1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3 * SPI core driver for the Ocelot chip family.
4 *
5 * This driver will handle everything necessary to allow for communication over
6 * SPI to the VSC7511, VSC7512, VSC7513 and VSC7514 chips. The main functions
7 * are to prepare the chip's SPI interface for a specific bus speed, and a host
8 * processor's endianness. This will create and distribute regmaps for any
9 * children.
10 *
11 * Copyright 2021-2022 Innovative Advantage Inc.
12 *
13 * Author: Colin Foster <colin.foster@in-advantage.com>
14 */
15
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/ioport.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/regmap.h>
24 #include <linux/spi/spi.h>
25 #include <linux/types.h>
26 #include <linux/units.h>
27
28 #include "ocelot.h"
29
30 #define REG_DEV_CPUORG_IF_CTRL 0x0000
31 #define REG_DEV_CPUORG_IF_CFGSTAT 0x0004
32
33 #define CFGSTAT_IF_NUM_VCORE (0 << 24)
34 #define CFGSTAT_IF_NUM_VRAP (1 << 24)
35 #define CFGSTAT_IF_NUM_SI (2 << 24)
36 #define CFGSTAT_IF_NUM_MIIM (3 << 24)
37
38 #define VSC7512_DEVCPU_ORG_RES_START 0x71000000
39 #define VSC7512_DEVCPU_ORG_RES_SIZE 0x38
40
41 #define VSC7512_CHIP_REGS_RES_START 0x71070000
42 #define VSC7512_CHIP_REGS_RES_SIZE 0x14
43
44 static const struct resource vsc7512_dev_cpuorg_resource =
45 DEFINE_RES_REG_NAMED(VSC7512_DEVCPU_ORG_RES_START,
46 VSC7512_DEVCPU_ORG_RES_SIZE,
47 "devcpu_org");
48
49 static const struct resource vsc7512_gcb_resource =
50 DEFINE_RES_REG_NAMED(VSC7512_CHIP_REGS_RES_START,
51 VSC7512_CHIP_REGS_RES_SIZE,
52 "devcpu_gcb_chip_regs");
53
ocelot_spi_initialize(struct device * dev)54 static int ocelot_spi_initialize(struct device *dev)
55 {
56 struct ocelot_ddata *ddata = dev_get_drvdata(dev);
57 u32 val, check;
58 int err;
59
60 val = OCELOT_SPI_BYTE_ORDER;
61
62 /*
63 * The SPI address must be big-endian, but we want the payload to match
64 * our CPU. These are two bits (0 and 1) but they're repeated such that
65 * the write from any configuration will be valid. The four
66 * configurations are:
67 *
68 * 0b00: little-endian, MSB first
69 * | 111111 | 22221111 | 33222222 |
70 * | 76543210 | 54321098 | 32109876 | 10987654 |
71 *
72 * 0b01: big-endian, MSB first
73 * | 33222222 | 22221111 | 111111 | |
74 * | 10987654 | 32109876 | 54321098 | 76543210 |
75 *
76 * 0b10: little-endian, LSB first
77 * | 111111 | 11112222 | 22222233 |
78 * | 01234567 | 89012345 | 67890123 | 45678901 |
79 *
80 * 0b11: big-endian, LSB first
81 * | 22222233 | 11112222 | 111111 | |
82 * | 45678901 | 67890123 | 89012345 | 01234567 |
83 */
84 err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CTRL, val);
85 if (err)
86 return err;
87
88 /*
89 * Apply the number of padding bytes between a read request and the data
90 * payload. Some registers have access times of up to 1us, so if the
91 * first payload bit is shifted out too quickly, the read will fail.
92 */
93 val = ddata->spi_padding_bytes;
94 err = regmap_write(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, val);
95 if (err)
96 return err;
97
98 /*
99 * After we write the interface configuration, read it back here. This
100 * will verify several different things. The first is that the number of
101 * padding bytes actually got written correctly. These are found in bits
102 * 0:3.
103 *
104 * The second is that bit 16 is cleared. Bit 16 is IF_CFGSTAT:IF_STAT,
105 * and will be set if the register access is too fast. This would be in
106 * the condition that the number of padding bytes is insufficient for
107 * the SPI bus frequency.
108 *
109 * The last check is for bits 31:24, which define the interface by which
110 * the registers are being accessed. Since we're accessing them via the
111 * serial interface, it must return IF_NUM_SI.
112 */
113 check = val | CFGSTAT_IF_NUM_SI;
114
115 err = regmap_read(ddata->cpuorg_regmap, REG_DEV_CPUORG_IF_CFGSTAT, &val);
116 if (err)
117 return err;
118
119 if (check != val)
120 return -ENODEV;
121
122 return 0;
123 }
124
125 static const struct regmap_config ocelot_spi_regmap_config = {
126 .reg_bits = 24,
127 .reg_stride = 4,
128 .reg_downshift = 2,
129 .val_bits = 32,
130
131 .write_flag_mask = 0x80,
132
133 .use_single_read = true,
134 .use_single_write = true,
135 .can_multi_write = false,
136
137 .reg_format_endian = REGMAP_ENDIAN_BIG,
138 .val_format_endian = REGMAP_ENDIAN_NATIVE,
139 };
140
ocelot_spi_regmap_bus_read(void * context,const void * reg,size_t reg_size,void * val,size_t val_size)141 static int ocelot_spi_regmap_bus_read(void *context, const void *reg, size_t reg_size,
142 void *val, size_t val_size)
143 {
144 struct spi_transfer xfers[3] = {0};
145 struct device *dev = context;
146 struct ocelot_ddata *ddata;
147 struct spi_device *spi;
148 struct spi_message msg;
149 unsigned int index = 0;
150
151 ddata = dev_get_drvdata(dev);
152 spi = to_spi_device(dev);
153
154 xfers[index].tx_buf = reg;
155 xfers[index].len = reg_size;
156 index++;
157
158 if (ddata->spi_padding_bytes) {
159 xfers[index].len = ddata->spi_padding_bytes;
160 xfers[index].tx_buf = ddata->dummy_buf;
161 xfers[index].dummy_data = 1;
162 index++;
163 }
164
165 xfers[index].rx_buf = val;
166 xfers[index].len = val_size;
167 index++;
168
169 spi_message_init_with_transfers(&msg, xfers, index);
170
171 return spi_sync(spi, &msg);
172 }
173
ocelot_spi_regmap_bus_write(void * context,const void * data,size_t count)174 static int ocelot_spi_regmap_bus_write(void *context, const void *data, size_t count)
175 {
176 struct device *dev = context;
177 struct spi_device *spi = to_spi_device(dev);
178
179 return spi_write(spi, data, count);
180 }
181
182 static const struct regmap_bus ocelot_spi_regmap_bus = {
183 .write = ocelot_spi_regmap_bus_write,
184 .read = ocelot_spi_regmap_bus_read,
185 };
186
ocelot_spi_init_regmap(struct device * dev,const struct resource * res)187 struct regmap *ocelot_spi_init_regmap(struct device *dev, const struct resource *res)
188 {
189 struct regmap_config regmap_config;
190
191 memcpy(®map_config, &ocelot_spi_regmap_config, sizeof(regmap_config));
192
193 regmap_config.name = res->name;
194 regmap_config.max_register = resource_size(res) - 1;
195 regmap_config.reg_base = res->start;
196
197 return devm_regmap_init(dev, &ocelot_spi_regmap_bus, dev, ®map_config);
198 }
199 EXPORT_SYMBOL_NS(ocelot_spi_init_regmap, MFD_OCELOT_SPI);
200
ocelot_spi_probe(struct spi_device * spi)201 static int ocelot_spi_probe(struct spi_device *spi)
202 {
203 struct device *dev = &spi->dev;
204 struct ocelot_ddata *ddata;
205 struct regmap *r;
206 int err;
207
208 ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
209 if (!ddata)
210 return -ENOMEM;
211
212 spi_set_drvdata(spi, ddata);
213
214 if (spi->max_speed_hz <= 500000) {
215 ddata->spi_padding_bytes = 0;
216 } else {
217 /*
218 * Calculation taken from the manual for IF_CFGSTAT:IF_CFG.
219 * Register access time is 1us, so we need to configure and send
220 * out enough padding bytes between the read request and data
221 * transmission that lasts at least 1 microsecond.
222 */
223 ddata->spi_padding_bytes = 1 + (spi->max_speed_hz / HZ_PER_MHZ + 2) / 8;
224
225 ddata->dummy_buf = devm_kzalloc(dev, ddata->spi_padding_bytes, GFP_KERNEL);
226 if (!ddata->dummy_buf)
227 return -ENOMEM;
228 }
229
230 spi->bits_per_word = 8;
231
232 err = spi_setup(spi);
233 if (err)
234 return dev_err_probe(&spi->dev, err, "Error performing SPI setup\n");
235
236 r = ocelot_spi_init_regmap(dev, &vsc7512_dev_cpuorg_resource);
237 if (IS_ERR(r))
238 return PTR_ERR(r);
239
240 ddata->cpuorg_regmap = r;
241
242 r = ocelot_spi_init_regmap(dev, &vsc7512_gcb_resource);
243 if (IS_ERR(r))
244 return PTR_ERR(r);
245
246 ddata->gcb_regmap = r;
247
248 /*
249 * The chip must be set up for SPI before it gets initialized and reset.
250 * This must be done before calling init, and after a chip reset is
251 * performed.
252 */
253 err = ocelot_spi_initialize(dev);
254 if (err)
255 return dev_err_probe(dev, err, "Error initializing SPI bus\n");
256
257 err = ocelot_chip_reset(dev);
258 if (err)
259 return dev_err_probe(dev, err, "Error resetting device\n");
260
261 /*
262 * A chip reset will clear the SPI configuration, so it needs to be done
263 * again before we can access any registers.
264 */
265 err = ocelot_spi_initialize(dev);
266 if (err)
267 return dev_err_probe(dev, err, "Error initializing SPI bus after reset\n");
268
269 err = ocelot_core_init(dev);
270 if (err)
271 return dev_err_probe(dev, err, "Error initializing Ocelot core\n");
272
273 return 0;
274 }
275
276 static const struct spi_device_id ocelot_spi_ids[] = {
277 { "vsc7512", 0 },
278 { }
279 };
280 MODULE_DEVICE_TABLE(spi, ocelot_spi_ids);
281
282 static const struct of_device_id ocelot_spi_of_match[] = {
283 { .compatible = "mscc,vsc7512" },
284 { }
285 };
286 MODULE_DEVICE_TABLE(of, ocelot_spi_of_match);
287
288 static struct spi_driver ocelot_spi_driver = {
289 .driver = {
290 .name = "ocelot-soc",
291 .of_match_table = ocelot_spi_of_match,
292 },
293 .id_table = ocelot_spi_ids,
294 .probe = ocelot_spi_probe,
295 };
296 module_spi_driver(ocelot_spi_driver);
297
298 MODULE_DESCRIPTION("SPI Controlled Ocelot Chip Driver");
299 MODULE_AUTHOR("Colin Foster <colin.foster@in-advantage.com>");
300 MODULE_LICENSE("Dual MIT/GPL");
301 MODULE_IMPORT_NS(MFD_OCELOT);
302