.\n",
2244 nr_online_nodes);
2245 g_submit_queues = nr_online_nodes;
2246 }
2247 } else if (g_submit_queues > nr_cpu_ids) {
2248 g_submit_queues = nr_cpu_ids;
2249 } else if (g_submit_queues <= 0) {
2250 g_submit_queues = 1;
2251 }
2252
2253 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
2254 ret = null_init_tag_set(NULL, &tag_set);
2255 if (ret)
2256 return ret;
2257 }
2258
2259 config_group_init(&nullb_subsys.su_group);
2260 mutex_init(&nullb_subsys.su_mutex);
2261
2262 ret = configfs_register_subsystem(&nullb_subsys);
2263 if (ret)
2264 goto err_tagset;
2265
2266 mutex_init(&lock);
2267
2268 null_major = register_blkdev(0, "nullb");
2269 if (null_major < 0) {
2270 ret = null_major;
2271 goto err_conf;
2272 }
2273
2274 for (i = 0; i < nr_devices; i++) {
2275 ret = null_create_dev();
2276 if (ret)
2277 goto err_dev;
2278 }
2279
2280 pr_info("module loaded\n");
2281 return 0;
2282
2283 err_dev:
2284 while (!list_empty(&nullb_list)) {
2285 nullb = list_entry(nullb_list.next, struct nullb, list);
2286 null_destroy_dev(nullb);
2287 }
2288 unregister_blkdev(null_major, "nullb");
2289 err_conf:
2290 configfs_unregister_subsystem(&nullb_subsys);
2291 err_tagset:
2292 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2293 blk_mq_free_tag_set(&tag_set);
2294 return ret;
2295 }
2296
null_exit(void)2297 static void __exit null_exit(void)
2298 {
2299 struct nullb *nullb;
2300
2301 configfs_unregister_subsystem(&nullb_subsys);
2302
2303 unregister_blkdev(null_major, "nullb");
2304
2305 mutex_lock(&lock);
2306 while (!list_empty(&nullb_list)) {
2307 nullb = list_entry(nullb_list.next, struct nullb, list);
2308 null_destroy_dev(nullb);
2309 }
2310 mutex_unlock(&lock);
2311
2312 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2313 blk_mq_free_tag_set(&tag_set);
2314 }
2315
2316 module_init(null_init);
2317 module_exit(null_exit);
2318
2319 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2320 MODULE_LICENSE("GPL");
2321