1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13
14 #define HCLGEVF_NAME "hclgevf"
15
16 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
17
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 unsigned long delay);
21
22 static struct hnae3_ae_algo ae_algovf;
23
24 static struct workqueue_struct *hclgevf_wq;
25
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 /* required last entry */
31 {0, }
32 };
33
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 HCLGEVF_RST_ING,
53 HCLGEVF_GRO_EN_REG};
54
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 HCLGEVF_RING_RX_ADDR_H_REG,
57 HCLGEVF_RING_RX_BD_NUM_REG,
58 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 HCLGEVF_RING_RX_MERGE_EN_REG,
60 HCLGEVF_RING_RX_TAIL_REG,
61 HCLGEVF_RING_RX_HEAD_REG,
62 HCLGEVF_RING_RX_FBD_NUM_REG,
63 HCLGEVF_RING_RX_OFFSET_REG,
64 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 HCLGEVF_RING_RX_STASH_REG,
66 HCLGEVF_RING_RX_BD_ERR_REG,
67 HCLGEVF_RING_TX_ADDR_L_REG,
68 HCLGEVF_RING_TX_ADDR_H_REG,
69 HCLGEVF_RING_TX_BD_NUM_REG,
70 HCLGEVF_RING_TX_PRIORITY_REG,
71 HCLGEVF_RING_TX_TC_REG,
72 HCLGEVF_RING_TX_MERGE_EN_REG,
73 HCLGEVF_RING_TX_TAIL_REG,
74 HCLGEVF_RING_TX_HEAD_REG,
75 HCLGEVF_RING_TX_FBD_NUM_REG,
76 HCLGEVF_RING_TX_OFFSET_REG,
77 HCLGEVF_RING_TX_EBD_NUM_REG,
78 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 HCLGEVF_RING_TX_BD_ERR_REG,
80 HCLGEVF_RING_EN_REG};
81
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 HCLGEVF_TQP_INTR_GL0_REG,
84 HCLGEVF_TQP_INTR_GL1_REG,
85 HCLGEVF_TQP_INTR_GL2_REG,
86 HCLGEVF_TQP_INTR_RL_REG};
87
88 /* hclgevf_cmd_send - send command to command queue
89 * @hw: pointer to the hw struct
90 * @desc: prefilled descriptor for describing the command
91 * @num : the number of descriptors to be sent
92 *
93 * This is the main send command for command queue, it
94 * sends the queue, cleans the queue, etc
95 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100
hclgevf_arq_init(struct hclgevf_dev * hdev)101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104
105 spin_lock(&cmdq->crq.lock);
106 /* initialize the pointers of async rx queue of mailbox */
107 hdev->arq.hdev = hdev;
108 hdev->arq.head = 0;
109 hdev->arq.tail = 0;
110 atomic_set(&hdev->arq.count, 0);
111 spin_unlock(&cmdq->crq.lock);
112 }
113
hclgevf_ae_get_hdev(struct hnae3_handle * handle)114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 if (!handle->client)
117 return container_of(handle, struct hclgevf_dev, nic);
118 else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 return container_of(handle, struct hclgevf_dev, roce);
120 else
121 return container_of(handle, struct hclgevf_dev, nic);
122 }
123
hclgevf_update_stats(struct hnae3_handle * handle,struct net_device_stats * net_stats)124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 struct net_device_stats *net_stats)
126 {
127 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 int status;
129
130 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 if (status)
132 dev_err(&hdev->pdev->dev,
133 "VF update of TQPS stats fail, status = %d.\n",
134 status);
135 }
136
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 if (strset == ETH_SS_TEST)
140 return -EOPNOTSUPP;
141 else if (strset == ETH_SS_STATS)
142 return hclge_comm_tqps_get_sset_count(handle);
143
144 return 0;
145 }
146
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 u8 *data)
149 {
150 u8 *p = (char *)data;
151
152 if (strset == ETH_SS_STATS)
153 p = hclge_comm_tqps_get_strings(handle, p);
154 }
155
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 hclge_comm_tqps_get_stats(handle, data);
159 }
160
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 u8 subcode)
163 {
164 if (msg) {
165 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 msg->code = code;
167 msg->subcode = subcode;
168 }
169 }
170
hclgevf_get_basic_info(struct hclgevf_dev * hdev)171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 struct hclge_basic_info *basic_info;
176 struct hclge_vf_to_pf_msg send_msg;
177 unsigned long caps;
178 int status;
179
180 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 sizeof(resp_msg));
183 if (status) {
184 dev_err(&hdev->pdev->dev,
185 "failed to get basic info from pf, ret = %d", status);
186 return status;
187 }
188
189 basic_info = (struct hclge_basic_info *)resp_msg;
190
191 hdev->hw_tc_map = basic_info->hw_tc_map;
192 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
193 caps = le32_to_cpu(basic_info->pf_caps);
194 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196
197 return 0;
198 }
199
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 struct hnae3_handle *nic = &hdev->nic;
203 struct hclge_vf_to_pf_msg send_msg;
204 u8 resp_msg;
205 int ret;
206
207 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 sizeof(u8));
211 if (ret) {
212 dev_err(&hdev->pdev->dev,
213 "VF request to get port based vlan state failed %d",
214 ret);
215 return ret;
216 }
217
218 nic->port_base_vlan_state = resp_msg;
219
220 return 0;
221 }
222
hclgevf_get_queue_info(struct hclgevf_dev * hdev)223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
226
227 struct hclge_mbx_vf_queue_info *queue_info;
228 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
229 struct hclge_vf_to_pf_msg send_msg;
230 int status;
231
232 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
233 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
234 HCLGEVF_TQPS_RSS_INFO_LEN);
235 if (status) {
236 dev_err(&hdev->pdev->dev,
237 "VF request to get tqp info from PF failed %d",
238 status);
239 return status;
240 }
241
242 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
243 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
244 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
245 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
246
247 return 0;
248 }
249
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)250 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
251 {
252 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
253
254 struct hclge_mbx_vf_queue_depth *queue_depth;
255 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
256 struct hclge_vf_to_pf_msg send_msg;
257 int ret;
258
259 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
261 HCLGEVF_TQPS_DEPTH_INFO_LEN);
262 if (ret) {
263 dev_err(&hdev->pdev->dev,
264 "VF request to get tqp depth info from PF failed %d",
265 ret);
266 return ret;
267 }
268
269 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
270 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
271 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
272
273 return 0;
274 }
275
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)276 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
277 {
278 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
279 struct hclge_vf_to_pf_msg send_msg;
280 u16 qid_in_pf = 0;
281 u8 resp_data[2];
282 int ret;
283
284 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
285 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
286 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
287 sizeof(resp_data));
288 if (!ret)
289 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
290
291 return qid_in_pf;
292 }
293
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)294 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
295 {
296 struct hclge_vf_to_pf_msg send_msg;
297 u8 resp_msg[2];
298 int ret;
299
300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
301 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
302 sizeof(resp_msg));
303 if (ret) {
304 dev_err(&hdev->pdev->dev,
305 "VF request to get the pf port media type failed %d",
306 ret);
307 return ret;
308 }
309
310 hdev->hw.mac.media_type = resp_msg[0];
311 hdev->hw.mac.module_type = resp_msg[1];
312
313 return 0;
314 }
315
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)316 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
317 {
318 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
319 struct hclge_comm_tqp *tqp;
320 int i;
321
322 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
323 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
324 if (!hdev->htqp)
325 return -ENOMEM;
326
327 tqp = hdev->htqp;
328
329 for (i = 0; i < hdev->num_tqps; i++) {
330 tqp->dev = &hdev->pdev->dev;
331 tqp->index = i;
332
333 tqp->q.ae_algo = &ae_algovf;
334 tqp->q.buf_size = hdev->rx_buf_len;
335 tqp->q.tx_desc_num = hdev->num_tx_desc;
336 tqp->q.rx_desc_num = hdev->num_rx_desc;
337
338 /* need an extended offset to configure queues >=
339 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
340 */
341 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
342 tqp->q.io_base = hdev->hw.hw.io_base +
343 HCLGEVF_TQP_REG_OFFSET +
344 i * HCLGEVF_TQP_REG_SIZE;
345 else
346 tqp->q.io_base = hdev->hw.hw.io_base +
347 HCLGEVF_TQP_REG_OFFSET +
348 HCLGEVF_TQP_EXT_REG_OFFSET +
349 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
350 HCLGEVF_TQP_REG_SIZE;
351
352 /* when device supports tx push and has device memory,
353 * the queue can execute push mode or doorbell mode on
354 * device memory.
355 */
356 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
357 tqp->q.mem_base = hdev->hw.hw.mem_base +
358 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
359
360 tqp++;
361 }
362
363 return 0;
364 }
365
hclgevf_knic_setup(struct hclgevf_dev * hdev)366 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
367 {
368 struct hnae3_handle *nic = &hdev->nic;
369 struct hnae3_knic_private_info *kinfo;
370 u16 new_tqps = hdev->num_tqps;
371 unsigned int i;
372 u8 num_tc = 0;
373
374 kinfo = &nic->kinfo;
375 kinfo->num_tx_desc = hdev->num_tx_desc;
376 kinfo->num_rx_desc = hdev->num_rx_desc;
377 kinfo->rx_buf_len = hdev->rx_buf_len;
378 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
379 if (hdev->hw_tc_map & BIT(i))
380 num_tc++;
381
382 num_tc = num_tc ? num_tc : 1;
383 kinfo->tc_info.num_tc = num_tc;
384 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
385 new_tqps = kinfo->rss_size * num_tc;
386 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
387
388 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
389 sizeof(struct hnae3_queue *), GFP_KERNEL);
390 if (!kinfo->tqp)
391 return -ENOMEM;
392
393 for (i = 0; i < kinfo->num_tqps; i++) {
394 hdev->htqp[i].q.handle = &hdev->nic;
395 hdev->htqp[i].q.tqp_index = i;
396 kinfo->tqp[i] = &hdev->htqp[i].q;
397 }
398
399 /* after init the max rss_size and tqps, adjust the default tqp numbers
400 * and rss size with the actual vector numbers
401 */
402 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
403 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
404 kinfo->rss_size);
405
406 return 0;
407 }
408
hclgevf_request_link_info(struct hclgevf_dev * hdev)409 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
410 {
411 struct hclge_vf_to_pf_msg send_msg;
412 int status;
413
414 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
415 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
416 if (status)
417 dev_err(&hdev->pdev->dev,
418 "VF failed to fetch link status(%d) from PF", status);
419 }
420
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)421 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
422 {
423 struct hnae3_handle *rhandle = &hdev->roce;
424 struct hnae3_handle *handle = &hdev->nic;
425 struct hnae3_client *rclient;
426 struct hnae3_client *client;
427
428 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
429 return;
430
431 client = handle->client;
432 rclient = hdev->roce_client;
433
434 link_state =
435 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
436 if (link_state != hdev->hw.mac.link) {
437 hdev->hw.mac.link = link_state;
438 client->ops->link_status_change(handle, !!link_state);
439 if (rclient && rclient->ops->link_status_change)
440 rclient->ops->link_status_change(rhandle, !!link_state);
441 }
442
443 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
444 }
445
hclgevf_update_link_mode(struct hclgevf_dev * hdev)446 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
447 {
448 #define HCLGEVF_ADVERTISING 0
449 #define HCLGEVF_SUPPORTED 1
450
451 struct hclge_vf_to_pf_msg send_msg;
452
453 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
454 send_msg.data[0] = HCLGEVF_ADVERTISING;
455 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
456 send_msg.data[0] = HCLGEVF_SUPPORTED;
457 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
458 }
459
hclgevf_set_handle_info(struct hclgevf_dev * hdev)460 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
461 {
462 struct hnae3_handle *nic = &hdev->nic;
463 int ret;
464
465 nic->ae_algo = &ae_algovf;
466 nic->pdev = hdev->pdev;
467 nic->numa_node_mask = hdev->numa_node_mask;
468 nic->flags |= HNAE3_SUPPORT_VF;
469 nic->kinfo.io_base = hdev->hw.hw.io_base;
470
471 ret = hclgevf_knic_setup(hdev);
472 if (ret)
473 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
474 ret);
475 return ret;
476 }
477
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)478 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
479 {
480 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
481 dev_warn(&hdev->pdev->dev,
482 "vector(vector_id %d) has been freed.\n", vector_id);
483 return;
484 }
485
486 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
487 hdev->num_msi_left += 1;
488 hdev->num_msi_used -= 1;
489 }
490
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)491 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
492 struct hnae3_vector_info *vector_info)
493 {
494 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
495 struct hnae3_vector_info *vector = vector_info;
496 int alloc = 0;
497 int i, j;
498
499 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
500 vector_num = min(hdev->num_msi_left, vector_num);
501
502 for (j = 0; j < vector_num; j++) {
503 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
504 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
505 vector->vector = pci_irq_vector(hdev->pdev, i);
506 vector->io_addr = hdev->hw.hw.io_base +
507 HCLGEVF_VECTOR_REG_BASE +
508 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
509 hdev->vector_status[i] = 0;
510 hdev->vector_irq[i] = vector->vector;
511
512 vector++;
513 alloc++;
514
515 break;
516 }
517 }
518 }
519 hdev->num_msi_left -= alloc;
520 hdev->num_msi_used += alloc;
521
522 return alloc;
523 }
524
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)525 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
526 {
527 int i;
528
529 for (i = 0; i < hdev->num_msi; i++)
530 if (vector == hdev->vector_irq[i])
531 return i;
532
533 return -EINVAL;
534 }
535
536 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)537 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
538 {
539 #define HCLGEVF_RSS_MBX_RESP_LEN 8
540 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
541 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
542 struct hclge_vf_to_pf_msg send_msg;
543 u16 msg_num, hash_key_index;
544 u8 index;
545 int ret;
546
547 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
548 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
549 HCLGEVF_RSS_MBX_RESP_LEN;
550 for (index = 0; index < msg_num; index++) {
551 send_msg.data[0] = index;
552 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
553 HCLGEVF_RSS_MBX_RESP_LEN);
554 if (ret) {
555 dev_err(&hdev->pdev->dev,
556 "VF get rss hash key from PF failed, ret=%d",
557 ret);
558 return ret;
559 }
560
561 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
562 if (index == msg_num - 1)
563 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
564 &resp_msg[0],
565 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
566 else
567 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
568 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
569 }
570
571 return 0;
572 }
573
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)574 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
575 u8 *hfunc)
576 {
577 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
578 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
579 int ret;
580
581 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
582 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
583 } else {
584 if (hfunc)
585 *hfunc = ETH_RSS_HASH_TOP;
586 if (key) {
587 ret = hclgevf_get_rss_hash_key(hdev);
588 if (ret)
589 return ret;
590 memcpy(key, rss_cfg->rss_hash_key,
591 HCLGE_COMM_RSS_KEY_SIZE);
592 }
593 }
594
595 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
596 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
597
598 return 0;
599 }
600
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)601 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
602 const u8 *key, const u8 hfunc)
603 {
604 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
605 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
606 int ret, i;
607
608 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
609 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
610 hfunc);
611 if (ret)
612 return ret;
613 }
614
615 /* update the shadow RSS table with user specified qids */
616 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
617 rss_cfg->rss_indirection_tbl[i] = indir[i];
618
619 /* update the hardware */
620 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
621 rss_cfg->rss_indirection_tbl);
622 }
623
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)624 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
625 struct ethtool_rxnfc *nfc)
626 {
627 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
628 int ret;
629
630 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
631 return -EOPNOTSUPP;
632
633 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
634 &hdev->rss_cfg, nfc);
635 if (ret)
636 dev_err(&hdev->pdev->dev,
637 "failed to set rss tuple, ret = %d.\n", ret);
638
639 return ret;
640 }
641
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)642 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
643 struct ethtool_rxnfc *nfc)
644 {
645 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
646 u8 tuple_sets;
647 int ret;
648
649 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
650 return -EOPNOTSUPP;
651
652 nfc->data = 0;
653
654 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
655 &tuple_sets);
656 if (ret || !tuple_sets)
657 return ret;
658
659 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
660
661 return 0;
662 }
663
hclgevf_get_tc_size(struct hnae3_handle * handle)664 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
665 {
666 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
667 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
668
669 return rss_cfg->rss_size;
670 }
671
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)672 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
673 int vector_id,
674 struct hnae3_ring_chain_node *ring_chain)
675 {
676 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
677 struct hclge_vf_to_pf_msg send_msg;
678 struct hnae3_ring_chain_node *node;
679 int status;
680 int i = 0;
681
682 memset(&send_msg, 0, sizeof(send_msg));
683 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
684 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
685 send_msg.vector_id = vector_id;
686
687 for (node = ring_chain; node; node = node->next) {
688 send_msg.param[i].ring_type =
689 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
690
691 send_msg.param[i].tqp_index = node->tqp_index;
692 send_msg.param[i].int_gl_index =
693 hnae3_get_field(node->int_gl_idx,
694 HNAE3_RING_GL_IDX_M,
695 HNAE3_RING_GL_IDX_S);
696
697 i++;
698 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
699 send_msg.ring_num = i;
700
701 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
702 NULL, 0);
703 if (status) {
704 dev_err(&hdev->pdev->dev,
705 "Map TQP fail, status is %d.\n",
706 status);
707 return status;
708 }
709 i = 0;
710 }
711 }
712
713 return 0;
714 }
715
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)716 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
717 struct hnae3_ring_chain_node *ring_chain)
718 {
719 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 int vector_id;
721
722 vector_id = hclgevf_get_vector_index(hdev, vector);
723 if (vector_id < 0) {
724 dev_err(&handle->pdev->dev,
725 "Get vector index fail. ret =%d\n", vector_id);
726 return vector_id;
727 }
728
729 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
730 }
731
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)732 static int hclgevf_unmap_ring_from_vector(
733 struct hnae3_handle *handle,
734 int vector,
735 struct hnae3_ring_chain_node *ring_chain)
736 {
737 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
738 int ret, vector_id;
739
740 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
741 return 0;
742
743 vector_id = hclgevf_get_vector_index(hdev, vector);
744 if (vector_id < 0) {
745 dev_err(&handle->pdev->dev,
746 "Get vector index fail. ret =%d\n", vector_id);
747 return vector_id;
748 }
749
750 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
751 if (ret)
752 dev_err(&handle->pdev->dev,
753 "Unmap ring from vector fail. vector=%d, ret =%d\n",
754 vector_id,
755 ret);
756
757 return ret;
758 }
759
hclgevf_put_vector(struct hnae3_handle * handle,int vector)760 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
761 {
762 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
763 int vector_id;
764
765 vector_id = hclgevf_get_vector_index(hdev, vector);
766 if (vector_id < 0) {
767 dev_err(&handle->pdev->dev,
768 "hclgevf_put_vector get vector index fail. ret =%d\n",
769 vector_id);
770 return vector_id;
771 }
772
773 hclgevf_free_vector(hdev, vector_id);
774
775 return 0;
776 }
777
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)778 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
779 bool en_uc_pmc, bool en_mc_pmc,
780 bool en_bc_pmc)
781 {
782 struct hnae3_handle *handle = &hdev->nic;
783 struct hclge_vf_to_pf_msg send_msg;
784 int ret;
785
786 memset(&send_msg, 0, sizeof(send_msg));
787 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
788 send_msg.en_bc = en_bc_pmc ? 1 : 0;
789 send_msg.en_uc = en_uc_pmc ? 1 : 0;
790 send_msg.en_mc = en_mc_pmc ? 1 : 0;
791 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
792 &handle->priv_flags) ? 1 : 0;
793
794 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
795 if (ret)
796 dev_err(&hdev->pdev->dev,
797 "Set promisc mode fail, status is %d.\n", ret);
798
799 return ret;
800 }
801
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)802 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
803 bool en_mc_pmc)
804 {
805 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
806 bool en_bc_pmc;
807
808 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
809
810 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
811 en_bc_pmc);
812 }
813
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)814 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
815 {
816 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817
818 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 hclgevf_task_schedule(hdev, 0);
820 }
821
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)822 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
823 {
824 struct hnae3_handle *handle = &hdev->nic;
825 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
826 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
827 int ret;
828
829 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
830 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
831 if (!ret)
832 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
833 }
834 }
835
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)836 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
837 u16 stream_id, bool enable)
838 {
839 struct hclgevf_cfg_com_tqp_queue_cmd *req;
840 struct hclge_desc desc;
841
842 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
843
844 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
845 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
846 req->stream_id = cpu_to_le16(stream_id);
847 if (enable)
848 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
849
850 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
851 }
852
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)853 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
854 {
855 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
856 int ret;
857 u16 i;
858
859 for (i = 0; i < handle->kinfo.num_tqps; i++) {
860 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
861 if (ret)
862 return ret;
863 }
864
865 return 0;
866 }
867
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)868 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
869 {
870 struct hclge_vf_to_pf_msg send_msg;
871 u8 host_mac[ETH_ALEN];
872 int status;
873
874 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
875 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
876 ETH_ALEN);
877 if (status) {
878 dev_err(&hdev->pdev->dev,
879 "fail to get VF MAC from host %d", status);
880 return status;
881 }
882
883 ether_addr_copy(p, host_mac);
884
885 return 0;
886 }
887
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)888 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 u8 host_mac_addr[ETH_ALEN];
892
893 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
894 return;
895
896 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
897 if (hdev->has_pf_mac)
898 ether_addr_copy(p, host_mac_addr);
899 else
900 ether_addr_copy(p, hdev->hw.mac.mac_addr);
901 }
902
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)903 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
904 bool is_first)
905 {
906 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
908 struct hclge_vf_to_pf_msg send_msg;
909 u8 *new_mac_addr = (u8 *)p;
910 int status;
911
912 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
913 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
914 ether_addr_copy(send_msg.data, new_mac_addr);
915 if (is_first && !hdev->has_pf_mac)
916 eth_zero_addr(&send_msg.data[ETH_ALEN]);
917 else
918 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
919 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
920 if (!status)
921 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
922
923 return status;
924 }
925
926 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)927 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
928 {
929 struct hclgevf_mac_addr_node *mac_node, *tmp;
930
931 list_for_each_entry_safe(mac_node, tmp, list, node)
932 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
933 return mac_node;
934
935 return NULL;
936 }
937
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)938 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
939 enum HCLGEVF_MAC_NODE_STATE state)
940 {
941 switch (state) {
942 /* from set_rx_mode or tmp_add_list */
943 case HCLGEVF_MAC_TO_ADD:
944 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
945 mac_node->state = HCLGEVF_MAC_ACTIVE;
946 break;
947 /* only from set_rx_mode */
948 case HCLGEVF_MAC_TO_DEL:
949 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
950 list_del(&mac_node->node);
951 kfree(mac_node);
952 } else {
953 mac_node->state = HCLGEVF_MAC_TO_DEL;
954 }
955 break;
956 /* only from tmp_add_list, the mac_node->state won't be
957 * HCLGEVF_MAC_ACTIVE
958 */
959 case HCLGEVF_MAC_ACTIVE:
960 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
961 mac_node->state = HCLGEVF_MAC_ACTIVE;
962 break;
963 }
964 }
965
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)966 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
967 enum HCLGEVF_MAC_NODE_STATE state,
968 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
969 const unsigned char *addr)
970 {
971 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
972 struct hclgevf_mac_addr_node *mac_node;
973 struct list_head *list;
974
975 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
976 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
977
978 spin_lock_bh(&hdev->mac_table.mac_list_lock);
979
980 /* if the mac addr is already in the mac list, no need to add a new
981 * one into it, just check the mac addr state, convert it to a new
982 * state, or just remove it, or do nothing.
983 */
984 mac_node = hclgevf_find_mac_node(list, addr);
985 if (mac_node) {
986 hclgevf_update_mac_node(mac_node, state);
987 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
988 return 0;
989 }
990 /* if this address is never added, unnecessary to delete */
991 if (state == HCLGEVF_MAC_TO_DEL) {
992 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 return -ENOENT;
994 }
995
996 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
997 if (!mac_node) {
998 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
999 return -ENOMEM;
1000 }
1001
1002 mac_node->state = state;
1003 ether_addr_copy(mac_node->mac_addr, addr);
1004 list_add_tail(&mac_node->node, list);
1005
1006 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1007 return 0;
1008 }
1009
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1010 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1011 const unsigned char *addr)
1012 {
1013 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 HCLGEVF_MAC_ADDR_UC, addr);
1015 }
1016
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1017 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1018 const unsigned char *addr)
1019 {
1020 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 HCLGEVF_MAC_ADDR_UC, addr);
1022 }
1023
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1024 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1025 const unsigned char *addr)
1026 {
1027 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1028 HCLGEVF_MAC_ADDR_MC, addr);
1029 }
1030
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1031 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1032 const unsigned char *addr)
1033 {
1034 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1035 HCLGEVF_MAC_ADDR_MC, addr);
1036 }
1037
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1038 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1039 struct hclgevf_mac_addr_node *mac_node,
1040 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1041 {
1042 struct hclge_vf_to_pf_msg send_msg;
1043 u8 code, subcode;
1044
1045 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1046 code = HCLGE_MBX_SET_UNICAST;
1047 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1048 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1049 else
1050 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1051 } else {
1052 code = HCLGE_MBX_SET_MULTICAST;
1053 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1054 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1055 else
1056 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1057 }
1058
1059 hclgevf_build_send_msg(&send_msg, code, subcode);
1060 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1061 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1062 }
1063
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1064 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1065 struct list_head *list,
1066 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1067 {
1068 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1069 struct hclgevf_mac_addr_node *mac_node, *tmp;
1070 int ret;
1071
1072 list_for_each_entry_safe(mac_node, tmp, list, node) {
1073 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1074 if (ret) {
1075 hnae3_format_mac_addr(format_mac_addr,
1076 mac_node->mac_addr);
1077 dev_err(&hdev->pdev->dev,
1078 "failed to configure mac %s, state = %d, ret = %d\n",
1079 format_mac_addr, mac_node->state, ret);
1080 return;
1081 }
1082 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1083 mac_node->state = HCLGEVF_MAC_ACTIVE;
1084 } else {
1085 list_del(&mac_node->node);
1086 kfree(mac_node);
1087 }
1088 }
1089 }
1090
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1091 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1092 struct list_head *mac_list)
1093 {
1094 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1095
1096 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1097 /* if the mac address from tmp_add_list is not in the
1098 * uc/mc_mac_list, it means have received a TO_DEL request
1099 * during the time window of sending mac config request to PF
1100 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1101 * then it will be removed at next time. If is TO_ADD, it means
1102 * send TO_ADD request failed, so just remove the mac node.
1103 */
1104 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1105 if (new_node) {
1106 hclgevf_update_mac_node(new_node, mac_node->state);
1107 list_del(&mac_node->node);
1108 kfree(mac_node);
1109 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1110 mac_node->state = HCLGEVF_MAC_TO_DEL;
1111 list_move_tail(&mac_node->node, mac_list);
1112 } else {
1113 list_del(&mac_node->node);
1114 kfree(mac_node);
1115 }
1116 }
1117 }
1118
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1119 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1120 struct list_head *mac_list)
1121 {
1122 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1123
1124 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1125 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1126 if (new_node) {
1127 /* If the mac addr is exist in the mac list, it means
1128 * received a new request TO_ADD during the time window
1129 * of sending mac addr configurrequest to PF, so just
1130 * change the mac state to ACTIVE.
1131 */
1132 new_node->state = HCLGEVF_MAC_ACTIVE;
1133 list_del(&mac_node->node);
1134 kfree(mac_node);
1135 } else {
1136 list_move_tail(&mac_node->node, mac_list);
1137 }
1138 }
1139 }
1140
hclgevf_clear_list(struct list_head * list)1141 static void hclgevf_clear_list(struct list_head *list)
1142 {
1143 struct hclgevf_mac_addr_node *mac_node, *tmp;
1144
1145 list_for_each_entry_safe(mac_node, tmp, list, node) {
1146 list_del(&mac_node->node);
1147 kfree(mac_node);
1148 }
1149 }
1150
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1151 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1152 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1153 {
1154 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1155 struct list_head tmp_add_list, tmp_del_list;
1156 struct list_head *list;
1157
1158 INIT_LIST_HEAD(&tmp_add_list);
1159 INIT_LIST_HEAD(&tmp_del_list);
1160
1161 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1162 * we can add/delete these mac addr outside the spin lock
1163 */
1164 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1165 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1166
1167 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1168
1169 list_for_each_entry_safe(mac_node, tmp, list, node) {
1170 switch (mac_node->state) {
1171 case HCLGEVF_MAC_TO_DEL:
1172 list_move_tail(&mac_node->node, &tmp_del_list);
1173 break;
1174 case HCLGEVF_MAC_TO_ADD:
1175 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1176 if (!new_node)
1177 goto stop_traverse;
1178
1179 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1180 new_node->state = mac_node->state;
1181 list_add_tail(&new_node->node, &tmp_add_list);
1182 break;
1183 default:
1184 break;
1185 }
1186 }
1187
1188 stop_traverse:
1189 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190
1191 /* delete first, in order to get max mac table space for adding */
1192 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1193 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1194
1195 /* if some mac addresses were added/deleted fail, move back to the
1196 * mac_list, and retry at next time.
1197 */
1198 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199
1200 hclgevf_sync_from_del_list(&tmp_del_list, list);
1201 hclgevf_sync_from_add_list(&tmp_add_list, list);
1202
1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1206 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1207 {
1208 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1209 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1210 }
1211
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1212 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1213 {
1214 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1215
1216 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1217 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1218
1219 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1220 }
1221
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1222 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1223 {
1224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1226 struct hclge_vf_to_pf_msg send_msg;
1227
1228 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1229 return -EOPNOTSUPP;
1230
1231 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1232 HCLGE_MBX_ENABLE_VLAN_FILTER);
1233 send_msg.data[0] = enable ? 1 : 0;
1234
1235 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1236 }
1237
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1238 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1239 __be16 proto, u16 vlan_id,
1240 bool is_kill)
1241 {
1242 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1243 struct hclge_mbx_vlan_filter *vlan_filter;
1244 struct hclge_vf_to_pf_msg send_msg;
1245 int ret;
1246
1247 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1248 return -EINVAL;
1249
1250 if (proto != htons(ETH_P_8021Q))
1251 return -EPROTONOSUPPORT;
1252
1253 /* When device is resetting or reset failed, firmware is unable to
1254 * handle mailbox. Just record the vlan id, and remove it after
1255 * reset finished.
1256 */
1257 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1258 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1259 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1260 return -EBUSY;
1261 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1262 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1263 }
1264
1265 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1266 HCLGE_MBX_VLAN_FILTER);
1267 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1268 vlan_filter->is_kill = is_kill;
1269 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1270 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1271
1272 /* when remove hw vlan filter failed, record the vlan id,
1273 * and try to remove it from hw later, to be consistence
1274 * with stack.
1275 */
1276 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1277 if (is_kill && ret)
1278 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1279
1280 return ret;
1281 }
1282
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1283 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1284 {
1285 #define HCLGEVF_MAX_SYNC_COUNT 60
1286 struct hnae3_handle *handle = &hdev->nic;
1287 int ret, sync_cnt = 0;
1288 u16 vlan_id;
1289
1290 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1291 return;
1292
1293 rtnl_lock();
1294 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1295 while (vlan_id != VLAN_N_VID) {
1296 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1297 vlan_id, true);
1298 if (ret)
1299 break;
1300
1301 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1302 sync_cnt++;
1303 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1304 break;
1305
1306 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1307 }
1308 rtnl_unlock();
1309 }
1310
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1311 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1312 {
1313 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1314 struct hclge_vf_to_pf_msg send_msg;
1315
1316 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1317 HCLGE_MBX_VLAN_RX_OFF_CFG);
1318 send_msg.data[0] = enable ? 1 : 0;
1319 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1320 }
1321
hclgevf_reset_tqp(struct hnae3_handle * handle)1322 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1323 {
1324 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1325 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1326 struct hclge_vf_to_pf_msg send_msg;
1327 u8 return_status = 0;
1328 int ret;
1329 u16 i;
1330
1331 /* disable vf queue before send queue reset msg to PF */
1332 ret = hclgevf_tqp_enable(handle, false);
1333 if (ret) {
1334 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1335 ret);
1336 return ret;
1337 }
1338
1339 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1340
1341 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1342 sizeof(return_status));
1343 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1344 return ret;
1345
1346 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1347 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1348 *(__le16 *)send_msg.data = cpu_to_le16(i);
1349 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1350 if (ret)
1351 return ret;
1352 }
1353
1354 return 0;
1355 }
1356
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1357 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1358 {
1359 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1360 struct hclge_mbx_mtu_info *mtu_info;
1361 struct hclge_vf_to_pf_msg send_msg;
1362
1363 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1364 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1365 mtu_info->mtu = cpu_to_le32(new_mtu);
1366
1367 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1368 }
1369
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1370 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1371 enum hnae3_reset_notify_type type)
1372 {
1373 struct hnae3_client *client = hdev->nic_client;
1374 struct hnae3_handle *handle = &hdev->nic;
1375 int ret;
1376
1377 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1378 !client)
1379 return 0;
1380
1381 if (!client->ops->reset_notify)
1382 return -EOPNOTSUPP;
1383
1384 ret = client->ops->reset_notify(handle, type);
1385 if (ret)
1386 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1387 type, ret);
1388
1389 return ret;
1390 }
1391
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1392 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1393 enum hnae3_reset_notify_type type)
1394 {
1395 struct hnae3_client *client = hdev->roce_client;
1396 struct hnae3_handle *handle = &hdev->roce;
1397 int ret;
1398
1399 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1400 return 0;
1401
1402 if (!client->ops->reset_notify)
1403 return -EOPNOTSUPP;
1404
1405 ret = client->ops->reset_notify(handle, type);
1406 if (ret)
1407 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1408 type, ret);
1409 return ret;
1410 }
1411
hclgevf_reset_wait(struct hclgevf_dev * hdev)1412 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1413 {
1414 #define HCLGEVF_RESET_WAIT_US 20000
1415 #define HCLGEVF_RESET_WAIT_CNT 2000
1416 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1417 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1418
1419 u32 val;
1420 int ret;
1421
1422 if (hdev->reset_type == HNAE3_VF_RESET)
1423 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1424 HCLGEVF_VF_RST_ING, val,
1425 !(val & HCLGEVF_VF_RST_ING_BIT),
1426 HCLGEVF_RESET_WAIT_US,
1427 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1428 else
1429 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1430 HCLGEVF_RST_ING, val,
1431 !(val & HCLGEVF_RST_ING_BITS),
1432 HCLGEVF_RESET_WAIT_US,
1433 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1434
1435 /* hardware completion status should be available by this time */
1436 if (ret) {
1437 dev_err(&hdev->pdev->dev,
1438 "couldn't get reset done status from h/w, timeout!\n");
1439 return ret;
1440 }
1441
1442 /* we will wait a bit more to let reset of the stack to complete. This
1443 * might happen in case reset assertion was made by PF. Yes, this also
1444 * means we might end up waiting bit more even for VF reset.
1445 */
1446 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1447 msleep(5000);
1448 else
1449 msleep(500);
1450
1451 return 0;
1452 }
1453
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1454 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1455 {
1456 u32 reg_val;
1457
1458 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1459 if (enable)
1460 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1461 else
1462 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1463
1464 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1465 reg_val);
1466 }
1467
hclgevf_reset_stack(struct hclgevf_dev * hdev)1468 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1469 {
1470 int ret;
1471
1472 /* uninitialize the nic client */
1473 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1474 if (ret)
1475 return ret;
1476
1477 /* re-initialize the hclge device */
1478 ret = hclgevf_reset_hdev(hdev);
1479 if (ret) {
1480 dev_err(&hdev->pdev->dev,
1481 "hclge device re-init failed, VF is disabled!\n");
1482 return ret;
1483 }
1484
1485 /* bring up the nic client again */
1486 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1487 if (ret)
1488 return ret;
1489
1490 /* clear handshake status with IMP */
1491 hclgevf_reset_handshake(hdev, false);
1492
1493 /* bring up the nic to enable TX/RX again */
1494 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1495 }
1496
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1497 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1498 {
1499 #define HCLGEVF_RESET_SYNC_TIME 100
1500
1501 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1502 struct hclge_vf_to_pf_msg send_msg;
1503 int ret;
1504
1505 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1506 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1507 if (ret) {
1508 dev_err(&hdev->pdev->dev,
1509 "failed to assert VF reset, ret = %d\n", ret);
1510 return ret;
1511 }
1512 hdev->rst_stats.vf_func_rst_cnt++;
1513 }
1514
1515 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1516 /* inform hardware that preparatory work is done */
1517 msleep(HCLGEVF_RESET_SYNC_TIME);
1518 hclgevf_reset_handshake(hdev, true);
1519 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1520 hdev->reset_type);
1521
1522 return 0;
1523 }
1524
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1525 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1526 {
1527 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1528 hdev->rst_stats.vf_func_rst_cnt);
1529 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1530 hdev->rst_stats.flr_rst_cnt);
1531 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1532 hdev->rst_stats.vf_rst_cnt);
1533 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1534 hdev->rst_stats.rst_done_cnt);
1535 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1536 hdev->rst_stats.hw_rst_done_cnt);
1537 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1538 hdev->rst_stats.rst_cnt);
1539 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1540 hdev->rst_stats.rst_fail_cnt);
1541 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1542 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1543 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1544 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1545 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1546 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1547 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1548 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1549 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1550 }
1551
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1552 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1553 {
1554 /* recover handshake status with IMP when reset fail */
1555 hclgevf_reset_handshake(hdev, true);
1556 hdev->rst_stats.rst_fail_cnt++;
1557 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1558 hdev->rst_stats.rst_fail_cnt);
1559
1560 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1561 set_bit(hdev->reset_type, &hdev->reset_pending);
1562
1563 if (hclgevf_is_reset_pending(hdev)) {
1564 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1565 hclgevf_reset_task_schedule(hdev);
1566 } else {
1567 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1568 hclgevf_dump_rst_info(hdev);
1569 }
1570 }
1571
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1572 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1573 {
1574 int ret;
1575
1576 hdev->rst_stats.rst_cnt++;
1577
1578 /* perform reset of the stack & ae device for a client */
1579 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1580 if (ret)
1581 return ret;
1582
1583 rtnl_lock();
1584 /* bring down the nic to stop any ongoing TX/RX */
1585 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1586 rtnl_unlock();
1587 if (ret)
1588 return ret;
1589
1590 return hclgevf_reset_prepare_wait(hdev);
1591 }
1592
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1593 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1594 {
1595 int ret;
1596
1597 hdev->rst_stats.hw_rst_done_cnt++;
1598 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1599 if (ret)
1600 return ret;
1601
1602 rtnl_lock();
1603 /* now, re-initialize the nic client and ae device */
1604 ret = hclgevf_reset_stack(hdev);
1605 rtnl_unlock();
1606 if (ret) {
1607 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1608 return ret;
1609 }
1610
1611 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1612 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1613 * times
1614 */
1615 if (ret &&
1616 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1617 return ret;
1618
1619 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1620 if (ret)
1621 return ret;
1622
1623 hdev->last_reset_time = jiffies;
1624 hdev->rst_stats.rst_done_cnt++;
1625 hdev->rst_stats.rst_fail_cnt = 0;
1626 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1627
1628 return 0;
1629 }
1630
hclgevf_reset(struct hclgevf_dev * hdev)1631 static void hclgevf_reset(struct hclgevf_dev *hdev)
1632 {
1633 if (hclgevf_reset_prepare(hdev))
1634 goto err_reset;
1635
1636 /* check if VF could successfully fetch the hardware reset completion
1637 * status from the hardware
1638 */
1639 if (hclgevf_reset_wait(hdev)) {
1640 /* can't do much in this situation, will disable VF */
1641 dev_err(&hdev->pdev->dev,
1642 "failed to fetch H/W reset completion status\n");
1643 goto err_reset;
1644 }
1645
1646 if (hclgevf_reset_rebuild(hdev))
1647 goto err_reset;
1648
1649 return;
1650
1651 err_reset:
1652 hclgevf_reset_err_handle(hdev);
1653 }
1654
hclgevf_get_reset_level(struct hclgevf_dev * hdev,unsigned long * addr)1655 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1656 unsigned long *addr)
1657 {
1658 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1659
1660 /* return the highest priority reset level amongst all */
1661 if (test_bit(HNAE3_VF_RESET, addr)) {
1662 rst_level = HNAE3_VF_RESET;
1663 clear_bit(HNAE3_VF_RESET, addr);
1664 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1665 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1666 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1667 rst_level = HNAE3_VF_FULL_RESET;
1668 clear_bit(HNAE3_VF_FULL_RESET, addr);
1669 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1670 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1671 rst_level = HNAE3_VF_PF_FUNC_RESET;
1672 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1673 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1674 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1675 rst_level = HNAE3_VF_FUNC_RESET;
1676 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1677 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1678 rst_level = HNAE3_FLR_RESET;
1679 clear_bit(HNAE3_FLR_RESET, addr);
1680 }
1681
1682 return rst_level;
1683 }
1684
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1685 static void hclgevf_reset_event(struct pci_dev *pdev,
1686 struct hnae3_handle *handle)
1687 {
1688 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1689 struct hclgevf_dev *hdev = ae_dev->priv;
1690
1691 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1692
1693 if (hdev->default_reset_request)
1694 hdev->reset_level =
1695 hclgevf_get_reset_level(hdev,
1696 &hdev->default_reset_request);
1697 else
1698 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1699
1700 /* reset of this VF requested */
1701 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1702 hclgevf_reset_task_schedule(hdev);
1703
1704 hdev->last_reset_time = jiffies;
1705 }
1706
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1707 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1708 enum hnae3_reset_type rst_type)
1709 {
1710 struct hclgevf_dev *hdev = ae_dev->priv;
1711
1712 set_bit(rst_type, &hdev->default_reset_request);
1713 }
1714
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1715 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1716 {
1717 writel(en ? 1 : 0, vector->addr);
1718 }
1719
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1720 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1721 enum hnae3_reset_type rst_type)
1722 {
1723 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1724 #define HCLGEVF_RESET_RETRY_CNT 5
1725
1726 struct hclgevf_dev *hdev = ae_dev->priv;
1727 int retry_cnt = 0;
1728 int ret;
1729
1730 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1731 down(&hdev->reset_sem);
1732 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1733 hdev->reset_type = rst_type;
1734 ret = hclgevf_reset_prepare(hdev);
1735 if (!ret && !hdev->reset_pending)
1736 break;
1737
1738 dev_err(&hdev->pdev->dev,
1739 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1740 ret, hdev->reset_pending, retry_cnt);
1741 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1742 up(&hdev->reset_sem);
1743 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1744 }
1745
1746 /* disable misc vector before reset done */
1747 hclgevf_enable_vector(&hdev->misc_vector, false);
1748
1749 if (hdev->reset_type == HNAE3_FLR_RESET)
1750 hdev->rst_stats.flr_rst_cnt++;
1751 }
1752
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1753 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1754 {
1755 struct hclgevf_dev *hdev = ae_dev->priv;
1756 int ret;
1757
1758 hclgevf_enable_vector(&hdev->misc_vector, true);
1759
1760 ret = hclgevf_reset_rebuild(hdev);
1761 if (ret)
1762 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1763 ret);
1764
1765 hdev->reset_type = HNAE3_NONE_RESET;
1766 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1767 up(&hdev->reset_sem);
1768 }
1769
hclgevf_get_fw_version(struct hnae3_handle * handle)1770 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1771 {
1772 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1773
1774 return hdev->fw_version;
1775 }
1776
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1777 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1778 {
1779 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1780
1781 vector->vector_irq = pci_irq_vector(hdev->pdev,
1782 HCLGEVF_MISC_VECTOR_NUM);
1783 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1784 /* vector status always valid for Vector 0 */
1785 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1786 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1787
1788 hdev->num_msi_left -= 1;
1789 hdev->num_msi_used += 1;
1790 }
1791
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1792 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1793 {
1794 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1795 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1796 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1797 &hdev->state))
1798 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1799 }
1800
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1801 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1802 {
1803 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1804 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1805 &hdev->state))
1806 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1807 }
1808
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1809 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1810 unsigned long delay)
1811 {
1812 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1813 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1814 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1815 }
1816
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1817 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1818 {
1819 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1820
1821 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1822 return;
1823
1824 down(&hdev->reset_sem);
1825 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1826
1827 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1828 &hdev->reset_state)) {
1829 /* PF has intimated that it is about to reset the hardware.
1830 * We now have to poll & check if hardware has actually
1831 * completed the reset sequence. On hardware reset completion,
1832 * VF needs to reset the client and ae device.
1833 */
1834 hdev->reset_attempts = 0;
1835
1836 hdev->last_reset_time = jiffies;
1837 hdev->reset_type =
1838 hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1839 if (hdev->reset_type != HNAE3_NONE_RESET)
1840 hclgevf_reset(hdev);
1841 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1842 &hdev->reset_state)) {
1843 /* we could be here when either of below happens:
1844 * 1. reset was initiated due to watchdog timeout caused by
1845 * a. IMP was earlier reset and our TX got choked down and
1846 * which resulted in watchdog reacting and inducing VF
1847 * reset. This also means our cmdq would be unreliable.
1848 * b. problem in TX due to other lower layer(example link
1849 * layer not functioning properly etc.)
1850 * 2. VF reset might have been initiated due to some config
1851 * change.
1852 *
1853 * NOTE: Theres no clear way to detect above cases than to react
1854 * to the response of PF for this reset request. PF will ack the
1855 * 1b and 2. cases but we will not get any intimation about 1a
1856 * from PF as cmdq would be in unreliable state i.e. mailbox
1857 * communication between PF and VF would be broken.
1858 *
1859 * if we are never geting into pending state it means either:
1860 * 1. PF is not receiving our request which could be due to IMP
1861 * reset
1862 * 2. PF is screwed
1863 * We cannot do much for 2. but to check first we can try reset
1864 * our PCIe + stack and see if it alleviates the problem.
1865 */
1866 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1867 /* prepare for full reset of stack + pcie interface */
1868 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1869
1870 /* "defer" schedule the reset task again */
1871 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1872 } else {
1873 hdev->reset_attempts++;
1874
1875 set_bit(hdev->reset_level, &hdev->reset_pending);
1876 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1877 }
1878 hclgevf_reset_task_schedule(hdev);
1879 }
1880
1881 hdev->reset_type = HNAE3_NONE_RESET;
1882 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1883 up(&hdev->reset_sem);
1884 }
1885
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1886 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1887 {
1888 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1889 return;
1890
1891 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1892 return;
1893
1894 hclgevf_mbx_async_handler(hdev);
1895
1896 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1897 }
1898
hclgevf_keep_alive(struct hclgevf_dev * hdev)1899 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1900 {
1901 struct hclge_vf_to_pf_msg send_msg;
1902 int ret;
1903
1904 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1905 return;
1906
1907 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1908 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1909 if (ret)
1910 dev_err(&hdev->pdev->dev,
1911 "VF sends keep alive cmd failed(=%d)\n", ret);
1912 }
1913
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1914 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1915 {
1916 unsigned long delta = round_jiffies_relative(HZ);
1917 struct hnae3_handle *handle = &hdev->nic;
1918
1919 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1920 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1921 return;
1922
1923 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1924 delta = jiffies - hdev->last_serv_processed;
1925
1926 if (delta < round_jiffies_relative(HZ)) {
1927 delta = round_jiffies_relative(HZ) - delta;
1928 goto out;
1929 }
1930 }
1931
1932 hdev->serv_processed_cnt++;
1933 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1934 hclgevf_keep_alive(hdev);
1935
1936 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1937 hdev->last_serv_processed = jiffies;
1938 goto out;
1939 }
1940
1941 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1942 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1943
1944 /* VF does not need to request link status when this bit is set, because
1945 * PF will push its link status to VFs when link status changed.
1946 */
1947 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1948 hclgevf_request_link_info(hdev);
1949
1950 hclgevf_update_link_mode(hdev);
1951
1952 hclgevf_sync_vlan_filter(hdev);
1953
1954 hclgevf_sync_mac_table(hdev);
1955
1956 hclgevf_sync_promisc_mode(hdev);
1957
1958 hdev->last_serv_processed = jiffies;
1959
1960 out:
1961 hclgevf_task_schedule(hdev, delta);
1962 }
1963
hclgevf_service_task(struct work_struct * work)1964 static void hclgevf_service_task(struct work_struct *work)
1965 {
1966 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1967 service_task.work);
1968
1969 hclgevf_reset_service_task(hdev);
1970 hclgevf_mailbox_service_task(hdev);
1971 hclgevf_periodic_service_task(hdev);
1972
1973 /* Handle reset and mbx again in case periodical task delays the
1974 * handling by calling hclgevf_task_schedule() in
1975 * hclgevf_periodic_service_task()
1976 */
1977 hclgevf_reset_service_task(hdev);
1978 hclgevf_mailbox_service_task(hdev);
1979 }
1980
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)1981 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1982 {
1983 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1984 }
1985
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)1986 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1987 u32 *clearval)
1988 {
1989 u32 val, cmdq_stat_reg, rst_ing_reg;
1990
1991 /* fetch the events from their corresponding regs */
1992 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1993 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1994 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1995 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1996 dev_info(&hdev->pdev->dev,
1997 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1998 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1999 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2000 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2001 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2002 hdev->rst_stats.vf_rst_cnt++;
2003 /* set up VF hardware reset status, its PF will clear
2004 * this status when PF has initialized done.
2005 */
2006 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2007 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2008 val | HCLGEVF_VF_RST_ING_BIT);
2009 return HCLGEVF_VECTOR0_EVENT_RST;
2010 }
2011
2012 /* check for vector0 mailbox(=CMDQ RX) event source */
2013 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2014 /* for revision 0x21, clearing interrupt is writing bit 0
2015 * to the clear register, writing bit 1 means to keep the
2016 * old value.
2017 * for revision 0x20, the clear register is a read & write
2018 * register, so we should just write 0 to the bit we are
2019 * handling, and keep other bits as cmdq_stat_reg.
2020 */
2021 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2022 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2023 else
2024 *clearval = cmdq_stat_reg &
2025 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2026
2027 return HCLGEVF_VECTOR0_EVENT_MBX;
2028 }
2029
2030 /* print other vector0 event source */
2031 dev_info(&hdev->pdev->dev,
2032 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2033 cmdq_stat_reg);
2034
2035 return HCLGEVF_VECTOR0_EVENT_OTHER;
2036 }
2037
hclgevf_reset_timer(struct timer_list * t)2038 static void hclgevf_reset_timer(struct timer_list *t)
2039 {
2040 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2041
2042 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2043 hclgevf_reset_task_schedule(hdev);
2044 }
2045
hclgevf_misc_irq_handle(int irq,void * data)2046 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2047 {
2048 #define HCLGEVF_RESET_DELAY 5
2049
2050 enum hclgevf_evt_cause event_cause;
2051 struct hclgevf_dev *hdev = data;
2052 u32 clearval;
2053
2054 hclgevf_enable_vector(&hdev->misc_vector, false);
2055 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2056 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2057 hclgevf_clear_event_cause(hdev, clearval);
2058
2059 switch (event_cause) {
2060 case HCLGEVF_VECTOR0_EVENT_RST:
2061 mod_timer(&hdev->reset_timer,
2062 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2063 break;
2064 case HCLGEVF_VECTOR0_EVENT_MBX:
2065 hclgevf_mbx_handler(hdev);
2066 break;
2067 default:
2068 break;
2069 }
2070
2071 hclgevf_enable_vector(&hdev->misc_vector, true);
2072
2073 return IRQ_HANDLED;
2074 }
2075
hclgevf_configure(struct hclgevf_dev * hdev)2076 static int hclgevf_configure(struct hclgevf_dev *hdev)
2077 {
2078 int ret;
2079
2080 hdev->gro_en = true;
2081
2082 ret = hclgevf_get_basic_info(hdev);
2083 if (ret)
2084 return ret;
2085
2086 /* get current port based vlan state from PF */
2087 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2088 if (ret)
2089 return ret;
2090
2091 /* get queue configuration from PF */
2092 ret = hclgevf_get_queue_info(hdev);
2093 if (ret)
2094 return ret;
2095
2096 /* get queue depth info from PF */
2097 ret = hclgevf_get_queue_depth(hdev);
2098 if (ret)
2099 return ret;
2100
2101 return hclgevf_get_pf_media_type(hdev);
2102 }
2103
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2104 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2105 {
2106 struct pci_dev *pdev = ae_dev->pdev;
2107 struct hclgevf_dev *hdev;
2108
2109 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2110 if (!hdev)
2111 return -ENOMEM;
2112
2113 hdev->pdev = pdev;
2114 hdev->ae_dev = ae_dev;
2115 ae_dev->priv = hdev;
2116
2117 return 0;
2118 }
2119
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2120 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2121 {
2122 struct hnae3_handle *roce = &hdev->roce;
2123 struct hnae3_handle *nic = &hdev->nic;
2124
2125 roce->rinfo.num_vectors = hdev->num_roce_msix;
2126
2127 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2128 hdev->num_msi_left == 0)
2129 return -EINVAL;
2130
2131 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2132
2133 roce->rinfo.netdev = nic->kinfo.netdev;
2134 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2135 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2136
2137 roce->pdev = nic->pdev;
2138 roce->ae_algo = nic->ae_algo;
2139 roce->numa_node_mask = nic->numa_node_mask;
2140
2141 return 0;
2142 }
2143
hclgevf_config_gro(struct hclgevf_dev * hdev)2144 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2145 {
2146 struct hclgevf_cfg_gro_status_cmd *req;
2147 struct hclge_desc desc;
2148 int ret;
2149
2150 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2151 return 0;
2152
2153 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2154 false);
2155 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2156
2157 req->gro_en = hdev->gro_en ? 1 : 0;
2158
2159 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2160 if (ret)
2161 dev_err(&hdev->pdev->dev,
2162 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2163
2164 return ret;
2165 }
2166
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2167 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2168 {
2169 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2170 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2171 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2172 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2173 int ret;
2174
2175 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2176 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2177 rss_cfg->rss_algo,
2178 rss_cfg->rss_hash_key);
2179 if (ret)
2180 return ret;
2181
2182 ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2183 false, rss_cfg);
2184 if (ret)
2185 return ret;
2186 }
2187
2188 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2189 rss_cfg->rss_indirection_tbl);
2190 if (ret)
2191 return ret;
2192
2193 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2194 tc_offset, tc_valid, tc_size);
2195
2196 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2197 tc_valid, tc_size);
2198 }
2199
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2200 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2201 {
2202 struct hnae3_handle *nic = &hdev->nic;
2203 int ret;
2204
2205 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2206 if (ret) {
2207 dev_err(&hdev->pdev->dev,
2208 "failed to enable rx vlan offload, ret = %d\n", ret);
2209 return ret;
2210 }
2211
2212 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2213 false);
2214 }
2215
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2216 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2217 {
2218 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2219
2220 unsigned long last = hdev->serv_processed_cnt;
2221 int i = 0;
2222
2223 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2224 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2225 last == hdev->serv_processed_cnt)
2226 usleep_range(1, 1);
2227 }
2228
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2229 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2230 {
2231 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2232
2233 if (enable) {
2234 hclgevf_task_schedule(hdev, 0);
2235 } else {
2236 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2237
2238 /* flush memory to make sure DOWN is seen by service task */
2239 smp_mb__before_atomic();
2240 hclgevf_flush_link_update(hdev);
2241 }
2242 }
2243
hclgevf_ae_start(struct hnae3_handle * handle)2244 static int hclgevf_ae_start(struct hnae3_handle *handle)
2245 {
2246 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2247
2248 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2249 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2250
2251 hclge_comm_reset_tqp_stats(handle);
2252
2253 hclgevf_request_link_info(hdev);
2254
2255 hclgevf_update_link_mode(hdev);
2256
2257 return 0;
2258 }
2259
hclgevf_ae_stop(struct hnae3_handle * handle)2260 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2261 {
2262 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2263
2264 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2265
2266 if (hdev->reset_type != HNAE3_VF_RESET)
2267 hclgevf_reset_tqp(handle);
2268
2269 hclge_comm_reset_tqp_stats(handle);
2270 hclgevf_update_link_status(hdev, 0);
2271 }
2272
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2273 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2274 {
2275 #define HCLGEVF_STATE_ALIVE 1
2276 #define HCLGEVF_STATE_NOT_ALIVE 0
2277
2278 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2279 struct hclge_vf_to_pf_msg send_msg;
2280
2281 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2282 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2283 HCLGEVF_STATE_NOT_ALIVE;
2284 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2285 }
2286
hclgevf_client_start(struct hnae3_handle * handle)2287 static int hclgevf_client_start(struct hnae3_handle *handle)
2288 {
2289 return hclgevf_set_alive(handle, true);
2290 }
2291
hclgevf_client_stop(struct hnae3_handle * handle)2292 static void hclgevf_client_stop(struct hnae3_handle *handle)
2293 {
2294 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2295 int ret;
2296
2297 ret = hclgevf_set_alive(handle, false);
2298 if (ret)
2299 dev_warn(&hdev->pdev->dev,
2300 "%s failed %d\n", __func__, ret);
2301 }
2302
hclgevf_state_init(struct hclgevf_dev * hdev)2303 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2304 {
2305 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2306 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2307 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2308
2309 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2310
2311 mutex_init(&hdev->mbx_resp.mbx_mutex);
2312 sema_init(&hdev->reset_sem, 1);
2313
2314 spin_lock_init(&hdev->mac_table.mac_list_lock);
2315 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2316 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2317
2318 /* bring the device down */
2319 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2320 }
2321
hclgevf_state_uninit(struct hclgevf_dev * hdev)2322 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2323 {
2324 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2325 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2326
2327 if (hdev->service_task.work.func)
2328 cancel_delayed_work_sync(&hdev->service_task);
2329
2330 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2331 }
2332
hclgevf_init_msi(struct hclgevf_dev * hdev)2333 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2334 {
2335 struct pci_dev *pdev = hdev->pdev;
2336 int vectors;
2337 int i;
2338
2339 if (hnae3_dev_roce_supported(hdev))
2340 vectors = pci_alloc_irq_vectors(pdev,
2341 hdev->roce_base_msix_offset + 1,
2342 hdev->num_msi,
2343 PCI_IRQ_MSIX);
2344 else
2345 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2346 hdev->num_msi,
2347 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2348
2349 if (vectors < 0) {
2350 dev_err(&pdev->dev,
2351 "failed(%d) to allocate MSI/MSI-X vectors\n",
2352 vectors);
2353 return vectors;
2354 }
2355 if (vectors < hdev->num_msi)
2356 dev_warn(&hdev->pdev->dev,
2357 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2358 hdev->num_msi, vectors);
2359
2360 hdev->num_msi = vectors;
2361 hdev->num_msi_left = vectors;
2362
2363 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2364 sizeof(u16), GFP_KERNEL);
2365 if (!hdev->vector_status) {
2366 pci_free_irq_vectors(pdev);
2367 return -ENOMEM;
2368 }
2369
2370 for (i = 0; i < hdev->num_msi; i++)
2371 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2372
2373 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2374 sizeof(int), GFP_KERNEL);
2375 if (!hdev->vector_irq) {
2376 devm_kfree(&pdev->dev, hdev->vector_status);
2377 pci_free_irq_vectors(pdev);
2378 return -ENOMEM;
2379 }
2380
2381 return 0;
2382 }
2383
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2384 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2385 {
2386 struct pci_dev *pdev = hdev->pdev;
2387
2388 devm_kfree(&pdev->dev, hdev->vector_status);
2389 devm_kfree(&pdev->dev, hdev->vector_irq);
2390 pci_free_irq_vectors(pdev);
2391 }
2392
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2393 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2394 {
2395 int ret;
2396
2397 hclgevf_get_misc_vector(hdev);
2398
2399 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2400 HCLGEVF_NAME, pci_name(hdev->pdev));
2401 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2402 0, hdev->misc_vector.name, hdev);
2403 if (ret) {
2404 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2405 hdev->misc_vector.vector_irq);
2406 return ret;
2407 }
2408
2409 hclgevf_clear_event_cause(hdev, 0);
2410
2411 /* enable misc. vector(vector 0) */
2412 hclgevf_enable_vector(&hdev->misc_vector, true);
2413
2414 return ret;
2415 }
2416
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2417 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2418 {
2419 /* disable misc vector(vector 0) */
2420 hclgevf_enable_vector(&hdev->misc_vector, false);
2421 synchronize_irq(hdev->misc_vector.vector_irq);
2422 free_irq(hdev->misc_vector.vector_irq, hdev);
2423 hclgevf_free_vector(hdev, 0);
2424 }
2425
hclgevf_info_show(struct hclgevf_dev * hdev)2426 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2427 {
2428 struct device *dev = &hdev->pdev->dev;
2429
2430 dev_info(dev, "VF info begin:\n");
2431
2432 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2433 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2434 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2435 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2436 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2437 dev_info(dev, "PF media type of this VF: %u\n",
2438 hdev->hw.mac.media_type);
2439
2440 dev_info(dev, "VF info end.\n");
2441 }
2442
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2443 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2444 struct hnae3_client *client)
2445 {
2446 struct hclgevf_dev *hdev = ae_dev->priv;
2447 int rst_cnt = hdev->rst_stats.rst_cnt;
2448 int ret;
2449
2450 ret = client->ops->init_instance(&hdev->nic);
2451 if (ret)
2452 return ret;
2453
2454 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2455 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2456 rst_cnt != hdev->rst_stats.rst_cnt) {
2457 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2458
2459 client->ops->uninit_instance(&hdev->nic, 0);
2460 return -EBUSY;
2461 }
2462
2463 hnae3_set_client_init_flag(client, ae_dev, 1);
2464
2465 if (netif_msg_drv(&hdev->nic))
2466 hclgevf_info_show(hdev);
2467
2468 return 0;
2469 }
2470
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2471 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2472 struct hnae3_client *client)
2473 {
2474 struct hclgevf_dev *hdev = ae_dev->priv;
2475 int ret;
2476
2477 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2478 !hdev->nic_client)
2479 return 0;
2480
2481 ret = hclgevf_init_roce_base_info(hdev);
2482 if (ret)
2483 return ret;
2484
2485 ret = client->ops->init_instance(&hdev->roce);
2486 if (ret)
2487 return ret;
2488
2489 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2490 hnae3_set_client_init_flag(client, ae_dev, 1);
2491
2492 return 0;
2493 }
2494
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2495 static int hclgevf_init_client_instance(struct hnae3_client *client,
2496 struct hnae3_ae_dev *ae_dev)
2497 {
2498 struct hclgevf_dev *hdev = ae_dev->priv;
2499 int ret;
2500
2501 switch (client->type) {
2502 case HNAE3_CLIENT_KNIC:
2503 hdev->nic_client = client;
2504 hdev->nic.client = client;
2505
2506 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2507 if (ret)
2508 goto clear_nic;
2509
2510 ret = hclgevf_init_roce_client_instance(ae_dev,
2511 hdev->roce_client);
2512 if (ret)
2513 goto clear_roce;
2514
2515 break;
2516 case HNAE3_CLIENT_ROCE:
2517 if (hnae3_dev_roce_supported(hdev)) {
2518 hdev->roce_client = client;
2519 hdev->roce.client = client;
2520 }
2521
2522 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2523 if (ret)
2524 goto clear_roce;
2525
2526 break;
2527 default:
2528 return -EINVAL;
2529 }
2530
2531 return 0;
2532
2533 clear_nic:
2534 hdev->nic_client = NULL;
2535 hdev->nic.client = NULL;
2536 return ret;
2537 clear_roce:
2538 hdev->roce_client = NULL;
2539 hdev->roce.client = NULL;
2540 return ret;
2541 }
2542
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2543 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2544 struct hnae3_ae_dev *ae_dev)
2545 {
2546 struct hclgevf_dev *hdev = ae_dev->priv;
2547
2548 /* un-init roce, if it exists */
2549 if (hdev->roce_client) {
2550 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2551 msleep(HCLGEVF_WAIT_RESET_DONE);
2552 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2553
2554 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2555 hdev->roce_client = NULL;
2556 hdev->roce.client = NULL;
2557 }
2558
2559 /* un-init nic/unic, if this was not called by roce client */
2560 if (client->ops->uninit_instance && hdev->nic_client &&
2561 client->type != HNAE3_CLIENT_ROCE) {
2562 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2563 msleep(HCLGEVF_WAIT_RESET_DONE);
2564 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2565
2566 client->ops->uninit_instance(&hdev->nic, 0);
2567 hdev->nic_client = NULL;
2568 hdev->nic.client = NULL;
2569 }
2570 }
2571
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2572 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2573 {
2574 struct pci_dev *pdev = hdev->pdev;
2575 struct hclgevf_hw *hw = &hdev->hw;
2576
2577 /* for device does not have device memory, return directly */
2578 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2579 return 0;
2580
2581 hw->hw.mem_base =
2582 devm_ioremap_wc(&pdev->dev,
2583 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2584 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2585 if (!hw->hw.mem_base) {
2586 dev_err(&pdev->dev, "failed to map device memory\n");
2587 return -EFAULT;
2588 }
2589
2590 return 0;
2591 }
2592
hclgevf_pci_init(struct hclgevf_dev * hdev)2593 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2594 {
2595 struct pci_dev *pdev = hdev->pdev;
2596 struct hclgevf_hw *hw;
2597 int ret;
2598
2599 ret = pci_enable_device(pdev);
2600 if (ret) {
2601 dev_err(&pdev->dev, "failed to enable PCI device\n");
2602 return ret;
2603 }
2604
2605 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2606 if (ret) {
2607 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2608 goto err_disable_device;
2609 }
2610
2611 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2612 if (ret) {
2613 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2614 goto err_disable_device;
2615 }
2616
2617 pci_set_master(pdev);
2618 hw = &hdev->hw;
2619 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2620 if (!hw->hw.io_base) {
2621 dev_err(&pdev->dev, "can't map configuration register space\n");
2622 ret = -ENOMEM;
2623 goto err_clr_master;
2624 }
2625
2626 ret = hclgevf_dev_mem_map(hdev);
2627 if (ret)
2628 goto err_unmap_io_base;
2629
2630 return 0;
2631
2632 err_unmap_io_base:
2633 pci_iounmap(pdev, hdev->hw.hw.io_base);
2634 err_clr_master:
2635 pci_clear_master(pdev);
2636 pci_release_regions(pdev);
2637 err_disable_device:
2638 pci_disable_device(pdev);
2639
2640 return ret;
2641 }
2642
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2643 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2644 {
2645 struct pci_dev *pdev = hdev->pdev;
2646
2647 if (hdev->hw.hw.mem_base)
2648 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2649
2650 pci_iounmap(pdev, hdev->hw.hw.io_base);
2651 pci_clear_master(pdev);
2652 pci_release_regions(pdev);
2653 pci_disable_device(pdev);
2654 }
2655
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2656 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2657 {
2658 struct hclgevf_query_res_cmd *req;
2659 struct hclge_desc desc;
2660 int ret;
2661
2662 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2663 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2664 if (ret) {
2665 dev_err(&hdev->pdev->dev,
2666 "query vf resource failed, ret = %d.\n", ret);
2667 return ret;
2668 }
2669
2670 req = (struct hclgevf_query_res_cmd *)desc.data;
2671
2672 if (hnae3_dev_roce_supported(hdev)) {
2673 hdev->roce_base_msix_offset =
2674 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2675 HCLGEVF_MSIX_OFT_ROCEE_M,
2676 HCLGEVF_MSIX_OFT_ROCEE_S);
2677 hdev->num_roce_msix =
2678 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2679 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2680
2681 /* nic's msix numbers is always equals to the roce's. */
2682 hdev->num_nic_msix = hdev->num_roce_msix;
2683
2684 /* VF should have NIC vectors and Roce vectors, NIC vectors
2685 * are queued before Roce vectors. The offset is fixed to 64.
2686 */
2687 hdev->num_msi = hdev->num_roce_msix +
2688 hdev->roce_base_msix_offset;
2689 } else {
2690 hdev->num_msi =
2691 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2692 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2693
2694 hdev->num_nic_msix = hdev->num_msi;
2695 }
2696
2697 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2698 dev_err(&hdev->pdev->dev,
2699 "Just %u msi resources, not enough for vf(min:2).\n",
2700 hdev->num_nic_msix);
2701 return -EINVAL;
2702 }
2703
2704 return 0;
2705 }
2706
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2707 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2708 {
2709 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2710
2711 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2712
2713 ae_dev->dev_specs.max_non_tso_bd_num =
2714 HCLGEVF_MAX_NON_TSO_BD_NUM;
2715 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2716 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2717 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2718 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2719 }
2720
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2721 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2722 struct hclge_desc *desc)
2723 {
2724 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2725 struct hclgevf_dev_specs_0_cmd *req0;
2726 struct hclgevf_dev_specs_1_cmd *req1;
2727
2728 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2729 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2730
2731 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2732 ae_dev->dev_specs.rss_ind_tbl_size =
2733 le16_to_cpu(req0->rss_ind_tbl_size);
2734 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2735 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2736 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2737 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2738 }
2739
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2740 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2741 {
2742 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2743
2744 if (!dev_specs->max_non_tso_bd_num)
2745 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2746 if (!dev_specs->rss_ind_tbl_size)
2747 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2748 if (!dev_specs->rss_key_size)
2749 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2750 if (!dev_specs->max_int_gl)
2751 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2752 if (!dev_specs->max_frm_size)
2753 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2754 }
2755
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2756 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2757 {
2758 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2759 int ret;
2760 int i;
2761
2762 /* set default specifications as devices lower than version V3 do not
2763 * support querying specifications from firmware.
2764 */
2765 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2766 hclgevf_set_default_dev_specs(hdev);
2767 return 0;
2768 }
2769
2770 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2771 hclgevf_cmd_setup_basic_desc(&desc[i],
2772 HCLGE_OPC_QUERY_DEV_SPECS, true);
2773 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2774 }
2775 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2776
2777 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2778 if (ret)
2779 return ret;
2780
2781 hclgevf_parse_dev_specs(hdev, desc);
2782 hclgevf_check_dev_specs(hdev);
2783
2784 return 0;
2785 }
2786
hclgevf_pci_reset(struct hclgevf_dev * hdev)2787 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2788 {
2789 struct pci_dev *pdev = hdev->pdev;
2790 int ret = 0;
2791
2792 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2793 hdev->reset_type == HNAE3_FLR_RESET) &&
2794 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2795 hclgevf_misc_irq_uninit(hdev);
2796 hclgevf_uninit_msi(hdev);
2797 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2798 }
2799
2800 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2801 pci_set_master(pdev);
2802 ret = hclgevf_init_msi(hdev);
2803 if (ret) {
2804 dev_err(&pdev->dev,
2805 "failed(%d) to init MSI/MSI-X\n", ret);
2806 return ret;
2807 }
2808
2809 ret = hclgevf_misc_irq_init(hdev);
2810 if (ret) {
2811 hclgevf_uninit_msi(hdev);
2812 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2813 ret);
2814 return ret;
2815 }
2816
2817 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2818 }
2819
2820 return ret;
2821 }
2822
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2823 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2824 {
2825 struct hclge_vf_to_pf_msg send_msg;
2826
2827 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2828 HCLGE_MBX_VPORT_LIST_CLEAR);
2829 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2830 }
2831
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2832 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2833 {
2834 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2835 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2836 }
2837
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2838 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2839 {
2840 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2841 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2842 }
2843
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2844 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2845 {
2846 struct pci_dev *pdev = hdev->pdev;
2847 int ret;
2848
2849 ret = hclgevf_pci_reset(hdev);
2850 if (ret) {
2851 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2852 return ret;
2853 }
2854
2855 hclgevf_arq_init(hdev);
2856 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2857 &hdev->fw_version, false,
2858 hdev->reset_pending);
2859 if (ret) {
2860 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2861 return ret;
2862 }
2863
2864 ret = hclgevf_rss_init_hw(hdev);
2865 if (ret) {
2866 dev_err(&hdev->pdev->dev,
2867 "failed(%d) to initialize RSS\n", ret);
2868 return ret;
2869 }
2870
2871 ret = hclgevf_config_gro(hdev);
2872 if (ret)
2873 return ret;
2874
2875 ret = hclgevf_init_vlan_config(hdev);
2876 if (ret) {
2877 dev_err(&hdev->pdev->dev,
2878 "failed(%d) to initialize VLAN config\n", ret);
2879 return ret;
2880 }
2881
2882 /* get current port based vlan state from PF */
2883 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2884 if (ret)
2885 return ret;
2886
2887 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2888
2889 hclgevf_init_rxd_adv_layout(hdev);
2890
2891 dev_info(&hdev->pdev->dev, "Reset done\n");
2892
2893 return 0;
2894 }
2895
hclgevf_init_hdev(struct hclgevf_dev * hdev)2896 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2897 {
2898 struct pci_dev *pdev = hdev->pdev;
2899 int ret;
2900
2901 ret = hclgevf_pci_init(hdev);
2902 if (ret)
2903 return ret;
2904
2905 ret = hclgevf_devlink_init(hdev);
2906 if (ret)
2907 goto err_devlink_init;
2908
2909 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2910 if (ret)
2911 goto err_cmd_queue_init;
2912
2913 hclgevf_arq_init(hdev);
2914 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2915 &hdev->fw_version, false,
2916 hdev->reset_pending);
2917 if (ret)
2918 goto err_cmd_init;
2919
2920 /* Get vf resource */
2921 ret = hclgevf_query_vf_resource(hdev);
2922 if (ret)
2923 goto err_cmd_init;
2924
2925 ret = hclgevf_query_dev_specs(hdev);
2926 if (ret) {
2927 dev_err(&pdev->dev,
2928 "failed to query dev specifications, ret = %d\n", ret);
2929 goto err_cmd_init;
2930 }
2931
2932 ret = hclgevf_init_msi(hdev);
2933 if (ret) {
2934 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2935 goto err_cmd_init;
2936 }
2937
2938 hclgevf_state_init(hdev);
2939 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2940 hdev->reset_type = HNAE3_NONE_RESET;
2941
2942 ret = hclgevf_misc_irq_init(hdev);
2943 if (ret)
2944 goto err_misc_irq_init;
2945
2946 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2947
2948 ret = hclgevf_configure(hdev);
2949 if (ret) {
2950 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2951 goto err_config;
2952 }
2953
2954 ret = hclgevf_alloc_tqps(hdev);
2955 if (ret) {
2956 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2957 goto err_config;
2958 }
2959
2960 ret = hclgevf_set_handle_info(hdev);
2961 if (ret)
2962 goto err_config;
2963
2964 ret = hclgevf_config_gro(hdev);
2965 if (ret)
2966 goto err_config;
2967
2968 /* Initialize RSS for this VF */
2969 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2970 &hdev->rss_cfg);
2971 if (ret) {
2972 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2973 goto err_config;
2974 }
2975
2976 ret = hclgevf_rss_init_hw(hdev);
2977 if (ret) {
2978 dev_err(&hdev->pdev->dev,
2979 "failed(%d) to initialize RSS\n", ret);
2980 goto err_config;
2981 }
2982
2983 /* ensure vf tbl list as empty before init */
2984 ret = hclgevf_clear_vport_list(hdev);
2985 if (ret) {
2986 dev_err(&pdev->dev,
2987 "failed to clear tbl list configuration, ret = %d.\n",
2988 ret);
2989 goto err_config;
2990 }
2991
2992 ret = hclgevf_init_vlan_config(hdev);
2993 if (ret) {
2994 dev_err(&hdev->pdev->dev,
2995 "failed(%d) to initialize VLAN config\n", ret);
2996 goto err_config;
2997 }
2998
2999 hclgevf_init_rxd_adv_layout(hdev);
3000
3001 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3002
3003 hdev->last_reset_time = jiffies;
3004 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3005 HCLGEVF_DRIVER_NAME);
3006
3007 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3008 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
3009
3010 return 0;
3011
3012 err_config:
3013 hclgevf_misc_irq_uninit(hdev);
3014 err_misc_irq_init:
3015 hclgevf_state_uninit(hdev);
3016 hclgevf_uninit_msi(hdev);
3017 err_cmd_init:
3018 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3019 err_cmd_queue_init:
3020 hclgevf_devlink_uninit(hdev);
3021 err_devlink_init:
3022 hclgevf_pci_uninit(hdev);
3023 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3024 return ret;
3025 }
3026
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3027 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3028 {
3029 struct hclge_vf_to_pf_msg send_msg;
3030
3031 hclgevf_state_uninit(hdev);
3032 hclgevf_uninit_rxd_adv_layout(hdev);
3033
3034 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3035 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3036
3037 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3038 hclgevf_misc_irq_uninit(hdev);
3039 hclgevf_uninit_msi(hdev);
3040 }
3041
3042 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3043 hclgevf_devlink_uninit(hdev);
3044 hclgevf_pci_uninit(hdev);
3045 hclgevf_uninit_mac_list(hdev);
3046 }
3047
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3048 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3049 {
3050 struct pci_dev *pdev = ae_dev->pdev;
3051 int ret;
3052
3053 ret = hclgevf_alloc_hdev(ae_dev);
3054 if (ret) {
3055 dev_err(&pdev->dev, "hclge device allocation failed\n");
3056 return ret;
3057 }
3058
3059 ret = hclgevf_init_hdev(ae_dev->priv);
3060 if (ret) {
3061 dev_err(&pdev->dev, "hclge device initialization failed\n");
3062 return ret;
3063 }
3064
3065 return 0;
3066 }
3067
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3068 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3069 {
3070 struct hclgevf_dev *hdev = ae_dev->priv;
3071
3072 hclgevf_uninit_hdev(hdev);
3073 ae_dev->priv = NULL;
3074 }
3075
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3076 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3077 {
3078 struct hnae3_handle *nic = &hdev->nic;
3079 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3080
3081 return min_t(u32, hdev->rss_size_max,
3082 hdev->num_tqps / kinfo->tc_info.num_tc);
3083 }
3084
3085 /**
3086 * hclgevf_get_channels - Get the current channels enabled and max supported.
3087 * @handle: hardware information for network interface
3088 * @ch: ethtool channels structure
3089 *
3090 * We don't support separate tx and rx queues as channels. The other count
3091 * represents how many queues are being used for control. max_combined counts
3092 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3093 * q_vectors since we support a lot more queue pairs than q_vectors.
3094 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3095 static void hclgevf_get_channels(struct hnae3_handle *handle,
3096 struct ethtool_channels *ch)
3097 {
3098 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3099
3100 ch->max_combined = hclgevf_get_max_channels(hdev);
3101 ch->other_count = 0;
3102 ch->max_other = 0;
3103 ch->combined_count = handle->kinfo.rss_size;
3104 }
3105
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3106 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3107 u16 *alloc_tqps, u16 *max_rss_size)
3108 {
3109 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3110
3111 *alloc_tqps = hdev->num_tqps;
3112 *max_rss_size = hdev->rss_size_max;
3113 }
3114
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3115 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3116 u32 new_tqps_num)
3117 {
3118 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3119 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3120 u16 max_rss_size;
3121
3122 kinfo->req_rss_size = new_tqps_num;
3123
3124 max_rss_size = min_t(u16, hdev->rss_size_max,
3125 hdev->num_tqps / kinfo->tc_info.num_tc);
3126
3127 /* Use the user's configuration when it is not larger than
3128 * max_rss_size, otherwise, use the maximum specification value.
3129 */
3130 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3131 kinfo->req_rss_size <= max_rss_size)
3132 kinfo->rss_size = kinfo->req_rss_size;
3133 else if (kinfo->rss_size > max_rss_size ||
3134 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3135 kinfo->rss_size = max_rss_size;
3136
3137 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3138 }
3139
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3140 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3141 bool rxfh_configured)
3142 {
3143 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3144 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3145 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3146 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3147 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3148 u16 cur_rss_size = kinfo->rss_size;
3149 u16 cur_tqps = kinfo->num_tqps;
3150 u32 *rss_indir;
3151 unsigned int i;
3152 int ret;
3153
3154 hclgevf_update_rss_size(handle, new_tqps_num);
3155
3156 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3157 tc_offset, tc_valid, tc_size);
3158 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3159 tc_valid, tc_size);
3160 if (ret)
3161 return ret;
3162
3163 /* RSS indirection table has been configured by user */
3164 if (rxfh_configured)
3165 goto out;
3166
3167 /* Reinitializes the rss indirect table according to the new RSS size */
3168 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3169 sizeof(u32), GFP_KERNEL);
3170 if (!rss_indir)
3171 return -ENOMEM;
3172
3173 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3174 rss_indir[i] = i % kinfo->rss_size;
3175
3176 hdev->rss_cfg.rss_size = kinfo->rss_size;
3177
3178 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3179 if (ret)
3180 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3181 ret);
3182
3183 kfree(rss_indir);
3184
3185 out:
3186 if (!ret)
3187 dev_info(&hdev->pdev->dev,
3188 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3189 cur_rss_size, kinfo->rss_size,
3190 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3191
3192 return ret;
3193 }
3194
hclgevf_get_status(struct hnae3_handle * handle)3195 static int hclgevf_get_status(struct hnae3_handle *handle)
3196 {
3197 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3198
3199 return hdev->hw.mac.link;
3200 }
3201
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3202 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3203 u8 *auto_neg, u32 *speed,
3204 u8 *duplex, u32 *lane_num)
3205 {
3206 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3207
3208 if (speed)
3209 *speed = hdev->hw.mac.speed;
3210 if (duplex)
3211 *duplex = hdev->hw.mac.duplex;
3212 if (auto_neg)
3213 *auto_neg = AUTONEG_DISABLE;
3214 }
3215
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3216 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3217 u8 duplex)
3218 {
3219 hdev->hw.mac.speed = speed;
3220 hdev->hw.mac.duplex = duplex;
3221 }
3222
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3223 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3224 {
3225 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3226 bool gro_en_old = hdev->gro_en;
3227 int ret;
3228
3229 hdev->gro_en = enable;
3230 ret = hclgevf_config_gro(hdev);
3231 if (ret)
3232 hdev->gro_en = gro_en_old;
3233
3234 return ret;
3235 }
3236
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3237 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3238 u8 *module_type)
3239 {
3240 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3241
3242 if (media_type)
3243 *media_type = hdev->hw.mac.media_type;
3244
3245 if (module_type)
3246 *module_type = hdev->hw.mac.module_type;
3247 }
3248
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3249 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3250 {
3251 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3252
3253 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3254 }
3255
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3256 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3257 {
3258 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3259
3260 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3261 }
3262
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3263 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3264 {
3265 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3266
3267 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3268 }
3269
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3270 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3271 {
3272 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3273
3274 return hdev->rst_stats.hw_rst_done_cnt;
3275 }
3276
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3277 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3278 unsigned long *supported,
3279 unsigned long *advertising)
3280 {
3281 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3282
3283 *supported = hdev->hw.mac.supported;
3284 *advertising = hdev->hw.mac.advertising;
3285 }
3286
3287 #define MAX_SEPARATE_NUM 4
3288 #define SEPARATOR_VALUE 0xFDFCFBFA
3289 #define REG_NUM_PER_LINE 4
3290 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
3291
hclgevf_get_regs_len(struct hnae3_handle * handle)3292 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3293 {
3294 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3295 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3296
3297 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3298 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3299 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3300 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3301
3302 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3303 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3304 }
3305
hclgevf_get_regs(struct hnae3_handle * handle,u32 * version,void * data)3306 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3307 void *data)
3308 {
3309 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3310 int i, j, reg_um, separator_num;
3311 u32 *reg = data;
3312
3313 *version = hdev->fw_version;
3314
3315 /* fetching per-VF registers values from VF PCIe register space */
3316 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3317 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3318 for (i = 0; i < reg_um; i++)
3319 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3320 for (i = 0; i < separator_num; i++)
3321 *reg++ = SEPARATOR_VALUE;
3322
3323 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3324 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3325 for (i = 0; i < reg_um; i++)
3326 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3327 for (i = 0; i < separator_num; i++)
3328 *reg++ = SEPARATOR_VALUE;
3329
3330 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3331 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3332 for (j = 0; j < hdev->num_tqps; j++) {
3333 for (i = 0; i < reg_um; i++)
3334 *reg++ = hclgevf_read_dev(&hdev->hw,
3335 ring_reg_addr_list[i] +
3336 HCLGEVF_TQP_REG_SIZE * j);
3337 for (i = 0; i < separator_num; i++)
3338 *reg++ = SEPARATOR_VALUE;
3339 }
3340
3341 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3342 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3343 for (j = 0; j < hdev->num_msi_used - 1; j++) {
3344 for (i = 0; i < reg_um; i++)
3345 *reg++ = hclgevf_read_dev(&hdev->hw,
3346 tqp_intr_reg_addr_list[i] +
3347 4 * j);
3348 for (i = 0; i < separator_num; i++)
3349 *reg++ = SEPARATOR_VALUE;
3350 }
3351 }
3352
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3353 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3354 struct hclge_mbx_port_base_vlan *port_base_vlan)
3355 {
3356 struct hnae3_handle *nic = &hdev->nic;
3357 struct hclge_vf_to_pf_msg send_msg;
3358 int ret;
3359
3360 rtnl_lock();
3361
3362 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3363 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3364 dev_warn(&hdev->pdev->dev,
3365 "is resetting when updating port based vlan info\n");
3366 rtnl_unlock();
3367 return;
3368 }
3369
3370 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3371 if (ret) {
3372 rtnl_unlock();
3373 return;
3374 }
3375
3376 /* send msg to PF and wait update port based vlan info */
3377 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3378 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3379 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3380 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3381 if (!ret) {
3382 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3383 nic->port_base_vlan_state = state;
3384 else
3385 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3386 }
3387
3388 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3389 rtnl_unlock();
3390 }
3391
3392 static const struct hnae3_ae_ops hclgevf_ops = {
3393 .init_ae_dev = hclgevf_init_ae_dev,
3394 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3395 .reset_prepare = hclgevf_reset_prepare_general,
3396 .reset_done = hclgevf_reset_done,
3397 .init_client_instance = hclgevf_init_client_instance,
3398 .uninit_client_instance = hclgevf_uninit_client_instance,
3399 .start = hclgevf_ae_start,
3400 .stop = hclgevf_ae_stop,
3401 .client_start = hclgevf_client_start,
3402 .client_stop = hclgevf_client_stop,
3403 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3404 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3405 .get_vector = hclgevf_get_vector,
3406 .put_vector = hclgevf_put_vector,
3407 .reset_queue = hclgevf_reset_tqp,
3408 .get_mac_addr = hclgevf_get_mac_addr,
3409 .set_mac_addr = hclgevf_set_mac_addr,
3410 .add_uc_addr = hclgevf_add_uc_addr,
3411 .rm_uc_addr = hclgevf_rm_uc_addr,
3412 .add_mc_addr = hclgevf_add_mc_addr,
3413 .rm_mc_addr = hclgevf_rm_mc_addr,
3414 .get_stats = hclgevf_get_stats,
3415 .update_stats = hclgevf_update_stats,
3416 .get_strings = hclgevf_get_strings,
3417 .get_sset_count = hclgevf_get_sset_count,
3418 .get_rss_key_size = hclge_comm_get_rss_key_size,
3419 .get_rss = hclgevf_get_rss,
3420 .set_rss = hclgevf_set_rss,
3421 .get_rss_tuple = hclgevf_get_rss_tuple,
3422 .set_rss_tuple = hclgevf_set_rss_tuple,
3423 .get_tc_size = hclgevf_get_tc_size,
3424 .get_fw_version = hclgevf_get_fw_version,
3425 .set_vlan_filter = hclgevf_set_vlan_filter,
3426 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3427 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3428 .reset_event = hclgevf_reset_event,
3429 .set_default_reset_request = hclgevf_set_def_reset_request,
3430 .set_channels = hclgevf_set_channels,
3431 .get_channels = hclgevf_get_channels,
3432 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3433 .get_regs_len = hclgevf_get_regs_len,
3434 .get_regs = hclgevf_get_regs,
3435 .get_status = hclgevf_get_status,
3436 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3437 .get_media_type = hclgevf_get_media_type,
3438 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3439 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3440 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3441 .set_gro_en = hclgevf_gro_en,
3442 .set_mtu = hclgevf_set_mtu,
3443 .get_global_queue_id = hclgevf_get_qid_global,
3444 .set_timer_task = hclgevf_set_timer_task,
3445 .get_link_mode = hclgevf_get_link_mode,
3446 .set_promisc_mode = hclgevf_set_promisc_mode,
3447 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3448 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3449 };
3450
3451 static struct hnae3_ae_algo ae_algovf = {
3452 .ops = &hclgevf_ops,
3453 .pdev_id_table = ae_algovf_pci_tbl,
3454 };
3455
hclgevf_init(void)3456 static int __init hclgevf_init(void)
3457 {
3458 pr_info("%s is initializing\n", HCLGEVF_NAME);
3459
3460 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3461 if (!hclgevf_wq) {
3462 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3463 return -ENOMEM;
3464 }
3465
3466 hnae3_register_ae_algo(&ae_algovf);
3467
3468 return 0;
3469 }
3470
hclgevf_exit(void)3471 static void __exit hclgevf_exit(void)
3472 {
3473 hnae3_unregister_ae_algo(&ae_algovf);
3474 destroy_workqueue(hclgevf_wq);
3475 }
3476 module_init(hclgevf_init);
3477 module_exit(hclgevf_exit);
3478
3479 MODULE_LICENSE("GPL");
3480 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3481 MODULE_DESCRIPTION("HCLGEVF Driver");
3482 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3483