1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Nuvoton NAU7802 ADC
4 *
5 * Copyright 2013 Free Electrons
6 */
7
8 #include <linux/delay.h>
9 #include <linux/i2c.h>
10 #include <linux/interrupt.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/module.h>
13 #include <linux/property.h>
14 #include <linux/wait.h>
15 #include <linux/log2.h>
16
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19
20 #define NAU7802_REG_PUCTRL 0x00
21 #define NAU7802_PUCTRL_RR(x) (x << 0)
22 #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1)
23 #define NAU7802_PUCTRL_PUD(x) (x << 1)
24 #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1)
25 #define NAU7802_PUCTRL_PUA(x) (x << 2)
26 #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1)
27 #define NAU7802_PUCTRL_PUR(x) (x << 3)
28 #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1)
29 #define NAU7802_PUCTRL_CS(x) (x << 4)
30 #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1)
31 #define NAU7802_PUCTRL_CR(x) (x << 5)
32 #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1)
33 #define NAU7802_PUCTRL_AVDDS(x) (x << 7)
34 #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1)
35 #define NAU7802_REG_CTRL1 0x01
36 #define NAU7802_CTRL1_VLDO(x) (x << 3)
37 #define NAU7802_CTRL1_GAINS(x) (x)
38 #define NAU7802_CTRL1_GAINS_BITS 0x07
39 #define NAU7802_REG_CTRL2 0x02
40 #define NAU7802_CTRL2_CHS(x) (x << 7)
41 #define NAU7802_CTRL2_CRS(x) (x << 4)
42 #define NAU7802_SAMP_FREQ_320 0x07
43 #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1)
44 #define NAU7802_REG_ADC_B2 0x12
45 #define NAU7802_REG_ADC_B1 0x13
46 #define NAU7802_REG_ADC_B0 0x14
47 #define NAU7802_REG_ADC_CTRL 0x15
48
49 #define NAU7802_MIN_CONVERSIONS 6
50
51 struct nau7802_state {
52 struct i2c_client *client;
53 s32 last_value;
54 struct mutex lock;
55 struct mutex data_lock;
56 u32 vref_mv;
57 u32 conversion_count;
58 u32 min_conversions;
59 u8 sample_rate;
60 u32 scale_avail[8];
61 struct completion value_ok;
62 };
63
64 #define NAU7802_CHANNEL(chan) { \
65 .type = IIO_VOLTAGE, \
66 .indexed = 1, \
67 .channel = (chan), \
68 .scan_index = (chan), \
69 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
70 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
71 BIT(IIO_CHAN_INFO_SAMP_FREQ) \
72 }
73
74 static const struct iio_chan_spec nau7802_chan_array[] = {
75 NAU7802_CHANNEL(0),
76 NAU7802_CHANNEL(1),
77 };
78
79 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
80 10, 10, 10, 320};
81
nau7802_show_scales(struct device * dev,struct device_attribute * attr,char * buf)82 static ssize_t nau7802_show_scales(struct device *dev,
83 struct device_attribute *attr, char *buf)
84 {
85 struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
86 int i, len = 0;
87
88 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
89 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
90 st->scale_avail[i]);
91
92 buf[len-1] = '\n';
93
94 return len;
95 }
96
97 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
98
99 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
100 NULL, 0);
101
102 static struct attribute *nau7802_attributes[] = {
103 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
104 &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
105 NULL
106 };
107
108 static const struct attribute_group nau7802_attribute_group = {
109 .attrs = nau7802_attributes,
110 };
111
nau7802_set_gain(struct nau7802_state * st,int gain)112 static int nau7802_set_gain(struct nau7802_state *st, int gain)
113 {
114 int ret;
115
116 mutex_lock(&st->lock);
117 st->conversion_count = 0;
118
119 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
120 if (ret < 0)
121 goto nau7802_sysfs_set_gain_out;
122 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
123 (ret & (~NAU7802_CTRL1_GAINS_BITS)) |
124 gain);
125
126 nau7802_sysfs_set_gain_out:
127 mutex_unlock(&st->lock);
128
129 return ret;
130 }
131
nau7802_read_conversion(struct nau7802_state * st)132 static int nau7802_read_conversion(struct nau7802_state *st)
133 {
134 int data;
135
136 mutex_lock(&st->data_lock);
137 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
138 if (data < 0)
139 goto nau7802_read_conversion_out;
140 st->last_value = data << 16;
141
142 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
143 if (data < 0)
144 goto nau7802_read_conversion_out;
145 st->last_value |= data << 8;
146
147 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
148 if (data < 0)
149 goto nau7802_read_conversion_out;
150 st->last_value |= data;
151
152 st->last_value = sign_extend32(st->last_value, 23);
153
154 nau7802_read_conversion_out:
155 mutex_unlock(&st->data_lock);
156
157 return data;
158 }
159
160 /*
161 * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
162 */
nau7802_sync(struct nau7802_state * st)163 static int nau7802_sync(struct nau7802_state *st)
164 {
165 int ret;
166
167 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
168 if (ret < 0)
169 return ret;
170 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
171 ret | NAU7802_PUCTRL_CS_BIT);
172
173 return ret;
174 }
175
nau7802_eoc_trigger(int irq,void * private)176 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
177 {
178 struct iio_dev *indio_dev = private;
179 struct nau7802_state *st = iio_priv(indio_dev);
180 int status;
181
182 status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
183 if (status < 0)
184 return IRQ_HANDLED;
185
186 if (!(status & NAU7802_PUCTRL_CR_BIT))
187 return IRQ_NONE;
188
189 if (nau7802_read_conversion(st) < 0)
190 return IRQ_HANDLED;
191
192 /*
193 * Because there is actually only one ADC for both channels, we have to
194 * wait for enough conversions to happen before getting a significant
195 * value when changing channels and the values are far apart.
196 */
197 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
198 st->conversion_count++;
199 if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
200 complete(&st->value_ok);
201
202 return IRQ_HANDLED;
203 }
204
nau7802_read_irq(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)205 static int nau7802_read_irq(struct iio_dev *indio_dev,
206 struct iio_chan_spec const *chan,
207 int *val)
208 {
209 struct nau7802_state *st = iio_priv(indio_dev);
210 int ret;
211
212 reinit_completion(&st->value_ok);
213 enable_irq(st->client->irq);
214
215 nau7802_sync(st);
216
217 /* read registers to ensure we flush everything */
218 ret = nau7802_read_conversion(st);
219 if (ret < 0)
220 goto read_chan_info_failure;
221
222 /* Wait for a conversion to finish */
223 ret = wait_for_completion_interruptible_timeout(&st->value_ok,
224 msecs_to_jiffies(1000));
225 if (ret == 0)
226 ret = -ETIMEDOUT;
227
228 if (ret < 0)
229 goto read_chan_info_failure;
230
231 disable_irq(st->client->irq);
232
233 *val = st->last_value;
234
235 return IIO_VAL_INT;
236
237 read_chan_info_failure:
238 disable_irq(st->client->irq);
239
240 return ret;
241 }
242
nau7802_read_poll(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val)243 static int nau7802_read_poll(struct iio_dev *indio_dev,
244 struct iio_chan_spec const *chan,
245 int *val)
246 {
247 struct nau7802_state *st = iio_priv(indio_dev);
248 int ret;
249
250 nau7802_sync(st);
251
252 /* read registers to ensure we flush everything */
253 ret = nau7802_read_conversion(st);
254 if (ret < 0)
255 return ret;
256
257 /*
258 * Because there is actually only one ADC for both channels, we have to
259 * wait for enough conversions to happen before getting a significant
260 * value when changing channels and the values are far appart.
261 */
262 do {
263 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
264 if (ret < 0)
265 return ret;
266
267 while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
268 if (st->sample_rate != NAU7802_SAMP_FREQ_320)
269 msleep(20);
270 else
271 mdelay(4);
272 ret = i2c_smbus_read_byte_data(st->client,
273 NAU7802_REG_PUCTRL);
274 if (ret < 0)
275 return ret;
276 }
277
278 ret = nau7802_read_conversion(st);
279 if (ret < 0)
280 return ret;
281 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
282 st->conversion_count++;
283 } while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
284
285 *val = st->last_value;
286
287 return IIO_VAL_INT;
288 }
289
nau7802_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)290 static int nau7802_read_raw(struct iio_dev *indio_dev,
291 struct iio_chan_spec const *chan,
292 int *val, int *val2, long mask)
293 {
294 struct nau7802_state *st = iio_priv(indio_dev);
295 int ret;
296
297 switch (mask) {
298 case IIO_CHAN_INFO_RAW:
299 mutex_lock(&st->lock);
300 /*
301 * Select the channel to use
302 * - Channel 1 is value 0 in the CHS register
303 * - Channel 2 is value 1 in the CHS register
304 */
305 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
306 if (ret < 0) {
307 mutex_unlock(&st->lock);
308 return ret;
309 }
310
311 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
312 (!(ret & NAU7802_CTRL2_CHS_BIT) &&
313 chan->channel)) {
314 st->conversion_count = 0;
315 ret = i2c_smbus_write_byte_data(st->client,
316 NAU7802_REG_CTRL2,
317 NAU7802_CTRL2_CHS(chan->channel) |
318 NAU7802_CTRL2_CRS(st->sample_rate));
319
320 if (ret < 0) {
321 mutex_unlock(&st->lock);
322 return ret;
323 }
324 }
325
326 if (st->client->irq)
327 ret = nau7802_read_irq(indio_dev, chan, val);
328 else
329 ret = nau7802_read_poll(indio_dev, chan, val);
330
331 mutex_unlock(&st->lock);
332 return ret;
333
334 case IIO_CHAN_INFO_SCALE:
335 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
336 if (ret < 0)
337 return ret;
338
339 /*
340 * We have 24 bits of signed data, that means 23 bits of data
341 * plus the sign bit
342 */
343 *val = st->vref_mv;
344 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
345
346 return IIO_VAL_FRACTIONAL_LOG2;
347
348 case IIO_CHAN_INFO_SAMP_FREQ:
349 *val = nau7802_sample_freq_avail[st->sample_rate];
350 *val2 = 0;
351 return IIO_VAL_INT;
352
353 default:
354 break;
355 }
356
357 return -EINVAL;
358 }
359
nau7802_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)360 static int nau7802_write_raw(struct iio_dev *indio_dev,
361 struct iio_chan_spec const *chan,
362 int val, int val2, long mask)
363 {
364 struct nau7802_state *st = iio_priv(indio_dev);
365 int i, ret;
366
367 switch (mask) {
368 case IIO_CHAN_INFO_SCALE:
369 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
370 if (val2 == st->scale_avail[i])
371 return nau7802_set_gain(st, i);
372
373 break;
374
375 case IIO_CHAN_INFO_SAMP_FREQ:
376 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
377 if (val == nau7802_sample_freq_avail[i]) {
378 mutex_lock(&st->lock);
379 st->sample_rate = i;
380 st->conversion_count = 0;
381 ret = i2c_smbus_write_byte_data(st->client,
382 NAU7802_REG_CTRL2,
383 NAU7802_CTRL2_CRS(st->sample_rate));
384 mutex_unlock(&st->lock);
385 return ret;
386 }
387
388 break;
389
390 default:
391 break;
392 }
393
394 return -EINVAL;
395 }
396
nau7802_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)397 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
398 struct iio_chan_spec const *chan,
399 long mask)
400 {
401 return IIO_VAL_INT_PLUS_NANO;
402 }
403
404 static const struct iio_info nau7802_info = {
405 .read_raw = &nau7802_read_raw,
406 .write_raw = &nau7802_write_raw,
407 .write_raw_get_fmt = nau7802_write_raw_get_fmt,
408 .attrs = &nau7802_attribute_group,
409 };
410
nau7802_probe(struct i2c_client * client)411 static int nau7802_probe(struct i2c_client *client)
412 {
413 struct iio_dev *indio_dev;
414 struct nau7802_state *st;
415 int i, ret;
416 u8 data;
417 u32 tmp = 0;
418
419 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
420 if (indio_dev == NULL)
421 return -ENOMEM;
422
423 st = iio_priv(indio_dev);
424
425 indio_dev->name = dev_name(&client->dev);
426 indio_dev->modes = INDIO_DIRECT_MODE;
427 indio_dev->info = &nau7802_info;
428
429 st->client = client;
430
431 /* Reset the device */
432 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
433 NAU7802_PUCTRL_RR_BIT);
434 if (ret < 0)
435 return ret;
436
437 /* Enter normal operation mode */
438 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
439 NAU7802_PUCTRL_PUD_BIT);
440 if (ret < 0)
441 return ret;
442
443 /*
444 * After about 200 usecs, the device should be ready and then
445 * the Power Up bit will be set to 1. If not, wait for it.
446 */
447 udelay(210);
448 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
449 if (ret < 0)
450 return ret;
451 if (!(ret & NAU7802_PUCTRL_PUR_BIT))
452 return ret;
453
454 device_property_read_u32(&client->dev, "nuvoton,vldo", &tmp);
455 st->vref_mv = tmp;
456
457 data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
458 NAU7802_PUCTRL_CS_BIT;
459 if (tmp >= 2400)
460 data |= NAU7802_PUCTRL_AVDDS_BIT;
461
462 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
463 if (ret < 0)
464 return ret;
465 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
466 if (ret < 0)
467 return ret;
468
469 if (tmp >= 2400) {
470 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
471 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
472 data);
473 if (ret < 0)
474 return ret;
475 }
476
477 /* Populate available ADC input ranges */
478 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
479 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
480 >> (23 + i);
481
482 init_completion(&st->value_ok);
483
484 /*
485 * The ADC fires continuously and we can't do anything about
486 * it. So we need to have the IRQ disabled by default, and we
487 * will enable them back when we will need them..
488 */
489 if (client->irq) {
490 ret = devm_request_threaded_irq(&client->dev, client->irq,
491 NULL,
492 nau7802_eoc_trigger,
493 IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
494 IRQF_NO_AUTOEN,
495 client->dev.driver->name,
496 indio_dev);
497 if (ret) {
498 /*
499 * What may happen here is that our IRQ controller is
500 * not able to get level interrupt but this is required
501 * by this ADC as when going over 40 sample per second,
502 * the interrupt line may stay high between conversions.
503 * So, we continue no matter what but we switch to
504 * polling mode.
505 */
506 dev_info(&client->dev,
507 "Failed to allocate IRQ, using polling mode\n");
508 client->irq = 0;
509 }
510 }
511
512 if (!client->irq) {
513 /*
514 * We are polling, use the fastest sample rate by
515 * default
516 */
517 st->sample_rate = NAU7802_SAMP_FREQ_320;
518 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
519 NAU7802_CTRL2_CRS(st->sample_rate));
520 if (ret)
521 return ret;
522 }
523
524 /* Setup the ADC channels available on the board */
525 indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
526 indio_dev->channels = nau7802_chan_array;
527
528 mutex_init(&st->lock);
529 mutex_init(&st->data_lock);
530
531 return devm_iio_device_register(&client->dev, indio_dev);
532 }
533
534 static const struct i2c_device_id nau7802_i2c_id[] = {
535 { "nau7802", 0 },
536 { }
537 };
538 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
539
540 static const struct of_device_id nau7802_dt_ids[] = {
541 { .compatible = "nuvoton,nau7802" },
542 {},
543 };
544 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
545
546 static struct i2c_driver nau7802_driver = {
547 .probe_new = nau7802_probe,
548 .id_table = nau7802_i2c_id,
549 .driver = {
550 .name = "nau7802",
551 .of_match_table = nau7802_dt_ids,
552 },
553 };
554
555 module_i2c_driver(nau7802_driver);
556
557 MODULE_LICENSE("GPL");
558 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
559 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
560 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
561