1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Freescale GPMI NAND Flash Driver
4 *
5 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
27
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30
31 #define MXS_SET_ADDR 0x4
32 #define MXS_CLR_ADDR 0x8
33 /*
34 * Clear the bit and poll it cleared. This is usually called with
35 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36 * (bit 30).
37 */
clear_poll_bit(void __iomem * addr,u32 mask)38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 int timeout = 0x400;
41
42 /* clear the bit */
43 writel(mask, addr + MXS_CLR_ADDR);
44
45 /*
46 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 * recommends to wait 1us.
48 */
49 udelay(1);
50
51 /* poll the bit becoming clear */
52 while ((readl(addr) & mask) && --timeout)
53 /* nothing */;
54
55 return !timeout;
56 }
57
58 #define MODULE_CLKGATE (1 << 30)
59 #define MODULE_SFTRST (1 << 31)
60 /*
61 * The current mxs_reset_block() will do two things:
62 * [1] enable the module.
63 * [2] reset the module.
64 *
65 * In most of the cases, it's ok.
66 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67 * If you try to soft reset the BCH block, it becomes unusable until
68 * the next hard reset. This case occurs in the NAND boot mode. When the board
69 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71 * You will see a DMA timeout in this case. The bug has been fixed
72 * in the following chips, such as MX28.
73 *
74 * To avoid this bug, just add a new parameter `just_enable` for
75 * the mxs_reset_block(), and rewrite it here.
76 */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 int ret;
80 int timeout = 0x400;
81
82 /* clear and poll SFTRST */
83 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 if (unlikely(ret))
85 goto error;
86
87 /* clear CLKGATE */
88 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89
90 if (!just_enable) {
91 /* set SFTRST to reset the block */
92 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 udelay(1);
94
95 /* poll CLKGATE becoming set */
96 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 /* nothing */;
98 if (unlikely(!timeout))
99 goto error;
100 }
101
102 /* clear and poll SFTRST */
103 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 if (unlikely(ret))
105 goto error;
106
107 /* clear and poll CLKGATE */
108 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 if (unlikely(ret))
110 goto error;
111
112 return 0;
113
114 error:
115 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 return -ETIMEDOUT;
117 }
118
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 struct clk *clk;
122 int ret;
123 int i;
124
125 for (i = 0; i < GPMI_CLK_MAX; i++) {
126 clk = this->resources.clock[i];
127 if (!clk)
128 break;
129
130 if (v) {
131 ret = clk_prepare_enable(clk);
132 if (ret)
133 goto err_clk;
134 } else {
135 clk_disable_unprepare(clk);
136 }
137 }
138 return 0;
139
140 err_clk:
141 for (; i > 0; i--)
142 clk_disable_unprepare(this->resources.clock[i - 1]);
143 return ret;
144 }
145
gpmi_init(struct gpmi_nand_data * this)146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 struct resources *r = &this->resources;
149 int ret;
150
151 ret = pm_runtime_get_sync(this->dev);
152 if (ret < 0) {
153 pm_runtime_put_noidle(this->dev);
154 return ret;
155 }
156
157 ret = gpmi_reset_block(r->gpmi_regs, false);
158 if (ret)
159 goto err_out;
160
161 /*
162 * Reset BCH here, too. We got failures otherwise :(
163 * See later BCH reset for explanation of MX23 and MX28 handling
164 */
165 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166 if (ret)
167 goto err_out;
168
169 /* Choose NAND mode. */
170 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171
172 /* Set the IRQ polarity. */
173 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174 r->gpmi_regs + HW_GPMI_CTRL1_SET);
175
176 /* Disable Write-Protection. */
177 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178
179 /* Select BCH ECC. */
180 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181
182 /*
183 * Decouple the chip select from dma channel. We use dma0 for all
184 * the chips, force all NAND RDY_BUSY inputs to be sourced from
185 * RDY_BUSY0.
186 */
187 writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
188 r->gpmi_regs + HW_GPMI_CTRL1_SET);
189
190 err_out:
191 pm_runtime_mark_last_busy(this->dev);
192 pm_runtime_put_autosuspend(this->dev);
193 return ret;
194 }
195
196 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)197 static void gpmi_dump_info(struct gpmi_nand_data *this)
198 {
199 struct resources *r = &this->resources;
200 struct bch_geometry *geo = &this->bch_geometry;
201 u32 reg;
202 int i;
203
204 dev_err(this->dev, "Show GPMI registers :\n");
205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206 reg = readl(r->gpmi_regs + i * 0x10);
207 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
208 }
209
210 /* start to print out the BCH info */
211 dev_err(this->dev, "Show BCH registers :\n");
212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213 reg = readl(r->bch_regs + i * 0x10);
214 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215 }
216 dev_err(this->dev, "BCH Geometry :\n"
217 "GF length : %u\n"
218 "ECC Strength : %u\n"
219 "Page Size in Bytes : %u\n"
220 "Metadata Size in Bytes : %u\n"
221 "ECC0 Chunk Size in Bytes: %u\n"
222 "ECCn Chunk Size in Bytes: %u\n"
223 "ECC Chunk Count : %u\n"
224 "Payload Size in Bytes : %u\n"
225 "Auxiliary Size in Bytes: %u\n"
226 "Auxiliary Status Offset: %u\n"
227 "Block Mark Byte Offset : %u\n"
228 "Block Mark Bit Offset : %u\n",
229 geo->gf_len,
230 geo->ecc_strength,
231 geo->page_size,
232 geo->metadata_size,
233 geo->ecc0_chunk_size,
234 geo->eccn_chunk_size,
235 geo->ecc_chunk_count,
236 geo->payload_size,
237 geo->auxiliary_size,
238 geo->auxiliary_status_offset,
239 geo->block_mark_byte_offset,
240 geo->block_mark_bit_offset);
241 }
242
gpmi_check_ecc(struct gpmi_nand_data * this)243 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
244 {
245 struct nand_chip *chip = &this->nand;
246 struct bch_geometry *geo = &this->bch_geometry;
247 struct nand_device *nand = &chip->base;
248 struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
249
250 conf->step_size = geo->eccn_chunk_size;
251 conf->strength = geo->ecc_strength;
252
253 /* Do the sanity check. */
254 if (GPMI_IS_MXS(this)) {
255 /* The mx23/mx28 only support the GF13. */
256 if (geo->gf_len == 14)
257 return false;
258 }
259
260 if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
261 return false;
262
263 if (!nand_ecc_is_strong_enough(nand))
264 return false;
265
266 return true;
267 }
268
269 /* check if bbm locates in data chunk rather than ecc chunk */
bbm_in_data_chunk(struct gpmi_nand_data * this,unsigned int * chunk_num)270 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
271 unsigned int *chunk_num)
272 {
273 struct bch_geometry *geo = &this->bch_geometry;
274 struct nand_chip *chip = &this->nand;
275 struct mtd_info *mtd = nand_to_mtd(chip);
276 unsigned int i, j;
277
278 if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
279 dev_err(this->dev,
280 "The size of ecc0_chunk must equal to eccn_chunk\n");
281 return false;
282 }
283
284 i = (mtd->writesize * 8 - geo->metadata_size * 8) /
285 (geo->gf_len * geo->ecc_strength +
286 geo->eccn_chunk_size * 8);
287
288 j = (mtd->writesize * 8 - geo->metadata_size * 8) -
289 (geo->gf_len * geo->ecc_strength +
290 geo->eccn_chunk_size * 8) * i;
291
292 if (j < geo->eccn_chunk_size * 8) {
293 *chunk_num = i+1;
294 dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
295 geo->ecc_strength, *chunk_num);
296 return true;
297 }
298
299 return false;
300 }
301
302 /*
303 * If we can get the ECC information from the nand chip, we do not
304 * need to calculate them ourselves.
305 *
306 * We may have available oob space in this case.
307 */
set_geometry_by_ecc_info(struct gpmi_nand_data * this,unsigned int ecc_strength,unsigned int ecc_step)308 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
309 unsigned int ecc_strength,
310 unsigned int ecc_step)
311 {
312 struct bch_geometry *geo = &this->bch_geometry;
313 struct nand_chip *chip = &this->nand;
314 struct mtd_info *mtd = nand_to_mtd(chip);
315 unsigned int block_mark_bit_offset;
316
317 switch (ecc_step) {
318 case SZ_512:
319 geo->gf_len = 13;
320 break;
321 case SZ_1K:
322 geo->gf_len = 14;
323 break;
324 default:
325 dev_err(this->dev,
326 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
327 nanddev_get_ecc_requirements(&chip->base)->strength,
328 nanddev_get_ecc_requirements(&chip->base)->step_size);
329 return -EINVAL;
330 }
331 geo->ecc0_chunk_size = ecc_step;
332 geo->eccn_chunk_size = ecc_step;
333 geo->ecc_strength = round_up(ecc_strength, 2);
334 if (!gpmi_check_ecc(this))
335 return -EINVAL;
336
337 /* Keep the C >= O */
338 if (geo->eccn_chunk_size < mtd->oobsize) {
339 dev_err(this->dev,
340 "unsupported nand chip. ecc size: %d, oob size : %d\n",
341 ecc_step, mtd->oobsize);
342 return -EINVAL;
343 }
344
345 /* The default value, see comment in the legacy_set_geometry(). */
346 geo->metadata_size = 10;
347
348 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
349
350 /*
351 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
352 *
353 * | P |
354 * |<----------------------------------------------------->|
355 * | |
356 * | (Block Mark) |
357 * | P' | | | |
358 * |<-------------------------------------------->| D | | O' |
359 * | |<---->| |<--->|
360 * V V V V V
361 * +---+----------+-+----------+-+----------+-+----------+-+-----+
362 * | M | data |E| data |E| data |E| data |E| |
363 * +---+----------+-+----------+-+----------+-+----------+-+-----+
364 * ^ ^
365 * | O |
366 * |<------------>|
367 * | |
368 *
369 * P : the page size for BCH module.
370 * E : The ECC strength.
371 * G : the length of Galois Field.
372 * N : The chunk count of per page.
373 * M : the metasize of per page.
374 * C : the ecc chunk size, aka the "data" above.
375 * P': the nand chip's page size.
376 * O : the nand chip's oob size.
377 * O': the free oob.
378 *
379 * The formula for P is :
380 *
381 * E * G * N
382 * P = ------------ + P' + M
383 * 8
384 *
385 * The position of block mark moves forward in the ECC-based view
386 * of page, and the delta is:
387 *
388 * E * G * (N - 1)
389 * D = (---------------- + M)
390 * 8
391 *
392 * Please see the comment in legacy_set_geometry().
393 * With the condition C >= O , we still can get same result.
394 * So the bit position of the physical block mark within the ECC-based
395 * view of the page is :
396 * (P' - D) * 8
397 */
398 geo->page_size = mtd->writesize + geo->metadata_size +
399 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
400
401 geo->payload_size = mtd->writesize;
402
403 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
404 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
405 + ALIGN(geo->ecc_chunk_count, 4);
406
407 if (!this->swap_block_mark)
408 return 0;
409
410 /* For bit swap. */
411 block_mark_bit_offset = mtd->writesize * 8 -
412 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
413 + geo->metadata_size * 8);
414
415 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
416 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
417 return 0;
418 }
419
420 /*
421 * Calculate the ECC strength by hand:
422 * E : The ECC strength.
423 * G : the length of Galois Field.
424 * N : The chunk count of per page.
425 * O : the oobsize of the NAND chip.
426 * M : the metasize of per page.
427 *
428 * The formula is :
429 * E * G * N
430 * ------------ <= (O - M)
431 * 8
432 *
433 * So, we get E by:
434 * (O - M) * 8
435 * E <= -------------
436 * G * N
437 */
get_ecc_strength(struct gpmi_nand_data * this)438 static inline int get_ecc_strength(struct gpmi_nand_data *this)
439 {
440 struct bch_geometry *geo = &this->bch_geometry;
441 struct mtd_info *mtd = nand_to_mtd(&this->nand);
442 int ecc_strength;
443
444 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
445 / (geo->gf_len * geo->ecc_chunk_count);
446
447 /* We need the minor even number. */
448 return round_down(ecc_strength, 2);
449 }
450
set_geometry_for_large_oob(struct gpmi_nand_data * this)451 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
452 {
453 struct bch_geometry *geo = &this->bch_geometry;
454 struct nand_chip *chip = &this->nand;
455 struct mtd_info *mtd = nand_to_mtd(chip);
456 const struct nand_ecc_props *requirements =
457 nanddev_get_ecc_requirements(&chip->base);
458 unsigned int block_mark_bit_offset;
459 unsigned int max_ecc;
460 unsigned int bbm_chunk;
461 unsigned int i;
462
463 /* sanity check for the minimum ecc nand required */
464 if (!(requirements->strength > 0 &&
465 requirements->step_size > 0))
466 return -EINVAL;
467 geo->ecc_strength = requirements->strength;
468
469 /* check if platform can support this nand */
470 if (!gpmi_check_ecc(this)) {
471 dev_err(this->dev,
472 "unsupported NAND chip, minimum ecc required %d\n",
473 geo->ecc_strength);
474 return -EINVAL;
475 }
476
477 /* calculate the maximum ecc platform can support*/
478 geo->metadata_size = 10;
479 geo->gf_len = 14;
480 geo->ecc0_chunk_size = 1024;
481 geo->eccn_chunk_size = 1024;
482 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
483 max_ecc = min(get_ecc_strength(this),
484 this->devdata->bch_max_ecc_strength);
485
486 /*
487 * search a supported ecc strength that makes bbm
488 * located in data chunk
489 */
490 geo->ecc_strength = max_ecc;
491 while (!(geo->ecc_strength < requirements->strength)) {
492 if (bbm_in_data_chunk(this, &bbm_chunk))
493 goto geo_setting;
494 geo->ecc_strength -= 2;
495 }
496
497 /* if none of them works, keep using the minimum ecc */
498 /* nand required but changing ecc page layout */
499 geo->ecc_strength = requirements->strength;
500 /* add extra ecc for meta data */
501 geo->ecc0_chunk_size = 0;
502 geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
503 geo->ecc_for_meta = 1;
504 /* check if oob can afford this extra ecc chunk */
505 if (mtd->oobsize * 8 < geo->metadata_size * 8 +
506 geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
507 dev_err(this->dev, "unsupported NAND chip with new layout\n");
508 return -EINVAL;
509 }
510
511 /* calculate in which chunk bbm located */
512 bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
513 geo->gf_len * geo->ecc_strength) /
514 (geo->gf_len * geo->ecc_strength +
515 geo->eccn_chunk_size * 8) + 1;
516
517 geo_setting:
518
519 geo->page_size = mtd->writesize + geo->metadata_size +
520 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
521 geo->payload_size = mtd->writesize;
522
523 /*
524 * The auxiliary buffer contains the metadata and the ECC status. The
525 * metadata is padded to the nearest 32-bit boundary. The ECC status
526 * contains one byte for every ECC chunk, and is also padded to the
527 * nearest 32-bit boundary.
528 */
529 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
530 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
531 + ALIGN(geo->ecc_chunk_count, 4);
532
533 if (!this->swap_block_mark)
534 return 0;
535
536 /* calculate the number of ecc chunk behind the bbm */
537 i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
538
539 block_mark_bit_offset = mtd->writesize * 8 -
540 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
541 + geo->metadata_size * 8);
542
543 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
544 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
545
546 dev_dbg(this->dev, "BCH Geometry :\n"
547 "GF length : %u\n"
548 "ECC Strength : %u\n"
549 "Page Size in Bytes : %u\n"
550 "Metadata Size in Bytes : %u\n"
551 "ECC0 Chunk Size in Bytes: %u\n"
552 "ECCn Chunk Size in Bytes: %u\n"
553 "ECC Chunk Count : %u\n"
554 "Payload Size in Bytes : %u\n"
555 "Auxiliary Size in Bytes: %u\n"
556 "Auxiliary Status Offset: %u\n"
557 "Block Mark Byte Offset : %u\n"
558 "Block Mark Bit Offset : %u\n"
559 "Block Mark in chunk : %u\n"
560 "Ecc for Meta data : %u\n",
561 geo->gf_len,
562 geo->ecc_strength,
563 geo->page_size,
564 geo->metadata_size,
565 geo->ecc0_chunk_size,
566 geo->eccn_chunk_size,
567 geo->ecc_chunk_count,
568 geo->payload_size,
569 geo->auxiliary_size,
570 geo->auxiliary_status_offset,
571 geo->block_mark_byte_offset,
572 geo->block_mark_bit_offset,
573 bbm_chunk,
574 geo->ecc_for_meta);
575
576 return 0;
577 }
578
legacy_set_geometry(struct gpmi_nand_data * this)579 static int legacy_set_geometry(struct gpmi_nand_data *this)
580 {
581 struct bch_geometry *geo = &this->bch_geometry;
582 struct mtd_info *mtd = nand_to_mtd(&this->nand);
583 unsigned int metadata_size;
584 unsigned int status_size;
585 unsigned int block_mark_bit_offset;
586
587 /*
588 * The size of the metadata can be changed, though we set it to 10
589 * bytes now. But it can't be too large, because we have to save
590 * enough space for BCH.
591 */
592 geo->metadata_size = 10;
593
594 /* The default for the length of Galois Field. */
595 geo->gf_len = 13;
596
597 /* The default for chunk size. */
598 geo->ecc0_chunk_size = 512;
599 geo->eccn_chunk_size = 512;
600 while (geo->eccn_chunk_size < mtd->oobsize) {
601 geo->ecc0_chunk_size *= 2; /* keep C >= O */
602 geo->eccn_chunk_size *= 2; /* keep C >= O */
603 geo->gf_len = 14;
604 }
605
606 geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
607
608 /* We use the same ECC strength for all chunks. */
609 geo->ecc_strength = get_ecc_strength(this);
610 if (!gpmi_check_ecc(this)) {
611 dev_err(this->dev,
612 "ecc strength: %d cannot be supported by the controller (%d)\n"
613 "try to use minimum ecc strength that NAND chip required\n",
614 geo->ecc_strength,
615 this->devdata->bch_max_ecc_strength);
616 return -EINVAL;
617 }
618
619 geo->page_size = mtd->writesize + geo->metadata_size +
620 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
621 geo->payload_size = mtd->writesize;
622
623 /*
624 * The auxiliary buffer contains the metadata and the ECC status. The
625 * metadata is padded to the nearest 32-bit boundary. The ECC status
626 * contains one byte for every ECC chunk, and is also padded to the
627 * nearest 32-bit boundary.
628 */
629 metadata_size = ALIGN(geo->metadata_size, 4);
630 status_size = ALIGN(geo->ecc_chunk_count, 4);
631
632 geo->auxiliary_size = metadata_size + status_size;
633 geo->auxiliary_status_offset = metadata_size;
634
635 if (!this->swap_block_mark)
636 return 0;
637
638 /*
639 * We need to compute the byte and bit offsets of
640 * the physical block mark within the ECC-based view of the page.
641 *
642 * NAND chip with 2K page shows below:
643 * (Block Mark)
644 * | |
645 * | D |
646 * |<---->|
647 * V V
648 * +---+----------+-+----------+-+----------+-+----------+-+
649 * | M | data |E| data |E| data |E| data |E|
650 * +---+----------+-+----------+-+----------+-+----------+-+
651 *
652 * The position of block mark moves forward in the ECC-based view
653 * of page, and the delta is:
654 *
655 * E * G * (N - 1)
656 * D = (---------------- + M)
657 * 8
658 *
659 * With the formula to compute the ECC strength, and the condition
660 * : C >= O (C is the ecc chunk size)
661 *
662 * It's easy to deduce to the following result:
663 *
664 * E * G (O - M) C - M C - M
665 * ----------- <= ------- <= -------- < ---------
666 * 8 N N (N - 1)
667 *
668 * So, we get:
669 *
670 * E * G * (N - 1)
671 * D = (---------------- + M) < C
672 * 8
673 *
674 * The above inequality means the position of block mark
675 * within the ECC-based view of the page is still in the data chunk,
676 * and it's NOT in the ECC bits of the chunk.
677 *
678 * Use the following to compute the bit position of the
679 * physical block mark within the ECC-based view of the page:
680 * (page_size - D) * 8
681 *
682 * --Huang Shijie
683 */
684 block_mark_bit_offset = mtd->writesize * 8 -
685 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
686 + geo->metadata_size * 8);
687
688 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
689 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
690 return 0;
691 }
692
common_nfc_set_geometry(struct gpmi_nand_data * this)693 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
694 {
695 struct nand_chip *chip = &this->nand;
696 struct mtd_info *mtd = nand_to_mtd(&this->nand);
697 const struct nand_ecc_props *requirements =
698 nanddev_get_ecc_requirements(&chip->base);
699 bool use_minimun_ecc;
700 int err;
701
702 use_minimun_ecc = of_property_read_bool(this->dev->of_node,
703 "fsl,use-minimum-ecc");
704
705 /* use legacy bch geometry settings by default*/
706 if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
707 !(requirements->strength > 0 && requirements->step_size > 0)) {
708 dev_dbg(this->dev, "use legacy bch geometry\n");
709 err = legacy_set_geometry(this);
710 if (!err)
711 return 0;
712 }
713
714 /* for large oob nand */
715 if (mtd->oobsize > 1024) {
716 dev_dbg(this->dev, "use large oob bch geometry\n");
717 err = set_geometry_for_large_oob(this);
718 if (!err)
719 return 0;
720 }
721
722 /* otherwise use the minimum ecc nand chip required */
723 dev_dbg(this->dev, "use minimum ecc bch geometry\n");
724 err = set_geometry_by_ecc_info(this, requirements->strength,
725 requirements->step_size);
726 if (err)
727 dev_err(this->dev, "none of the bch geometry setting works\n");
728
729 return err;
730 }
731
732 /* Configures the geometry for BCH. */
bch_set_geometry(struct gpmi_nand_data * this)733 static int bch_set_geometry(struct gpmi_nand_data *this)
734 {
735 struct resources *r = &this->resources;
736 int ret;
737
738 ret = common_nfc_set_geometry(this);
739 if (ret)
740 return ret;
741
742 ret = pm_runtime_get_sync(this->dev);
743 if (ret < 0) {
744 pm_runtime_put_autosuspend(this->dev);
745 return ret;
746 }
747
748 /*
749 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
750 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
751 * and MX28.
752 */
753 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
754 if (ret)
755 goto err_out;
756
757 /* Set *all* chip selects to use layout 0. */
758 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
759
760 ret = 0;
761 err_out:
762 pm_runtime_mark_last_busy(this->dev);
763 pm_runtime_put_autosuspend(this->dev);
764
765 return ret;
766 }
767
768 /*
769 * <1> Firstly, we should know what's the GPMI-clock means.
770 * The GPMI-clock is the internal clock in the gpmi nand controller.
771 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
772 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
773 *
774 * <2> Secondly, we should know what's the frequency on the nand chip pins.
775 * The frequency on the nand chip pins is derived from the GPMI-clock.
776 * We can get it from the following equation:
777 *
778 * F = G / (DS + DH)
779 *
780 * F : the frequency on the nand chip pins.
781 * G : the GPMI clock, such as 100MHz.
782 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
783 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
784 *
785 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
786 * the nand EDO(extended Data Out) timing could be applied.
787 * The GPMI implements a feedback read strobe to sample the read data.
788 * The feedback read strobe can be delayed to support the nand EDO timing
789 * where the read strobe may deasserts before the read data is valid, and
790 * read data is valid for some time after read strobe.
791 *
792 * The following figure illustrates some aspects of a NAND Flash read:
793 *
794 * |<---tREA---->|
795 * | |
796 * | | |
797 * |<--tRP-->| |
798 * | | |
799 * __ ___|__________________________________
800 * RDN \________/ |
801 * |
802 * /---------\
803 * Read Data --------------< >---------
804 * \---------/
805 * | |
806 * |<-D->|
807 * FeedbackRDN ________ ____________
808 * \___________/
809 *
810 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
811 *
812 *
813 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
814 *
815 * 4.1) From the aspect of the nand chip pins:
816 * Delay = (tREA + C - tRP) {1}
817 *
818 * tREA : the maximum read access time.
819 * C : a constant to adjust the delay. default is 4000ps.
820 * tRP : the read pulse width, which is exactly:
821 * tRP = (GPMI-clock-period) * DATA_SETUP
822 *
823 * 4.2) From the aspect of the GPMI nand controller:
824 * Delay = RDN_DELAY * 0.125 * RP {2}
825 *
826 * RP : the DLL reference period.
827 * if (GPMI-clock-period > DLL_THRETHOLD)
828 * RP = GPMI-clock-period / 2;
829 * else
830 * RP = GPMI-clock-period;
831 *
832 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
833 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
834 * is 16000ps, but in mx6q, we use 12000ps.
835 *
836 * 4.3) since {1} equals {2}, we get:
837 *
838 * (tREA + 4000 - tRP) * 8
839 * RDN_DELAY = ----------------------- {3}
840 * RP
841 */
gpmi_nfc_compute_timings(struct gpmi_nand_data * this,const struct nand_sdr_timings * sdr)842 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
843 const struct nand_sdr_timings *sdr)
844 {
845 struct gpmi_nfc_hardware_timing *hw = &this->hw;
846 struct resources *r = &this->resources;
847 unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
848 unsigned int period_ps, reference_period_ps;
849 unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
850 unsigned int tRP_ps;
851 bool use_half_period;
852 int sample_delay_ps, sample_delay_factor;
853 unsigned int busy_timeout_cycles;
854 u8 wrn_dly_sel;
855 unsigned long clk_rate, min_rate;
856 u64 busy_timeout_ps;
857
858 if (sdr->tRC_min >= 30000) {
859 /* ONFI non-EDO modes [0-3] */
860 hw->clk_rate = 22000000;
861 min_rate = 0;
862 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
863 } else if (sdr->tRC_min >= 25000) {
864 /* ONFI EDO mode 4 */
865 hw->clk_rate = 80000000;
866 min_rate = 22000000;
867 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
868 } else {
869 /* ONFI EDO mode 5 */
870 hw->clk_rate = 100000000;
871 min_rate = 80000000;
872 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
873 }
874
875 clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
876 if (clk_rate <= min_rate) {
877 dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
878 hw->clk_rate, clk_rate);
879 return -ENOTSUPP;
880 }
881
882 hw->clk_rate = clk_rate;
883 /* SDR core timings are given in picoseconds */
884 period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
885
886 addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
887 data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
888 data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
889 busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
890 busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
891
892 hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
893 BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
894 BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
895 hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
896
897 /*
898 * Derive NFC ideal delay from {3}:
899 *
900 * (tREA + 4000 - tRP) * 8
901 * RDN_DELAY = -----------------------
902 * RP
903 */
904 if (period_ps > dll_threshold_ps) {
905 use_half_period = true;
906 reference_period_ps = period_ps / 2;
907 } else {
908 use_half_period = false;
909 reference_period_ps = period_ps;
910 }
911
912 tRP_ps = data_setup_cycles * period_ps;
913 sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
914 if (sample_delay_ps > 0)
915 sample_delay_factor = sample_delay_ps / reference_period_ps;
916 else
917 sample_delay_factor = 0;
918
919 hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
920 if (sample_delay_factor)
921 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
922 BM_GPMI_CTRL1_DLL_ENABLE |
923 (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
924 return 0;
925 }
926
gpmi_nfc_apply_timings(struct gpmi_nand_data * this)927 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
928 {
929 struct gpmi_nfc_hardware_timing *hw = &this->hw;
930 struct resources *r = &this->resources;
931 void __iomem *gpmi_regs = r->gpmi_regs;
932 unsigned int dll_wait_time_us;
933 int ret;
934
935 /* Clock dividers do NOT guarantee a clean clock signal on its output
936 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
937 * all clock dividers provide these guarantee.
938 */
939 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
940 clk_disable_unprepare(r->clock[0]);
941
942 ret = clk_set_rate(r->clock[0], hw->clk_rate);
943 if (ret) {
944 dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
945 return ret;
946 }
947
948 if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
949 ret = clk_prepare_enable(r->clock[0]);
950 if (ret)
951 return ret;
952 }
953
954 writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
955 writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
956
957 /*
958 * Clear several CTRL1 fields, DLL must be disabled when setting
959 * RDN_DELAY or HALF_PERIOD.
960 */
961 writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
962 writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
963
964 /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
965 dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
966 if (!dll_wait_time_us)
967 dll_wait_time_us = 1;
968
969 /* Wait for the DLL to settle. */
970 udelay(dll_wait_time_us);
971
972 return 0;
973 }
974
gpmi_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)975 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
976 const struct nand_interface_config *conf)
977 {
978 struct gpmi_nand_data *this = nand_get_controller_data(chip);
979 const struct nand_sdr_timings *sdr;
980 int ret;
981
982 /* Retrieve required NAND timings */
983 sdr = nand_get_sdr_timings(conf);
984 if (IS_ERR(sdr))
985 return PTR_ERR(sdr);
986
987 /* Only MX28/MX6 GPMI controller can reach EDO timings */
988 if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this))
989 return -ENOTSUPP;
990
991 /* Stop here if this call was just a check */
992 if (chipnr < 0)
993 return 0;
994
995 /* Do the actual derivation of the controller timings */
996 ret = gpmi_nfc_compute_timings(this, sdr);
997 if (ret)
998 return ret;
999
1000 this->hw.must_apply_timings = true;
1001
1002 return 0;
1003 }
1004
1005 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)1006 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1007 {
1008 struct resources *r = &this->resources;
1009 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1010 }
1011
get_dma_chan(struct gpmi_nand_data * this)1012 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1013 {
1014 /* We use the DMA channel 0 to access all the nand chips. */
1015 return this->dma_chans[0];
1016 }
1017
1018 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)1019 static void dma_irq_callback(void *param)
1020 {
1021 struct gpmi_nand_data *this = param;
1022 struct completion *dma_c = &this->dma_done;
1023
1024 complete(dma_c);
1025 }
1026
bch_irq(int irq,void * cookie)1027 static irqreturn_t bch_irq(int irq, void *cookie)
1028 {
1029 struct gpmi_nand_data *this = cookie;
1030
1031 gpmi_clear_bch(this);
1032 complete(&this->bch_done);
1033 return IRQ_HANDLED;
1034 }
1035
gpmi_raw_len_to_len(struct gpmi_nand_data * this,int raw_len)1036 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1037 {
1038 /*
1039 * raw_len is the length to read/write including bch data which
1040 * we are passed in exec_op. Calculate the data length from it.
1041 */
1042 if (this->bch)
1043 return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1044 else
1045 return raw_len;
1046 }
1047
1048 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,const void * buf,int raw_len,struct scatterlist * sgl,enum dma_data_direction dr)1049 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1050 int raw_len, struct scatterlist *sgl,
1051 enum dma_data_direction dr)
1052 {
1053 int ret;
1054 int len = gpmi_raw_len_to_len(this, raw_len);
1055
1056 /* first try to map the upper buffer directly */
1057 if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1058 sg_init_one(sgl, buf, len);
1059 ret = dma_map_sg(this->dev, sgl, 1, dr);
1060 if (ret == 0)
1061 goto map_fail;
1062
1063 return true;
1064 }
1065
1066 map_fail:
1067 /* We have to use our own DMA buffer. */
1068 sg_init_one(sgl, this->data_buffer_dma, len);
1069
1070 if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1071 memcpy(this->data_buffer_dma, buf, len);
1072
1073 dma_map_sg(this->dev, sgl, 1, dr);
1074
1075 return false;
1076 }
1077
1078 /* add our owner bbt descriptor */
1079 static uint8_t scan_ff_pattern[] = { 0xff };
1080 static struct nand_bbt_descr gpmi_bbt_descr = {
1081 .options = 0,
1082 .offs = 0,
1083 .len = 1,
1084 .pattern = scan_ff_pattern
1085 };
1086
1087 /*
1088 * We may change the layout if we can get the ECC info from the datasheet,
1089 * else we will use all the (page + OOB).
1090 */
gpmi_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1091 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1092 struct mtd_oob_region *oobregion)
1093 {
1094 struct nand_chip *chip = mtd_to_nand(mtd);
1095 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1096 struct bch_geometry *geo = &this->bch_geometry;
1097
1098 if (section)
1099 return -ERANGE;
1100
1101 oobregion->offset = 0;
1102 oobregion->length = geo->page_size - mtd->writesize;
1103
1104 return 0;
1105 }
1106
gpmi_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1107 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1108 struct mtd_oob_region *oobregion)
1109 {
1110 struct nand_chip *chip = mtd_to_nand(mtd);
1111 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1112 struct bch_geometry *geo = &this->bch_geometry;
1113
1114 if (section)
1115 return -ERANGE;
1116
1117 /* The available oob size we have. */
1118 if (geo->page_size < mtd->writesize + mtd->oobsize) {
1119 oobregion->offset = geo->page_size - mtd->writesize;
1120 oobregion->length = mtd->oobsize - oobregion->offset;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static const char * const gpmi_clks_for_mx2x[] = {
1127 "gpmi_io",
1128 };
1129
1130 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1131 .ecc = gpmi_ooblayout_ecc,
1132 .free = gpmi_ooblayout_free,
1133 };
1134
1135 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1136 .type = IS_MX23,
1137 .bch_max_ecc_strength = 20,
1138 .max_chain_delay = 16000,
1139 .clks = gpmi_clks_for_mx2x,
1140 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1141 };
1142
1143 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1144 .type = IS_MX28,
1145 .bch_max_ecc_strength = 20,
1146 .max_chain_delay = 16000,
1147 .clks = gpmi_clks_for_mx2x,
1148 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1149 };
1150
1151 static const char * const gpmi_clks_for_mx6[] = {
1152 "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1153 };
1154
1155 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1156 .type = IS_MX6Q,
1157 .bch_max_ecc_strength = 40,
1158 .max_chain_delay = 12000,
1159 .clks = gpmi_clks_for_mx6,
1160 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1161 };
1162
1163 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1164 .type = IS_MX6SX,
1165 .bch_max_ecc_strength = 62,
1166 .max_chain_delay = 12000,
1167 .clks = gpmi_clks_for_mx6,
1168 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1169 };
1170
1171 static const char * const gpmi_clks_for_mx7d[] = {
1172 "gpmi_io", "gpmi_bch_apb",
1173 };
1174
1175 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1176 .type = IS_MX7D,
1177 .bch_max_ecc_strength = 62,
1178 .max_chain_delay = 12000,
1179 .clks = gpmi_clks_for_mx7d,
1180 .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1181 };
1182
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)1183 static int acquire_register_block(struct gpmi_nand_data *this,
1184 const char *res_name)
1185 {
1186 struct platform_device *pdev = this->pdev;
1187 struct resources *res = &this->resources;
1188 void __iomem *p;
1189
1190 p = devm_platform_ioremap_resource_byname(pdev, res_name);
1191 if (IS_ERR(p))
1192 return PTR_ERR(p);
1193
1194 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1195 res->gpmi_regs = p;
1196 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1197 res->bch_regs = p;
1198 else
1199 dev_err(this->dev, "unknown resource name : %s\n", res_name);
1200
1201 return 0;
1202 }
1203
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)1204 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1205 {
1206 struct platform_device *pdev = this->pdev;
1207 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1208 int err;
1209
1210 err = platform_get_irq_byname(pdev, res_name);
1211 if (err < 0)
1212 return err;
1213
1214 err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1215 if (err)
1216 dev_err(this->dev, "error requesting BCH IRQ\n");
1217
1218 return err;
1219 }
1220
release_dma_channels(struct gpmi_nand_data * this)1221 static void release_dma_channels(struct gpmi_nand_data *this)
1222 {
1223 unsigned int i;
1224 for (i = 0; i < DMA_CHANS; i++)
1225 if (this->dma_chans[i]) {
1226 dma_release_channel(this->dma_chans[i]);
1227 this->dma_chans[i] = NULL;
1228 }
1229 }
1230
acquire_dma_channels(struct gpmi_nand_data * this)1231 static int acquire_dma_channels(struct gpmi_nand_data *this)
1232 {
1233 struct platform_device *pdev = this->pdev;
1234 struct dma_chan *dma_chan;
1235 int ret = 0;
1236
1237 /* request dma channel */
1238 dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1239 if (IS_ERR(dma_chan)) {
1240 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1241 "DMA channel request failed\n");
1242 release_dma_channels(this);
1243 } else {
1244 this->dma_chans[0] = dma_chan;
1245 }
1246
1247 return ret;
1248 }
1249
gpmi_get_clks(struct gpmi_nand_data * this)1250 static int gpmi_get_clks(struct gpmi_nand_data *this)
1251 {
1252 struct resources *r = &this->resources;
1253 struct clk *clk;
1254 int err, i;
1255
1256 for (i = 0; i < this->devdata->clks_count; i++) {
1257 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1258 if (IS_ERR(clk)) {
1259 err = PTR_ERR(clk);
1260 goto err_clock;
1261 }
1262
1263 r->clock[i] = clk;
1264 }
1265
1266 return 0;
1267
1268 err_clock:
1269 dev_dbg(this->dev, "failed in finding the clocks.\n");
1270 return err;
1271 }
1272
acquire_resources(struct gpmi_nand_data * this)1273 static int acquire_resources(struct gpmi_nand_data *this)
1274 {
1275 int ret;
1276
1277 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1278 if (ret)
1279 goto exit_regs;
1280
1281 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1282 if (ret)
1283 goto exit_regs;
1284
1285 ret = acquire_bch_irq(this, bch_irq);
1286 if (ret)
1287 goto exit_regs;
1288
1289 ret = acquire_dma_channels(this);
1290 if (ret)
1291 goto exit_regs;
1292
1293 ret = gpmi_get_clks(this);
1294 if (ret)
1295 goto exit_clock;
1296 return 0;
1297
1298 exit_clock:
1299 release_dma_channels(this);
1300 exit_regs:
1301 return ret;
1302 }
1303
release_resources(struct gpmi_nand_data * this)1304 static void release_resources(struct gpmi_nand_data *this)
1305 {
1306 release_dma_channels(this);
1307 }
1308
gpmi_free_dma_buffer(struct gpmi_nand_data * this)1309 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1310 {
1311 struct device *dev = this->dev;
1312 struct bch_geometry *geo = &this->bch_geometry;
1313
1314 if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1315 dma_free_coherent(dev, geo->auxiliary_size,
1316 this->auxiliary_virt,
1317 this->auxiliary_phys);
1318 kfree(this->data_buffer_dma);
1319 kfree(this->raw_buffer);
1320
1321 this->data_buffer_dma = NULL;
1322 this->raw_buffer = NULL;
1323 }
1324
1325 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)1326 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1327 {
1328 struct bch_geometry *geo = &this->bch_geometry;
1329 struct device *dev = this->dev;
1330 struct mtd_info *mtd = nand_to_mtd(&this->nand);
1331
1332 /*
1333 * [2] Allocate a read/write data buffer.
1334 * The gpmi_alloc_dma_buffer can be called twice.
1335 * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1336 * is called before the NAND identification; and we allocate a
1337 * buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1338 * is called after.
1339 */
1340 this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1341 GFP_DMA | GFP_KERNEL);
1342 if (this->data_buffer_dma == NULL)
1343 goto error_alloc;
1344
1345 this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1346 &this->auxiliary_phys, GFP_DMA);
1347 if (!this->auxiliary_virt)
1348 goto error_alloc;
1349
1350 this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1351 if (!this->raw_buffer)
1352 goto error_alloc;
1353
1354 return 0;
1355
1356 error_alloc:
1357 gpmi_free_dma_buffer(this);
1358 return -ENOMEM;
1359 }
1360
1361 /*
1362 * Handles block mark swapping.
1363 * It can be called in swapping the block mark, or swapping it back,
1364 * because the operations are the same.
1365 */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)1366 static void block_mark_swapping(struct gpmi_nand_data *this,
1367 void *payload, void *auxiliary)
1368 {
1369 struct bch_geometry *nfc_geo = &this->bch_geometry;
1370 unsigned char *p;
1371 unsigned char *a;
1372 unsigned int bit;
1373 unsigned char mask;
1374 unsigned char from_data;
1375 unsigned char from_oob;
1376
1377 if (!this->swap_block_mark)
1378 return;
1379
1380 /*
1381 * If control arrives here, we're swapping. Make some convenience
1382 * variables.
1383 */
1384 bit = nfc_geo->block_mark_bit_offset;
1385 p = payload + nfc_geo->block_mark_byte_offset;
1386 a = auxiliary;
1387
1388 /*
1389 * Get the byte from the data area that overlays the block mark. Since
1390 * the ECC engine applies its own view to the bits in the page, the
1391 * physical block mark won't (in general) appear on a byte boundary in
1392 * the data.
1393 */
1394 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1395
1396 /* Get the byte from the OOB. */
1397 from_oob = a[0];
1398
1399 /* Swap them. */
1400 a[0] = from_data;
1401
1402 mask = (0x1 << bit) - 1;
1403 p[0] = (p[0] & mask) | (from_oob << bit);
1404
1405 mask = ~0 << bit;
1406 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1407 }
1408
gpmi_count_bitflips(struct nand_chip * chip,void * buf,int first,int last,int meta)1409 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1410 int last, int meta)
1411 {
1412 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1413 struct bch_geometry *nfc_geo = &this->bch_geometry;
1414 struct mtd_info *mtd = nand_to_mtd(chip);
1415 int i;
1416 unsigned char *status;
1417 unsigned int max_bitflips = 0;
1418
1419 /* Loop over status bytes, accumulating ECC status. */
1420 status = this->auxiliary_virt + ALIGN(meta, 4);
1421
1422 for (i = first; i < last; i++, status++) {
1423 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1424 continue;
1425
1426 if (*status == STATUS_UNCORRECTABLE) {
1427 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1428 u8 *eccbuf = this->raw_buffer;
1429 int offset, bitoffset;
1430 int eccbytes;
1431 int flips;
1432
1433 /* Read ECC bytes into our internal raw_buffer */
1434 offset = nfc_geo->metadata_size * 8;
1435 offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1436 offset -= eccbits;
1437 bitoffset = offset % 8;
1438 eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1439 offset /= 8;
1440 eccbytes -= offset;
1441 nand_change_read_column_op(chip, offset, eccbuf,
1442 eccbytes, false);
1443
1444 /*
1445 * ECC data are not byte aligned and we may have
1446 * in-band data in the first and last byte of
1447 * eccbuf. Set non-eccbits to one so that
1448 * nand_check_erased_ecc_chunk() does not count them
1449 * as bitflips.
1450 */
1451 if (bitoffset)
1452 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1453
1454 bitoffset = (bitoffset + eccbits) % 8;
1455 if (bitoffset)
1456 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1457
1458 /*
1459 * The ECC hardware has an uncorrectable ECC status
1460 * code in case we have bitflips in an erased page. As
1461 * nothing was written into this subpage the ECC is
1462 * obviously wrong and we can not trust it. We assume
1463 * at this point that we are reading an erased page and
1464 * try to correct the bitflips in buffer up to
1465 * ecc_strength bitflips. If this is a page with random
1466 * data, we exceed this number of bitflips and have a
1467 * ECC failure. Otherwise we use the corrected buffer.
1468 */
1469 if (i == 0) {
1470 /* The first block includes metadata */
1471 flips = nand_check_erased_ecc_chunk(
1472 buf + i * nfc_geo->eccn_chunk_size,
1473 nfc_geo->eccn_chunk_size,
1474 eccbuf, eccbytes,
1475 this->auxiliary_virt,
1476 nfc_geo->metadata_size,
1477 nfc_geo->ecc_strength);
1478 } else {
1479 flips = nand_check_erased_ecc_chunk(
1480 buf + i * nfc_geo->eccn_chunk_size,
1481 nfc_geo->eccn_chunk_size,
1482 eccbuf, eccbytes,
1483 NULL, 0,
1484 nfc_geo->ecc_strength);
1485 }
1486
1487 if (flips > 0) {
1488 max_bitflips = max_t(unsigned int, max_bitflips,
1489 flips);
1490 mtd->ecc_stats.corrected += flips;
1491 continue;
1492 }
1493
1494 mtd->ecc_stats.failed++;
1495 continue;
1496 }
1497
1498 mtd->ecc_stats.corrected += *status;
1499 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1500 }
1501
1502 return max_bitflips;
1503 }
1504
gpmi_bch_layout_std(struct gpmi_nand_data * this)1505 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1506 {
1507 struct bch_geometry *geo = &this->bch_geometry;
1508 unsigned int ecc_strength = geo->ecc_strength >> 1;
1509 unsigned int gf_len = geo->gf_len;
1510 unsigned int block0_size = geo->ecc0_chunk_size;
1511 unsigned int blockn_size = geo->eccn_chunk_size;
1512
1513 this->bch_flashlayout0 =
1514 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1515 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1516 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1517 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1518 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1519
1520 this->bch_flashlayout1 =
1521 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1522 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1523 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1524 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1525 }
1526
gpmi_ecc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1527 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1528 int oob_required, int page)
1529 {
1530 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1531 struct mtd_info *mtd = nand_to_mtd(chip);
1532 struct bch_geometry *geo = &this->bch_geometry;
1533 unsigned int max_bitflips;
1534 int ret;
1535
1536 gpmi_bch_layout_std(this);
1537 this->bch = true;
1538
1539 ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1540 if (ret)
1541 return ret;
1542
1543 max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1544 geo->ecc_chunk_count,
1545 geo->auxiliary_status_offset);
1546
1547 /* handle the block mark swapping */
1548 block_mark_swapping(this, buf, this->auxiliary_virt);
1549
1550 if (oob_required) {
1551 /*
1552 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1553 * for details about our policy for delivering the OOB.
1554 *
1555 * We fill the caller's buffer with set bits, and then copy the
1556 * block mark to th caller's buffer. Note that, if block mark
1557 * swapping was necessary, it has already been done, so we can
1558 * rely on the first byte of the auxiliary buffer to contain
1559 * the block mark.
1560 */
1561 memset(chip->oob_poi, ~0, mtd->oobsize);
1562 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1563 }
1564
1565 return max_bitflips;
1566 }
1567
1568 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1569 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1570 uint32_t len, uint8_t *buf, int page)
1571 {
1572 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1573 struct bch_geometry *geo = &this->bch_geometry;
1574 int size = chip->ecc.size; /* ECC chunk size */
1575 int meta, n, page_size;
1576 unsigned int max_bitflips;
1577 unsigned int ecc_strength;
1578 int first, last, marker_pos;
1579 int ecc_parity_size;
1580 int col = 0;
1581 int ret;
1582
1583 /* The size of ECC parity */
1584 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1585
1586 /* Align it with the chunk size */
1587 first = offs / size;
1588 last = (offs + len - 1) / size;
1589
1590 if (this->swap_block_mark) {
1591 /*
1592 * Find the chunk which contains the Block Marker.
1593 * If this chunk is in the range of [first, last],
1594 * we have to read out the whole page.
1595 * Why? since we had swapped the data at the position of Block
1596 * Marker to the metadata which is bound with the chunk 0.
1597 */
1598 marker_pos = geo->block_mark_byte_offset / size;
1599 if (last >= marker_pos && first <= marker_pos) {
1600 dev_dbg(this->dev,
1601 "page:%d, first:%d, last:%d, marker at:%d\n",
1602 page, first, last, marker_pos);
1603 return gpmi_ecc_read_page(chip, buf, 0, page);
1604 }
1605 }
1606
1607 /*
1608 * if there is an ECC dedicate for meta:
1609 * - need to add an extra ECC size when calculating col and page_size,
1610 * if the meta size is NOT zero.
1611 * - ecc0_chunk size need to set to the same size as other chunks,
1612 * if the meta size is zero.
1613 */
1614
1615 meta = geo->metadata_size;
1616 if (first) {
1617 if (geo->ecc_for_meta)
1618 col = meta + ecc_parity_size
1619 + (size + ecc_parity_size) * first;
1620 else
1621 col = meta + (size + ecc_parity_size) * first;
1622
1623 meta = 0;
1624 buf = buf + first * size;
1625 }
1626
1627 ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1628 n = last - first + 1;
1629
1630 if (geo->ecc_for_meta && meta)
1631 page_size = meta + ecc_parity_size
1632 + (size + ecc_parity_size) * n;
1633 else
1634 page_size = meta + (size + ecc_parity_size) * n;
1635
1636 ecc_strength = geo->ecc_strength >> 1;
1637
1638 this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1639 (geo->ecc_for_meta ? n : n - 1)) |
1640 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1641 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1642 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1643 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1644 0 : geo->ecc0_chunk_size), this);
1645
1646 this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1647 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1648 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1649 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1650
1651 this->bch = true;
1652
1653 ret = nand_read_page_op(chip, page, col, buf, page_size);
1654 if (ret)
1655 return ret;
1656
1657 dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1658 page, offs, len, col, first, n, page_size);
1659
1660 max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1661
1662 return max_bitflips;
1663 }
1664
gpmi_ecc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1665 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1666 int oob_required, int page)
1667 {
1668 struct mtd_info *mtd = nand_to_mtd(chip);
1669 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1670 struct bch_geometry *nfc_geo = &this->bch_geometry;
1671
1672 dev_dbg(this->dev, "ecc write page.\n");
1673
1674 gpmi_bch_layout_std(this);
1675 this->bch = true;
1676
1677 memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1678
1679 if (this->swap_block_mark) {
1680 /*
1681 * When doing bad block marker swapping we must always copy the
1682 * input buffer as we can't modify the const buffer.
1683 */
1684 memcpy(this->data_buffer_dma, buf, mtd->writesize);
1685 buf = this->data_buffer_dma;
1686 block_mark_swapping(this, this->data_buffer_dma,
1687 this->auxiliary_virt);
1688 }
1689
1690 return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1691 }
1692
1693 /*
1694 * There are several places in this driver where we have to handle the OOB and
1695 * block marks. This is the function where things are the most complicated, so
1696 * this is where we try to explain it all. All the other places refer back to
1697 * here.
1698 *
1699 * These are the rules, in order of decreasing importance:
1700 *
1701 * 1) Nothing the caller does can be allowed to imperil the block mark.
1702 *
1703 * 2) In read operations, the first byte of the OOB we return must reflect the
1704 * true state of the block mark, no matter where that block mark appears in
1705 * the physical page.
1706 *
1707 * 3) ECC-based read operations return an OOB full of set bits (since we never
1708 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1709 * return).
1710 *
1711 * 4) "Raw" read operations return a direct view of the physical bytes in the
1712 * page, using the conventional definition of which bytes are data and which
1713 * are OOB. This gives the caller a way to see the actual, physical bytes
1714 * in the page, without the distortions applied by our ECC engine.
1715 *
1716 *
1717 * What we do for this specific read operation depends on two questions:
1718 *
1719 * 1) Are we doing a "raw" read, or an ECC-based read?
1720 *
1721 * 2) Are we using block mark swapping or transcription?
1722 *
1723 * There are four cases, illustrated by the following Karnaugh map:
1724 *
1725 * | Raw | ECC-based |
1726 * -------------+-------------------------+-------------------------+
1727 * | Read the conventional | |
1728 * | OOB at the end of the | |
1729 * Swapping | page and return it. It | |
1730 * | contains exactly what | |
1731 * | we want. | Read the block mark and |
1732 * -------------+-------------------------+ return it in a buffer |
1733 * | Read the conventional | full of set bits. |
1734 * | OOB at the end of the | |
1735 * | page and also the block | |
1736 * Transcribing | mark in the metadata. | |
1737 * | Copy the block mark | |
1738 * | into the first byte of | |
1739 * | the OOB. | |
1740 * -------------+-------------------------+-------------------------+
1741 *
1742 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1743 * giving an accurate view of the actual, physical bytes in the page (we're
1744 * overwriting the block mark). That's OK because it's more important to follow
1745 * rule #2.
1746 *
1747 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1748 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1749 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1750 * ECC-based or raw view of the page is implicit in which function it calls
1751 * (there is a similar pair of ECC-based/raw functions for writing).
1752 */
gpmi_ecc_read_oob(struct nand_chip * chip,int page)1753 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1754 {
1755 struct mtd_info *mtd = nand_to_mtd(chip);
1756 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1757 int ret;
1758
1759 /* clear the OOB buffer */
1760 memset(chip->oob_poi, ~0, mtd->oobsize);
1761
1762 /* Read out the conventional OOB. */
1763 ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1764 mtd->oobsize);
1765 if (ret)
1766 return ret;
1767
1768 /*
1769 * Now, we want to make sure the block mark is correct. In the
1770 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1771 * Otherwise, we need to explicitly read it.
1772 */
1773 if (GPMI_IS_MX23(this)) {
1774 /* Read the block mark into the first byte of the OOB buffer. */
1775 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1776 if (ret)
1777 return ret;
1778 }
1779
1780 return 0;
1781 }
1782
gpmi_ecc_write_oob(struct nand_chip * chip,int page)1783 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1784 {
1785 struct mtd_info *mtd = nand_to_mtd(chip);
1786 struct mtd_oob_region of = { };
1787
1788 /* Do we have available oob area? */
1789 mtd_ooblayout_free(mtd, 0, &of);
1790 if (!of.length)
1791 return -EPERM;
1792
1793 if (!nand_is_slc(chip))
1794 return -EPERM;
1795
1796 return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1797 chip->oob_poi + of.offset, of.length);
1798 }
1799
1800 /*
1801 * This function reads a NAND page without involving the ECC engine (no HW
1802 * ECC correction).
1803 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1804 * inline (interleaved with payload DATA), and do not align data chunk on
1805 * byte boundaries.
1806 * We thus need to take care moving the payload data and ECC bits stored in the
1807 * page into the provided buffers, which is why we're using nand_extract_bits().
1808 *
1809 * See set_geometry_by_ecc_info inline comments to have a full description
1810 * of the layout used by the GPMI controller.
1811 */
gpmi_ecc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1812 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1813 int oob_required, int page)
1814 {
1815 struct mtd_info *mtd = nand_to_mtd(chip);
1816 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1817 struct bch_geometry *nfc_geo = &this->bch_geometry;
1818 int eccsize = nfc_geo->eccn_chunk_size;
1819 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1820 u8 *tmp_buf = this->raw_buffer;
1821 size_t src_bit_off;
1822 size_t oob_bit_off;
1823 size_t oob_byte_off;
1824 uint8_t *oob = chip->oob_poi;
1825 int step;
1826 int ret;
1827
1828 ret = nand_read_page_op(chip, page, 0, tmp_buf,
1829 mtd->writesize + mtd->oobsize);
1830 if (ret)
1831 return ret;
1832
1833 /*
1834 * If required, swap the bad block marker and the data stored in the
1835 * metadata section, so that we don't wrongly consider a block as bad.
1836 *
1837 * See the layout description for a detailed explanation on why this
1838 * is needed.
1839 */
1840 if (this->swap_block_mark)
1841 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1842
1843 /*
1844 * Copy the metadata section into the oob buffer (this section is
1845 * guaranteed to be aligned on a byte boundary).
1846 */
1847 if (oob_required)
1848 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1849
1850 oob_bit_off = nfc_geo->metadata_size * 8;
1851 src_bit_off = oob_bit_off;
1852
1853 /* Extract interleaved payload data and ECC bits */
1854 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1855 if (buf)
1856 nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1857 src_bit_off, eccsize * 8);
1858 src_bit_off += eccsize * 8;
1859
1860 /* Align last ECC block to align a byte boundary */
1861 if (step == nfc_geo->ecc_chunk_count - 1 &&
1862 (oob_bit_off + eccbits) % 8)
1863 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1864
1865 if (oob_required)
1866 nand_extract_bits(oob, oob_bit_off, tmp_buf,
1867 src_bit_off, eccbits);
1868
1869 src_bit_off += eccbits;
1870 oob_bit_off += eccbits;
1871 }
1872
1873 if (oob_required) {
1874 oob_byte_off = oob_bit_off / 8;
1875
1876 if (oob_byte_off < mtd->oobsize)
1877 memcpy(oob + oob_byte_off,
1878 tmp_buf + mtd->writesize + oob_byte_off,
1879 mtd->oobsize - oob_byte_off);
1880 }
1881
1882 return 0;
1883 }
1884
1885 /*
1886 * This function writes a NAND page without involving the ECC engine (no HW
1887 * ECC generation).
1888 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1889 * inline (interleaved with payload DATA), and do not align data chunk on
1890 * byte boundaries.
1891 * We thus need to take care moving the OOB area at the right place in the
1892 * final page, which is why we're using nand_extract_bits().
1893 *
1894 * See set_geometry_by_ecc_info inline comments to have a full description
1895 * of the layout used by the GPMI controller.
1896 */
gpmi_ecc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1897 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1898 int oob_required, int page)
1899 {
1900 struct mtd_info *mtd = nand_to_mtd(chip);
1901 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1902 struct bch_geometry *nfc_geo = &this->bch_geometry;
1903 int eccsize = nfc_geo->eccn_chunk_size;
1904 int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1905 u8 *tmp_buf = this->raw_buffer;
1906 uint8_t *oob = chip->oob_poi;
1907 size_t dst_bit_off;
1908 size_t oob_bit_off;
1909 size_t oob_byte_off;
1910 int step;
1911
1912 /*
1913 * Initialize all bits to 1 in case we don't have a buffer for the
1914 * payload or oob data in order to leave unspecified bits of data
1915 * to their initial state.
1916 */
1917 if (!buf || !oob_required)
1918 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1919
1920 /*
1921 * First copy the metadata section (stored in oob buffer) at the
1922 * beginning of the page, as imposed by the GPMI layout.
1923 */
1924 memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1925 oob_bit_off = nfc_geo->metadata_size * 8;
1926 dst_bit_off = oob_bit_off;
1927
1928 /* Interleave payload data and ECC bits */
1929 for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1930 if (buf)
1931 nand_extract_bits(tmp_buf, dst_bit_off, buf,
1932 step * eccsize * 8, eccsize * 8);
1933 dst_bit_off += eccsize * 8;
1934
1935 /* Align last ECC block to align a byte boundary */
1936 if (step == nfc_geo->ecc_chunk_count - 1 &&
1937 (oob_bit_off + eccbits) % 8)
1938 eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1939
1940 if (oob_required)
1941 nand_extract_bits(tmp_buf, dst_bit_off, oob,
1942 oob_bit_off, eccbits);
1943
1944 dst_bit_off += eccbits;
1945 oob_bit_off += eccbits;
1946 }
1947
1948 oob_byte_off = oob_bit_off / 8;
1949
1950 if (oob_required && oob_byte_off < mtd->oobsize)
1951 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1952 oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1953
1954 /*
1955 * If required, swap the bad block marker and the first byte of the
1956 * metadata section, so that we don't modify the bad block marker.
1957 *
1958 * See the layout description for a detailed explanation on why this
1959 * is needed.
1960 */
1961 if (this->swap_block_mark)
1962 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1963
1964 return nand_prog_page_op(chip, page, 0, tmp_buf,
1965 mtd->writesize + mtd->oobsize);
1966 }
1967
gpmi_ecc_read_oob_raw(struct nand_chip * chip,int page)1968 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1969 {
1970 return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1971 }
1972
gpmi_ecc_write_oob_raw(struct nand_chip * chip,int page)1973 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1974 {
1975 return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1976 }
1977
gpmi_block_markbad(struct nand_chip * chip,loff_t ofs)1978 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1979 {
1980 struct mtd_info *mtd = nand_to_mtd(chip);
1981 struct gpmi_nand_data *this = nand_get_controller_data(chip);
1982 int ret = 0;
1983 uint8_t *block_mark;
1984 int column, page, chipnr;
1985
1986 chipnr = (int)(ofs >> chip->chip_shift);
1987 nand_select_target(chip, chipnr);
1988
1989 column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1990
1991 /* Write the block mark. */
1992 block_mark = this->data_buffer_dma;
1993 block_mark[0] = 0; /* bad block marker */
1994
1995 /* Shift to get page */
1996 page = (int)(ofs >> chip->page_shift);
1997
1998 ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1999
2000 nand_deselect_target(chip);
2001
2002 return ret;
2003 }
2004
nand_boot_set_geometry(struct gpmi_nand_data * this)2005 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2006 {
2007 struct boot_rom_geometry *geometry = &this->rom_geometry;
2008
2009 /*
2010 * Set the boot block stride size.
2011 *
2012 * In principle, we should be reading this from the OTP bits, since
2013 * that's where the ROM is going to get it. In fact, we don't have any
2014 * way to read the OTP bits, so we go with the default and hope for the
2015 * best.
2016 */
2017 geometry->stride_size_in_pages = 64;
2018
2019 /*
2020 * Set the search area stride exponent.
2021 *
2022 * In principle, we should be reading this from the OTP bits, since
2023 * that's where the ROM is going to get it. In fact, we don't have any
2024 * way to read the OTP bits, so we go with the default and hope for the
2025 * best.
2026 */
2027 geometry->search_area_stride_exponent = 2;
2028 return 0;
2029 }
2030
2031 static const char *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)2032 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2033 {
2034 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2035 struct device *dev = this->dev;
2036 struct nand_chip *chip = &this->nand;
2037 unsigned int search_area_size_in_strides;
2038 unsigned int stride;
2039 unsigned int page;
2040 u8 *buffer = nand_get_data_buf(chip);
2041 int found_an_ncb_fingerprint = false;
2042 int ret;
2043
2044 /* Compute the number of strides in a search area. */
2045 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2046
2047 nand_select_target(chip, 0);
2048
2049 /*
2050 * Loop through the first search area, looking for the NCB fingerprint.
2051 */
2052 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2053
2054 for (stride = 0; stride < search_area_size_in_strides; stride++) {
2055 /* Compute the page addresses. */
2056 page = stride * rom_geo->stride_size_in_pages;
2057
2058 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2059
2060 /*
2061 * Read the NCB fingerprint. The fingerprint is four bytes long
2062 * and starts in the 12th byte of the page.
2063 */
2064 ret = nand_read_page_op(chip, page, 12, buffer,
2065 strlen(fingerprint));
2066 if (ret)
2067 continue;
2068
2069 /* Look for the fingerprint. */
2070 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2071 found_an_ncb_fingerprint = true;
2072 break;
2073 }
2074
2075 }
2076
2077 nand_deselect_target(chip);
2078
2079 if (found_an_ncb_fingerprint)
2080 dev_dbg(dev, "\tFound a fingerprint\n");
2081 else
2082 dev_dbg(dev, "\tNo fingerprint found\n");
2083 return found_an_ncb_fingerprint;
2084 }
2085
2086 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)2087 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2088 {
2089 struct device *dev = this->dev;
2090 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2091 struct nand_chip *chip = &this->nand;
2092 struct mtd_info *mtd = nand_to_mtd(chip);
2093 unsigned int block_size_in_pages;
2094 unsigned int search_area_size_in_strides;
2095 unsigned int search_area_size_in_pages;
2096 unsigned int search_area_size_in_blocks;
2097 unsigned int block;
2098 unsigned int stride;
2099 unsigned int page;
2100 u8 *buffer = nand_get_data_buf(chip);
2101 int status;
2102
2103 /* Compute the search area geometry. */
2104 block_size_in_pages = mtd->erasesize / mtd->writesize;
2105 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2106 search_area_size_in_pages = search_area_size_in_strides *
2107 rom_geo->stride_size_in_pages;
2108 search_area_size_in_blocks =
2109 (search_area_size_in_pages + (block_size_in_pages - 1)) /
2110 block_size_in_pages;
2111
2112 dev_dbg(dev, "Search Area Geometry :\n");
2113 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2114 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2115 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
2116
2117 nand_select_target(chip, 0);
2118
2119 /* Loop over blocks in the first search area, erasing them. */
2120 dev_dbg(dev, "Erasing the search area...\n");
2121
2122 for (block = 0; block < search_area_size_in_blocks; block++) {
2123 /* Erase this block. */
2124 dev_dbg(dev, "\tErasing block 0x%x\n", block);
2125 status = nand_erase_op(chip, block);
2126 if (status)
2127 dev_err(dev, "[%s] Erase failed.\n", __func__);
2128 }
2129
2130 /* Write the NCB fingerprint into the page buffer. */
2131 memset(buffer, ~0, mtd->writesize);
2132 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2133
2134 /* Loop through the first search area, writing NCB fingerprints. */
2135 dev_dbg(dev, "Writing NCB fingerprints...\n");
2136 for (stride = 0; stride < search_area_size_in_strides; stride++) {
2137 /* Compute the page addresses. */
2138 page = stride * rom_geo->stride_size_in_pages;
2139
2140 /* Write the first page of the current stride. */
2141 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2142
2143 status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2144 if (status)
2145 dev_err(dev, "[%s] Write failed.\n", __func__);
2146 }
2147
2148 nand_deselect_target(chip);
2149
2150 return 0;
2151 }
2152
mx23_boot_init(struct gpmi_nand_data * this)2153 static int mx23_boot_init(struct gpmi_nand_data *this)
2154 {
2155 struct device *dev = this->dev;
2156 struct nand_chip *chip = &this->nand;
2157 struct mtd_info *mtd = nand_to_mtd(chip);
2158 unsigned int block_count;
2159 unsigned int block;
2160 int chipnr;
2161 int page;
2162 loff_t byte;
2163 uint8_t block_mark;
2164 int ret = 0;
2165
2166 /*
2167 * If control arrives here, we can't use block mark swapping, which
2168 * means we're forced to use transcription. First, scan for the
2169 * transcription stamp. If we find it, then we don't have to do
2170 * anything -- the block marks are already transcribed.
2171 */
2172 if (mx23_check_transcription_stamp(this))
2173 return 0;
2174
2175 /*
2176 * If control arrives here, we couldn't find a transcription stamp, so
2177 * so we presume the block marks are in the conventional location.
2178 */
2179 dev_dbg(dev, "Transcribing bad block marks...\n");
2180
2181 /* Compute the number of blocks in the entire medium. */
2182 block_count = nanddev_eraseblocks_per_target(&chip->base);
2183
2184 /*
2185 * Loop over all the blocks in the medium, transcribing block marks as
2186 * we go.
2187 */
2188 for (block = 0; block < block_count; block++) {
2189 /*
2190 * Compute the chip, page and byte addresses for this block's
2191 * conventional mark.
2192 */
2193 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2194 page = block << (chip->phys_erase_shift - chip->page_shift);
2195 byte = block << chip->phys_erase_shift;
2196
2197 /* Send the command to read the conventional block mark. */
2198 nand_select_target(chip, chipnr);
2199 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2200 1);
2201 nand_deselect_target(chip);
2202
2203 if (ret)
2204 continue;
2205
2206 /*
2207 * Check if the block is marked bad. If so, we need to mark it
2208 * again, but this time the result will be a mark in the
2209 * location where we transcribe block marks.
2210 */
2211 if (block_mark != 0xff) {
2212 dev_dbg(dev, "Transcribing mark in block %u\n", block);
2213 ret = chip->legacy.block_markbad(chip, byte);
2214 if (ret)
2215 dev_err(dev,
2216 "Failed to mark block bad with ret %d\n",
2217 ret);
2218 }
2219 }
2220
2221 /* Write the stamp that indicates we've transcribed the block marks. */
2222 mx23_write_transcription_stamp(this);
2223 return 0;
2224 }
2225
nand_boot_init(struct gpmi_nand_data * this)2226 static int nand_boot_init(struct gpmi_nand_data *this)
2227 {
2228 nand_boot_set_geometry(this);
2229
2230 /* This is ROM arch-specific initilization before the BBT scanning. */
2231 if (GPMI_IS_MX23(this))
2232 return mx23_boot_init(this);
2233 return 0;
2234 }
2235
gpmi_set_geometry(struct gpmi_nand_data * this)2236 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2237 {
2238 int ret;
2239
2240 /* Free the temporary DMA memory for reading ID. */
2241 gpmi_free_dma_buffer(this);
2242
2243 /* Set up the NFC geometry which is used by BCH. */
2244 ret = bch_set_geometry(this);
2245 if (ret) {
2246 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2247 return ret;
2248 }
2249
2250 /* Alloc the new DMA buffers according to the pagesize and oobsize */
2251 return gpmi_alloc_dma_buffer(this);
2252 }
2253
gpmi_init_last(struct gpmi_nand_data * this)2254 static int gpmi_init_last(struct gpmi_nand_data *this)
2255 {
2256 struct nand_chip *chip = &this->nand;
2257 struct mtd_info *mtd = nand_to_mtd(chip);
2258 struct nand_ecc_ctrl *ecc = &chip->ecc;
2259 struct bch_geometry *bch_geo = &this->bch_geometry;
2260 int ret;
2261
2262 /* Set up the medium geometry */
2263 ret = gpmi_set_geometry(this);
2264 if (ret)
2265 return ret;
2266
2267 /* Init the nand_ecc_ctrl{} */
2268 ecc->read_page = gpmi_ecc_read_page;
2269 ecc->write_page = gpmi_ecc_write_page;
2270 ecc->read_oob = gpmi_ecc_read_oob;
2271 ecc->write_oob = gpmi_ecc_write_oob;
2272 ecc->read_page_raw = gpmi_ecc_read_page_raw;
2273 ecc->write_page_raw = gpmi_ecc_write_page_raw;
2274 ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2275 ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2276 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2277 ecc->size = bch_geo->eccn_chunk_size;
2278 ecc->strength = bch_geo->ecc_strength;
2279 mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2280
2281 /*
2282 * We only enable the subpage read when:
2283 * (1) the chip is imx6, and
2284 * (2) the size of the ECC parity is byte aligned.
2285 */
2286 if (GPMI_IS_MX6(this) &&
2287 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2288 ecc->read_subpage = gpmi_ecc_read_subpage;
2289 chip->options |= NAND_SUBPAGE_READ;
2290 }
2291
2292 return 0;
2293 }
2294
gpmi_nand_attach_chip(struct nand_chip * chip)2295 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2296 {
2297 struct gpmi_nand_data *this = nand_get_controller_data(chip);
2298 int ret;
2299
2300 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2301 chip->bbt_options |= NAND_BBT_NO_OOB;
2302
2303 if (of_property_read_bool(this->dev->of_node,
2304 "fsl,no-blockmark-swap"))
2305 this->swap_block_mark = false;
2306 }
2307 dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2308 this->swap_block_mark ? "en" : "dis");
2309
2310 ret = gpmi_init_last(this);
2311 if (ret)
2312 return ret;
2313
2314 chip->options |= NAND_SKIP_BBTSCAN;
2315
2316 return 0;
2317 }
2318
get_next_transfer(struct gpmi_nand_data * this)2319 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2320 {
2321 struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2322
2323 this->ntransfers++;
2324
2325 if (this->ntransfers == GPMI_MAX_TRANSFERS)
2326 return NULL;
2327
2328 return transfer;
2329 }
2330
gpmi_chain_command(struct gpmi_nand_data * this,u8 cmd,const u8 * addr,int naddr)2331 static struct dma_async_tx_descriptor *gpmi_chain_command(
2332 struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2333 {
2334 struct dma_chan *channel = get_dma_chan(this);
2335 struct dma_async_tx_descriptor *desc;
2336 struct gpmi_transfer *transfer;
2337 int chip = this->nand.cur_cs;
2338 u32 pio[3];
2339
2340 /* [1] send out the PIO words */
2341 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2342 | BM_GPMI_CTRL0_WORD_LENGTH
2343 | BF_GPMI_CTRL0_CS(chip, this)
2344 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2345 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2346 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
2347 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2348 pio[1] = 0;
2349 pio[2] = 0;
2350 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2351 DMA_TRANS_NONE, 0);
2352 if (!desc)
2353 return NULL;
2354
2355 transfer = get_next_transfer(this);
2356 if (!transfer)
2357 return NULL;
2358
2359 transfer->cmdbuf[0] = cmd;
2360 if (naddr)
2361 memcpy(&transfer->cmdbuf[1], addr, naddr);
2362
2363 sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2364 dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2365
2366 transfer->direction = DMA_TO_DEVICE;
2367
2368 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2369 MXS_DMA_CTRL_WAIT4END);
2370 return desc;
2371 }
2372
gpmi_chain_wait_ready(struct gpmi_nand_data * this)2373 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2374 struct gpmi_nand_data *this)
2375 {
2376 struct dma_chan *channel = get_dma_chan(this);
2377 u32 pio[2];
2378
2379 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2380 | BM_GPMI_CTRL0_WORD_LENGTH
2381 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2382 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2383 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2384 | BF_GPMI_CTRL0_XFER_COUNT(0);
2385 pio[1] = 0;
2386
2387 return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2388 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2389 }
2390
gpmi_chain_data_read(struct gpmi_nand_data * this,void * buf,int raw_len,bool * direct)2391 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2392 struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2393 {
2394 struct dma_async_tx_descriptor *desc;
2395 struct dma_chan *channel = get_dma_chan(this);
2396 struct gpmi_transfer *transfer;
2397 u32 pio[6] = {};
2398
2399 transfer = get_next_transfer(this);
2400 if (!transfer)
2401 return NULL;
2402
2403 transfer->direction = DMA_FROM_DEVICE;
2404
2405 *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2406 DMA_FROM_DEVICE);
2407
2408 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2409 | BM_GPMI_CTRL0_WORD_LENGTH
2410 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2411 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2412 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2413 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2414
2415 if (this->bch) {
2416 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2417 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2418 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2419 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2420 pio[3] = raw_len;
2421 pio[4] = transfer->sgl.dma_address;
2422 pio[5] = this->auxiliary_phys;
2423 }
2424
2425 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2426 DMA_TRANS_NONE, 0);
2427 if (!desc)
2428 return NULL;
2429
2430 if (!this->bch)
2431 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2432 DMA_DEV_TO_MEM,
2433 MXS_DMA_CTRL_WAIT4END);
2434
2435 return desc;
2436 }
2437
gpmi_chain_data_write(struct gpmi_nand_data * this,const void * buf,int raw_len)2438 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2439 struct gpmi_nand_data *this, const void *buf, int raw_len)
2440 {
2441 struct dma_chan *channel = get_dma_chan(this);
2442 struct dma_async_tx_descriptor *desc;
2443 struct gpmi_transfer *transfer;
2444 u32 pio[6] = {};
2445
2446 transfer = get_next_transfer(this);
2447 if (!transfer)
2448 return NULL;
2449
2450 transfer->direction = DMA_TO_DEVICE;
2451
2452 prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2453
2454 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2455 | BM_GPMI_CTRL0_WORD_LENGTH
2456 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2457 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2458 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2459 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2460
2461 if (this->bch) {
2462 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2463 | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2464 | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2465 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2466 pio[3] = raw_len;
2467 pio[4] = transfer->sgl.dma_address;
2468 pio[5] = this->auxiliary_phys;
2469 }
2470
2471 desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2472 DMA_TRANS_NONE,
2473 (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2474 if (!desc)
2475 return NULL;
2476
2477 if (!this->bch)
2478 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2479 DMA_MEM_TO_DEV,
2480 MXS_DMA_CTRL_WAIT4END);
2481
2482 return desc;
2483 }
2484
gpmi_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2485 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2486 const struct nand_operation *op,
2487 bool check_only)
2488 {
2489 const struct nand_op_instr *instr;
2490 struct gpmi_nand_data *this = nand_get_controller_data(chip);
2491 struct dma_async_tx_descriptor *desc = NULL;
2492 int i, ret, buf_len = 0, nbufs = 0;
2493 u8 cmd = 0;
2494 void *buf_read = NULL;
2495 const void *buf_write = NULL;
2496 bool direct = false;
2497 struct completion *dma_completion, *bch_completion;
2498 unsigned long to;
2499
2500 if (check_only)
2501 return 0;
2502
2503 this->ntransfers = 0;
2504 for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2505 this->transfers[i].direction = DMA_NONE;
2506
2507 ret = pm_runtime_get_sync(this->dev);
2508 if (ret < 0) {
2509 pm_runtime_put_noidle(this->dev);
2510 return ret;
2511 }
2512
2513 /*
2514 * This driver currently supports only one NAND chip. Plus, dies share
2515 * the same configuration. So once timings have been applied on the
2516 * controller side, they will not change anymore. When the time will
2517 * come, the check on must_apply_timings will have to be dropped.
2518 */
2519 if (this->hw.must_apply_timings) {
2520 this->hw.must_apply_timings = false;
2521 ret = gpmi_nfc_apply_timings(this);
2522 if (ret)
2523 goto out_pm;
2524 }
2525
2526 dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2527
2528 for (i = 0; i < op->ninstrs; i++) {
2529 instr = &op->instrs[i];
2530
2531 nand_op_trace(" ", instr);
2532
2533 switch (instr->type) {
2534 case NAND_OP_WAITRDY_INSTR:
2535 desc = gpmi_chain_wait_ready(this);
2536 break;
2537 case NAND_OP_CMD_INSTR:
2538 cmd = instr->ctx.cmd.opcode;
2539
2540 /*
2541 * When this command has an address cycle chain it
2542 * together with the address cycle
2543 */
2544 if (i + 1 != op->ninstrs &&
2545 op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2546 continue;
2547
2548 desc = gpmi_chain_command(this, cmd, NULL, 0);
2549
2550 break;
2551 case NAND_OP_ADDR_INSTR:
2552 desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2553 instr->ctx.addr.naddrs);
2554 break;
2555 case NAND_OP_DATA_OUT_INSTR:
2556 buf_write = instr->ctx.data.buf.out;
2557 buf_len = instr->ctx.data.len;
2558 nbufs++;
2559
2560 desc = gpmi_chain_data_write(this, buf_write, buf_len);
2561
2562 break;
2563 case NAND_OP_DATA_IN_INSTR:
2564 if (!instr->ctx.data.len)
2565 break;
2566 buf_read = instr->ctx.data.buf.in;
2567 buf_len = instr->ctx.data.len;
2568 nbufs++;
2569
2570 desc = gpmi_chain_data_read(this, buf_read, buf_len,
2571 &direct);
2572 break;
2573 }
2574
2575 if (!desc) {
2576 ret = -ENXIO;
2577 goto unmap;
2578 }
2579 }
2580
2581 dev_dbg(this->dev, "%s setup done\n", __func__);
2582
2583 if (nbufs > 1) {
2584 dev_err(this->dev, "Multiple data instructions not supported\n");
2585 ret = -EINVAL;
2586 goto unmap;
2587 }
2588
2589 if (this->bch) {
2590 writel(this->bch_flashlayout0,
2591 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2592 writel(this->bch_flashlayout1,
2593 this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2594 }
2595
2596 desc->callback = dma_irq_callback;
2597 desc->callback_param = this;
2598 dma_completion = &this->dma_done;
2599 bch_completion = NULL;
2600
2601 init_completion(dma_completion);
2602
2603 if (this->bch && buf_read) {
2604 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2605 this->resources.bch_regs + HW_BCH_CTRL_SET);
2606 bch_completion = &this->bch_done;
2607 init_completion(bch_completion);
2608 }
2609
2610 dmaengine_submit(desc);
2611 dma_async_issue_pending(get_dma_chan(this));
2612
2613 to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2614 if (!to) {
2615 dev_err(this->dev, "DMA timeout, last DMA\n");
2616 gpmi_dump_info(this);
2617 ret = -ETIMEDOUT;
2618 goto unmap;
2619 }
2620
2621 if (this->bch && buf_read) {
2622 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2623 if (!to) {
2624 dev_err(this->dev, "BCH timeout, last DMA\n");
2625 gpmi_dump_info(this);
2626 ret = -ETIMEDOUT;
2627 goto unmap;
2628 }
2629 }
2630
2631 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2632 this->resources.bch_regs + HW_BCH_CTRL_CLR);
2633 gpmi_clear_bch(this);
2634
2635 ret = 0;
2636
2637 unmap:
2638 for (i = 0; i < this->ntransfers; i++) {
2639 struct gpmi_transfer *transfer = &this->transfers[i];
2640
2641 if (transfer->direction != DMA_NONE)
2642 dma_unmap_sg(this->dev, &transfer->sgl, 1,
2643 transfer->direction);
2644 }
2645
2646 if (!ret && buf_read && !direct)
2647 memcpy(buf_read, this->data_buffer_dma,
2648 gpmi_raw_len_to_len(this, buf_len));
2649
2650 this->bch = false;
2651
2652 out_pm:
2653 pm_runtime_mark_last_busy(this->dev);
2654 pm_runtime_put_autosuspend(this->dev);
2655
2656 return ret;
2657 }
2658
2659 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2660 .attach_chip = gpmi_nand_attach_chip,
2661 .setup_interface = gpmi_setup_interface,
2662 .exec_op = gpmi_nfc_exec_op,
2663 };
2664
gpmi_nand_init(struct gpmi_nand_data * this)2665 static int gpmi_nand_init(struct gpmi_nand_data *this)
2666 {
2667 struct nand_chip *chip = &this->nand;
2668 struct mtd_info *mtd = nand_to_mtd(chip);
2669 int ret;
2670
2671 /* init the MTD data structures */
2672 mtd->name = "gpmi-nand";
2673 mtd->dev.parent = this->dev;
2674
2675 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2676 nand_set_controller_data(chip, this);
2677 nand_set_flash_node(chip, this->pdev->dev.of_node);
2678 chip->legacy.block_markbad = gpmi_block_markbad;
2679 chip->badblock_pattern = &gpmi_bbt_descr;
2680 chip->options |= NAND_NO_SUBPAGE_WRITE;
2681
2682 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2683 this->swap_block_mark = !GPMI_IS_MX23(this);
2684
2685 /*
2686 * Allocate a temporary DMA buffer for reading ID in the
2687 * nand_scan_ident().
2688 */
2689 this->bch_geometry.payload_size = 1024;
2690 this->bch_geometry.auxiliary_size = 128;
2691 ret = gpmi_alloc_dma_buffer(this);
2692 if (ret)
2693 return ret;
2694
2695 nand_controller_init(&this->base);
2696 this->base.ops = &gpmi_nand_controller_ops;
2697 chip->controller = &this->base;
2698
2699 ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2700 if (ret)
2701 goto err_out;
2702
2703 ret = nand_boot_init(this);
2704 if (ret)
2705 goto err_nand_cleanup;
2706 ret = nand_create_bbt(chip);
2707 if (ret)
2708 goto err_nand_cleanup;
2709
2710 ret = mtd_device_register(mtd, NULL, 0);
2711 if (ret)
2712 goto err_nand_cleanup;
2713 return 0;
2714
2715 err_nand_cleanup:
2716 nand_cleanup(chip);
2717 err_out:
2718 gpmi_free_dma_buffer(this);
2719 return ret;
2720 }
2721
2722 static const struct of_device_id gpmi_nand_id_table[] = {
2723 { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2724 { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2725 { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2726 { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2727 { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2728 {}
2729 };
2730 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2731
gpmi_nand_probe(struct platform_device * pdev)2732 static int gpmi_nand_probe(struct platform_device *pdev)
2733 {
2734 struct gpmi_nand_data *this;
2735 int ret;
2736
2737 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2738 if (!this)
2739 return -ENOMEM;
2740
2741 this->devdata = of_device_get_match_data(&pdev->dev);
2742 platform_set_drvdata(pdev, this);
2743 this->pdev = pdev;
2744 this->dev = &pdev->dev;
2745
2746 ret = acquire_resources(this);
2747 if (ret)
2748 goto exit_acquire_resources;
2749
2750 ret = __gpmi_enable_clk(this, true);
2751 if (ret)
2752 goto exit_acquire_resources;
2753
2754 pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2755 pm_runtime_use_autosuspend(&pdev->dev);
2756 pm_runtime_set_active(&pdev->dev);
2757 pm_runtime_enable(&pdev->dev);
2758 pm_runtime_get_sync(&pdev->dev);
2759
2760 ret = gpmi_init(this);
2761 if (ret)
2762 goto exit_nfc_init;
2763
2764 ret = gpmi_nand_init(this);
2765 if (ret)
2766 goto exit_nfc_init;
2767
2768 pm_runtime_mark_last_busy(&pdev->dev);
2769 pm_runtime_put_autosuspend(&pdev->dev);
2770
2771 dev_info(this->dev, "driver registered.\n");
2772
2773 return 0;
2774
2775 exit_nfc_init:
2776 pm_runtime_put(&pdev->dev);
2777 pm_runtime_disable(&pdev->dev);
2778 release_resources(this);
2779 exit_acquire_resources:
2780
2781 return ret;
2782 }
2783
gpmi_nand_remove(struct platform_device * pdev)2784 static int gpmi_nand_remove(struct platform_device *pdev)
2785 {
2786 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2787 struct nand_chip *chip = &this->nand;
2788 int ret;
2789
2790 pm_runtime_put_sync(&pdev->dev);
2791 pm_runtime_disable(&pdev->dev);
2792
2793 ret = mtd_device_unregister(nand_to_mtd(chip));
2794 WARN_ON(ret);
2795 nand_cleanup(chip);
2796 gpmi_free_dma_buffer(this);
2797 release_resources(this);
2798 return 0;
2799 }
2800
2801 #ifdef CONFIG_PM_SLEEP
gpmi_pm_suspend(struct device * dev)2802 static int gpmi_pm_suspend(struct device *dev)
2803 {
2804 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2805
2806 release_dma_channels(this);
2807 return 0;
2808 }
2809
gpmi_pm_resume(struct device * dev)2810 static int gpmi_pm_resume(struct device *dev)
2811 {
2812 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2813 int ret;
2814
2815 ret = acquire_dma_channels(this);
2816 if (ret < 0)
2817 return ret;
2818
2819 /* re-init the GPMI registers */
2820 ret = gpmi_init(this);
2821 if (ret) {
2822 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2823 return ret;
2824 }
2825
2826 /* Set flag to get timing setup restored for next exec_op */
2827 if (this->hw.clk_rate)
2828 this->hw.must_apply_timings = true;
2829
2830 /* re-init the BCH registers */
2831 ret = bch_set_geometry(this);
2832 if (ret) {
2833 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2834 return ret;
2835 }
2836
2837 return 0;
2838 }
2839 #endif /* CONFIG_PM_SLEEP */
2840
gpmi_runtime_suspend(struct device * dev)2841 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2842 {
2843 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2844
2845 return __gpmi_enable_clk(this, false);
2846 }
2847
gpmi_runtime_resume(struct device * dev)2848 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2849 {
2850 struct gpmi_nand_data *this = dev_get_drvdata(dev);
2851
2852 return __gpmi_enable_clk(this, true);
2853 }
2854
2855 static const struct dev_pm_ops gpmi_pm_ops = {
2856 SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2857 SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2858 };
2859
2860 static struct platform_driver gpmi_nand_driver = {
2861 .driver = {
2862 .name = "gpmi-nand",
2863 .pm = &gpmi_pm_ops,
2864 .of_match_table = gpmi_nand_id_table,
2865 },
2866 .probe = gpmi_nand_probe,
2867 .remove = gpmi_nand_remove,
2868 };
2869 module_platform_driver(gpmi_nand_driver);
2870
2871 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2872 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2873 MODULE_LICENSE("GPL");
2874