1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * J-Core SoC PIT/clocksource driver
4 *
5 * Copyright (C) 2015-2016 Smart Energy Instruments, Inc.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/clockchips.h>
12 #include <linux/clocksource.h>
13 #include <linux/sched_clock.h>
14 #include <linux/cpu.h>
15 #include <linux/cpuhotplug.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18
19 #define PIT_IRQ_SHIFT 12
20 #define PIT_PRIO_SHIFT 20
21 #define PIT_ENABLE_SHIFT 26
22 #define PIT_PRIO_MASK 0xf
23
24 #define REG_PITEN 0x00
25 #define REG_THROT 0x10
26 #define REG_COUNT 0x14
27 #define REG_BUSPD 0x18
28 #define REG_SECHI 0x20
29 #define REG_SECLO 0x24
30 #define REG_NSEC 0x28
31
32 struct jcore_pit {
33 struct clock_event_device ced;
34 void __iomem *base;
35 unsigned long periodic_delta;
36 u32 enable_val;
37 };
38
39 static void __iomem *jcore_pit_base;
40 static struct jcore_pit __percpu *jcore_pit_percpu;
41
jcore_sched_clock_read(void)42 static notrace u64 jcore_sched_clock_read(void)
43 {
44 u32 seclo, nsec, seclo0;
45 __iomem void *base = jcore_pit_base;
46
47 seclo = readl(base + REG_SECLO);
48 do {
49 seclo0 = seclo;
50 nsec = readl(base + REG_NSEC);
51 seclo = readl(base + REG_SECLO);
52 } while (seclo0 != seclo);
53
54 return seclo * NSEC_PER_SEC + nsec;
55 }
56
jcore_clocksource_read(struct clocksource * cs)57 static u64 jcore_clocksource_read(struct clocksource *cs)
58 {
59 return jcore_sched_clock_read();
60 }
61
jcore_pit_disable(struct jcore_pit * pit)62 static int jcore_pit_disable(struct jcore_pit *pit)
63 {
64 writel(0, pit->base + REG_PITEN);
65 return 0;
66 }
67
jcore_pit_set(unsigned long delta,struct jcore_pit * pit)68 static int jcore_pit_set(unsigned long delta, struct jcore_pit *pit)
69 {
70 jcore_pit_disable(pit);
71 writel(delta, pit->base + REG_THROT);
72 writel(pit->enable_val, pit->base + REG_PITEN);
73 return 0;
74 }
75
jcore_pit_set_state_shutdown(struct clock_event_device * ced)76 static int jcore_pit_set_state_shutdown(struct clock_event_device *ced)
77 {
78 struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
79
80 return jcore_pit_disable(pit);
81 }
82
jcore_pit_set_state_oneshot(struct clock_event_device * ced)83 static int jcore_pit_set_state_oneshot(struct clock_event_device *ced)
84 {
85 struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
86
87 return jcore_pit_disable(pit);
88 }
89
jcore_pit_set_state_periodic(struct clock_event_device * ced)90 static int jcore_pit_set_state_periodic(struct clock_event_device *ced)
91 {
92 struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
93
94 return jcore_pit_set(pit->periodic_delta, pit);
95 }
96
jcore_pit_set_next_event(unsigned long delta,struct clock_event_device * ced)97 static int jcore_pit_set_next_event(unsigned long delta,
98 struct clock_event_device *ced)
99 {
100 struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
101
102 return jcore_pit_set(delta, pit);
103 }
104
jcore_pit_local_init(unsigned cpu)105 static int jcore_pit_local_init(unsigned cpu)
106 {
107 struct jcore_pit *pit = this_cpu_ptr(jcore_pit_percpu);
108 unsigned buspd, freq;
109
110 pr_info("Local J-Core PIT init on cpu %u\n", cpu);
111
112 buspd = readl(pit->base + REG_BUSPD);
113 freq = DIV_ROUND_CLOSEST(NSEC_PER_SEC, buspd);
114 pit->periodic_delta = DIV_ROUND_CLOSEST(NSEC_PER_SEC, HZ * buspd);
115
116 clockevents_config_and_register(&pit->ced, freq, 1, ULONG_MAX);
117
118 return 0;
119 }
120
jcore_timer_interrupt(int irq,void * dev_id)121 static irqreturn_t jcore_timer_interrupt(int irq, void *dev_id)
122 {
123 struct jcore_pit *pit = this_cpu_ptr(dev_id);
124
125 if (clockevent_state_oneshot(&pit->ced))
126 jcore_pit_disable(pit);
127
128 pit->ced.event_handler(&pit->ced);
129
130 return IRQ_HANDLED;
131 }
132
jcore_pit_init(struct device_node * node)133 static int __init jcore_pit_init(struct device_node *node)
134 {
135 int err;
136 unsigned pit_irq, cpu;
137 unsigned long hwirq;
138 u32 irqprio, enable_val;
139
140 jcore_pit_base = of_iomap(node, 0);
141 if (!jcore_pit_base) {
142 pr_err("Error: Cannot map base address for J-Core PIT\n");
143 return -ENXIO;
144 }
145
146 pit_irq = irq_of_parse_and_map(node, 0);
147 if (!pit_irq) {
148 pr_err("Error: J-Core PIT has no IRQ\n");
149 return -ENXIO;
150 }
151
152 pr_info("Initializing J-Core PIT at %p IRQ %d\n",
153 jcore_pit_base, pit_irq);
154
155 err = clocksource_mmio_init(jcore_pit_base, "jcore_pit_cs",
156 NSEC_PER_SEC, 400, 32,
157 jcore_clocksource_read);
158 if (err) {
159 pr_err("Error registering clocksource device: %d\n", err);
160 return err;
161 }
162
163 sched_clock_register(jcore_sched_clock_read, 32, NSEC_PER_SEC);
164
165 jcore_pit_percpu = alloc_percpu(struct jcore_pit);
166 if (!jcore_pit_percpu) {
167 pr_err("Failed to allocate memory for clock event device\n");
168 return -ENOMEM;
169 }
170
171 err = request_irq(pit_irq, jcore_timer_interrupt,
172 IRQF_TIMER | IRQF_PERCPU,
173 "jcore_pit", jcore_pit_percpu);
174 if (err) {
175 pr_err("pit irq request failed: %d\n", err);
176 free_percpu(jcore_pit_percpu);
177 return err;
178 }
179
180 /*
181 * The J-Core PIT is not hard-wired to a particular IRQ, but
182 * integrated with the interrupt controller such that the IRQ it
183 * generates is programmable, as follows:
184 *
185 * The bit layout of the PIT enable register is:
186 *
187 * .....e..ppppiiiiiiii............
188 *
189 * where the .'s indicate unrelated/unused bits, e is enable,
190 * p is priority, and i is hard irq number.
191 *
192 * For the PIT included in AIC1 (obsolete but still in use),
193 * any hard irq (trap number) can be programmed via the 8
194 * iiiiiiii bits, and a priority (0-15) is programmable
195 * separately in the pppp bits.
196 *
197 * For the PIT included in AIC2 (current), the programming
198 * interface is equivalent modulo interrupt mapping. This is
199 * why a different compatible tag was not used. However only
200 * traps 64-127 (the ones actually intended to be used for
201 * interrupts, rather than syscalls/exceptions/etc.) can be
202 * programmed (the high 2 bits of i are ignored) and the
203 * priority pppp is <<2'd and or'd onto the irq number. This
204 * choice seems to have been made on the hardware engineering
205 * side under an assumption that preserving old AIC1 priority
206 * mappings was important. Future models will likely ignore
207 * the pppp field.
208 */
209 hwirq = irq_get_irq_data(pit_irq)->hwirq;
210 irqprio = (hwirq >> 2) & PIT_PRIO_MASK;
211 enable_val = (1U << PIT_ENABLE_SHIFT)
212 | (hwirq << PIT_IRQ_SHIFT)
213 | (irqprio << PIT_PRIO_SHIFT);
214
215 for_each_present_cpu(cpu) {
216 struct jcore_pit *pit = per_cpu_ptr(jcore_pit_percpu, cpu);
217
218 pit->base = of_iomap(node, cpu);
219 if (!pit->base) {
220 pr_err("Unable to map PIT for cpu %u\n", cpu);
221 continue;
222 }
223
224 pit->ced.name = "jcore_pit";
225 pit->ced.features = CLOCK_EVT_FEAT_PERIODIC
226 | CLOCK_EVT_FEAT_ONESHOT
227 | CLOCK_EVT_FEAT_PERCPU;
228 pit->ced.cpumask = cpumask_of(cpu);
229 pit->ced.rating = 400;
230 pit->ced.irq = pit_irq;
231 pit->ced.set_state_shutdown = jcore_pit_set_state_shutdown;
232 pit->ced.set_state_periodic = jcore_pit_set_state_periodic;
233 pit->ced.set_state_oneshot = jcore_pit_set_state_oneshot;
234 pit->ced.set_next_event = jcore_pit_set_next_event;
235
236 pit->enable_val = enable_val;
237 }
238
239 cpuhp_setup_state(CPUHP_AP_JCORE_TIMER_STARTING,
240 "clockevents/jcore:starting",
241 jcore_pit_local_init, NULL);
242
243 return 0;
244 }
245
246 TIMER_OF_DECLARE(jcore_pit, "jcore,pit", jcore_pit_init);
247