• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Support for VIA PadLock hardware crypto engine.
6  *
7  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
8  *
9  */
10 
11 #include <crypto/algapi.h>
12 #include <crypto/aes.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/padlock.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/types.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/slab.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/byteorder.h>
27 #include <asm/processor.h>
28 #include <asm/fpu/api.h>
29 
30 /*
31  * Number of data blocks actually fetched for each xcrypt insn.
32  * Processors with prefetch errata will fetch extra blocks.
33  */
34 static unsigned int ecb_fetch_blocks = 2;
35 #define MAX_ECB_FETCH_BLOCKS (8)
36 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
37 
38 static unsigned int cbc_fetch_blocks = 1;
39 #define MAX_CBC_FETCH_BLOCKS (4)
40 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
41 
42 /* Control word. */
43 struct cword {
44 	unsigned int __attribute__ ((__packed__))
45 		rounds:4,
46 		algo:3,
47 		keygen:1,
48 		interm:1,
49 		encdec:1,
50 		ksize:2;
51 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
52 
53 /* Whenever making any changes to the following
54  * structure *make sure* you keep E, d_data
55  * and cword aligned on 16 Bytes boundaries and
56  * the Hardware can access 16 * 16 bytes of E and d_data
57  * (only the first 15 * 16 bytes matter but the HW reads
58  * more).
59  */
60 struct aes_ctx {
61 	u32 E[AES_MAX_KEYLENGTH_U32]
62 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
63 	u32 d_data[AES_MAX_KEYLENGTH_U32]
64 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
65 	struct {
66 		struct cword encrypt;
67 		struct cword decrypt;
68 	} cword;
69 	u32 *D;
70 };
71 
72 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
73 
74 /* Tells whether the ACE is capable to generate
75    the extended key for a given key_len. */
76 static inline int
aes_hw_extkey_available(uint8_t key_len)77 aes_hw_extkey_available(uint8_t key_len)
78 {
79 	/* TODO: We should check the actual CPU model/stepping
80 	         as it's possible that the capability will be
81 	         added in the next CPU revisions. */
82 	if (key_len == 16)
83 		return 1;
84 	return 0;
85 }
86 
aes_ctx_common(void * ctx)87 static inline struct aes_ctx *aes_ctx_common(void *ctx)
88 {
89 	unsigned long addr = (unsigned long)ctx;
90 	unsigned long align = PADLOCK_ALIGNMENT;
91 
92 	if (align <= crypto_tfm_ctx_alignment())
93 		align = 1;
94 	return (struct aes_ctx *)ALIGN(addr, align);
95 }
96 
aes_ctx(struct crypto_tfm * tfm)97 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
98 {
99 	return aes_ctx_common(crypto_tfm_ctx(tfm));
100 }
101 
skcipher_aes_ctx(struct crypto_skcipher * tfm)102 static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103 {
104 	return aes_ctx_common(crypto_skcipher_ctx(tfm));
105 }
106 
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)107 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
108 		       unsigned int key_len)
109 {
110 	struct aes_ctx *ctx = aes_ctx(tfm);
111 	const __le32 *key = (const __le32 *)in_key;
112 	struct crypto_aes_ctx gen_aes;
113 	int cpu;
114 
115 	if (key_len % 8)
116 		return -EINVAL;
117 
118 	/*
119 	 * If the hardware is capable of generating the extended key
120 	 * itself we must supply the plain key for both encryption
121 	 * and decryption.
122 	 */
123 	ctx->D = ctx->E;
124 
125 	ctx->E[0] = le32_to_cpu(key[0]);
126 	ctx->E[1] = le32_to_cpu(key[1]);
127 	ctx->E[2] = le32_to_cpu(key[2]);
128 	ctx->E[3] = le32_to_cpu(key[3]);
129 
130 	/* Prepare control words. */
131 	memset(&ctx->cword, 0, sizeof(ctx->cword));
132 
133 	ctx->cword.decrypt.encdec = 1;
134 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138 
139 	/* Don't generate extended keys if the hardware can do it. */
140 	if (aes_hw_extkey_available(key_len))
141 		goto ok;
142 
143 	ctx->D = ctx->d_data;
144 	ctx->cword.encrypt.keygen = 1;
145 	ctx->cword.decrypt.keygen = 1;
146 
147 	if (aes_expandkey(&gen_aes, in_key, key_len))
148 		return -EINVAL;
149 
150 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152 
153 ok:
154 	for_each_online_cpu(cpu)
155 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157 			per_cpu(paes_last_cword, cpu) = NULL;
158 
159 	return 0;
160 }
161 
aes_set_key_skcipher(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)162 static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
163 				unsigned int key_len)
164 {
165 	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
166 }
167 
168 /* ====== Encryption/decryption routines ====== */
169 
170 /* These are the real call to PadLock. */
padlock_reset_key(struct cword * cword)171 static inline void padlock_reset_key(struct cword *cword)
172 {
173 	int cpu = raw_smp_processor_id();
174 
175 	if (cword != per_cpu(paes_last_cword, cpu))
176 #ifndef CONFIG_X86_64
177 		asm volatile ("pushfl; popfl");
178 #else
179 		asm volatile ("pushfq; popfq");
180 #endif
181 }
182 
padlock_store_cword(struct cword * cword)183 static inline void padlock_store_cword(struct cword *cword)
184 {
185 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
186 }
187 
188 /*
189  * While the padlock instructions don't use FP/SSE registers, they
190  * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
191  * the kernel doesn't use CR0.TS.
192  */
193 
rep_xcrypt_ecb(const u8 * input,u8 * output,void * key,struct cword * control_word,int count)194 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
195 				  struct cword *control_word, int count)
196 {
197 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
198 		      : "+S"(input), "+D"(output)
199 		      : "d"(control_word), "b"(key), "c"(count));
200 }
201 
rep_xcrypt_cbc(const u8 * input,u8 * output,void * key,u8 * iv,struct cword * control_word,int count)202 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
203 				 u8 *iv, struct cword *control_word, int count)
204 {
205 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
206 		      : "+S" (input), "+D" (output), "+a" (iv)
207 		      : "d" (control_word), "b" (key), "c" (count));
208 	return iv;
209 }
210 
ecb_crypt_copy(const u8 * in,u8 * out,u32 * key,struct cword * cword,int count)211 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
212 			   struct cword *cword, int count)
213 {
214 	/*
215 	 * Padlock prefetches extra data so we must provide mapped input buffers.
216 	 * Assume there are at least 16 bytes of stack already in use.
217 	 */
218 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
219 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220 
221 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
222 	rep_xcrypt_ecb(tmp, out, key, cword, count);
223 }
224 
cbc_crypt_copy(const u8 * in,u8 * out,u32 * key,u8 * iv,struct cword * cword,int count)225 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
226 			   u8 *iv, struct cword *cword, int count)
227 {
228 	/*
229 	 * Padlock prefetches extra data so we must provide mapped input buffers.
230 	 * Assume there are at least 16 bytes of stack already in use.
231 	 */
232 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
233 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234 
235 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
236 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
237 }
238 
ecb_crypt(const u8 * in,u8 * out,u32 * key,struct cword * cword,int count)239 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
240 			     struct cword *cword, int count)
241 {
242 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
243 	 * We could avoid some copying here but it's probably not worth it.
244 	 */
245 	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
246 		ecb_crypt_copy(in, out, key, cword, count);
247 		return;
248 	}
249 
250 	rep_xcrypt_ecb(in, out, key, cword, count);
251 }
252 
cbc_crypt(const u8 * in,u8 * out,u32 * key,u8 * iv,struct cword * cword,int count)253 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
254 			    u8 *iv, struct cword *cword, int count)
255 {
256 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
257 	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
258 		return cbc_crypt_copy(in, out, key, iv, cword, count);
259 
260 	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
261 }
262 
padlock_xcrypt_ecb(const u8 * input,u8 * output,void * key,void * control_word,u32 count)263 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
264 				      void *control_word, u32 count)
265 {
266 	u32 initial = count & (ecb_fetch_blocks - 1);
267 
268 	if (count < ecb_fetch_blocks) {
269 		ecb_crypt(input, output, key, control_word, count);
270 		return;
271 	}
272 
273 	count -= initial;
274 
275 	if (initial)
276 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
277 			      : "+S"(input), "+D"(output)
278 			      : "d"(control_word), "b"(key), "c"(initial));
279 
280 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
281 		      : "+S"(input), "+D"(output)
282 		      : "d"(control_word), "b"(key), "c"(count));
283 }
284 
padlock_xcrypt_cbc(const u8 * input,u8 * output,void * key,u8 * iv,void * control_word,u32 count)285 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
286 				     u8 *iv, void *control_word, u32 count)
287 {
288 	u32 initial = count & (cbc_fetch_blocks - 1);
289 
290 	if (count < cbc_fetch_blocks)
291 		return cbc_crypt(input, output, key, iv, control_word, count);
292 
293 	count -= initial;
294 
295 	if (initial)
296 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
297 			      : "+S" (input), "+D" (output), "+a" (iv)
298 			      : "d" (control_word), "b" (key), "c" (initial));
299 
300 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
301 		      : "+S" (input), "+D" (output), "+a" (iv)
302 		      : "d" (control_word), "b" (key), "c" (count));
303 	return iv;
304 }
305 
padlock_aes_encrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)306 static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307 {
308 	struct aes_ctx *ctx = aes_ctx(tfm);
309 
310 	padlock_reset_key(&ctx->cword.encrypt);
311 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
312 	padlock_store_cword(&ctx->cword.encrypt);
313 }
314 
padlock_aes_decrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)315 static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316 {
317 	struct aes_ctx *ctx = aes_ctx(tfm);
318 
319 	padlock_reset_key(&ctx->cword.encrypt);
320 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
321 	padlock_store_cword(&ctx->cword.encrypt);
322 }
323 
324 static struct crypto_alg aes_alg = {
325 	.cra_name		=	"aes",
326 	.cra_driver_name	=	"aes-padlock",
327 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
328 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
329 	.cra_blocksize		=	AES_BLOCK_SIZE,
330 	.cra_ctxsize		=	sizeof(struct aes_ctx),
331 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
332 	.cra_module		=	THIS_MODULE,
333 	.cra_u			=	{
334 		.cipher = {
335 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
336 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
337 			.cia_setkey	   	= 	aes_set_key,
338 			.cia_encrypt	 	=	padlock_aes_encrypt,
339 			.cia_decrypt	  	=	padlock_aes_decrypt,
340 		}
341 	}
342 };
343 
ecb_aes_encrypt(struct skcipher_request * req)344 static int ecb_aes_encrypt(struct skcipher_request *req)
345 {
346 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
348 	struct skcipher_walk walk;
349 	unsigned int nbytes;
350 	int err;
351 
352 	padlock_reset_key(&ctx->cword.encrypt);
353 
354 	err = skcipher_walk_virt(&walk, req, false);
355 
356 	while ((nbytes = walk.nbytes) != 0) {
357 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358 				   ctx->E, &ctx->cword.encrypt,
359 				   nbytes / AES_BLOCK_SIZE);
360 		nbytes &= AES_BLOCK_SIZE - 1;
361 		err = skcipher_walk_done(&walk, nbytes);
362 	}
363 
364 	padlock_store_cword(&ctx->cword.encrypt);
365 
366 	return err;
367 }
368 
ecb_aes_decrypt(struct skcipher_request * req)369 static int ecb_aes_decrypt(struct skcipher_request *req)
370 {
371 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
373 	struct skcipher_walk walk;
374 	unsigned int nbytes;
375 	int err;
376 
377 	padlock_reset_key(&ctx->cword.decrypt);
378 
379 	err = skcipher_walk_virt(&walk, req, false);
380 
381 	while ((nbytes = walk.nbytes) != 0) {
382 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
383 				   ctx->D, &ctx->cword.decrypt,
384 				   nbytes / AES_BLOCK_SIZE);
385 		nbytes &= AES_BLOCK_SIZE - 1;
386 		err = skcipher_walk_done(&walk, nbytes);
387 	}
388 
389 	padlock_store_cword(&ctx->cword.encrypt);
390 
391 	return err;
392 }
393 
394 static struct skcipher_alg ecb_aes_alg = {
395 	.base.cra_name		=	"ecb(aes)",
396 	.base.cra_driver_name	=	"ecb-aes-padlock",
397 	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
398 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
399 	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
400 	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
401 	.base.cra_module	=	THIS_MODULE,
402 	.min_keysize		=	AES_MIN_KEY_SIZE,
403 	.max_keysize		=	AES_MAX_KEY_SIZE,
404 	.setkey			=	aes_set_key_skcipher,
405 	.encrypt		=	ecb_aes_encrypt,
406 	.decrypt		=	ecb_aes_decrypt,
407 };
408 
cbc_aes_encrypt(struct skcipher_request * req)409 static int cbc_aes_encrypt(struct skcipher_request *req)
410 {
411 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
412 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
413 	struct skcipher_walk walk;
414 	unsigned int nbytes;
415 	int err;
416 
417 	padlock_reset_key(&ctx->cword.encrypt);
418 
419 	err = skcipher_walk_virt(&walk, req, false);
420 
421 	while ((nbytes = walk.nbytes) != 0) {
422 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
423 					    walk.dst.virt.addr, ctx->E,
424 					    walk.iv, &ctx->cword.encrypt,
425 					    nbytes / AES_BLOCK_SIZE);
426 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
427 		nbytes &= AES_BLOCK_SIZE - 1;
428 		err = skcipher_walk_done(&walk, nbytes);
429 	}
430 
431 	padlock_store_cword(&ctx->cword.decrypt);
432 
433 	return err;
434 }
435 
cbc_aes_decrypt(struct skcipher_request * req)436 static int cbc_aes_decrypt(struct skcipher_request *req)
437 {
438 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
440 	struct skcipher_walk walk;
441 	unsigned int nbytes;
442 	int err;
443 
444 	padlock_reset_key(&ctx->cword.encrypt);
445 
446 	err = skcipher_walk_virt(&walk, req, false);
447 
448 	while ((nbytes = walk.nbytes) != 0) {
449 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
450 				   ctx->D, walk.iv, &ctx->cword.decrypt,
451 				   nbytes / AES_BLOCK_SIZE);
452 		nbytes &= AES_BLOCK_SIZE - 1;
453 		err = skcipher_walk_done(&walk, nbytes);
454 	}
455 
456 	padlock_store_cword(&ctx->cword.encrypt);
457 
458 	return err;
459 }
460 
461 static struct skcipher_alg cbc_aes_alg = {
462 	.base.cra_name		=	"cbc(aes)",
463 	.base.cra_driver_name	=	"cbc-aes-padlock",
464 	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
465 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
466 	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
467 	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
468 	.base.cra_module	=	THIS_MODULE,
469 	.min_keysize		=	AES_MIN_KEY_SIZE,
470 	.max_keysize		=	AES_MAX_KEY_SIZE,
471 	.ivsize			=	AES_BLOCK_SIZE,
472 	.setkey			=	aes_set_key_skcipher,
473 	.encrypt		=	cbc_aes_encrypt,
474 	.decrypt		=	cbc_aes_decrypt,
475 };
476 
477 static const struct x86_cpu_id padlock_cpu_id[] = {
478 	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
479 	{}
480 };
481 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482 
padlock_init(void)483 static int __init padlock_init(void)
484 {
485 	int ret;
486 	struct cpuinfo_x86 *c = &cpu_data(0);
487 
488 	if (!x86_match_cpu(padlock_cpu_id))
489 		return -ENODEV;
490 
491 	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
492 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
493 		return -ENODEV;
494 	}
495 
496 	if ((ret = crypto_register_alg(&aes_alg)) != 0)
497 		goto aes_err;
498 
499 	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
500 		goto ecb_aes_err;
501 
502 	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
503 		goto cbc_aes_err;
504 
505 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506 
507 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
508 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
509 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
510 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
511 	}
512 
513 out:
514 	return ret;
515 
516 cbc_aes_err:
517 	crypto_unregister_skcipher(&ecb_aes_alg);
518 ecb_aes_err:
519 	crypto_unregister_alg(&aes_alg);
520 aes_err:
521 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
522 	goto out;
523 }
524 
padlock_fini(void)525 static void __exit padlock_fini(void)
526 {
527 	crypto_unregister_skcipher(&cbc_aes_alg);
528 	crypto_unregister_skcipher(&ecb_aes_alg);
529 	crypto_unregister_alg(&aes_alg);
530 }
531 
532 module_init(padlock_init);
533 module_exit(padlock_fini);
534 
535 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
536 MODULE_LICENSE("GPL");
537 MODULE_AUTHOR("Michal Ludvig");
538 
539 MODULE_ALIAS_CRYPTO("aes");
540