• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #define CNTTIDR		0x08
37 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
38 
39 #define CNTACR(n)	(0x40 + ((n) * 4))
40 #define CNTACR_RPCT	BIT(0)
41 #define CNTACR_RVCT	BIT(1)
42 #define CNTACR_RFRQ	BIT(2)
43 #define CNTACR_RVOFF	BIT(3)
44 #define CNTACR_RWVT	BIT(4)
45 #define CNTACR_RWPT	BIT(5)
46 
47 #define CNTPCT_LO	0x00
48 #define CNTVCT_LO	0x08
49 #define CNTFRQ		0x10
50 #define CNTP_CVAL_LO	0x20
51 #define CNTP_CTL	0x2c
52 #define CNTV_CVAL_LO	0x30
53 #define CNTV_CTL	0x3c
54 
55 /*
56  * The minimum amount of time a generic counter is guaranteed to not roll over
57  * (40 years)
58  */
59 #define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
60 
61 static unsigned arch_timers_present __initdata;
62 
63 struct arch_timer {
64 	void __iomem *base;
65 	struct clock_event_device evt;
66 };
67 
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69 
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71 
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74 
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
77 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
78 	[ARCH_TIMER_VIRT_PPI]		= "virt",
79 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
80 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
81 };
82 
83 static struct clock_event_device __percpu *arch_timer_evt;
84 
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94 
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97 
early_evtstrm_cfg(char * buf)98 static int __init early_evtstrm_cfg(char *buf)
99 {
100 	return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103 
104 /*
105  * Makes an educated guess at a valid counter width based on the Generic Timer
106  * specification. Of note:
107  *   1) the system counter is at least 56 bits wide
108  *   2) a roll-over time of not less than 40 years
109  *
110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111  */
arch_counter_get_width(void)112 static int arch_counter_get_width(void)
113 {
114 	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115 
116 	/* guarantee the returned width is within the valid range */
117 	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119 
120 /*
121  * Architected system timer support.
122  */
123 
124 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u64 val,struct clock_event_device * clk)125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126 			  struct clock_event_device *clk)
127 {
128 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 		struct arch_timer *timer = to_arch_timer(clk);
130 		switch (reg) {
131 		case ARCH_TIMER_REG_CTRL:
132 			writel_relaxed((u32)val, timer->base + CNTP_CTL);
133 			break;
134 		case ARCH_TIMER_REG_CVAL:
135 			/*
136 			 * Not guaranteed to be atomic, so the timer
137 			 * must be disabled at this point.
138 			 */
139 			writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140 			break;
141 		default:
142 			BUILD_BUG();
143 		}
144 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145 		struct arch_timer *timer = to_arch_timer(clk);
146 		switch (reg) {
147 		case ARCH_TIMER_REG_CTRL:
148 			writel_relaxed((u32)val, timer->base + CNTV_CTL);
149 			break;
150 		case ARCH_TIMER_REG_CVAL:
151 			/* Same restriction as above */
152 			writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153 			break;
154 		default:
155 			BUILD_BUG();
156 		}
157 	} else {
158 		arch_timer_reg_write_cp15(access, reg, val);
159 	}
160 }
161 
162 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164 			struct clock_event_device *clk)
165 {
166 	u32 val;
167 
168 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169 		struct arch_timer *timer = to_arch_timer(clk);
170 		switch (reg) {
171 		case ARCH_TIMER_REG_CTRL:
172 			val = readl_relaxed(timer->base + CNTP_CTL);
173 			break;
174 		default:
175 			BUILD_BUG();
176 		}
177 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178 		struct arch_timer *timer = to_arch_timer(clk);
179 		switch (reg) {
180 		case ARCH_TIMER_REG_CTRL:
181 			val = readl_relaxed(timer->base + CNTV_CTL);
182 			break;
183 		default:
184 			BUILD_BUG();
185 		}
186 	} else {
187 		val = arch_timer_reg_read_cp15(access, reg);
188 	}
189 
190 	return val;
191 }
192 
arch_counter_get_cntpct_stable(void)193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195 	return __arch_counter_get_cntpct_stable();
196 }
197 
arch_counter_get_cntpct(void)198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200 	return __arch_counter_get_cntpct();
201 }
202 
arch_counter_get_cntvct_stable(void)203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205 	return __arch_counter_get_cntvct_stable();
206 }
207 
arch_counter_get_cntvct(void)208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210 	return __arch_counter_get_cntvct();
211 }
212 
213 /*
214  * Default to cp15 based access because arm64 uses this function for
215  * sched_clock() before DT is probed and the cp15 method is guaranteed
216  * to exist on arm64. arm doesn't use this before DT is probed so even
217  * if we don't have the cp15 accessors we won't have a problem.
218  */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221 
arch_counter_read(struct clocksource * cs)222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224 	return arch_timer_read_counter();
225 }
226 
arch_counter_read_cc(const struct cyclecounter * cc)227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229 	return arch_timer_read_counter();
230 }
231 
232 static struct clocksource clocksource_counter = {
233 	.name	= "arch_sys_counter",
234 	.id	= CSID_ARM_ARCH_COUNTER,
235 	.rating	= 400,
236 	.read	= arch_counter_read,
237 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239 
240 static struct cyclecounter cyclecounter __ro_after_init = {
241 	.read	= arch_counter_read_cc,
242 };
243 
244 struct ate_acpi_oem_info {
245 	char oem_id[ACPI_OEM_ID_SIZE + 1];
246 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247 	u32 oem_revision;
248 };
249 
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252  * The number of retries is an arbitrary value well beyond the highest number
253  * of iterations the loop has been observed to take.
254  */
255 #define __fsl_a008585_read_reg(reg) ({			\
256 	u64 _old, _new;					\
257 	int _retries = 200;				\
258 							\
259 	do {						\
260 		_old = read_sysreg(reg);		\
261 		_new = read_sysreg(reg);		\
262 		_retries--;				\
263 	} while (unlikely(_old != _new) && _retries);	\
264 							\
265 	WARN_ON_ONCE(!_retries);			\
266 	_new;						\
267 })
268 
fsl_a008585_read_cntpct_el0(void)269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271 	return __fsl_a008585_read_reg(cntpct_el0);
272 }
273 
fsl_a008585_read_cntvct_el0(void)274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276 	return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279 
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282  * Verify whether the value of the second read is larger than the first by
283  * less than 32 is the only way to confirm the value is correct, so clear the
284  * lower 5 bits to check whether the difference is greater than 32 or not.
285  * Theoretically the erratum should not occur more than twice in succession
286  * when reading the system counter, but it is possible that some interrupts
287  * may lead to more than twice read errors, triggering the warning, so setting
288  * the number of retries far beyond the number of iterations the loop has been
289  * observed to take.
290  */
291 #define __hisi_161010101_read_reg(reg) ({				\
292 	u64 _old, _new;						\
293 	int _retries = 50;					\
294 								\
295 	do {							\
296 		_old = read_sysreg(reg);			\
297 		_new = read_sysreg(reg);			\
298 		_retries--;					\
299 	} while (unlikely((_new - _old) >> 5) && _retries);	\
300 								\
301 	WARN_ON_ONCE(!_retries);				\
302 	_new;							\
303 })
304 
hisi_161010101_read_cntpct_el0(void)305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307 	return __hisi_161010101_read_reg(cntpct_el0);
308 }
309 
hisi_161010101_read_cntvct_el0(void)310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312 	return __hisi_161010101_read_reg(cntvct_el0);
313 }
314 
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316 	/*
317 	 * Note that trailing spaces are required to properly match
318 	 * the OEM table information.
319 	 */
320 	{
321 		.oem_id		= "HISI  ",
322 		.oem_table_id	= "HIP05   ",
323 		.oem_revision	= 0,
324 	},
325 	{
326 		.oem_id		= "HISI  ",
327 		.oem_table_id	= "HIP06   ",
328 		.oem_revision	= 0,
329 	},
330 	{
331 		.oem_id		= "HISI  ",
332 		.oem_table_id	= "HIP07   ",
333 		.oem_revision	= 0,
334 	},
335 	{ /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338 
339 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342 	u64 old, new;
343 
344 	old = read_sysreg(cntpct_el0);
345 	new = read_sysreg(cntpct_el0);
346 	return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348 
arm64_858921_read_cntvct_el0(void)349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351 	u64 old, new;
352 
353 	old = read_sysreg(cntvct_el0);
354 	new = read_sysreg(cntvct_el0);
355 	return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358 
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361  * The low bits of the counter registers are indeterminate while bit 10 or
362  * greater is rolling over. Since the counter value can jump both backward
363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366  */
367 #define __sun50i_a64_read_reg(reg) ({					\
368 	u64 _val;							\
369 	int _retries = 150;						\
370 									\
371 	do {								\
372 		_val = read_sysreg(reg);				\
373 		_retries--;						\
374 	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
375 									\
376 	WARN_ON_ONCE(!_retries);					\
377 	_val;								\
378 })
379 
sun50i_a64_read_cntpct_el0(void)380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382 	return __sun50i_a64_read_reg(cntpct_el0);
383 }
384 
sun50i_a64_read_cntvct_el0(void)385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387 	return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390 
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394 
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396 
397 /*
398  * Force the inlining of this function so that the register accesses
399  * can be themselves correctly inlined.
400  */
401 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403 				    struct clock_event_device *clk)
404 {
405 	unsigned long ctrl;
406 	u64 cval;
407 
408 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
410 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411 
412 	if (access == ARCH_TIMER_PHYS_ACCESS) {
413 		cval = evt + arch_counter_get_cntpct_stable();
414 		write_sysreg(cval, cntp_cval_el0);
415 	} else {
416 		cval = evt + arch_counter_get_cntvct_stable();
417 		write_sysreg(cval, cntv_cval_el0);
418 	}
419 
420 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422 
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424 					    struct clock_event_device *clk)
425 {
426 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427 	return 0;
428 }
429 
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431 					    struct clock_event_device *clk)
432 {
433 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434 	return 0;
435 }
436 
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439 	{
440 		.match_type = ate_match_dt,
441 		.id = "fsl,erratum-a008585",
442 		.desc = "Freescale erratum a005858",
443 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 		.set_next_event_phys = erratum_set_next_event_phys,
446 		.set_next_event_virt = erratum_set_next_event_virt,
447 	},
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450 	{
451 		.match_type = ate_match_dt,
452 		.id = "hisilicon,erratum-161010101",
453 		.desc = "HiSilicon erratum 161010101",
454 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456 		.set_next_event_phys = erratum_set_next_event_phys,
457 		.set_next_event_virt = erratum_set_next_event_virt,
458 	},
459 	{
460 		.match_type = ate_match_acpi_oem_info,
461 		.id = hisi_161010101_oem_info,
462 		.desc = "HiSilicon erratum 161010101",
463 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465 		.set_next_event_phys = erratum_set_next_event_phys,
466 		.set_next_event_virt = erratum_set_next_event_virt,
467 	},
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470 	{
471 		.match_type = ate_match_local_cap_id,
472 		.id = (void *)ARM64_WORKAROUND_858921,
473 		.desc = "ARM erratum 858921",
474 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476 		.set_next_event_phys = erratum_set_next_event_phys,
477 		.set_next_event_virt = erratum_set_next_event_virt,
478 	},
479 #endif
480 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
481 	{
482 		.match_type = ate_match_dt,
483 		.id = "allwinner,erratum-unknown1",
484 		.desc = "Allwinner erratum UNKNOWN1",
485 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
486 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
487 		.set_next_event_phys = erratum_set_next_event_phys,
488 		.set_next_event_virt = erratum_set_next_event_virt,
489 	},
490 #endif
491 #ifdef CONFIG_ARM64_ERRATUM_1418040
492 	{
493 		.match_type = ate_match_local_cap_id,
494 		.id = (void *)ARM64_WORKAROUND_1418040,
495 		.desc = "ARM erratum 1418040",
496 		.disable_compat_vdso = true,
497 	},
498 #endif
499 };
500 
501 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
502 			       const void *);
503 
504 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)505 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
506 				 const void *arg)
507 {
508 	const struct device_node *np = arg;
509 
510 	return of_property_read_bool(np, wa->id);
511 }
512 
513 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)514 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
515 					const void *arg)
516 {
517 	return this_cpu_has_cap((uintptr_t)wa->id);
518 }
519 
520 
521 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)522 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
523 				       const void *arg)
524 {
525 	static const struct ate_acpi_oem_info empty_oem_info = {};
526 	const struct ate_acpi_oem_info *info = wa->id;
527 	const struct acpi_table_header *table = arg;
528 
529 	/* Iterate over the ACPI OEM info array, looking for a match */
530 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
531 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
532 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
533 		    info->oem_revision == table->oem_revision)
534 			return true;
535 
536 		info++;
537 	}
538 
539 	return false;
540 }
541 
542 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)543 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
544 			  ate_match_fn_t match_fn,
545 			  void *arg)
546 {
547 	int i;
548 
549 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
550 		if (ool_workarounds[i].match_type != type)
551 			continue;
552 
553 		if (match_fn(&ool_workarounds[i], arg))
554 			return &ool_workarounds[i];
555 	}
556 
557 	return NULL;
558 }
559 
560 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)561 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
562 				  bool local)
563 {
564 	int i;
565 
566 	if (local) {
567 		__this_cpu_write(timer_unstable_counter_workaround, wa);
568 	} else {
569 		for_each_possible_cpu(i)
570 			per_cpu(timer_unstable_counter_workaround, i) = wa;
571 	}
572 
573 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
574 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
575 
576 	/*
577 	 * Don't use the vdso fastpath if errata require using the
578 	 * out-of-line counter accessor. We may change our mind pretty
579 	 * late in the game (with a per-CPU erratum, for example), so
580 	 * change both the default value and the vdso itself.
581 	 */
582 	if (wa->read_cntvct_el0) {
583 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
584 		vdso_default = VDSO_CLOCKMODE_NONE;
585 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
586 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
587 		clocksource_counter.vdso_clock_mode = vdso_default;
588 	}
589 }
590 
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)591 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
592 					    void *arg)
593 {
594 	const struct arch_timer_erratum_workaround *wa, *__wa;
595 	ate_match_fn_t match_fn = NULL;
596 	bool local = false;
597 
598 	switch (type) {
599 	case ate_match_dt:
600 		match_fn = arch_timer_check_dt_erratum;
601 		break;
602 	case ate_match_local_cap_id:
603 		match_fn = arch_timer_check_local_cap_erratum;
604 		local = true;
605 		break;
606 	case ate_match_acpi_oem_info:
607 		match_fn = arch_timer_check_acpi_oem_erratum;
608 		break;
609 	default:
610 		WARN_ON(1);
611 		return;
612 	}
613 
614 	wa = arch_timer_iterate_errata(type, match_fn, arg);
615 	if (!wa)
616 		return;
617 
618 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
619 	if (__wa && wa != __wa)
620 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
621 			wa->desc, __wa->desc);
622 
623 	if (__wa)
624 		return;
625 
626 	arch_timer_enable_workaround(wa, local);
627 	pr_info("Enabling %s workaround for %s\n",
628 		local ? "local" : "global", wa->desc);
629 }
630 
arch_timer_this_cpu_has_cntvct_wa(void)631 static bool arch_timer_this_cpu_has_cntvct_wa(void)
632 {
633 	return has_erratum_handler(read_cntvct_el0);
634 }
635 
arch_timer_counter_has_wa(void)636 static bool arch_timer_counter_has_wa(void)
637 {
638 	return atomic_read(&timer_unstable_counter_workaround_in_use);
639 }
640 #else
641 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
642 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
643 #define arch_timer_counter_has_wa()			({false;})
644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
645 
timer_handler(const int access,struct clock_event_device * evt)646 static __always_inline irqreturn_t timer_handler(const int access,
647 					struct clock_event_device *evt)
648 {
649 	unsigned long ctrl;
650 
651 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
652 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
653 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
654 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
655 		evt->event_handler(evt);
656 		return IRQ_HANDLED;
657 	}
658 
659 	return IRQ_NONE;
660 }
661 
arch_timer_handler_virt(int irq,void * dev_id)662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
663 {
664 	struct clock_event_device *evt = dev_id;
665 
666 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
667 }
668 
arch_timer_handler_phys(int irq,void * dev_id)669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
670 {
671 	struct clock_event_device *evt = dev_id;
672 
673 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
674 }
675 
arch_timer_handler_phys_mem(int irq,void * dev_id)676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
677 {
678 	struct clock_event_device *evt = dev_id;
679 
680 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
681 }
682 
arch_timer_handler_virt_mem(int irq,void * dev_id)683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
684 {
685 	struct clock_event_device *evt = dev_id;
686 
687 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
688 }
689 
timer_shutdown(const int access,struct clock_event_device * clk)690 static __always_inline int timer_shutdown(const int access,
691 					  struct clock_event_device *clk)
692 {
693 	unsigned long ctrl;
694 
695 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
696 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
697 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
698 
699 	return 0;
700 }
701 
arch_timer_shutdown_virt(struct clock_event_device * clk)702 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
703 {
704 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
705 }
706 
arch_timer_shutdown_phys(struct clock_event_device * clk)707 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
708 {
709 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
710 }
711 
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
713 {
714 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
715 }
716 
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
718 {
719 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
720 }
721 
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)722 static __always_inline void set_next_event(const int access, unsigned long evt,
723 					   struct clock_event_device *clk)
724 {
725 	unsigned long ctrl;
726 	u64 cnt;
727 
728 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
729 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
730 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
731 
732 	if (access == ARCH_TIMER_PHYS_ACCESS)
733 		cnt = __arch_counter_get_cntpct();
734 	else
735 		cnt = __arch_counter_get_cntvct();
736 
737 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
738 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
739 }
740 
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)741 static int arch_timer_set_next_event_virt(unsigned long evt,
742 					  struct clock_event_device *clk)
743 {
744 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
745 	return 0;
746 }
747 
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)748 static int arch_timer_set_next_event_phys(unsigned long evt,
749 					  struct clock_event_device *clk)
750 {
751 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
752 	return 0;
753 }
754 
arch_counter_get_cnt_mem(struct arch_timer * t,int offset_lo)755 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
756 {
757 	u32 cnt_lo, cnt_hi, tmp_hi;
758 
759 	do {
760 		cnt_hi = readl_relaxed(t->base + offset_lo + 4);
761 		cnt_lo = readl_relaxed(t->base + offset_lo);
762 		tmp_hi = readl_relaxed(t->base + offset_lo + 4);
763 	} while (cnt_hi != tmp_hi);
764 
765 	return ((u64) cnt_hi << 32) | cnt_lo;
766 }
767 
set_next_event_mem(const int access,unsigned long evt,struct clock_event_device * clk)768 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
769 					   struct clock_event_device *clk)
770 {
771 	struct arch_timer *timer = to_arch_timer(clk);
772 	unsigned long ctrl;
773 	u64 cnt;
774 
775 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
776 
777 	/* Timer must be disabled before programming CVAL */
778 	if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
779 		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
780 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
781 	}
782 
783 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
784 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
785 
786 	if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
787 		cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
788 	else
789 		cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
790 
791 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
792 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
793 }
794 
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)795 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
796 					      struct clock_event_device *clk)
797 {
798 	set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
799 	return 0;
800 }
801 
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)802 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
803 					      struct clock_event_device *clk)
804 {
805 	set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
806 	return 0;
807 }
808 
__arch_timer_check_delta(void)809 static u64 __arch_timer_check_delta(void)
810 {
811 #ifdef CONFIG_ARM64
812 	const struct midr_range broken_cval_midrs[] = {
813 		/*
814 		 * XGene-1 implements CVAL in terms of TVAL, meaning
815 		 * that the maximum timer range is 32bit. Shame on them.
816 		 *
817 		 * Note that TVAL is signed, thus has only 31 of its
818 		 * 32 bits to express magnitude.
819 		 */
820 		MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
821 					      APM_CPU_PART_XGENE),
822 			       APM_CPU_VAR_POTENZA, 0x0, 0xf),
823 		{},
824 	};
825 
826 	if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
827 		pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
828 		return CLOCKSOURCE_MASK(31);
829 	}
830 #endif
831 	return CLOCKSOURCE_MASK(arch_counter_get_width());
832 }
833 
__arch_timer_setup(unsigned type,struct clock_event_device * clk)834 static void __arch_timer_setup(unsigned type,
835 			       struct clock_event_device *clk)
836 {
837 	u64 max_delta;
838 
839 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
840 
841 	if (type == ARCH_TIMER_TYPE_CP15) {
842 		typeof(clk->set_next_event) sne;
843 
844 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
845 
846 		if (arch_timer_c3stop)
847 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
848 		clk->name = "arch_sys_timer";
849 		clk->rating = 450;
850 		clk->cpumask = cpumask_of(smp_processor_id());
851 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
852 		switch (arch_timer_uses_ppi) {
853 		case ARCH_TIMER_VIRT_PPI:
854 			clk->set_state_shutdown = arch_timer_shutdown_virt;
855 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
856 			sne = erratum_handler(set_next_event_virt);
857 			break;
858 		case ARCH_TIMER_PHYS_SECURE_PPI:
859 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
860 		case ARCH_TIMER_HYP_PPI:
861 			clk->set_state_shutdown = arch_timer_shutdown_phys;
862 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
863 			sne = erratum_handler(set_next_event_phys);
864 			break;
865 		default:
866 			BUG();
867 		}
868 
869 		clk->set_next_event = sne;
870 		max_delta = __arch_timer_check_delta();
871 	} else {
872 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
873 		clk->name = "arch_mem_timer";
874 		clk->rating = 400;
875 		clk->cpumask = cpu_possible_mask;
876 		if (arch_timer_mem_use_virtual) {
877 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
878 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
879 			clk->set_next_event =
880 				arch_timer_set_next_event_virt_mem;
881 		} else {
882 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
883 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
884 			clk->set_next_event =
885 				arch_timer_set_next_event_phys_mem;
886 		}
887 
888 		max_delta = CLOCKSOURCE_MASK(56);
889 	}
890 
891 	clk->set_state_shutdown(clk);
892 
893 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
894 }
895 
arch_timer_evtstrm_enable(unsigned int divider)896 static void arch_timer_evtstrm_enable(unsigned int divider)
897 {
898 	u32 cntkctl = arch_timer_get_cntkctl();
899 
900 #ifdef CONFIG_ARM64
901 	/* ECV is likely to require a large divider. Use the EVNTIS flag. */
902 	if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
903 		cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
904 		divider -= 8;
905 	}
906 #endif
907 
908 	divider = min(divider, 15U);
909 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
910 	/* Set the divider and enable virtual event stream */
911 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
912 			| ARCH_TIMER_VIRT_EVT_EN;
913 	arch_timer_set_cntkctl(cntkctl);
914 	arch_timer_set_evtstrm_feature();
915 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
916 }
917 
arch_timer_configure_evtstream(void)918 static void arch_timer_configure_evtstream(void)
919 {
920 	int evt_stream_div, lsb;
921 
922 	/*
923 	 * As the event stream can at most be generated at half the frequency
924 	 * of the counter, use half the frequency when computing the divider.
925 	 */
926 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
927 
928 	/*
929 	 * Find the closest power of two to the divisor. If the adjacent bit
930 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
931 	 */
932 	lsb = fls(evt_stream_div) - 1;
933 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
934 		lsb++;
935 
936 	/* enable event stream */
937 	arch_timer_evtstrm_enable(max(0, lsb));
938 }
939 
arch_counter_set_user_access(void)940 static void arch_counter_set_user_access(void)
941 {
942 	u32 cntkctl = arch_timer_get_cntkctl();
943 
944 	/* Disable user access to the timers and both counters */
945 	/* Also disable virtual event stream */
946 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
947 			| ARCH_TIMER_USR_VT_ACCESS_EN
948 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
949 			| ARCH_TIMER_VIRT_EVT_EN
950 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
951 
952 	/*
953 	 * Enable user access to the virtual counter if it doesn't
954 	 * need to be workaround. The vdso may have been already
955 	 * disabled though.
956 	 */
957 	if (arch_timer_this_cpu_has_cntvct_wa())
958 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
959 	else
960 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
961 
962 	arch_timer_set_cntkctl(cntkctl);
963 }
964 
arch_timer_has_nonsecure_ppi(void)965 static bool arch_timer_has_nonsecure_ppi(void)
966 {
967 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
968 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
969 }
970 
check_ppi_trigger(int irq)971 static u32 check_ppi_trigger(int irq)
972 {
973 	u32 flags = irq_get_trigger_type(irq);
974 
975 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
976 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
977 		pr_warn("WARNING: Please fix your firmware\n");
978 		flags = IRQF_TRIGGER_LOW;
979 	}
980 
981 	return flags;
982 }
983 
arch_timer_starting_cpu(unsigned int cpu)984 static int arch_timer_starting_cpu(unsigned int cpu)
985 {
986 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
987 	u32 flags;
988 
989 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
990 
991 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
992 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
993 
994 	if (arch_timer_has_nonsecure_ppi()) {
995 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
996 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
997 				  flags);
998 	}
999 
1000 	arch_counter_set_user_access();
1001 	if (evtstrm_enable)
1002 		arch_timer_configure_evtstream();
1003 
1004 	return 0;
1005 }
1006 
validate_timer_rate(void)1007 static int validate_timer_rate(void)
1008 {
1009 	if (!arch_timer_rate)
1010 		return -EINVAL;
1011 
1012 	/* Arch timer frequency < 1MHz can cause trouble */
1013 	WARN_ON(arch_timer_rate < 1000000);
1014 
1015 	return 0;
1016 }
1017 
1018 /*
1019  * For historical reasons, when probing with DT we use whichever (non-zero)
1020  * rate was probed first, and don't verify that others match. If the first node
1021  * probed has a clock-frequency property, this overrides the HW register.
1022  */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)1023 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1024 {
1025 	/* Who has more than one independent system counter? */
1026 	if (arch_timer_rate)
1027 		return;
1028 
1029 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1030 		arch_timer_rate = rate;
1031 
1032 	/* Check the timer frequency. */
1033 	if (validate_timer_rate())
1034 		pr_warn("frequency not available\n");
1035 }
1036 
arch_timer_banner(unsigned type)1037 static void __init arch_timer_banner(unsigned type)
1038 {
1039 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1040 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1041 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1042 			" and " : "",
1043 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1044 		(unsigned long)arch_timer_rate / 1000000,
1045 		(unsigned long)(arch_timer_rate / 10000) % 100,
1046 		type & ARCH_TIMER_TYPE_CP15 ?
1047 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1048 			"",
1049 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1050 		type & ARCH_TIMER_TYPE_MEM ?
1051 			arch_timer_mem_use_virtual ? "virt" : "phys" :
1052 			"");
1053 }
1054 
arch_timer_get_rate(void)1055 u32 arch_timer_get_rate(void)
1056 {
1057 	return arch_timer_rate;
1058 }
1059 
arch_timer_evtstrm_available(void)1060 bool arch_timer_evtstrm_available(void)
1061 {
1062 	/*
1063 	 * We might get called from a preemptible context. This is fine
1064 	 * because availability of the event stream should be always the same
1065 	 * for a preemptible context and context where we might resume a task.
1066 	 */
1067 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1068 }
1069 
arch_counter_get_cntvct_mem(void)1070 static u64 arch_counter_get_cntvct_mem(void)
1071 {
1072 	return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1073 }
1074 
1075 static struct arch_timer_kvm_info arch_timer_kvm_info;
1076 
arch_timer_get_kvm_info(void)1077 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1078 {
1079 	return &arch_timer_kvm_info;
1080 }
1081 
arch_counter_register(unsigned type)1082 static void __init arch_counter_register(unsigned type)
1083 {
1084 	u64 start_count;
1085 	int width;
1086 
1087 	/* Register the CP15 based counter if we have one */
1088 	if (type & ARCH_TIMER_TYPE_CP15) {
1089 		u64 (*rd)(void);
1090 
1091 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1092 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1093 			if (arch_timer_counter_has_wa())
1094 				rd = arch_counter_get_cntvct_stable;
1095 			else
1096 				rd = arch_counter_get_cntvct;
1097 		} else {
1098 			if (arch_timer_counter_has_wa())
1099 				rd = arch_counter_get_cntpct_stable;
1100 			else
1101 				rd = arch_counter_get_cntpct;
1102 		}
1103 
1104 		arch_timer_read_counter = rd;
1105 		clocksource_counter.vdso_clock_mode = vdso_default;
1106 	} else {
1107 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1108 	}
1109 
1110 	width = arch_counter_get_width();
1111 	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1112 	cyclecounter.mask = CLOCKSOURCE_MASK(width);
1113 
1114 	if (!arch_counter_suspend_stop)
1115 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1116 	start_count = arch_timer_read_counter();
1117 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1118 	cyclecounter.mult = clocksource_counter.mult;
1119 	cyclecounter.shift = clocksource_counter.shift;
1120 	timecounter_init(&arch_timer_kvm_info.timecounter,
1121 			 &cyclecounter, start_count);
1122 
1123 	sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1124 }
1125 
arch_timer_stop(struct clock_event_device * clk)1126 static void arch_timer_stop(struct clock_event_device *clk)
1127 {
1128 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1129 
1130 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1131 	if (arch_timer_has_nonsecure_ppi())
1132 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1133 
1134 	clk->set_state_shutdown(clk);
1135 }
1136 
arch_timer_dying_cpu(unsigned int cpu)1137 static int arch_timer_dying_cpu(unsigned int cpu)
1138 {
1139 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1140 
1141 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1142 
1143 	arch_timer_stop(clk);
1144 	return 0;
1145 }
1146 
1147 #ifdef CONFIG_CPU_PM
1148 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1149 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1150 				    unsigned long action, void *hcpu)
1151 {
1152 	if (action == CPU_PM_ENTER) {
1153 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1154 
1155 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1156 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1157 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1158 
1159 		if (arch_timer_have_evtstrm_feature())
1160 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1161 	}
1162 	return NOTIFY_OK;
1163 }
1164 
1165 static struct notifier_block arch_timer_cpu_pm_notifier = {
1166 	.notifier_call = arch_timer_cpu_pm_notify,
1167 };
1168 
arch_timer_cpu_pm_init(void)1169 static int __init arch_timer_cpu_pm_init(void)
1170 {
1171 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1172 }
1173 
arch_timer_cpu_pm_deinit(void)1174 static void __init arch_timer_cpu_pm_deinit(void)
1175 {
1176 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1177 }
1178 
1179 #else
arch_timer_cpu_pm_init(void)1180 static int __init arch_timer_cpu_pm_init(void)
1181 {
1182 	return 0;
1183 }
1184 
arch_timer_cpu_pm_deinit(void)1185 static void __init arch_timer_cpu_pm_deinit(void)
1186 {
1187 }
1188 #endif
1189 
arch_timer_register(void)1190 static int __init arch_timer_register(void)
1191 {
1192 	int err;
1193 	int ppi;
1194 
1195 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1196 	if (!arch_timer_evt) {
1197 		err = -ENOMEM;
1198 		goto out;
1199 	}
1200 
1201 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1202 	switch (arch_timer_uses_ppi) {
1203 	case ARCH_TIMER_VIRT_PPI:
1204 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1205 					 "arch_timer", arch_timer_evt);
1206 		break;
1207 	case ARCH_TIMER_PHYS_SECURE_PPI:
1208 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1209 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1210 					 "arch_timer", arch_timer_evt);
1211 		if (!err && arch_timer_has_nonsecure_ppi()) {
1212 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1213 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1214 						 "arch_timer", arch_timer_evt);
1215 			if (err)
1216 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1217 						arch_timer_evt);
1218 		}
1219 		break;
1220 	case ARCH_TIMER_HYP_PPI:
1221 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1222 					 "arch_timer", arch_timer_evt);
1223 		break;
1224 	default:
1225 		BUG();
1226 	}
1227 
1228 	if (err) {
1229 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1230 		goto out_free;
1231 	}
1232 
1233 	err = arch_timer_cpu_pm_init();
1234 	if (err)
1235 		goto out_unreg_notify;
1236 
1237 	/* Register and immediately configure the timer on the boot CPU */
1238 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1239 				"clockevents/arm/arch_timer:starting",
1240 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1241 	if (err)
1242 		goto out_unreg_cpupm;
1243 	return 0;
1244 
1245 out_unreg_cpupm:
1246 	arch_timer_cpu_pm_deinit();
1247 
1248 out_unreg_notify:
1249 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1250 	if (arch_timer_has_nonsecure_ppi())
1251 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1252 				arch_timer_evt);
1253 
1254 out_free:
1255 	free_percpu(arch_timer_evt);
1256 out:
1257 	return err;
1258 }
1259 
arch_timer_mem_register(void __iomem * base,unsigned int irq)1260 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1261 {
1262 	int ret;
1263 	irq_handler_t func;
1264 
1265 	arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1266 	if (!arch_timer_mem)
1267 		return -ENOMEM;
1268 
1269 	arch_timer_mem->base = base;
1270 	arch_timer_mem->evt.irq = irq;
1271 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1272 
1273 	if (arch_timer_mem_use_virtual)
1274 		func = arch_timer_handler_virt_mem;
1275 	else
1276 		func = arch_timer_handler_phys_mem;
1277 
1278 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1279 	if (ret) {
1280 		pr_err("Failed to request mem timer irq\n");
1281 		kfree(arch_timer_mem);
1282 		arch_timer_mem = NULL;
1283 	}
1284 
1285 	return ret;
1286 }
1287 
1288 static const struct of_device_id arch_timer_of_match[] __initconst = {
1289 	{ .compatible   = "arm,armv7-timer",    },
1290 	{ .compatible   = "arm,armv8-timer",    },
1291 	{},
1292 };
1293 
1294 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1295 	{ .compatible   = "arm,armv7-timer-mem", },
1296 	{},
1297 };
1298 
arch_timer_needs_of_probing(void)1299 static bool __init arch_timer_needs_of_probing(void)
1300 {
1301 	struct device_node *dn;
1302 	bool needs_probing = false;
1303 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1304 
1305 	/* We have two timers, and both device-tree nodes are probed. */
1306 	if ((arch_timers_present & mask) == mask)
1307 		return false;
1308 
1309 	/*
1310 	 * Only one type of timer is probed,
1311 	 * check if we have another type of timer node in device-tree.
1312 	 */
1313 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1314 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1315 	else
1316 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1317 
1318 	if (dn && of_device_is_available(dn))
1319 		needs_probing = true;
1320 
1321 	of_node_put(dn);
1322 
1323 	return needs_probing;
1324 }
1325 
arch_timer_common_init(void)1326 static int __init arch_timer_common_init(void)
1327 {
1328 	arch_timer_banner(arch_timers_present);
1329 	arch_counter_register(arch_timers_present);
1330 	return arch_timer_arch_init();
1331 }
1332 
1333 /**
1334  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1335  *
1336  * If HYP mode is available, we know that the physical timer
1337  * has been configured to be accessible from PL1. Use it, so
1338  * that a guest can use the virtual timer instead.
1339  *
1340  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1341  * accesses to CNTP_*_EL1 registers are silently redirected to
1342  * their CNTHP_*_EL2 counterparts, and use a different PPI
1343  * number.
1344  *
1345  * If no interrupt provided for virtual timer, we'll have to
1346  * stick to the physical timer. It'd better be accessible...
1347  * For arm64 we never use the secure interrupt.
1348  *
1349  * Return: a suitable PPI type for the current system.
1350  */
arch_timer_select_ppi(void)1351 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1352 {
1353 	if (is_kernel_in_hyp_mode())
1354 		return ARCH_TIMER_HYP_PPI;
1355 
1356 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1357 		return ARCH_TIMER_VIRT_PPI;
1358 
1359 	if (IS_ENABLED(CONFIG_ARM64))
1360 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1361 
1362 	return ARCH_TIMER_PHYS_SECURE_PPI;
1363 }
1364 
arch_timer_populate_kvm_info(void)1365 static void __init arch_timer_populate_kvm_info(void)
1366 {
1367 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1368 	if (is_kernel_in_hyp_mode())
1369 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1370 }
1371 
arch_timer_of_init(struct device_node * np)1372 static int __init arch_timer_of_init(struct device_node *np)
1373 {
1374 	int i, irq, ret;
1375 	u32 rate;
1376 	bool has_names;
1377 
1378 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1379 		pr_warn("multiple nodes in dt, skipping\n");
1380 		return 0;
1381 	}
1382 
1383 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1384 
1385 	has_names = of_property_read_bool(np, "interrupt-names");
1386 
1387 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1388 		if (has_names)
1389 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1390 		else
1391 			irq = of_irq_get(np, i);
1392 		if (irq > 0)
1393 			arch_timer_ppi[i] = irq;
1394 	}
1395 
1396 	arch_timer_populate_kvm_info();
1397 
1398 	rate = arch_timer_get_cntfrq();
1399 	arch_timer_of_configure_rate(rate, np);
1400 
1401 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1402 
1403 	/* Check for globally applicable workarounds */
1404 	arch_timer_check_ool_workaround(ate_match_dt, np);
1405 
1406 	/*
1407 	 * If we cannot rely on firmware initializing the timer registers then
1408 	 * we should use the physical timers instead.
1409 	 */
1410 	if (IS_ENABLED(CONFIG_ARM) &&
1411 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1412 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1413 	else
1414 		arch_timer_uses_ppi = arch_timer_select_ppi();
1415 
1416 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1417 		pr_err("No interrupt available, giving up\n");
1418 		return -EINVAL;
1419 	}
1420 
1421 	/* On some systems, the counter stops ticking when in suspend. */
1422 	arch_counter_suspend_stop = of_property_read_bool(np,
1423 							 "arm,no-tick-in-suspend");
1424 
1425 	ret = arch_timer_register();
1426 	if (ret)
1427 		return ret;
1428 
1429 	if (arch_timer_needs_of_probing())
1430 		return 0;
1431 
1432 	return arch_timer_common_init();
1433 }
1434 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1435 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1436 
1437 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1438 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1439 {
1440 	void __iomem *base;
1441 	u32 rate;
1442 
1443 	base = ioremap(frame->cntbase, frame->size);
1444 	if (!base) {
1445 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1446 		return 0;
1447 	}
1448 
1449 	rate = readl_relaxed(base + CNTFRQ);
1450 
1451 	iounmap(base);
1452 
1453 	return rate;
1454 }
1455 
1456 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1457 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1458 {
1459 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1460 	void __iomem *cntctlbase;
1461 	u32 cnttidr;
1462 	int i;
1463 
1464 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1465 	if (!cntctlbase) {
1466 		pr_err("Can't map CNTCTLBase @ %pa\n",
1467 			&timer_mem->cntctlbase);
1468 		return NULL;
1469 	}
1470 
1471 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1472 
1473 	/*
1474 	 * Try to find a virtual capable frame. Otherwise fall back to a
1475 	 * physical capable frame.
1476 	 */
1477 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1478 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1479 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1480 
1481 		frame = &timer_mem->frame[i];
1482 		if (!frame->valid)
1483 			continue;
1484 
1485 		/* Try enabling everything, and see what sticks */
1486 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1487 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1488 
1489 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1490 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1491 			best_frame = frame;
1492 			arch_timer_mem_use_virtual = true;
1493 			break;
1494 		}
1495 
1496 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1497 			continue;
1498 
1499 		best_frame = frame;
1500 	}
1501 
1502 	iounmap(cntctlbase);
1503 
1504 	return best_frame;
1505 }
1506 
1507 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1508 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1509 {
1510 	void __iomem *base;
1511 	int ret, irq = 0;
1512 
1513 	if (arch_timer_mem_use_virtual)
1514 		irq = frame->virt_irq;
1515 	else
1516 		irq = frame->phys_irq;
1517 
1518 	if (!irq) {
1519 		pr_err("Frame missing %s irq.\n",
1520 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1521 		return -EINVAL;
1522 	}
1523 
1524 	if (!request_mem_region(frame->cntbase, frame->size,
1525 				"arch_mem_timer"))
1526 		return -EBUSY;
1527 
1528 	base = ioremap(frame->cntbase, frame->size);
1529 	if (!base) {
1530 		pr_err("Can't map frame's registers\n");
1531 		return -ENXIO;
1532 	}
1533 
1534 	ret = arch_timer_mem_register(base, irq);
1535 	if (ret) {
1536 		iounmap(base);
1537 		return ret;
1538 	}
1539 
1540 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1541 
1542 	return 0;
1543 }
1544 
arch_timer_mem_of_init(struct device_node * np)1545 static int __init arch_timer_mem_of_init(struct device_node *np)
1546 {
1547 	struct arch_timer_mem *timer_mem;
1548 	struct arch_timer_mem_frame *frame;
1549 	struct device_node *frame_node;
1550 	struct resource res;
1551 	int ret = -EINVAL;
1552 	u32 rate;
1553 
1554 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1555 	if (!timer_mem)
1556 		return -ENOMEM;
1557 
1558 	if (of_address_to_resource(np, 0, &res))
1559 		goto out;
1560 	timer_mem->cntctlbase = res.start;
1561 	timer_mem->size = resource_size(&res);
1562 
1563 	for_each_available_child_of_node(np, frame_node) {
1564 		u32 n;
1565 		struct arch_timer_mem_frame *frame;
1566 
1567 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1568 			pr_err(FW_BUG "Missing frame-number.\n");
1569 			of_node_put(frame_node);
1570 			goto out;
1571 		}
1572 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1573 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1574 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1575 			of_node_put(frame_node);
1576 			goto out;
1577 		}
1578 		frame = &timer_mem->frame[n];
1579 
1580 		if (frame->valid) {
1581 			pr_err(FW_BUG "Duplicated frame-number.\n");
1582 			of_node_put(frame_node);
1583 			goto out;
1584 		}
1585 
1586 		if (of_address_to_resource(frame_node, 0, &res)) {
1587 			of_node_put(frame_node);
1588 			goto out;
1589 		}
1590 		frame->cntbase = res.start;
1591 		frame->size = resource_size(&res);
1592 
1593 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1594 						       ARCH_TIMER_VIRT_SPI);
1595 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1596 						       ARCH_TIMER_PHYS_SPI);
1597 
1598 		frame->valid = true;
1599 	}
1600 
1601 	frame = arch_timer_mem_find_best_frame(timer_mem);
1602 	if (!frame) {
1603 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1604 			&timer_mem->cntctlbase);
1605 		ret = -EINVAL;
1606 		goto out;
1607 	}
1608 
1609 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1610 	arch_timer_of_configure_rate(rate, np);
1611 
1612 	ret = arch_timer_mem_frame_register(frame);
1613 	if (!ret && !arch_timer_needs_of_probing())
1614 		ret = arch_timer_common_init();
1615 out:
1616 	kfree(timer_mem);
1617 	return ret;
1618 }
1619 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1620 		       arch_timer_mem_of_init);
1621 
1622 #ifdef CONFIG_ACPI_GTDT
1623 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1624 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1625 {
1626 	struct arch_timer_mem_frame *frame;
1627 	u32 rate;
1628 	int i;
1629 
1630 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1631 		frame = &timer_mem->frame[i];
1632 
1633 		if (!frame->valid)
1634 			continue;
1635 
1636 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1637 		if (rate == arch_timer_rate)
1638 			continue;
1639 
1640 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1641 			&frame->cntbase,
1642 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1643 
1644 		return -EINVAL;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
arch_timer_mem_acpi_init(int platform_timer_count)1650 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1651 {
1652 	struct arch_timer_mem *timers, *timer;
1653 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1654 	int timer_count, i, ret = 0;
1655 
1656 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1657 			    GFP_KERNEL);
1658 	if (!timers)
1659 		return -ENOMEM;
1660 
1661 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1662 	if (ret || !timer_count)
1663 		goto out;
1664 
1665 	/*
1666 	 * While unlikely, it's theoretically possible that none of the frames
1667 	 * in a timer expose the combination of feature we want.
1668 	 */
1669 	for (i = 0; i < timer_count; i++) {
1670 		timer = &timers[i];
1671 
1672 		frame = arch_timer_mem_find_best_frame(timer);
1673 		if (!best_frame)
1674 			best_frame = frame;
1675 
1676 		ret = arch_timer_mem_verify_cntfrq(timer);
1677 		if (ret) {
1678 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1679 			goto out;
1680 		}
1681 
1682 		if (!best_frame) /* implies !frame */
1683 			/*
1684 			 * Only complain about missing suitable frames if we
1685 			 * haven't already found one in a previous iteration.
1686 			 */
1687 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1688 				&timer->cntctlbase);
1689 	}
1690 
1691 	if (best_frame)
1692 		ret = arch_timer_mem_frame_register(best_frame);
1693 out:
1694 	kfree(timers);
1695 	return ret;
1696 }
1697 
1698 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1699 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1700 {
1701 	int ret, platform_timer_count;
1702 
1703 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1704 		pr_warn("already initialized, skipping\n");
1705 		return -EINVAL;
1706 	}
1707 
1708 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1709 
1710 	ret = acpi_gtdt_init(table, &platform_timer_count);
1711 	if (ret)
1712 		return ret;
1713 
1714 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1715 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1716 
1717 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1718 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1719 
1720 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1721 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1722 
1723 	arch_timer_populate_kvm_info();
1724 
1725 	/*
1726 	 * When probing via ACPI, we have no mechanism to override the sysreg
1727 	 * CNTFRQ value. This *must* be correct.
1728 	 */
1729 	arch_timer_rate = arch_timer_get_cntfrq();
1730 	ret = validate_timer_rate();
1731 	if (ret) {
1732 		pr_err(FW_BUG "frequency not available.\n");
1733 		return ret;
1734 	}
1735 
1736 	arch_timer_uses_ppi = arch_timer_select_ppi();
1737 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1738 		pr_err("No interrupt available, giving up\n");
1739 		return -EINVAL;
1740 	}
1741 
1742 	/* Always-on capability */
1743 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1744 
1745 	/* Check for globally applicable workarounds */
1746 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1747 
1748 	ret = arch_timer_register();
1749 	if (ret)
1750 		return ret;
1751 
1752 	if (platform_timer_count &&
1753 	    arch_timer_mem_acpi_init(platform_timer_count))
1754 		pr_err("Failed to initialize memory-mapped timer.\n");
1755 
1756 	return arch_timer_common_init();
1757 }
1758 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1759 #endif
1760 
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,struct clocksource ** cs)1761 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1762 				 struct clocksource **cs)
1763 {
1764 	struct arm_smccc_res hvc_res;
1765 	u32 ptp_counter;
1766 	ktime_t ktime;
1767 
1768 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1769 		return -EOPNOTSUPP;
1770 
1771 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1772 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1773 	else
1774 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1775 
1776 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1777 			     ptp_counter, &hvc_res);
1778 
1779 	if ((int)(hvc_res.a0) < 0)
1780 		return -EOPNOTSUPP;
1781 
1782 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1783 	*ts = ktime_to_timespec64(ktime);
1784 	if (cycle)
1785 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1786 	if (cs)
1787 		*cs = &clocksource_counter;
1788 
1789 	return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1792