1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR 0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n) (0x40 + ((n) * 4))
40 #define CNTACR_RPCT BIT(0)
41 #define CNTACR_RVCT BIT(1)
42 #define CNTACR_RFRQ BIT(2)
43 #define CNTACR_RVOFF BIT(3)
44 #define CNTACR_RWVT BIT(4)
45 #define CNTACR_RWPT BIT(5)
46
47 #define CNTPCT_LO 0x00
48 #define CNTVCT_LO 0x08
49 #define CNTFRQ 0x10
50 #define CNTP_CVAL_LO 0x20
51 #define CNTP_CTL 0x2c
52 #define CNTV_CVAL_LO 0x30
53 #define CNTV_CTL 0x3c
54
55 /*
56 * The minimum amount of time a generic counter is guaranteed to not roll over
57 * (40 years)
58 */
59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
60
61 static unsigned arch_timers_present __initdata;
62
63 struct arch_timer {
64 void __iomem *base;
65 struct clock_event_device evt;
66 };
67
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78 [ARCH_TIMER_VIRT_PPI] = "virt",
79 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
81 };
82
83 static struct clock_event_device __percpu *arch_timer_evt;
84
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97
early_evtstrm_cfg(char * buf)98 static int __init early_evtstrm_cfg(char *buf)
99 {
100 return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103
104 /*
105 * Makes an educated guess at a valid counter width based on the Generic Timer
106 * specification. Of note:
107 * 1) the system counter is at least 56 bits wide
108 * 2) a roll-over time of not less than 40 years
109 *
110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111 */
arch_counter_get_width(void)112 static int arch_counter_get_width(void)
113 {
114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115
116 /* guarantee the returned width is within the valid range */
117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119
120 /*
121 * Architected system timer support.
122 */
123
124 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u64 val,struct clock_event_device * clk)125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126 struct clock_event_device *clk)
127 {
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 writel_relaxed((u32)val, timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_CVAL:
135 /*
136 * Not guaranteed to be atomic, so the timer
137 * must be disabled at this point.
138 */
139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140 break;
141 default:
142 BUILD_BUG();
143 }
144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145 struct arch_timer *timer = to_arch_timer(clk);
146 switch (reg) {
147 case ARCH_TIMER_REG_CTRL:
148 writel_relaxed((u32)val, timer->base + CNTV_CTL);
149 break;
150 case ARCH_TIMER_REG_CVAL:
151 /* Same restriction as above */
152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153 break;
154 default:
155 BUILD_BUG();
156 }
157 } else {
158 arch_timer_reg_write_cp15(access, reg, val);
159 }
160 }
161
162 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164 struct clock_event_device *clk)
165 {
166 u32 val;
167
168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169 struct arch_timer *timer = to_arch_timer(clk);
170 switch (reg) {
171 case ARCH_TIMER_REG_CTRL:
172 val = readl_relaxed(timer->base + CNTP_CTL);
173 break;
174 default:
175 BUILD_BUG();
176 }
177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178 struct arch_timer *timer = to_arch_timer(clk);
179 switch (reg) {
180 case ARCH_TIMER_REG_CTRL:
181 val = readl_relaxed(timer->base + CNTV_CTL);
182 break;
183 default:
184 BUILD_BUG();
185 }
186 } else {
187 val = arch_timer_reg_read_cp15(access, reg);
188 }
189
190 return val;
191 }
192
arch_counter_get_cntpct_stable(void)193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195 return __arch_counter_get_cntpct_stable();
196 }
197
arch_counter_get_cntpct(void)198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200 return __arch_counter_get_cntpct();
201 }
202
arch_counter_get_cntvct_stable(void)203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205 return __arch_counter_get_cntvct_stable();
206 }
207
arch_counter_get_cntvct(void)208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210 return __arch_counter_get_cntvct();
211 }
212
213 /*
214 * Default to cp15 based access because arm64 uses this function for
215 * sched_clock() before DT is probed and the cp15 method is guaranteed
216 * to exist on arm64. arm doesn't use this before DT is probed so even
217 * if we don't have the cp15 accessors we won't have a problem.
218 */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221
arch_counter_read(struct clocksource * cs)222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224 return arch_timer_read_counter();
225 }
226
arch_counter_read_cc(const struct cyclecounter * cc)227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229 return arch_timer_read_counter();
230 }
231
232 static struct clocksource clocksource_counter = {
233 .name = "arch_sys_counter",
234 .id = CSID_ARM_ARCH_COUNTER,
235 .rating = 400,
236 .read = arch_counter_read,
237 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239
240 static struct cyclecounter cyclecounter __ro_after_init = {
241 .read = arch_counter_read_cc,
242 };
243
244 struct ate_acpi_oem_info {
245 char oem_id[ACPI_OEM_ID_SIZE + 1];
246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247 u32 oem_revision;
248 };
249
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252 * The number of retries is an arbitrary value well beyond the highest number
253 * of iterations the loop has been observed to take.
254 */
255 #define __fsl_a008585_read_reg(reg) ({ \
256 u64 _old, _new; \
257 int _retries = 200; \
258 \
259 do { \
260 _old = read_sysreg(reg); \
261 _new = read_sysreg(reg); \
262 _retries--; \
263 } while (unlikely(_old != _new) && _retries); \
264 \
265 WARN_ON_ONCE(!_retries); \
266 _new; \
267 })
268
fsl_a008585_read_cntpct_el0(void)269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271 return __fsl_a008585_read_reg(cntpct_el0);
272 }
273
fsl_a008585_read_cntvct_el0(void)274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276 return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282 * Verify whether the value of the second read is larger than the first by
283 * less than 32 is the only way to confirm the value is correct, so clear the
284 * lower 5 bits to check whether the difference is greater than 32 or not.
285 * Theoretically the erratum should not occur more than twice in succession
286 * when reading the system counter, but it is possible that some interrupts
287 * may lead to more than twice read errors, triggering the warning, so setting
288 * the number of retries far beyond the number of iterations the loop has been
289 * observed to take.
290 */
291 #define __hisi_161010101_read_reg(reg) ({ \
292 u64 _old, _new; \
293 int _retries = 50; \
294 \
295 do { \
296 _old = read_sysreg(reg); \
297 _new = read_sysreg(reg); \
298 _retries--; \
299 } while (unlikely((_new - _old) >> 5) && _retries); \
300 \
301 WARN_ON_ONCE(!_retries); \
302 _new; \
303 })
304
hisi_161010101_read_cntpct_el0(void)305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307 return __hisi_161010101_read_reg(cntpct_el0);
308 }
309
hisi_161010101_read_cntvct_el0(void)310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312 return __hisi_161010101_read_reg(cntvct_el0);
313 }
314
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316 /*
317 * Note that trailing spaces are required to properly match
318 * the OEM table information.
319 */
320 {
321 .oem_id = "HISI ",
322 .oem_table_id = "HIP05 ",
323 .oem_revision = 0,
324 },
325 {
326 .oem_id = "HISI ",
327 .oem_table_id = "HIP06 ",
328 .oem_revision = 0,
329 },
330 {
331 .oem_id = "HISI ",
332 .oem_table_id = "HIP07 ",
333 .oem_revision = 0,
334 },
335 { /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338
339 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342 u64 old, new;
343
344 old = read_sysreg(cntpct_el0);
345 new = read_sysreg(cntpct_el0);
346 return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348
arm64_858921_read_cntvct_el0(void)349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351 u64 old, new;
352
353 old = read_sysreg(cntvct_el0);
354 new = read_sysreg(cntvct_el0);
355 return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361 * The low bits of the counter registers are indeterminate while bit 10 or
362 * greater is rolling over. Since the counter value can jump both backward
363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364 * with all ones or all zeros in the low bits. Bound the loop by the maximum
365 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366 */
367 #define __sun50i_a64_read_reg(reg) ({ \
368 u64 _val; \
369 int _retries = 150; \
370 \
371 do { \
372 _val = read_sysreg(reg); \
373 _retries--; \
374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
375 \
376 WARN_ON_ONCE(!_retries); \
377 _val; \
378 })
379
sun50i_a64_read_cntpct_el0(void)380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382 return __sun50i_a64_read_reg(cntpct_el0);
383 }
384
sun50i_a64_read_cntvct_el0(void)385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387 return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396
397 /*
398 * Force the inlining of this function so that the register accesses
399 * can be themselves correctly inlined.
400 */
401 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403 struct clock_event_device *clk)
404 {
405 unsigned long ctrl;
406 u64 cval;
407
408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409 ctrl |= ARCH_TIMER_CTRL_ENABLE;
410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411
412 if (access == ARCH_TIMER_PHYS_ACCESS) {
413 cval = evt + arch_counter_get_cntpct_stable();
414 write_sysreg(cval, cntp_cval_el0);
415 } else {
416 cval = evt + arch_counter_get_cntvct_stable();
417 write_sysreg(cval, cntv_cval_el0);
418 }
419
420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424 struct clock_event_device *clk)
425 {
426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427 return 0;
428 }
429
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431 struct clock_event_device *clk)
432 {
433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434 return 0;
435 }
436
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439 {
440 .match_type = ate_match_dt,
441 .id = "fsl,erratum-a008585",
442 .desc = "Freescale erratum a005858",
443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 .set_next_event_phys = erratum_set_next_event_phys,
446 .set_next_event_virt = erratum_set_next_event_virt,
447 },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450 {
451 .match_type = ate_match_dt,
452 .id = "hisilicon,erratum-161010101",
453 .desc = "HiSilicon erratum 161010101",
454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456 .set_next_event_phys = erratum_set_next_event_phys,
457 .set_next_event_virt = erratum_set_next_event_virt,
458 },
459 {
460 .match_type = ate_match_acpi_oem_info,
461 .id = hisi_161010101_oem_info,
462 .desc = "HiSilicon erratum 161010101",
463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465 .set_next_event_phys = erratum_set_next_event_phys,
466 .set_next_event_virt = erratum_set_next_event_virt,
467 },
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470 {
471 .match_type = ate_match_local_cap_id,
472 .id = (void *)ARM64_WORKAROUND_858921,
473 .desc = "ARM erratum 858921",
474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476 .set_next_event_phys = erratum_set_next_event_phys,
477 .set_next_event_virt = erratum_set_next_event_virt,
478 },
479 #endif
480 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
481 {
482 .match_type = ate_match_dt,
483 .id = "allwinner,erratum-unknown1",
484 .desc = "Allwinner erratum UNKNOWN1",
485 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
486 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
487 .set_next_event_phys = erratum_set_next_event_phys,
488 .set_next_event_virt = erratum_set_next_event_virt,
489 },
490 #endif
491 #ifdef CONFIG_ARM64_ERRATUM_1418040
492 {
493 .match_type = ate_match_local_cap_id,
494 .id = (void *)ARM64_WORKAROUND_1418040,
495 .desc = "ARM erratum 1418040",
496 .disable_compat_vdso = true,
497 },
498 #endif
499 };
500
501 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
502 const void *);
503
504 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)505 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
506 const void *arg)
507 {
508 const struct device_node *np = arg;
509
510 return of_property_read_bool(np, wa->id);
511 }
512
513 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)514 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
515 const void *arg)
516 {
517 return this_cpu_has_cap((uintptr_t)wa->id);
518 }
519
520
521 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)522 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
523 const void *arg)
524 {
525 static const struct ate_acpi_oem_info empty_oem_info = {};
526 const struct ate_acpi_oem_info *info = wa->id;
527 const struct acpi_table_header *table = arg;
528
529 /* Iterate over the ACPI OEM info array, looking for a match */
530 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
531 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
532 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
533 info->oem_revision == table->oem_revision)
534 return true;
535
536 info++;
537 }
538
539 return false;
540 }
541
542 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)543 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
544 ate_match_fn_t match_fn,
545 void *arg)
546 {
547 int i;
548
549 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
550 if (ool_workarounds[i].match_type != type)
551 continue;
552
553 if (match_fn(&ool_workarounds[i], arg))
554 return &ool_workarounds[i];
555 }
556
557 return NULL;
558 }
559
560 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)561 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
562 bool local)
563 {
564 int i;
565
566 if (local) {
567 __this_cpu_write(timer_unstable_counter_workaround, wa);
568 } else {
569 for_each_possible_cpu(i)
570 per_cpu(timer_unstable_counter_workaround, i) = wa;
571 }
572
573 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
574 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
575
576 /*
577 * Don't use the vdso fastpath if errata require using the
578 * out-of-line counter accessor. We may change our mind pretty
579 * late in the game (with a per-CPU erratum, for example), so
580 * change both the default value and the vdso itself.
581 */
582 if (wa->read_cntvct_el0) {
583 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
584 vdso_default = VDSO_CLOCKMODE_NONE;
585 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
586 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
587 clocksource_counter.vdso_clock_mode = vdso_default;
588 }
589 }
590
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)591 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
592 void *arg)
593 {
594 const struct arch_timer_erratum_workaround *wa, *__wa;
595 ate_match_fn_t match_fn = NULL;
596 bool local = false;
597
598 switch (type) {
599 case ate_match_dt:
600 match_fn = arch_timer_check_dt_erratum;
601 break;
602 case ate_match_local_cap_id:
603 match_fn = arch_timer_check_local_cap_erratum;
604 local = true;
605 break;
606 case ate_match_acpi_oem_info:
607 match_fn = arch_timer_check_acpi_oem_erratum;
608 break;
609 default:
610 WARN_ON(1);
611 return;
612 }
613
614 wa = arch_timer_iterate_errata(type, match_fn, arg);
615 if (!wa)
616 return;
617
618 __wa = __this_cpu_read(timer_unstable_counter_workaround);
619 if (__wa && wa != __wa)
620 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
621 wa->desc, __wa->desc);
622
623 if (__wa)
624 return;
625
626 arch_timer_enable_workaround(wa, local);
627 pr_info("Enabling %s workaround for %s\n",
628 local ? "local" : "global", wa->desc);
629 }
630
arch_timer_this_cpu_has_cntvct_wa(void)631 static bool arch_timer_this_cpu_has_cntvct_wa(void)
632 {
633 return has_erratum_handler(read_cntvct_el0);
634 }
635
arch_timer_counter_has_wa(void)636 static bool arch_timer_counter_has_wa(void)
637 {
638 return atomic_read(&timer_unstable_counter_workaround_in_use);
639 }
640 #else
641 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
642 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
643 #define arch_timer_counter_has_wa() ({false;})
644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
645
timer_handler(const int access,struct clock_event_device * evt)646 static __always_inline irqreturn_t timer_handler(const int access,
647 struct clock_event_device *evt)
648 {
649 unsigned long ctrl;
650
651 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
652 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
653 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
654 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
655 evt->event_handler(evt);
656 return IRQ_HANDLED;
657 }
658
659 return IRQ_NONE;
660 }
661
arch_timer_handler_virt(int irq,void * dev_id)662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
663 {
664 struct clock_event_device *evt = dev_id;
665
666 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
667 }
668
arch_timer_handler_phys(int irq,void * dev_id)669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
670 {
671 struct clock_event_device *evt = dev_id;
672
673 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
674 }
675
arch_timer_handler_phys_mem(int irq,void * dev_id)676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
677 {
678 struct clock_event_device *evt = dev_id;
679
680 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
681 }
682
arch_timer_handler_virt_mem(int irq,void * dev_id)683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
684 {
685 struct clock_event_device *evt = dev_id;
686
687 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
688 }
689
timer_shutdown(const int access,struct clock_event_device * clk)690 static __always_inline int timer_shutdown(const int access,
691 struct clock_event_device *clk)
692 {
693 unsigned long ctrl;
694
695 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
696 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
697 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
698
699 return 0;
700 }
701
arch_timer_shutdown_virt(struct clock_event_device * clk)702 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
703 {
704 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
705 }
706
arch_timer_shutdown_phys(struct clock_event_device * clk)707 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
708 {
709 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
710 }
711
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
713 {
714 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
715 }
716
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
718 {
719 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
720 }
721
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)722 static __always_inline void set_next_event(const int access, unsigned long evt,
723 struct clock_event_device *clk)
724 {
725 unsigned long ctrl;
726 u64 cnt;
727
728 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
729 ctrl |= ARCH_TIMER_CTRL_ENABLE;
730 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
731
732 if (access == ARCH_TIMER_PHYS_ACCESS)
733 cnt = __arch_counter_get_cntpct();
734 else
735 cnt = __arch_counter_get_cntvct();
736
737 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
738 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
739 }
740
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)741 static int arch_timer_set_next_event_virt(unsigned long evt,
742 struct clock_event_device *clk)
743 {
744 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
745 return 0;
746 }
747
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)748 static int arch_timer_set_next_event_phys(unsigned long evt,
749 struct clock_event_device *clk)
750 {
751 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
752 return 0;
753 }
754
arch_counter_get_cnt_mem(struct arch_timer * t,int offset_lo)755 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
756 {
757 u32 cnt_lo, cnt_hi, tmp_hi;
758
759 do {
760 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
761 cnt_lo = readl_relaxed(t->base + offset_lo);
762 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
763 } while (cnt_hi != tmp_hi);
764
765 return ((u64) cnt_hi << 32) | cnt_lo;
766 }
767
set_next_event_mem(const int access,unsigned long evt,struct clock_event_device * clk)768 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
769 struct clock_event_device *clk)
770 {
771 struct arch_timer *timer = to_arch_timer(clk);
772 unsigned long ctrl;
773 u64 cnt;
774
775 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
776
777 /* Timer must be disabled before programming CVAL */
778 if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
779 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
780 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
781 }
782
783 ctrl |= ARCH_TIMER_CTRL_ENABLE;
784 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
785
786 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
787 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
788 else
789 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
790
791 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
792 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
793 }
794
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)795 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
796 struct clock_event_device *clk)
797 {
798 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
799 return 0;
800 }
801
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)802 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
803 struct clock_event_device *clk)
804 {
805 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
806 return 0;
807 }
808
__arch_timer_check_delta(void)809 static u64 __arch_timer_check_delta(void)
810 {
811 #ifdef CONFIG_ARM64
812 const struct midr_range broken_cval_midrs[] = {
813 /*
814 * XGene-1 implements CVAL in terms of TVAL, meaning
815 * that the maximum timer range is 32bit. Shame on them.
816 *
817 * Note that TVAL is signed, thus has only 31 of its
818 * 32 bits to express magnitude.
819 */
820 MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
821 APM_CPU_PART_XGENE),
822 APM_CPU_VAR_POTENZA, 0x0, 0xf),
823 {},
824 };
825
826 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
827 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
828 return CLOCKSOURCE_MASK(31);
829 }
830 #endif
831 return CLOCKSOURCE_MASK(arch_counter_get_width());
832 }
833
__arch_timer_setup(unsigned type,struct clock_event_device * clk)834 static void __arch_timer_setup(unsigned type,
835 struct clock_event_device *clk)
836 {
837 u64 max_delta;
838
839 clk->features = CLOCK_EVT_FEAT_ONESHOT;
840
841 if (type == ARCH_TIMER_TYPE_CP15) {
842 typeof(clk->set_next_event) sne;
843
844 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
845
846 if (arch_timer_c3stop)
847 clk->features |= CLOCK_EVT_FEAT_C3STOP;
848 clk->name = "arch_sys_timer";
849 clk->rating = 450;
850 clk->cpumask = cpumask_of(smp_processor_id());
851 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
852 switch (arch_timer_uses_ppi) {
853 case ARCH_TIMER_VIRT_PPI:
854 clk->set_state_shutdown = arch_timer_shutdown_virt;
855 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
856 sne = erratum_handler(set_next_event_virt);
857 break;
858 case ARCH_TIMER_PHYS_SECURE_PPI:
859 case ARCH_TIMER_PHYS_NONSECURE_PPI:
860 case ARCH_TIMER_HYP_PPI:
861 clk->set_state_shutdown = arch_timer_shutdown_phys;
862 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
863 sne = erratum_handler(set_next_event_phys);
864 break;
865 default:
866 BUG();
867 }
868
869 clk->set_next_event = sne;
870 max_delta = __arch_timer_check_delta();
871 } else {
872 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
873 clk->name = "arch_mem_timer";
874 clk->rating = 400;
875 clk->cpumask = cpu_possible_mask;
876 if (arch_timer_mem_use_virtual) {
877 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
878 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
879 clk->set_next_event =
880 arch_timer_set_next_event_virt_mem;
881 } else {
882 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
883 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
884 clk->set_next_event =
885 arch_timer_set_next_event_phys_mem;
886 }
887
888 max_delta = CLOCKSOURCE_MASK(56);
889 }
890
891 clk->set_state_shutdown(clk);
892
893 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
894 }
895
arch_timer_evtstrm_enable(unsigned int divider)896 static void arch_timer_evtstrm_enable(unsigned int divider)
897 {
898 u32 cntkctl = arch_timer_get_cntkctl();
899
900 #ifdef CONFIG_ARM64
901 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
902 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
903 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
904 divider -= 8;
905 }
906 #endif
907
908 divider = min(divider, 15U);
909 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
910 /* Set the divider and enable virtual event stream */
911 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
912 | ARCH_TIMER_VIRT_EVT_EN;
913 arch_timer_set_cntkctl(cntkctl);
914 arch_timer_set_evtstrm_feature();
915 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
916 }
917
arch_timer_configure_evtstream(void)918 static void arch_timer_configure_evtstream(void)
919 {
920 int evt_stream_div, lsb;
921
922 /*
923 * As the event stream can at most be generated at half the frequency
924 * of the counter, use half the frequency when computing the divider.
925 */
926 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
927
928 /*
929 * Find the closest power of two to the divisor. If the adjacent bit
930 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
931 */
932 lsb = fls(evt_stream_div) - 1;
933 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
934 lsb++;
935
936 /* enable event stream */
937 arch_timer_evtstrm_enable(max(0, lsb));
938 }
939
arch_counter_set_user_access(void)940 static void arch_counter_set_user_access(void)
941 {
942 u32 cntkctl = arch_timer_get_cntkctl();
943
944 /* Disable user access to the timers and both counters */
945 /* Also disable virtual event stream */
946 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
947 | ARCH_TIMER_USR_VT_ACCESS_EN
948 | ARCH_TIMER_USR_VCT_ACCESS_EN
949 | ARCH_TIMER_VIRT_EVT_EN
950 | ARCH_TIMER_USR_PCT_ACCESS_EN);
951
952 /*
953 * Enable user access to the virtual counter if it doesn't
954 * need to be workaround. The vdso may have been already
955 * disabled though.
956 */
957 if (arch_timer_this_cpu_has_cntvct_wa())
958 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
959 else
960 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
961
962 arch_timer_set_cntkctl(cntkctl);
963 }
964
arch_timer_has_nonsecure_ppi(void)965 static bool arch_timer_has_nonsecure_ppi(void)
966 {
967 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
968 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
969 }
970
check_ppi_trigger(int irq)971 static u32 check_ppi_trigger(int irq)
972 {
973 u32 flags = irq_get_trigger_type(irq);
974
975 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
976 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
977 pr_warn("WARNING: Please fix your firmware\n");
978 flags = IRQF_TRIGGER_LOW;
979 }
980
981 return flags;
982 }
983
arch_timer_starting_cpu(unsigned int cpu)984 static int arch_timer_starting_cpu(unsigned int cpu)
985 {
986 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
987 u32 flags;
988
989 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
990
991 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
992 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
993
994 if (arch_timer_has_nonsecure_ppi()) {
995 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
996 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
997 flags);
998 }
999
1000 arch_counter_set_user_access();
1001 if (evtstrm_enable)
1002 arch_timer_configure_evtstream();
1003
1004 return 0;
1005 }
1006
validate_timer_rate(void)1007 static int validate_timer_rate(void)
1008 {
1009 if (!arch_timer_rate)
1010 return -EINVAL;
1011
1012 /* Arch timer frequency < 1MHz can cause trouble */
1013 WARN_ON(arch_timer_rate < 1000000);
1014
1015 return 0;
1016 }
1017
1018 /*
1019 * For historical reasons, when probing with DT we use whichever (non-zero)
1020 * rate was probed first, and don't verify that others match. If the first node
1021 * probed has a clock-frequency property, this overrides the HW register.
1022 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)1023 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1024 {
1025 /* Who has more than one independent system counter? */
1026 if (arch_timer_rate)
1027 return;
1028
1029 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1030 arch_timer_rate = rate;
1031
1032 /* Check the timer frequency. */
1033 if (validate_timer_rate())
1034 pr_warn("frequency not available\n");
1035 }
1036
arch_timer_banner(unsigned type)1037 static void __init arch_timer_banner(unsigned type)
1038 {
1039 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1040 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1041 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1042 " and " : "",
1043 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1044 (unsigned long)arch_timer_rate / 1000000,
1045 (unsigned long)(arch_timer_rate / 10000) % 100,
1046 type & ARCH_TIMER_TYPE_CP15 ?
1047 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1048 "",
1049 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1050 type & ARCH_TIMER_TYPE_MEM ?
1051 arch_timer_mem_use_virtual ? "virt" : "phys" :
1052 "");
1053 }
1054
arch_timer_get_rate(void)1055 u32 arch_timer_get_rate(void)
1056 {
1057 return arch_timer_rate;
1058 }
1059
arch_timer_evtstrm_available(void)1060 bool arch_timer_evtstrm_available(void)
1061 {
1062 /*
1063 * We might get called from a preemptible context. This is fine
1064 * because availability of the event stream should be always the same
1065 * for a preemptible context and context where we might resume a task.
1066 */
1067 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1068 }
1069
arch_counter_get_cntvct_mem(void)1070 static u64 arch_counter_get_cntvct_mem(void)
1071 {
1072 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1073 }
1074
1075 static struct arch_timer_kvm_info arch_timer_kvm_info;
1076
arch_timer_get_kvm_info(void)1077 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1078 {
1079 return &arch_timer_kvm_info;
1080 }
1081
arch_counter_register(unsigned type)1082 static void __init arch_counter_register(unsigned type)
1083 {
1084 u64 start_count;
1085 int width;
1086
1087 /* Register the CP15 based counter if we have one */
1088 if (type & ARCH_TIMER_TYPE_CP15) {
1089 u64 (*rd)(void);
1090
1091 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1092 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1093 if (arch_timer_counter_has_wa())
1094 rd = arch_counter_get_cntvct_stable;
1095 else
1096 rd = arch_counter_get_cntvct;
1097 } else {
1098 if (arch_timer_counter_has_wa())
1099 rd = arch_counter_get_cntpct_stable;
1100 else
1101 rd = arch_counter_get_cntpct;
1102 }
1103
1104 arch_timer_read_counter = rd;
1105 clocksource_counter.vdso_clock_mode = vdso_default;
1106 } else {
1107 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1108 }
1109
1110 width = arch_counter_get_width();
1111 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1112 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1113
1114 if (!arch_counter_suspend_stop)
1115 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1116 start_count = arch_timer_read_counter();
1117 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1118 cyclecounter.mult = clocksource_counter.mult;
1119 cyclecounter.shift = clocksource_counter.shift;
1120 timecounter_init(&arch_timer_kvm_info.timecounter,
1121 &cyclecounter, start_count);
1122
1123 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1124 }
1125
arch_timer_stop(struct clock_event_device * clk)1126 static void arch_timer_stop(struct clock_event_device *clk)
1127 {
1128 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1129
1130 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1131 if (arch_timer_has_nonsecure_ppi())
1132 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1133
1134 clk->set_state_shutdown(clk);
1135 }
1136
arch_timer_dying_cpu(unsigned int cpu)1137 static int arch_timer_dying_cpu(unsigned int cpu)
1138 {
1139 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1140
1141 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1142
1143 arch_timer_stop(clk);
1144 return 0;
1145 }
1146
1147 #ifdef CONFIG_CPU_PM
1148 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1149 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1150 unsigned long action, void *hcpu)
1151 {
1152 if (action == CPU_PM_ENTER) {
1153 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1154
1155 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1156 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1157 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1158
1159 if (arch_timer_have_evtstrm_feature())
1160 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1161 }
1162 return NOTIFY_OK;
1163 }
1164
1165 static struct notifier_block arch_timer_cpu_pm_notifier = {
1166 .notifier_call = arch_timer_cpu_pm_notify,
1167 };
1168
arch_timer_cpu_pm_init(void)1169 static int __init arch_timer_cpu_pm_init(void)
1170 {
1171 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1172 }
1173
arch_timer_cpu_pm_deinit(void)1174 static void __init arch_timer_cpu_pm_deinit(void)
1175 {
1176 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1177 }
1178
1179 #else
arch_timer_cpu_pm_init(void)1180 static int __init arch_timer_cpu_pm_init(void)
1181 {
1182 return 0;
1183 }
1184
arch_timer_cpu_pm_deinit(void)1185 static void __init arch_timer_cpu_pm_deinit(void)
1186 {
1187 }
1188 #endif
1189
arch_timer_register(void)1190 static int __init arch_timer_register(void)
1191 {
1192 int err;
1193 int ppi;
1194
1195 arch_timer_evt = alloc_percpu(struct clock_event_device);
1196 if (!arch_timer_evt) {
1197 err = -ENOMEM;
1198 goto out;
1199 }
1200
1201 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1202 switch (arch_timer_uses_ppi) {
1203 case ARCH_TIMER_VIRT_PPI:
1204 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1205 "arch_timer", arch_timer_evt);
1206 break;
1207 case ARCH_TIMER_PHYS_SECURE_PPI:
1208 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1209 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1210 "arch_timer", arch_timer_evt);
1211 if (!err && arch_timer_has_nonsecure_ppi()) {
1212 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1213 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1214 "arch_timer", arch_timer_evt);
1215 if (err)
1216 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1217 arch_timer_evt);
1218 }
1219 break;
1220 case ARCH_TIMER_HYP_PPI:
1221 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1222 "arch_timer", arch_timer_evt);
1223 break;
1224 default:
1225 BUG();
1226 }
1227
1228 if (err) {
1229 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1230 goto out_free;
1231 }
1232
1233 err = arch_timer_cpu_pm_init();
1234 if (err)
1235 goto out_unreg_notify;
1236
1237 /* Register and immediately configure the timer on the boot CPU */
1238 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1239 "clockevents/arm/arch_timer:starting",
1240 arch_timer_starting_cpu, arch_timer_dying_cpu);
1241 if (err)
1242 goto out_unreg_cpupm;
1243 return 0;
1244
1245 out_unreg_cpupm:
1246 arch_timer_cpu_pm_deinit();
1247
1248 out_unreg_notify:
1249 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1250 if (arch_timer_has_nonsecure_ppi())
1251 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1252 arch_timer_evt);
1253
1254 out_free:
1255 free_percpu(arch_timer_evt);
1256 out:
1257 return err;
1258 }
1259
arch_timer_mem_register(void __iomem * base,unsigned int irq)1260 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1261 {
1262 int ret;
1263 irq_handler_t func;
1264
1265 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1266 if (!arch_timer_mem)
1267 return -ENOMEM;
1268
1269 arch_timer_mem->base = base;
1270 arch_timer_mem->evt.irq = irq;
1271 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1272
1273 if (arch_timer_mem_use_virtual)
1274 func = arch_timer_handler_virt_mem;
1275 else
1276 func = arch_timer_handler_phys_mem;
1277
1278 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1279 if (ret) {
1280 pr_err("Failed to request mem timer irq\n");
1281 kfree(arch_timer_mem);
1282 arch_timer_mem = NULL;
1283 }
1284
1285 return ret;
1286 }
1287
1288 static const struct of_device_id arch_timer_of_match[] __initconst = {
1289 { .compatible = "arm,armv7-timer", },
1290 { .compatible = "arm,armv8-timer", },
1291 {},
1292 };
1293
1294 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1295 { .compatible = "arm,armv7-timer-mem", },
1296 {},
1297 };
1298
arch_timer_needs_of_probing(void)1299 static bool __init arch_timer_needs_of_probing(void)
1300 {
1301 struct device_node *dn;
1302 bool needs_probing = false;
1303 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1304
1305 /* We have two timers, and both device-tree nodes are probed. */
1306 if ((arch_timers_present & mask) == mask)
1307 return false;
1308
1309 /*
1310 * Only one type of timer is probed,
1311 * check if we have another type of timer node in device-tree.
1312 */
1313 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1314 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1315 else
1316 dn = of_find_matching_node(NULL, arch_timer_of_match);
1317
1318 if (dn && of_device_is_available(dn))
1319 needs_probing = true;
1320
1321 of_node_put(dn);
1322
1323 return needs_probing;
1324 }
1325
arch_timer_common_init(void)1326 static int __init arch_timer_common_init(void)
1327 {
1328 arch_timer_banner(arch_timers_present);
1329 arch_counter_register(arch_timers_present);
1330 return arch_timer_arch_init();
1331 }
1332
1333 /**
1334 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1335 *
1336 * If HYP mode is available, we know that the physical timer
1337 * has been configured to be accessible from PL1. Use it, so
1338 * that a guest can use the virtual timer instead.
1339 *
1340 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1341 * accesses to CNTP_*_EL1 registers are silently redirected to
1342 * their CNTHP_*_EL2 counterparts, and use a different PPI
1343 * number.
1344 *
1345 * If no interrupt provided for virtual timer, we'll have to
1346 * stick to the physical timer. It'd better be accessible...
1347 * For arm64 we never use the secure interrupt.
1348 *
1349 * Return: a suitable PPI type for the current system.
1350 */
arch_timer_select_ppi(void)1351 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1352 {
1353 if (is_kernel_in_hyp_mode())
1354 return ARCH_TIMER_HYP_PPI;
1355
1356 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1357 return ARCH_TIMER_VIRT_PPI;
1358
1359 if (IS_ENABLED(CONFIG_ARM64))
1360 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1361
1362 return ARCH_TIMER_PHYS_SECURE_PPI;
1363 }
1364
arch_timer_populate_kvm_info(void)1365 static void __init arch_timer_populate_kvm_info(void)
1366 {
1367 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1368 if (is_kernel_in_hyp_mode())
1369 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1370 }
1371
arch_timer_of_init(struct device_node * np)1372 static int __init arch_timer_of_init(struct device_node *np)
1373 {
1374 int i, irq, ret;
1375 u32 rate;
1376 bool has_names;
1377
1378 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1379 pr_warn("multiple nodes in dt, skipping\n");
1380 return 0;
1381 }
1382
1383 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1384
1385 has_names = of_property_read_bool(np, "interrupt-names");
1386
1387 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1388 if (has_names)
1389 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1390 else
1391 irq = of_irq_get(np, i);
1392 if (irq > 0)
1393 arch_timer_ppi[i] = irq;
1394 }
1395
1396 arch_timer_populate_kvm_info();
1397
1398 rate = arch_timer_get_cntfrq();
1399 arch_timer_of_configure_rate(rate, np);
1400
1401 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1402
1403 /* Check for globally applicable workarounds */
1404 arch_timer_check_ool_workaround(ate_match_dt, np);
1405
1406 /*
1407 * If we cannot rely on firmware initializing the timer registers then
1408 * we should use the physical timers instead.
1409 */
1410 if (IS_ENABLED(CONFIG_ARM) &&
1411 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1412 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1413 else
1414 arch_timer_uses_ppi = arch_timer_select_ppi();
1415
1416 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1417 pr_err("No interrupt available, giving up\n");
1418 return -EINVAL;
1419 }
1420
1421 /* On some systems, the counter stops ticking when in suspend. */
1422 arch_counter_suspend_stop = of_property_read_bool(np,
1423 "arm,no-tick-in-suspend");
1424
1425 ret = arch_timer_register();
1426 if (ret)
1427 return ret;
1428
1429 if (arch_timer_needs_of_probing())
1430 return 0;
1431
1432 return arch_timer_common_init();
1433 }
1434 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1435 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1436
1437 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1438 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1439 {
1440 void __iomem *base;
1441 u32 rate;
1442
1443 base = ioremap(frame->cntbase, frame->size);
1444 if (!base) {
1445 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1446 return 0;
1447 }
1448
1449 rate = readl_relaxed(base + CNTFRQ);
1450
1451 iounmap(base);
1452
1453 return rate;
1454 }
1455
1456 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1457 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1458 {
1459 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1460 void __iomem *cntctlbase;
1461 u32 cnttidr;
1462 int i;
1463
1464 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1465 if (!cntctlbase) {
1466 pr_err("Can't map CNTCTLBase @ %pa\n",
1467 &timer_mem->cntctlbase);
1468 return NULL;
1469 }
1470
1471 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1472
1473 /*
1474 * Try to find a virtual capable frame. Otherwise fall back to a
1475 * physical capable frame.
1476 */
1477 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1478 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1479 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1480
1481 frame = &timer_mem->frame[i];
1482 if (!frame->valid)
1483 continue;
1484
1485 /* Try enabling everything, and see what sticks */
1486 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1487 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1488
1489 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1490 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1491 best_frame = frame;
1492 arch_timer_mem_use_virtual = true;
1493 break;
1494 }
1495
1496 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1497 continue;
1498
1499 best_frame = frame;
1500 }
1501
1502 iounmap(cntctlbase);
1503
1504 return best_frame;
1505 }
1506
1507 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1508 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1509 {
1510 void __iomem *base;
1511 int ret, irq = 0;
1512
1513 if (arch_timer_mem_use_virtual)
1514 irq = frame->virt_irq;
1515 else
1516 irq = frame->phys_irq;
1517
1518 if (!irq) {
1519 pr_err("Frame missing %s irq.\n",
1520 arch_timer_mem_use_virtual ? "virt" : "phys");
1521 return -EINVAL;
1522 }
1523
1524 if (!request_mem_region(frame->cntbase, frame->size,
1525 "arch_mem_timer"))
1526 return -EBUSY;
1527
1528 base = ioremap(frame->cntbase, frame->size);
1529 if (!base) {
1530 pr_err("Can't map frame's registers\n");
1531 return -ENXIO;
1532 }
1533
1534 ret = arch_timer_mem_register(base, irq);
1535 if (ret) {
1536 iounmap(base);
1537 return ret;
1538 }
1539
1540 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1541
1542 return 0;
1543 }
1544
arch_timer_mem_of_init(struct device_node * np)1545 static int __init arch_timer_mem_of_init(struct device_node *np)
1546 {
1547 struct arch_timer_mem *timer_mem;
1548 struct arch_timer_mem_frame *frame;
1549 struct device_node *frame_node;
1550 struct resource res;
1551 int ret = -EINVAL;
1552 u32 rate;
1553
1554 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1555 if (!timer_mem)
1556 return -ENOMEM;
1557
1558 if (of_address_to_resource(np, 0, &res))
1559 goto out;
1560 timer_mem->cntctlbase = res.start;
1561 timer_mem->size = resource_size(&res);
1562
1563 for_each_available_child_of_node(np, frame_node) {
1564 u32 n;
1565 struct arch_timer_mem_frame *frame;
1566
1567 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1568 pr_err(FW_BUG "Missing frame-number.\n");
1569 of_node_put(frame_node);
1570 goto out;
1571 }
1572 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1573 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1574 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1575 of_node_put(frame_node);
1576 goto out;
1577 }
1578 frame = &timer_mem->frame[n];
1579
1580 if (frame->valid) {
1581 pr_err(FW_BUG "Duplicated frame-number.\n");
1582 of_node_put(frame_node);
1583 goto out;
1584 }
1585
1586 if (of_address_to_resource(frame_node, 0, &res)) {
1587 of_node_put(frame_node);
1588 goto out;
1589 }
1590 frame->cntbase = res.start;
1591 frame->size = resource_size(&res);
1592
1593 frame->virt_irq = irq_of_parse_and_map(frame_node,
1594 ARCH_TIMER_VIRT_SPI);
1595 frame->phys_irq = irq_of_parse_and_map(frame_node,
1596 ARCH_TIMER_PHYS_SPI);
1597
1598 frame->valid = true;
1599 }
1600
1601 frame = arch_timer_mem_find_best_frame(timer_mem);
1602 if (!frame) {
1603 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1604 &timer_mem->cntctlbase);
1605 ret = -EINVAL;
1606 goto out;
1607 }
1608
1609 rate = arch_timer_mem_frame_get_cntfrq(frame);
1610 arch_timer_of_configure_rate(rate, np);
1611
1612 ret = arch_timer_mem_frame_register(frame);
1613 if (!ret && !arch_timer_needs_of_probing())
1614 ret = arch_timer_common_init();
1615 out:
1616 kfree(timer_mem);
1617 return ret;
1618 }
1619 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1620 arch_timer_mem_of_init);
1621
1622 #ifdef CONFIG_ACPI_GTDT
1623 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1624 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1625 {
1626 struct arch_timer_mem_frame *frame;
1627 u32 rate;
1628 int i;
1629
1630 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1631 frame = &timer_mem->frame[i];
1632
1633 if (!frame->valid)
1634 continue;
1635
1636 rate = arch_timer_mem_frame_get_cntfrq(frame);
1637 if (rate == arch_timer_rate)
1638 continue;
1639
1640 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1641 &frame->cntbase,
1642 (unsigned long)rate, (unsigned long)arch_timer_rate);
1643
1644 return -EINVAL;
1645 }
1646
1647 return 0;
1648 }
1649
arch_timer_mem_acpi_init(int platform_timer_count)1650 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1651 {
1652 struct arch_timer_mem *timers, *timer;
1653 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1654 int timer_count, i, ret = 0;
1655
1656 timers = kcalloc(platform_timer_count, sizeof(*timers),
1657 GFP_KERNEL);
1658 if (!timers)
1659 return -ENOMEM;
1660
1661 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1662 if (ret || !timer_count)
1663 goto out;
1664
1665 /*
1666 * While unlikely, it's theoretically possible that none of the frames
1667 * in a timer expose the combination of feature we want.
1668 */
1669 for (i = 0; i < timer_count; i++) {
1670 timer = &timers[i];
1671
1672 frame = arch_timer_mem_find_best_frame(timer);
1673 if (!best_frame)
1674 best_frame = frame;
1675
1676 ret = arch_timer_mem_verify_cntfrq(timer);
1677 if (ret) {
1678 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1679 goto out;
1680 }
1681
1682 if (!best_frame) /* implies !frame */
1683 /*
1684 * Only complain about missing suitable frames if we
1685 * haven't already found one in a previous iteration.
1686 */
1687 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1688 &timer->cntctlbase);
1689 }
1690
1691 if (best_frame)
1692 ret = arch_timer_mem_frame_register(best_frame);
1693 out:
1694 kfree(timers);
1695 return ret;
1696 }
1697
1698 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1699 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1700 {
1701 int ret, platform_timer_count;
1702
1703 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1704 pr_warn("already initialized, skipping\n");
1705 return -EINVAL;
1706 }
1707
1708 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1709
1710 ret = acpi_gtdt_init(table, &platform_timer_count);
1711 if (ret)
1712 return ret;
1713
1714 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1715 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1716
1717 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1718 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1719
1720 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1721 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1722
1723 arch_timer_populate_kvm_info();
1724
1725 /*
1726 * When probing via ACPI, we have no mechanism to override the sysreg
1727 * CNTFRQ value. This *must* be correct.
1728 */
1729 arch_timer_rate = arch_timer_get_cntfrq();
1730 ret = validate_timer_rate();
1731 if (ret) {
1732 pr_err(FW_BUG "frequency not available.\n");
1733 return ret;
1734 }
1735
1736 arch_timer_uses_ppi = arch_timer_select_ppi();
1737 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1738 pr_err("No interrupt available, giving up\n");
1739 return -EINVAL;
1740 }
1741
1742 /* Always-on capability */
1743 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1744
1745 /* Check for globally applicable workarounds */
1746 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1747
1748 ret = arch_timer_register();
1749 if (ret)
1750 return ret;
1751
1752 if (platform_timer_count &&
1753 arch_timer_mem_acpi_init(platform_timer_count))
1754 pr_err("Failed to initialize memory-mapped timer.\n");
1755
1756 return arch_timer_common_init();
1757 }
1758 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1759 #endif
1760
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,struct clocksource ** cs)1761 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1762 struct clocksource **cs)
1763 {
1764 struct arm_smccc_res hvc_res;
1765 u32 ptp_counter;
1766 ktime_t ktime;
1767
1768 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1769 return -EOPNOTSUPP;
1770
1771 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1772 ptp_counter = KVM_PTP_VIRT_COUNTER;
1773 else
1774 ptp_counter = KVM_PTP_PHYS_COUNTER;
1775
1776 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1777 ptp_counter, &hvc_res);
1778
1779 if ((int)(hvc_res.a0) < 0)
1780 return -EOPNOTSUPP;
1781
1782 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1783 *ts = ktime_to_timespec64(ktime);
1784 if (cycle)
1785 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1786 if (cs)
1787 *cs = &clocksource_counter;
1788
1789 return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1792