1 /*
2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3 *
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
9 *
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
12 */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/gcd.h>
22
23 /* Each chip has different number of PLLs and outputs, for example:
24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25 * Model this as 2 PLL clocks which are parents to the outputs.
26 */
27
28 enum {
29 CDCE913,
30 CDCE925,
31 CDCE937,
32 CDCE949,
33 };
34
35 struct clk_cdce925_chip_info {
36 int num_plls;
37 int num_outputs;
38 };
39
40 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
41 [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
42 [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
43 [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
44 [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
45 };
46
47 #define MAX_NUMBER_OF_PLLS 4
48 #define MAX_NUMBER_OF_OUTPUTS 9
49
50 #define CDCE925_REG_GLOBAL1 0x01
51 #define CDCE925_REG_Y1SPIPDIVH 0x02
52 #define CDCE925_REG_PDIVL 0x03
53 #define CDCE925_REG_XCSEL 0x05
54 /* PLL parameters start at 0x10, steps of 0x10 */
55 #define CDCE925_OFFSET_PLL 0x10
56 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
57 #define CDCE925_PLL_MUX_OUTPUTS 0x14
58 #define CDCE925_PLL_MULDIV 0x18
59
60 #define CDCE925_PLL_FREQUENCY_MIN 80000000ul
61 #define CDCE925_PLL_FREQUENCY_MAX 230000000ul
62 struct clk_cdce925_chip;
63
64 struct clk_cdce925_output {
65 struct clk_hw hw;
66 struct clk_cdce925_chip *chip;
67 u8 index;
68 u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
69 };
70 #define to_clk_cdce925_output(_hw) \
71 container_of(_hw, struct clk_cdce925_output, hw)
72
73 struct clk_cdce925_pll {
74 struct clk_hw hw;
75 struct clk_cdce925_chip *chip;
76 u8 index;
77 u16 m; /* 1..511 */
78 u16 n; /* 1..4095 */
79 };
80 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
81
82 struct clk_cdce925_chip {
83 struct regmap *regmap;
84 struct i2c_client *i2c_client;
85 const struct clk_cdce925_chip_info *chip_info;
86 struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
87 struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
88 };
89
90 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
91
cdce925_pll_calculate_rate(unsigned long parent_rate,u16 n,u16 m)92 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
93 u16 n, u16 m)
94 {
95 if ((!m || !n) || (m == n))
96 return parent_rate; /* In bypass mode runs at same frequency */
97 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
98 }
99
cdce925_pll_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)100 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
101 unsigned long parent_rate)
102 {
103 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
104 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
105
106 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
107 }
108
cdce925_pll_find_rate(unsigned long rate,unsigned long parent_rate,u16 * n,u16 * m)109 static void cdce925_pll_find_rate(unsigned long rate,
110 unsigned long parent_rate, u16 *n, u16 *m)
111 {
112 unsigned long un;
113 unsigned long um;
114 unsigned long g;
115
116 if (rate <= parent_rate) {
117 /* Can always deliver parent_rate in bypass mode */
118 rate = parent_rate;
119 *n = 0;
120 *m = 0;
121 } else {
122 /* In PLL mode, need to apply min/max range */
123 if (rate < CDCE925_PLL_FREQUENCY_MIN)
124 rate = CDCE925_PLL_FREQUENCY_MIN;
125 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
126 rate = CDCE925_PLL_FREQUENCY_MAX;
127
128 g = gcd(rate, parent_rate);
129 um = parent_rate / g;
130 un = rate / g;
131 /* When outside hw range, reduce to fit (rounding errors) */
132 while ((un > 4095) || (um > 511)) {
133 un >>= 1;
134 um >>= 1;
135 }
136 if (un == 0)
137 un = 1;
138 if (um == 0)
139 um = 1;
140
141 *n = un;
142 *m = um;
143 }
144 }
145
cdce925_pll_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)146 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
147 unsigned long *parent_rate)
148 {
149 u16 n, m;
150
151 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
152 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
153 }
154
cdce925_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)155 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
156 unsigned long parent_rate)
157 {
158 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
159
160 if (!rate || (rate == parent_rate)) {
161 data->m = 0; /* Bypass mode */
162 data->n = 0;
163 return 0;
164 }
165
166 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
167 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
168 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
169 return -EINVAL;
170 }
171
172 if (rate < parent_rate) {
173 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
174 rate, parent_rate);
175 return -EINVAL;
176 }
177
178 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
179 return 0;
180 }
181
182
183 /* calculate p = max(0, 4 - int(log2 (n/m))) */
cdce925_pll_calc_p(u16 n,u16 m)184 static u8 cdce925_pll_calc_p(u16 n, u16 m)
185 {
186 u8 p;
187 u16 r = n / m;
188
189 if (r >= 16)
190 return 0;
191 p = 4;
192 while (r > 1) {
193 r >>= 1;
194 --p;
195 }
196 return p;
197 }
198
199 /* Returns VCO range bits for VCO1_0_RANGE */
cdce925_pll_calc_range_bits(struct clk_hw * hw,u16 n,u16 m)200 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
201 {
202 struct clk *parent = clk_get_parent(hw->clk);
203 unsigned long rate = clk_get_rate(parent);
204
205 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
206 if (rate >= 175000000)
207 return 0x3;
208 if (rate >= 150000000)
209 return 0x02;
210 if (rate >= 125000000)
211 return 0x01;
212 return 0x00;
213 }
214
215 /* I2C clock, hence everything must happen in (un)prepare because this
216 * may sleep */
cdce925_pll_prepare(struct clk_hw * hw)217 static int cdce925_pll_prepare(struct clk_hw *hw)
218 {
219 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
220 u16 n = data->n;
221 u16 m = data->m;
222 u16 r;
223 u8 q;
224 u8 p;
225 u16 nn;
226 u8 pll[4]; /* Bits are spread out over 4 byte registers */
227 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
228 unsigned i;
229
230 if ((!m || !n) || (m == n)) {
231 /* Set PLL mux to bypass mode, leave the rest as is */
232 regmap_update_bits(data->chip->regmap,
233 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
234 } else {
235 /* According to data sheet: */
236 /* p = max(0, 4 - int(log2 (n/m))) */
237 p = cdce925_pll_calc_p(n, m);
238 /* nn = n * 2^p */
239 nn = n * BIT(p);
240 /* q = int(nn/m) */
241 q = nn / m;
242 if ((q < 16) || (q > 63)) {
243 pr_debug("%s invalid q=%d\n", __func__, q);
244 return -EINVAL;
245 }
246 r = nn - (m*q);
247 if (r > 511) {
248 pr_debug("%s invalid r=%d\n", __func__, r);
249 return -EINVAL;
250 }
251 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
252 n, m, p, q, r);
253 /* encode into register bits */
254 pll[0] = n >> 4;
255 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
256 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
257 pll[3] = ((q & 0x07) << 5) | (p << 2) |
258 cdce925_pll_calc_range_bits(hw, n, m);
259 /* Write to registers */
260 for (i = 0; i < ARRAY_SIZE(pll); ++i)
261 regmap_write(data->chip->regmap,
262 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
263 /* Enable PLL */
264 regmap_update_bits(data->chip->regmap,
265 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
266 }
267
268 return 0;
269 }
270
cdce925_pll_unprepare(struct clk_hw * hw)271 static void cdce925_pll_unprepare(struct clk_hw *hw)
272 {
273 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
274 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
275
276 regmap_update_bits(data->chip->regmap,
277 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
278 }
279
280 static const struct clk_ops cdce925_pll_ops = {
281 .prepare = cdce925_pll_prepare,
282 .unprepare = cdce925_pll_unprepare,
283 .recalc_rate = cdce925_pll_recalc_rate,
284 .round_rate = cdce925_pll_round_rate,
285 .set_rate = cdce925_pll_set_rate,
286 };
287
288
cdce925_clk_set_pdiv(struct clk_cdce925_output * data,u16 pdiv)289 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
290 {
291 switch (data->index) {
292 case 0:
293 regmap_update_bits(data->chip->regmap,
294 CDCE925_REG_Y1SPIPDIVH,
295 0x03, (pdiv >> 8) & 0x03);
296 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
297 break;
298 case 1:
299 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
300 break;
301 case 2:
302 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
303 break;
304 case 3:
305 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
306 break;
307 case 4:
308 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
309 break;
310 case 5:
311 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
312 break;
313 case 6:
314 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
315 break;
316 case 7:
317 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
318 break;
319 case 8:
320 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
321 break;
322 }
323 }
324
cdce925_clk_activate(struct clk_cdce925_output * data)325 static void cdce925_clk_activate(struct clk_cdce925_output *data)
326 {
327 switch (data->index) {
328 case 0:
329 regmap_update_bits(data->chip->regmap,
330 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
331 break;
332 case 1:
333 case 2:
334 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
335 break;
336 case 3:
337 case 4:
338 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
339 break;
340 case 5:
341 case 6:
342 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
343 break;
344 case 7:
345 case 8:
346 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
347 break;
348 }
349 }
350
cdce925_clk_prepare(struct clk_hw * hw)351 static int cdce925_clk_prepare(struct clk_hw *hw)
352 {
353 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
354
355 cdce925_clk_set_pdiv(data, data->pdiv);
356 cdce925_clk_activate(data);
357 return 0;
358 }
359
cdce925_clk_unprepare(struct clk_hw * hw)360 static void cdce925_clk_unprepare(struct clk_hw *hw)
361 {
362 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
363
364 /* Disable clock by setting divider to "0" */
365 cdce925_clk_set_pdiv(data, 0);
366 }
367
cdce925_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)368 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
369 unsigned long parent_rate)
370 {
371 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
372
373 if (data->pdiv)
374 return parent_rate / data->pdiv;
375 return 0;
376 }
377
cdce925_calc_divider(unsigned long rate,unsigned long parent_rate)378 static u16 cdce925_calc_divider(unsigned long rate,
379 unsigned long parent_rate)
380 {
381 unsigned long divider;
382
383 if (!rate)
384 return 0;
385 if (rate >= parent_rate)
386 return 1;
387
388 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
389 if (divider > 0x7F)
390 divider = 0x7F;
391
392 return (u16)divider;
393 }
394
cdce925_clk_best_parent_rate(struct clk_hw * hw,unsigned long rate)395 static unsigned long cdce925_clk_best_parent_rate(
396 struct clk_hw *hw, unsigned long rate)
397 {
398 struct clk *pll = clk_get_parent(hw->clk);
399 struct clk *root = clk_get_parent(pll);
400 unsigned long root_rate = clk_get_rate(root);
401 unsigned long best_rate_error = rate;
402 u16 pdiv_min;
403 u16 pdiv_max;
404 u16 pdiv_best;
405 u16 pdiv_now;
406
407 if (root_rate % rate == 0)
408 return root_rate; /* Don't need the PLL, use bypass */
409
410 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
411 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
412
413 if (pdiv_min > pdiv_max)
414 return 0; /* No can do? */
415
416 pdiv_best = pdiv_min;
417 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
418 unsigned long target_rate = rate * pdiv_now;
419 long pll_rate = clk_round_rate(pll, target_rate);
420 unsigned long actual_rate;
421 unsigned long rate_error;
422
423 if (pll_rate <= 0)
424 continue;
425 actual_rate = pll_rate / pdiv_now;
426 rate_error = abs((long)actual_rate - (long)rate);
427 if (rate_error < best_rate_error) {
428 pdiv_best = pdiv_now;
429 best_rate_error = rate_error;
430 }
431 /* TODO: Consider PLL frequency based on smaller n/m values
432 * and pick the better one if the error is equal */
433 }
434
435 return rate * pdiv_best;
436 }
437
cdce925_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)438 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
439 unsigned long *parent_rate)
440 {
441 unsigned long l_parent_rate = *parent_rate;
442 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
443
444 if (l_parent_rate / divider != rate) {
445 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
446 divider = cdce925_calc_divider(rate, l_parent_rate);
447 *parent_rate = l_parent_rate;
448 }
449
450 if (divider)
451 return (long)(l_parent_rate / divider);
452 return 0;
453 }
454
cdce925_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)455 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
456 unsigned long parent_rate)
457 {
458 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
459
460 data->pdiv = cdce925_calc_divider(rate, parent_rate);
461
462 return 0;
463 }
464
465 static const struct clk_ops cdce925_clk_ops = {
466 .prepare = cdce925_clk_prepare,
467 .unprepare = cdce925_clk_unprepare,
468 .recalc_rate = cdce925_clk_recalc_rate,
469 .round_rate = cdce925_clk_round_rate,
470 .set_rate = cdce925_clk_set_rate,
471 };
472
473
cdce925_y1_calc_divider(unsigned long rate,unsigned long parent_rate)474 static u16 cdce925_y1_calc_divider(unsigned long rate,
475 unsigned long parent_rate)
476 {
477 unsigned long divider;
478
479 if (!rate)
480 return 0;
481 if (rate >= parent_rate)
482 return 1;
483
484 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
485 if (divider > 0x3FF) /* Y1 has 10-bit divider */
486 divider = 0x3FF;
487
488 return (u16)divider;
489 }
490
cdce925_clk_y1_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)491 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
492 unsigned long *parent_rate)
493 {
494 unsigned long l_parent_rate = *parent_rate;
495 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
496
497 if (divider)
498 return (long)(l_parent_rate / divider);
499 return 0;
500 }
501
cdce925_clk_y1_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)502 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
503 unsigned long parent_rate)
504 {
505 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
506
507 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
508
509 return 0;
510 }
511
512 static const struct clk_ops cdce925_clk_y1_ops = {
513 .prepare = cdce925_clk_prepare,
514 .unprepare = cdce925_clk_unprepare,
515 .recalc_rate = cdce925_clk_recalc_rate,
516 .round_rate = cdce925_clk_y1_round_rate,
517 .set_rate = cdce925_clk_y1_set_rate,
518 };
519
520 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
521 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
522
cdce925_regmap_i2c_write(void * context,const void * data,size_t count)523 static int cdce925_regmap_i2c_write(
524 void *context, const void *data, size_t count)
525 {
526 struct device *dev = context;
527 struct i2c_client *i2c = to_i2c_client(dev);
528 int ret;
529 u8 reg_data[2];
530
531 if (count != 2)
532 return -ENOTSUPP;
533
534 /* First byte is command code */
535 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
536 reg_data[1] = ((u8 *)data)[1];
537
538 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
539 reg_data[0], reg_data[1]);
540
541 ret = i2c_master_send(i2c, reg_data, count);
542 if (likely(ret == count))
543 return 0;
544 else if (ret < 0)
545 return ret;
546 else
547 return -EIO;
548 }
549
cdce925_regmap_i2c_read(void * context,const void * reg,size_t reg_size,void * val,size_t val_size)550 static int cdce925_regmap_i2c_read(void *context,
551 const void *reg, size_t reg_size, void *val, size_t val_size)
552 {
553 struct device *dev = context;
554 struct i2c_client *i2c = to_i2c_client(dev);
555 struct i2c_msg xfer[2];
556 int ret;
557 u8 reg_data[2];
558
559 if (reg_size != 1)
560 return -ENOTSUPP;
561
562 xfer[0].addr = i2c->addr;
563 xfer[0].flags = 0;
564 xfer[0].buf = reg_data;
565 if (val_size == 1) {
566 reg_data[0] =
567 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
568 xfer[0].len = 1;
569 } else {
570 reg_data[0] =
571 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
572 reg_data[1] = val_size;
573 xfer[0].len = 2;
574 }
575
576 xfer[1].addr = i2c->addr;
577 xfer[1].flags = I2C_M_RD;
578 xfer[1].len = val_size;
579 xfer[1].buf = val;
580
581 ret = i2c_transfer(i2c->adapter, xfer, 2);
582 if (likely(ret == 2)) {
583 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
584 reg_size, val_size, reg_data[0], *((u8 *)val));
585 return 0;
586 } else if (ret < 0)
587 return ret;
588 else
589 return -EIO;
590 }
591
592 static struct clk_hw *
of_clk_cdce925_get(struct of_phandle_args * clkspec,void * _data)593 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
594 {
595 struct clk_cdce925_chip *data = _data;
596 unsigned int idx = clkspec->args[0];
597
598 if (idx >= ARRAY_SIZE(data->clk)) {
599 pr_err("%s: invalid index %u\n", __func__, idx);
600 return ERR_PTR(-EINVAL);
601 }
602
603 return &data->clk[idx].hw;
604 }
605
cdce925_regulator_disable(void * regulator)606 static void cdce925_regulator_disable(void *regulator)
607 {
608 regulator_disable(regulator);
609 }
610
cdce925_regulator_enable(struct device * dev,const char * name)611 static int cdce925_regulator_enable(struct device *dev, const char *name)
612 {
613 struct regulator *regulator;
614 int err;
615
616 regulator = devm_regulator_get(dev, name);
617 if (IS_ERR(regulator))
618 return PTR_ERR(regulator);
619
620 err = regulator_enable(regulator);
621 if (err) {
622 dev_err(dev, "Failed to enable %s: %d\n", name, err);
623 return err;
624 }
625
626 return devm_add_action_or_reset(dev, cdce925_regulator_disable,
627 regulator);
628 }
629
630 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
631 * just weird, so just use the single byte mode exclusively. */
632 static struct regmap_bus regmap_cdce925_bus = {
633 .write = cdce925_regmap_i2c_write,
634 .read = cdce925_regmap_i2c_read,
635 };
636
637 static const struct i2c_device_id cdce925_id[] = {
638 { "cdce913", CDCE913 },
639 { "cdce925", CDCE925 },
640 { "cdce937", CDCE937 },
641 { "cdce949", CDCE949 },
642 { }
643 };
644 MODULE_DEVICE_TABLE(i2c, cdce925_id);
645
cdce925_probe(struct i2c_client * client)646 static int cdce925_probe(struct i2c_client *client)
647 {
648 struct clk_cdce925_chip *data;
649 struct device_node *node = client->dev.of_node;
650 const struct i2c_device_id *id = i2c_match_id(cdce925_id, client);
651 const char *parent_name;
652 const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
653 struct clk_init_data init;
654 u32 value;
655 int i;
656 int err;
657 struct device_node *np_output;
658 char child_name[6];
659 struct regmap_config config = {
660 .name = "configuration0",
661 .reg_bits = 8,
662 .val_bits = 8,
663 .cache_type = REGCACHE_RBTREE,
664 };
665
666 dev_dbg(&client->dev, "%s\n", __func__);
667
668 err = cdce925_regulator_enable(&client->dev, "vdd");
669 if (err)
670 return err;
671
672 err = cdce925_regulator_enable(&client->dev, "vddout");
673 if (err)
674 return err;
675
676 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
677 if (!data)
678 return -ENOMEM;
679
680 data->i2c_client = client;
681 data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
682 config.max_register = CDCE925_OFFSET_PLL +
683 data->chip_info->num_plls * 0x10 - 1;
684 data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus,
685 &client->dev, &config);
686 if (IS_ERR(data->regmap)) {
687 dev_err(&client->dev, "failed to allocate register map\n");
688 return PTR_ERR(data->regmap);
689 }
690 i2c_set_clientdata(client, data);
691
692 parent_name = of_clk_get_parent_name(node, 0);
693 if (!parent_name) {
694 dev_err(&client->dev, "missing parent clock\n");
695 return -ENODEV;
696 }
697 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
698
699 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
700 regmap_write(data->regmap,
701 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
702 /* PWDN bit */
703 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
704
705 /* Set input source for Y1 to be the XTAL */
706 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
707
708 init.ops = &cdce925_pll_ops;
709 init.flags = 0;
710 init.parent_names = &parent_name;
711 init.num_parents = 1;
712
713 /* Register PLL clocks */
714 for (i = 0; i < data->chip_info->num_plls; ++i) {
715 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
716 client->dev.of_node, i);
717 if (!pll_clk_name[i]) {
718 err = -ENOMEM;
719 goto error;
720 }
721 init.name = pll_clk_name[i];
722 data->pll[i].chip = data;
723 data->pll[i].hw.init = &init;
724 data->pll[i].index = i;
725 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
726 if (err) {
727 dev_err(&client->dev, "Failed register PLL %d\n", i);
728 goto error;
729 }
730 sprintf(child_name, "PLL%d", i+1);
731 np_output = of_get_child_by_name(node, child_name);
732 if (!np_output)
733 continue;
734 if (!of_property_read_u32(np_output,
735 "clock-frequency", &value)) {
736 err = clk_set_rate(data->pll[i].hw.clk, value);
737 if (err)
738 dev_err(&client->dev,
739 "unable to set PLL frequency %ud\n",
740 value);
741 }
742 if (!of_property_read_u32(np_output,
743 "spread-spectrum", &value)) {
744 u8 flag = of_property_read_bool(np_output,
745 "spread-spectrum-center") ? 0x80 : 0x00;
746 regmap_update_bits(data->regmap,
747 0x16 + (i*CDCE925_OFFSET_PLL),
748 0x80, flag);
749 regmap_update_bits(data->regmap,
750 0x12 + (i*CDCE925_OFFSET_PLL),
751 0x07, value & 0x07);
752 }
753 of_node_put(np_output);
754 }
755
756 /* Register output clock Y1 */
757 init.ops = &cdce925_clk_y1_ops;
758 init.flags = 0;
759 init.num_parents = 1;
760 init.parent_names = &parent_name; /* Mux Y1 to input */
761 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
762 if (!init.name) {
763 err = -ENOMEM;
764 goto error;
765 }
766 data->clk[0].chip = data;
767 data->clk[0].hw.init = &init;
768 data->clk[0].index = 0;
769 data->clk[0].pdiv = 1;
770 err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
771 kfree(init.name); /* clock framework made a copy of the name */
772 if (err) {
773 dev_err(&client->dev, "clock registration Y1 failed\n");
774 goto error;
775 }
776
777 /* Register output clocks Y2 .. Y5*/
778 init.ops = &cdce925_clk_ops;
779 init.flags = CLK_SET_RATE_PARENT;
780 init.num_parents = 1;
781 for (i = 1; i < data->chip_info->num_outputs; ++i) {
782 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
783 client->dev.of_node, i+1);
784 if (!init.name) {
785 err = -ENOMEM;
786 goto error;
787 }
788 data->clk[i].chip = data;
789 data->clk[i].hw.init = &init;
790 data->clk[i].index = i;
791 data->clk[i].pdiv = 1;
792 switch (i) {
793 case 1:
794 case 2:
795 /* Mux Y2/3 to PLL1 */
796 init.parent_names = &pll_clk_name[0];
797 break;
798 case 3:
799 case 4:
800 /* Mux Y4/5 to PLL2 */
801 init.parent_names = &pll_clk_name[1];
802 break;
803 case 5:
804 case 6:
805 /* Mux Y6/7 to PLL3 */
806 init.parent_names = &pll_clk_name[2];
807 break;
808 case 7:
809 case 8:
810 /* Mux Y8/9 to PLL4 */
811 init.parent_names = &pll_clk_name[3];
812 break;
813 }
814 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
815 kfree(init.name); /* clock framework made a copy of the name */
816 if (err) {
817 dev_err(&client->dev, "clock registration failed\n");
818 goto error;
819 }
820 }
821
822 /* Register the output clocks */
823 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
824 data);
825 if (err)
826 dev_err(&client->dev, "unable to add OF clock provider\n");
827
828 err = 0;
829
830 error:
831 for (i = 0; i < data->chip_info->num_plls; ++i)
832 /* clock framework made a copy of the name */
833 kfree(pll_clk_name[i]);
834
835 return err;
836 }
837
838 static const struct of_device_id clk_cdce925_of_match[] = {
839 { .compatible = "ti,cdce913" },
840 { .compatible = "ti,cdce925" },
841 { .compatible = "ti,cdce937" },
842 { .compatible = "ti,cdce949" },
843 { },
844 };
845 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
846
847 static struct i2c_driver cdce925_driver = {
848 .driver = {
849 .name = "cdce925",
850 .of_match_table = of_match_ptr(clk_cdce925_of_match),
851 },
852 .probe_new = cdce925_probe,
853 .id_table = cdce925_id,
854 };
855 module_i2c_driver(cdce925_driver);
856
857 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
858 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
859 MODULE_LICENSE("GPL");
860