1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 * Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 * Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * io = for the base address
14 * irq = for the IRQ
15 * nowait = 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 * Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * Daris A Nevil <dnevil@snmc.com>
25 * Nicolas Pitre <nico@fluxnic.net>
26 * Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
30 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
31 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
32 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
33 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
34 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
35 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
36 * more bus abstraction, big cleanup, etc.
37 * 29/09/03 Russell King - add driver model support
38 * - ethtool support
39 * - convert to use generic MII interface
40 * - add link up/down notification
41 * - don't try to handle full negotiation in
42 * smc_phy_configure
43 * - clean up (and fix stack overrun) in PHY
44 * MII read/write functions
45 * 22/09/04 Nicolas Pitre big update (see commit log for details)
46 */
47 static const char version[] =
48 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50 /* Debugging level */
51 #ifndef SMC_DEBUG
52 #define SMC_DEBUG 0
53 #endif
54
55
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/sched.h>
59 #include <linux/delay.h>
60 #include <linux/interrupt.h>
61 #include <linux/irq.h>
62 #include <linux/errno.h>
63 #include <linux/ioport.h>
64 #include <linux/crc32.h>
65 #include <linux/platform_device.h>
66 #include <linux/spinlock.h>
67 #include <linux/ethtool.h>
68 #include <linux/mii.h>
69 #include <linux/workqueue.h>
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/of_gpio.h>
73
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77
78 #include <asm/io.h>
79
80 #include "smc91x.h"
81
82 #if defined(CONFIG_ASSABET_NEPONSET)
83 #include <mach/assabet.h>
84 #include <mach/neponset.h>
85 #endif
86
87 #ifndef SMC_NOWAIT
88 # define SMC_NOWAIT 0
89 #endif
90 static int nowait = SMC_NOWAIT;
91 module_param(nowait, int, 0400);
92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94 /*
95 * Transmit timeout, default 5 seconds.
96 */
97 static int watchdog = 1000;
98 module_param(watchdog, int, 0400);
99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101 MODULE_LICENSE("GPL");
102 MODULE_ALIAS("platform:smc91x");
103
104 /*
105 * The internal workings of the driver. If you are changing anything
106 * here with the SMC stuff, you should have the datasheet and know
107 * what you are doing.
108 */
109 #define CARDNAME "smc91x"
110
111 /*
112 * Use power-down feature of the chip
113 */
114 #define POWER_DOWN 1
115
116 /*
117 * Wait time for memory to be free. This probably shouldn't be
118 * tuned that much, as waiting for this means nothing else happens
119 * in the system
120 */
121 #define MEMORY_WAIT_TIME 16
122
123 /*
124 * The maximum number of processing loops allowed for each call to the
125 * IRQ handler.
126 */
127 #define MAX_IRQ_LOOPS 8
128
129 /*
130 * This selects whether TX packets are sent one by one to the SMC91x internal
131 * memory and throttled until transmission completes. This may prevent
132 * RX overruns a litle by keeping much of the memory free for RX packets
133 * but to the expense of reduced TX throughput and increased IRQ overhead.
134 * Note this is not a cure for a too slow data bus or too high IRQ latency.
135 */
136 #define THROTTLE_TX_PKTS 0
137
138 /*
139 * The MII clock high/low times. 2x this number gives the MII clock period
140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
141 */
142 #define MII_DELAY 1
143
144 #define DBG(n, dev, fmt, ...) \
145 do { \
146 if (SMC_DEBUG >= (n)) \
147 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
148 } while (0)
149
150 #define PRINTK(dev, fmt, ...) \
151 do { \
152 if (SMC_DEBUG > 0) \
153 netdev_info(dev, fmt, ##__VA_ARGS__); \
154 else \
155 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
156 } while (0)
157
158 #if SMC_DEBUG > 3
PRINT_PKT(u_char * buf,int length)159 static void PRINT_PKT(u_char *buf, int length)
160 {
161 int i;
162 int remainder;
163 int lines;
164
165 lines = length / 16;
166 remainder = length % 16;
167
168 for (i = 0; i < lines ; i ++) {
169 int cur;
170 printk(KERN_DEBUG);
171 for (cur = 0; cur < 8; cur++) {
172 u_char a, b;
173 a = *buf++;
174 b = *buf++;
175 pr_cont("%02x%02x ", a, b);
176 }
177 pr_cont("\n");
178 }
179 printk(KERN_DEBUG);
180 for (i = 0; i < remainder/2 ; i++) {
181 u_char a, b;
182 a = *buf++;
183 b = *buf++;
184 pr_cont("%02x%02x ", a, b);
185 }
186 pr_cont("\n");
187 }
188 #else
PRINT_PKT(u_char * buf,int length)189 static inline void PRINT_PKT(u_char *buf, int length) { }
190 #endif
191
192
193 /* this enables an interrupt in the interrupt mask register */
194 #define SMC_ENABLE_INT(lp, x) do { \
195 unsigned char mask; \
196 unsigned long smc_enable_flags; \
197 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
198 mask = SMC_GET_INT_MASK(lp); \
199 mask |= (x); \
200 SMC_SET_INT_MASK(lp, mask); \
201 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
202 } while (0)
203
204 /* this disables an interrupt from the interrupt mask register */
205 #define SMC_DISABLE_INT(lp, x) do { \
206 unsigned char mask; \
207 unsigned long smc_disable_flags; \
208 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
209 mask = SMC_GET_INT_MASK(lp); \
210 mask &= ~(x); \
211 SMC_SET_INT_MASK(lp, mask); \
212 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
213 } while (0)
214
215 /*
216 * Wait while MMU is busy. This is usually in the order of a few nanosecs
217 * if at all, but let's avoid deadlocking the system if the hardware
218 * decides to go south.
219 */
220 #define SMC_WAIT_MMU_BUSY(lp) do { \
221 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
222 unsigned long timeout = jiffies + 2; \
223 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
224 if (time_after(jiffies, timeout)) { \
225 netdev_dbg(dev, "timeout %s line %d\n", \
226 __FILE__, __LINE__); \
227 break; \
228 } \
229 cpu_relax(); \
230 } \
231 } \
232 } while (0)
233
234
235 /*
236 * this does a soft reset on the device
237 */
smc_reset(struct net_device * dev)238 static void smc_reset(struct net_device *dev)
239 {
240 struct smc_local *lp = netdev_priv(dev);
241 void __iomem *ioaddr = lp->base;
242 unsigned int ctl, cfg;
243 struct sk_buff *pending_skb;
244
245 DBG(2, dev, "%s\n", __func__);
246
247 /* Disable all interrupts, block TX tasklet */
248 spin_lock_irq(&lp->lock);
249 SMC_SELECT_BANK(lp, 2);
250 SMC_SET_INT_MASK(lp, 0);
251 pending_skb = lp->pending_tx_skb;
252 lp->pending_tx_skb = NULL;
253 spin_unlock_irq(&lp->lock);
254
255 /* free any pending tx skb */
256 if (pending_skb) {
257 dev_kfree_skb(pending_skb);
258 dev->stats.tx_errors++;
259 dev->stats.tx_aborted_errors++;
260 }
261
262 /*
263 * This resets the registers mostly to defaults, but doesn't
264 * affect EEPROM. That seems unnecessary
265 */
266 SMC_SELECT_BANK(lp, 0);
267 SMC_SET_RCR(lp, RCR_SOFTRST);
268
269 /*
270 * Setup the Configuration Register
271 * This is necessary because the CONFIG_REG is not affected
272 * by a soft reset
273 */
274 SMC_SELECT_BANK(lp, 1);
275
276 cfg = CONFIG_DEFAULT;
277
278 /*
279 * Setup for fast accesses if requested. If the card/system
280 * can't handle it then there will be no recovery except for
281 * a hard reset or power cycle
282 */
283 if (lp->cfg.flags & SMC91X_NOWAIT)
284 cfg |= CONFIG_NO_WAIT;
285
286 /*
287 * Release from possible power-down state
288 * Configuration register is not affected by Soft Reset
289 */
290 cfg |= CONFIG_EPH_POWER_EN;
291
292 SMC_SET_CONFIG(lp, cfg);
293
294 /* this should pause enough for the chip to be happy */
295 /*
296 * elaborate? What does the chip _need_? --jgarzik
297 *
298 * This seems to be undocumented, but something the original
299 * driver(s) have always done. Suspect undocumented timing
300 * info/determined empirically. --rmk
301 */
302 udelay(1);
303
304 /* Disable transmit and receive functionality */
305 SMC_SELECT_BANK(lp, 0);
306 SMC_SET_RCR(lp, RCR_CLEAR);
307 SMC_SET_TCR(lp, TCR_CLEAR);
308
309 SMC_SELECT_BANK(lp, 1);
310 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
311
312 /*
313 * Set the control register to automatically release successfully
314 * transmitted packets, to make the best use out of our limited
315 * memory
316 */
317 if(!THROTTLE_TX_PKTS)
318 ctl |= CTL_AUTO_RELEASE;
319 else
320 ctl &= ~CTL_AUTO_RELEASE;
321 SMC_SET_CTL(lp, ctl);
322
323 /* Reset the MMU */
324 SMC_SELECT_BANK(lp, 2);
325 SMC_SET_MMU_CMD(lp, MC_RESET);
326 SMC_WAIT_MMU_BUSY(lp);
327 }
328
329 /*
330 * Enable Interrupts, Receive, and Transmit
331 */
smc_enable(struct net_device * dev)332 static void smc_enable(struct net_device *dev)
333 {
334 struct smc_local *lp = netdev_priv(dev);
335 void __iomem *ioaddr = lp->base;
336 int mask;
337
338 DBG(2, dev, "%s\n", __func__);
339
340 /* see the header file for options in TCR/RCR DEFAULT */
341 SMC_SELECT_BANK(lp, 0);
342 SMC_SET_TCR(lp, lp->tcr_cur_mode);
343 SMC_SET_RCR(lp, lp->rcr_cur_mode);
344
345 SMC_SELECT_BANK(lp, 1);
346 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
347
348 /* now, enable interrupts */
349 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
350 if (lp->version >= (CHIP_91100 << 4))
351 mask |= IM_MDINT;
352 SMC_SELECT_BANK(lp, 2);
353 SMC_SET_INT_MASK(lp, mask);
354
355 /*
356 * From this point the register bank must _NOT_ be switched away
357 * to something else than bank 2 without proper locking against
358 * races with any tasklet or interrupt handlers until smc_shutdown()
359 * or smc_reset() is called.
360 */
361 }
362
363 /*
364 * this puts the device in an inactive state
365 */
smc_shutdown(struct net_device * dev)366 static void smc_shutdown(struct net_device *dev)
367 {
368 struct smc_local *lp = netdev_priv(dev);
369 void __iomem *ioaddr = lp->base;
370 struct sk_buff *pending_skb;
371
372 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
373
374 /* no more interrupts for me */
375 spin_lock_irq(&lp->lock);
376 SMC_SELECT_BANK(lp, 2);
377 SMC_SET_INT_MASK(lp, 0);
378 pending_skb = lp->pending_tx_skb;
379 lp->pending_tx_skb = NULL;
380 spin_unlock_irq(&lp->lock);
381 dev_kfree_skb(pending_skb);
382
383 /* and tell the card to stay away from that nasty outside world */
384 SMC_SELECT_BANK(lp, 0);
385 SMC_SET_RCR(lp, RCR_CLEAR);
386 SMC_SET_TCR(lp, TCR_CLEAR);
387
388 #ifdef POWER_DOWN
389 /* finally, shut the chip down */
390 SMC_SELECT_BANK(lp, 1);
391 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
392 #endif
393 }
394
395 /*
396 * This is the procedure to handle the receipt of a packet.
397 */
smc_rcv(struct net_device * dev)398 static inline void smc_rcv(struct net_device *dev)
399 {
400 struct smc_local *lp = netdev_priv(dev);
401 void __iomem *ioaddr = lp->base;
402 unsigned int packet_number, status, packet_len;
403
404 DBG(3, dev, "%s\n", __func__);
405
406 packet_number = SMC_GET_RXFIFO(lp);
407 if (unlikely(packet_number & RXFIFO_REMPTY)) {
408 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
409 return;
410 }
411
412 /* read from start of packet */
413 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
414
415 /* First two words are status and packet length */
416 SMC_GET_PKT_HDR(lp, status, packet_len);
417 packet_len &= 0x07ff; /* mask off top bits */
418 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
419 packet_number, status, packet_len, packet_len);
420
421 back:
422 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
423 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
424 /* accept VLAN packets */
425 status &= ~RS_TOOLONG;
426 goto back;
427 }
428 if (packet_len < 6) {
429 /* bloody hardware */
430 netdev_err(dev, "fubar (rxlen %u status %x\n",
431 packet_len, status);
432 status |= RS_TOOSHORT;
433 }
434 SMC_WAIT_MMU_BUSY(lp);
435 SMC_SET_MMU_CMD(lp, MC_RELEASE);
436 dev->stats.rx_errors++;
437 if (status & RS_ALGNERR)
438 dev->stats.rx_frame_errors++;
439 if (status & (RS_TOOSHORT | RS_TOOLONG))
440 dev->stats.rx_length_errors++;
441 if (status & RS_BADCRC)
442 dev->stats.rx_crc_errors++;
443 } else {
444 struct sk_buff *skb;
445 unsigned char *data;
446 unsigned int data_len;
447
448 /* set multicast stats */
449 if (status & RS_MULTICAST)
450 dev->stats.multicast++;
451
452 /*
453 * Actual payload is packet_len - 6 (or 5 if odd byte).
454 * We want skb_reserve(2) and the final ctrl word
455 * (2 bytes, possibly containing the payload odd byte).
456 * Furthermore, we add 2 bytes to allow rounding up to
457 * multiple of 4 bytes on 32 bit buses.
458 * Hence packet_len - 6 + 2 + 2 + 2.
459 */
460 skb = netdev_alloc_skb(dev, packet_len);
461 if (unlikely(skb == NULL)) {
462 SMC_WAIT_MMU_BUSY(lp);
463 SMC_SET_MMU_CMD(lp, MC_RELEASE);
464 dev->stats.rx_dropped++;
465 return;
466 }
467
468 /* Align IP header to 32 bits */
469 skb_reserve(skb, 2);
470
471 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
472 if (lp->version == 0x90)
473 status |= RS_ODDFRAME;
474
475 /*
476 * If odd length: packet_len - 5,
477 * otherwise packet_len - 6.
478 * With the trailing ctrl byte it's packet_len - 4.
479 */
480 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
481 data = skb_put(skb, data_len);
482 SMC_PULL_DATA(lp, data, packet_len - 4);
483
484 SMC_WAIT_MMU_BUSY(lp);
485 SMC_SET_MMU_CMD(lp, MC_RELEASE);
486
487 PRINT_PKT(data, packet_len - 4);
488
489 skb->protocol = eth_type_trans(skb, dev);
490 netif_rx(skb);
491 dev->stats.rx_packets++;
492 dev->stats.rx_bytes += data_len;
493 }
494 }
495
496 #ifdef CONFIG_SMP
497 /*
498 * On SMP we have the following problem:
499 *
500 * A = smc_hardware_send_pkt()
501 * B = smc_hard_start_xmit()
502 * C = smc_interrupt()
503 *
504 * A and B can never be executed simultaneously. However, at least on UP,
505 * it is possible (and even desirable) for C to interrupt execution of
506 * A or B in order to have better RX reliability and avoid overruns.
507 * C, just like A and B, must have exclusive access to the chip and
508 * each of them must lock against any other concurrent access.
509 * Unfortunately this is not possible to have C suspend execution of A or
510 * B taking place on another CPU. On UP this is no an issue since A and B
511 * are run from softirq context and C from hard IRQ context, and there is
512 * no other CPU where concurrent access can happen.
513 * If ever there is a way to force at least B and C to always be executed
514 * on the same CPU then we could use read/write locks to protect against
515 * any other concurrent access and C would always interrupt B. But life
516 * isn't that easy in a SMP world...
517 */
518 #define smc_special_trylock(lock, flags) \
519 ({ \
520 int __ret; \
521 local_irq_save(flags); \
522 __ret = spin_trylock(lock); \
523 if (!__ret) \
524 local_irq_restore(flags); \
525 __ret; \
526 })
527 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
528 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
529 #else
530 #define smc_special_trylock(lock, flags) ((void)flags, true)
531 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
532 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
533 #endif
534
535 /*
536 * This is called to actually send a packet to the chip.
537 */
smc_hardware_send_pkt(struct tasklet_struct * t)538 static void smc_hardware_send_pkt(struct tasklet_struct *t)
539 {
540 struct smc_local *lp = from_tasklet(lp, t, tx_task);
541 struct net_device *dev = lp->dev;
542 void __iomem *ioaddr = lp->base;
543 struct sk_buff *skb;
544 unsigned int packet_no, len;
545 unsigned char *buf;
546 unsigned long flags;
547
548 DBG(3, dev, "%s\n", __func__);
549
550 if (!smc_special_trylock(&lp->lock, flags)) {
551 netif_stop_queue(dev);
552 tasklet_schedule(&lp->tx_task);
553 return;
554 }
555
556 skb = lp->pending_tx_skb;
557 if (unlikely(!skb)) {
558 smc_special_unlock(&lp->lock, flags);
559 return;
560 }
561 lp->pending_tx_skb = NULL;
562
563 packet_no = SMC_GET_AR(lp);
564 if (unlikely(packet_no & AR_FAILED)) {
565 netdev_err(dev, "Memory allocation failed.\n");
566 dev->stats.tx_errors++;
567 dev->stats.tx_fifo_errors++;
568 smc_special_unlock(&lp->lock, flags);
569 goto done;
570 }
571
572 /* point to the beginning of the packet */
573 SMC_SET_PN(lp, packet_no);
574 SMC_SET_PTR(lp, PTR_AUTOINC);
575
576 buf = skb->data;
577 len = skb->len;
578 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
579 packet_no, len, len, buf);
580 PRINT_PKT(buf, len);
581
582 /*
583 * Send the packet length (+6 for status words, length, and ctl.
584 * The card will pad to 64 bytes with zeroes if packet is too small.
585 */
586 SMC_PUT_PKT_HDR(lp, 0, len + 6);
587
588 /* send the actual data */
589 SMC_PUSH_DATA(lp, buf, len & ~1);
590
591 /* Send final ctl word with the last byte if there is one */
592 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
593 DATA_REG(lp));
594
595 /*
596 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
597 * have the effect of having at most one packet queued for TX
598 * in the chip's memory at all time.
599 *
600 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
601 * when memory allocation (MC_ALLOC) does not succeed right away.
602 */
603 if (THROTTLE_TX_PKTS)
604 netif_stop_queue(dev);
605
606 /* queue the packet for TX */
607 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
608 smc_special_unlock(&lp->lock, flags);
609
610 netif_trans_update(dev);
611 dev->stats.tx_packets++;
612 dev->stats.tx_bytes += len;
613
614 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
615
616 done: if (!THROTTLE_TX_PKTS)
617 netif_wake_queue(dev);
618
619 dev_consume_skb_any(skb);
620 }
621
622 /*
623 * Since I am not sure if I will have enough room in the chip's ram
624 * to store the packet, I call this routine which either sends it
625 * now, or set the card to generates an interrupt when ready
626 * for the packet.
627 */
628 static netdev_tx_t
smc_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)629 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
630 {
631 struct smc_local *lp = netdev_priv(dev);
632 void __iomem *ioaddr = lp->base;
633 unsigned int numPages, poll_count, status;
634 unsigned long flags;
635
636 DBG(3, dev, "%s\n", __func__);
637
638 BUG_ON(lp->pending_tx_skb != NULL);
639
640 /*
641 * The MMU wants the number of pages to be the number of 256 bytes
642 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
643 *
644 * The 91C111 ignores the size bits, but earlier models don't.
645 *
646 * Pkt size for allocating is data length +6 (for additional status
647 * words, length and ctl)
648 *
649 * If odd size then last byte is included in ctl word.
650 */
651 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
652 if (unlikely(numPages > 7)) {
653 netdev_warn(dev, "Far too big packet error.\n");
654 dev->stats.tx_errors++;
655 dev->stats.tx_dropped++;
656 dev_kfree_skb_any(skb);
657 return NETDEV_TX_OK;
658 }
659
660 smc_special_lock(&lp->lock, flags);
661
662 /* now, try to allocate the memory */
663 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
664
665 /*
666 * Poll the chip for a short amount of time in case the
667 * allocation succeeds quickly.
668 */
669 poll_count = MEMORY_WAIT_TIME;
670 do {
671 status = SMC_GET_INT(lp);
672 if (status & IM_ALLOC_INT) {
673 SMC_ACK_INT(lp, IM_ALLOC_INT);
674 break;
675 }
676 } while (--poll_count);
677
678 smc_special_unlock(&lp->lock, flags);
679
680 lp->pending_tx_skb = skb;
681 if (!poll_count) {
682 /* oh well, wait until the chip finds memory later */
683 netif_stop_queue(dev);
684 DBG(2, dev, "TX memory allocation deferred.\n");
685 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
686 } else {
687 /*
688 * Allocation succeeded: push packet to the chip's own memory
689 * immediately.
690 */
691 smc_hardware_send_pkt(&lp->tx_task);
692 }
693
694 return NETDEV_TX_OK;
695 }
696
697 /*
698 * This handles a TX interrupt, which is only called when:
699 * - a TX error occurred, or
700 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
701 */
smc_tx(struct net_device * dev)702 static void smc_tx(struct net_device *dev)
703 {
704 struct smc_local *lp = netdev_priv(dev);
705 void __iomem *ioaddr = lp->base;
706 unsigned int saved_packet, packet_no, tx_status;
707 unsigned int pkt_len __always_unused;
708
709 DBG(3, dev, "%s\n", __func__);
710
711 /* If the TX FIFO is empty then nothing to do */
712 packet_no = SMC_GET_TXFIFO(lp);
713 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
714 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
715 return;
716 }
717
718 /* select packet to read from */
719 saved_packet = SMC_GET_PN(lp);
720 SMC_SET_PN(lp, packet_no);
721
722 /* read the first word (status word) from this packet */
723 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
724 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
725 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
726 tx_status, packet_no);
727
728 if (!(tx_status & ES_TX_SUC))
729 dev->stats.tx_errors++;
730
731 if (tx_status & ES_LOSTCARR)
732 dev->stats.tx_carrier_errors++;
733
734 if (tx_status & (ES_LATCOL | ES_16COL)) {
735 PRINTK(dev, "%s occurred on last xmit\n",
736 (tx_status & ES_LATCOL) ?
737 "late collision" : "too many collisions");
738 dev->stats.tx_window_errors++;
739 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
740 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
741 }
742 }
743
744 /* kill the packet */
745 SMC_WAIT_MMU_BUSY(lp);
746 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
747
748 /* Don't restore Packet Number Reg until busy bit is cleared */
749 SMC_WAIT_MMU_BUSY(lp);
750 SMC_SET_PN(lp, saved_packet);
751
752 /* re-enable transmit */
753 SMC_SELECT_BANK(lp, 0);
754 SMC_SET_TCR(lp, lp->tcr_cur_mode);
755 SMC_SELECT_BANK(lp, 2);
756 }
757
758
759 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
760
smc_mii_out(struct net_device * dev,unsigned int val,int bits)761 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
762 {
763 struct smc_local *lp = netdev_priv(dev);
764 void __iomem *ioaddr = lp->base;
765 unsigned int mii_reg, mask;
766
767 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
768 mii_reg |= MII_MDOE;
769
770 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
771 if (val & mask)
772 mii_reg |= MII_MDO;
773 else
774 mii_reg &= ~MII_MDO;
775
776 SMC_SET_MII(lp, mii_reg);
777 udelay(MII_DELAY);
778 SMC_SET_MII(lp, mii_reg | MII_MCLK);
779 udelay(MII_DELAY);
780 }
781 }
782
smc_mii_in(struct net_device * dev,int bits)783 static unsigned int smc_mii_in(struct net_device *dev, int bits)
784 {
785 struct smc_local *lp = netdev_priv(dev);
786 void __iomem *ioaddr = lp->base;
787 unsigned int mii_reg, mask, val;
788
789 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
790 SMC_SET_MII(lp, mii_reg);
791
792 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
793 if (SMC_GET_MII(lp) & MII_MDI)
794 val |= mask;
795
796 SMC_SET_MII(lp, mii_reg);
797 udelay(MII_DELAY);
798 SMC_SET_MII(lp, mii_reg | MII_MCLK);
799 udelay(MII_DELAY);
800 }
801
802 return val;
803 }
804
805 /*
806 * Reads a register from the MII Management serial interface
807 */
smc_phy_read(struct net_device * dev,int phyaddr,int phyreg)808 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
809 {
810 struct smc_local *lp = netdev_priv(dev);
811 void __iomem *ioaddr = lp->base;
812 unsigned int phydata;
813
814 SMC_SELECT_BANK(lp, 3);
815
816 /* Idle - 32 ones */
817 smc_mii_out(dev, 0xffffffff, 32);
818
819 /* Start code (01) + read (10) + phyaddr + phyreg */
820 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
821
822 /* Turnaround (2bits) + phydata */
823 phydata = smc_mii_in(dev, 18);
824
825 /* Return to idle state */
826 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
827
828 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
829 __func__, phyaddr, phyreg, phydata);
830
831 SMC_SELECT_BANK(lp, 2);
832 return phydata;
833 }
834
835 /*
836 * Writes a register to the MII Management serial interface
837 */
smc_phy_write(struct net_device * dev,int phyaddr,int phyreg,int phydata)838 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
839 int phydata)
840 {
841 struct smc_local *lp = netdev_priv(dev);
842 void __iomem *ioaddr = lp->base;
843
844 SMC_SELECT_BANK(lp, 3);
845
846 /* Idle - 32 ones */
847 smc_mii_out(dev, 0xffffffff, 32);
848
849 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
850 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
851
852 /* Return to idle state */
853 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
854
855 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
856 __func__, phyaddr, phyreg, phydata);
857
858 SMC_SELECT_BANK(lp, 2);
859 }
860
861 /*
862 * Finds and reports the PHY address
863 */
smc_phy_detect(struct net_device * dev)864 static void smc_phy_detect(struct net_device *dev)
865 {
866 struct smc_local *lp = netdev_priv(dev);
867 int phyaddr;
868
869 DBG(2, dev, "%s\n", __func__);
870
871 lp->phy_type = 0;
872
873 /*
874 * Scan all 32 PHY addresses if necessary, starting at
875 * PHY#1 to PHY#31, and then PHY#0 last.
876 */
877 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
878 unsigned int id1, id2;
879
880 /* Read the PHY identifiers */
881 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
882 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
883
884 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
885 id1, id2);
886
887 /* Make sure it is a valid identifier */
888 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
889 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
890 /* Save the PHY's address */
891 lp->mii.phy_id = phyaddr & 31;
892 lp->phy_type = id1 << 16 | id2;
893 break;
894 }
895 }
896 }
897
898 /*
899 * Sets the PHY to a configuration as determined by the user
900 */
smc_phy_fixed(struct net_device * dev)901 static int smc_phy_fixed(struct net_device *dev)
902 {
903 struct smc_local *lp = netdev_priv(dev);
904 void __iomem *ioaddr = lp->base;
905 int phyaddr = lp->mii.phy_id;
906 int bmcr, cfg1;
907
908 DBG(3, dev, "%s\n", __func__);
909
910 /* Enter Link Disable state */
911 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
912 cfg1 |= PHY_CFG1_LNKDIS;
913 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
914
915 /*
916 * Set our fixed capabilities
917 * Disable auto-negotiation
918 */
919 bmcr = 0;
920
921 if (lp->ctl_rfduplx)
922 bmcr |= BMCR_FULLDPLX;
923
924 if (lp->ctl_rspeed == 100)
925 bmcr |= BMCR_SPEED100;
926
927 /* Write our capabilities to the phy control register */
928 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
929
930 /* Re-Configure the Receive/Phy Control register */
931 SMC_SELECT_BANK(lp, 0);
932 SMC_SET_RPC(lp, lp->rpc_cur_mode);
933 SMC_SELECT_BANK(lp, 2);
934
935 return 1;
936 }
937
938 /**
939 * smc_phy_reset - reset the phy
940 * @dev: net device
941 * @phy: phy address
942 *
943 * Issue a software reset for the specified PHY and
944 * wait up to 100ms for the reset to complete. We should
945 * not access the PHY for 50ms after issuing the reset.
946 *
947 * The time to wait appears to be dependent on the PHY.
948 *
949 * Must be called with lp->lock locked.
950 */
smc_phy_reset(struct net_device * dev,int phy)951 static int smc_phy_reset(struct net_device *dev, int phy)
952 {
953 struct smc_local *lp = netdev_priv(dev);
954 unsigned int bmcr;
955 int timeout;
956
957 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
958
959 for (timeout = 2; timeout; timeout--) {
960 spin_unlock_irq(&lp->lock);
961 msleep(50);
962 spin_lock_irq(&lp->lock);
963
964 bmcr = smc_phy_read(dev, phy, MII_BMCR);
965 if (!(bmcr & BMCR_RESET))
966 break;
967 }
968
969 return bmcr & BMCR_RESET;
970 }
971
972 /**
973 * smc_phy_powerdown - powerdown phy
974 * @dev: net device
975 *
976 * Power down the specified PHY
977 */
smc_phy_powerdown(struct net_device * dev)978 static void smc_phy_powerdown(struct net_device *dev)
979 {
980 struct smc_local *lp = netdev_priv(dev);
981 unsigned int bmcr;
982 int phy = lp->mii.phy_id;
983
984 if (lp->phy_type == 0)
985 return;
986
987 /* We need to ensure that no calls to smc_phy_configure are
988 pending.
989 */
990 cancel_work_sync(&lp->phy_configure);
991
992 bmcr = smc_phy_read(dev, phy, MII_BMCR);
993 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
994 }
995
996 /**
997 * smc_phy_check_media - check the media status and adjust TCR
998 * @dev: net device
999 * @init: set true for initialisation
1000 *
1001 * Select duplex mode depending on negotiation state. This
1002 * also updates our carrier state.
1003 */
smc_phy_check_media(struct net_device * dev,int init)1004 static void smc_phy_check_media(struct net_device *dev, int init)
1005 {
1006 struct smc_local *lp = netdev_priv(dev);
1007 void __iomem *ioaddr = lp->base;
1008
1009 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1010 /* duplex state has changed */
1011 if (lp->mii.full_duplex) {
1012 lp->tcr_cur_mode |= TCR_SWFDUP;
1013 } else {
1014 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1015 }
1016
1017 SMC_SELECT_BANK(lp, 0);
1018 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1019 }
1020 }
1021
1022 /*
1023 * Configures the specified PHY through the MII management interface
1024 * using Autonegotiation.
1025 * Calls smc_phy_fixed() if the user has requested a certain config.
1026 * If RPC ANEG bit is set, the media selection is dependent purely on
1027 * the selection by the MII (either in the MII BMCR reg or the result
1028 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1029 * is controlled by the RPC SPEED and RPC DPLX bits.
1030 */
smc_phy_configure(struct work_struct * work)1031 static void smc_phy_configure(struct work_struct *work)
1032 {
1033 struct smc_local *lp =
1034 container_of(work, struct smc_local, phy_configure);
1035 struct net_device *dev = lp->dev;
1036 void __iomem *ioaddr = lp->base;
1037 int phyaddr = lp->mii.phy_id;
1038 int my_phy_caps; /* My PHY capabilities */
1039 int my_ad_caps; /* My Advertised capabilities */
1040
1041 DBG(3, dev, "smc_program_phy()\n");
1042
1043 spin_lock_irq(&lp->lock);
1044
1045 /*
1046 * We should not be called if phy_type is zero.
1047 */
1048 if (lp->phy_type == 0)
1049 goto smc_phy_configure_exit;
1050
1051 if (smc_phy_reset(dev, phyaddr)) {
1052 netdev_info(dev, "PHY reset timed out\n");
1053 goto smc_phy_configure_exit;
1054 }
1055
1056 /*
1057 * Enable PHY Interrupts (for register 18)
1058 * Interrupts listed here are disabled
1059 */
1060 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1061 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1062 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1063 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1064
1065 /* Configure the Receive/Phy Control register */
1066 SMC_SELECT_BANK(lp, 0);
1067 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1068
1069 /* If the user requested no auto neg, then go set his request */
1070 if (lp->mii.force_media) {
1071 smc_phy_fixed(dev);
1072 goto smc_phy_configure_exit;
1073 }
1074
1075 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1076 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1077
1078 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1079 netdev_info(dev, "Auto negotiation NOT supported\n");
1080 smc_phy_fixed(dev);
1081 goto smc_phy_configure_exit;
1082 }
1083
1084 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1085
1086 if (my_phy_caps & BMSR_100BASE4)
1087 my_ad_caps |= ADVERTISE_100BASE4;
1088 if (my_phy_caps & BMSR_100FULL)
1089 my_ad_caps |= ADVERTISE_100FULL;
1090 if (my_phy_caps & BMSR_100HALF)
1091 my_ad_caps |= ADVERTISE_100HALF;
1092 if (my_phy_caps & BMSR_10FULL)
1093 my_ad_caps |= ADVERTISE_10FULL;
1094 if (my_phy_caps & BMSR_10HALF)
1095 my_ad_caps |= ADVERTISE_10HALF;
1096
1097 /* Disable capabilities not selected by our user */
1098 if (lp->ctl_rspeed != 100)
1099 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1100
1101 if (!lp->ctl_rfduplx)
1102 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1103
1104 /* Update our Auto-Neg Advertisement Register */
1105 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1106 lp->mii.advertising = my_ad_caps;
1107
1108 /*
1109 * Read the register back. Without this, it appears that when
1110 * auto-negotiation is restarted, sometimes it isn't ready and
1111 * the link does not come up.
1112 */
1113 smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1114
1115 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1116 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1117
1118 /* Restart auto-negotiation process in order to advertise my caps */
1119 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1120
1121 smc_phy_check_media(dev, 1);
1122
1123 smc_phy_configure_exit:
1124 SMC_SELECT_BANK(lp, 2);
1125 spin_unlock_irq(&lp->lock);
1126 }
1127
1128 /*
1129 * smc_phy_interrupt
1130 *
1131 * Purpose: Handle interrupts relating to PHY register 18. This is
1132 * called from the "hard" interrupt handler under our private spinlock.
1133 */
smc_phy_interrupt(struct net_device * dev)1134 static void smc_phy_interrupt(struct net_device *dev)
1135 {
1136 struct smc_local *lp = netdev_priv(dev);
1137 int phyaddr = lp->mii.phy_id;
1138 int phy18;
1139
1140 DBG(2, dev, "%s\n", __func__);
1141
1142 if (lp->phy_type == 0)
1143 return;
1144
1145 for(;;) {
1146 smc_phy_check_media(dev, 0);
1147
1148 /* Read PHY Register 18, Status Output */
1149 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1150 if ((phy18 & PHY_INT_INT) == 0)
1151 break;
1152 }
1153 }
1154
1155 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1156
smc_10bt_check_media(struct net_device * dev,int init)1157 static void smc_10bt_check_media(struct net_device *dev, int init)
1158 {
1159 struct smc_local *lp = netdev_priv(dev);
1160 void __iomem *ioaddr = lp->base;
1161 unsigned int old_carrier, new_carrier;
1162
1163 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1164
1165 SMC_SELECT_BANK(lp, 0);
1166 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1167 SMC_SELECT_BANK(lp, 2);
1168
1169 if (init || (old_carrier != new_carrier)) {
1170 if (!new_carrier) {
1171 netif_carrier_off(dev);
1172 } else {
1173 netif_carrier_on(dev);
1174 }
1175 if (netif_msg_link(lp))
1176 netdev_info(dev, "link %s\n",
1177 new_carrier ? "up" : "down");
1178 }
1179 }
1180
smc_eph_interrupt(struct net_device * dev)1181 static void smc_eph_interrupt(struct net_device *dev)
1182 {
1183 struct smc_local *lp = netdev_priv(dev);
1184 void __iomem *ioaddr = lp->base;
1185 unsigned int ctl;
1186
1187 smc_10bt_check_media(dev, 0);
1188
1189 SMC_SELECT_BANK(lp, 1);
1190 ctl = SMC_GET_CTL(lp);
1191 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1192 SMC_SET_CTL(lp, ctl);
1193 SMC_SELECT_BANK(lp, 2);
1194 }
1195
1196 /*
1197 * This is the main routine of the driver, to handle the device when
1198 * it needs some attention.
1199 */
smc_interrupt(int irq,void * dev_id)1200 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1201 {
1202 struct net_device *dev = dev_id;
1203 struct smc_local *lp = netdev_priv(dev);
1204 void __iomem *ioaddr = lp->base;
1205 int status, mask, timeout, card_stats;
1206 int saved_pointer;
1207
1208 DBG(3, dev, "%s\n", __func__);
1209
1210 spin_lock(&lp->lock);
1211
1212 /* A preamble may be used when there is a potential race
1213 * between the interruptible transmit functions and this
1214 * ISR. */
1215 SMC_INTERRUPT_PREAMBLE;
1216
1217 saved_pointer = SMC_GET_PTR(lp);
1218 mask = SMC_GET_INT_MASK(lp);
1219 SMC_SET_INT_MASK(lp, 0);
1220
1221 /* set a timeout value, so I don't stay here forever */
1222 timeout = MAX_IRQ_LOOPS;
1223
1224 do {
1225 status = SMC_GET_INT(lp);
1226
1227 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1228 status, mask,
1229 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1230 meminfo = SMC_GET_MIR(lp);
1231 SMC_SELECT_BANK(lp, 2); meminfo; }),
1232 SMC_GET_FIFO(lp));
1233
1234 status &= mask;
1235 if (!status)
1236 break;
1237
1238 if (status & IM_TX_INT) {
1239 /* do this before RX as it will free memory quickly */
1240 DBG(3, dev, "TX int\n");
1241 smc_tx(dev);
1242 SMC_ACK_INT(lp, IM_TX_INT);
1243 if (THROTTLE_TX_PKTS)
1244 netif_wake_queue(dev);
1245 } else if (status & IM_RCV_INT) {
1246 DBG(3, dev, "RX irq\n");
1247 smc_rcv(dev);
1248 } else if (status & IM_ALLOC_INT) {
1249 DBG(3, dev, "Allocation irq\n");
1250 tasklet_hi_schedule(&lp->tx_task);
1251 mask &= ~IM_ALLOC_INT;
1252 } else if (status & IM_TX_EMPTY_INT) {
1253 DBG(3, dev, "TX empty\n");
1254 mask &= ~IM_TX_EMPTY_INT;
1255
1256 /* update stats */
1257 SMC_SELECT_BANK(lp, 0);
1258 card_stats = SMC_GET_COUNTER(lp);
1259 SMC_SELECT_BANK(lp, 2);
1260
1261 /* single collisions */
1262 dev->stats.collisions += card_stats & 0xF;
1263 card_stats >>= 4;
1264
1265 /* multiple collisions */
1266 dev->stats.collisions += card_stats & 0xF;
1267 } else if (status & IM_RX_OVRN_INT) {
1268 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1269 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1270 eph_st = SMC_GET_EPH_STATUS(lp);
1271 SMC_SELECT_BANK(lp, 2); eph_st; }));
1272 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1273 dev->stats.rx_errors++;
1274 dev->stats.rx_fifo_errors++;
1275 } else if (status & IM_EPH_INT) {
1276 smc_eph_interrupt(dev);
1277 } else if (status & IM_MDINT) {
1278 SMC_ACK_INT(lp, IM_MDINT);
1279 smc_phy_interrupt(dev);
1280 } else if (status & IM_ERCV_INT) {
1281 SMC_ACK_INT(lp, IM_ERCV_INT);
1282 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1283 }
1284 } while (--timeout);
1285
1286 /* restore register states */
1287 SMC_SET_PTR(lp, saved_pointer);
1288 SMC_SET_INT_MASK(lp, mask);
1289 spin_unlock(&lp->lock);
1290
1291 #ifndef CONFIG_NET_POLL_CONTROLLER
1292 if (timeout == MAX_IRQ_LOOPS)
1293 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1294 mask);
1295 #endif
1296 DBG(3, dev, "Interrupt done (%d loops)\n",
1297 MAX_IRQ_LOOPS - timeout);
1298
1299 /*
1300 * We return IRQ_HANDLED unconditionally here even if there was
1301 * nothing to do. There is a possibility that a packet might
1302 * get enqueued into the chip right after TX_EMPTY_INT is raised
1303 * but just before the CPU acknowledges the IRQ.
1304 * Better take an unneeded IRQ in some occasions than complexifying
1305 * the code for all cases.
1306 */
1307 return IRQ_HANDLED;
1308 }
1309
1310 #ifdef CONFIG_NET_POLL_CONTROLLER
1311 /*
1312 * Polling receive - used by netconsole and other diagnostic tools
1313 * to allow network i/o with interrupts disabled.
1314 */
smc_poll_controller(struct net_device * dev)1315 static void smc_poll_controller(struct net_device *dev)
1316 {
1317 disable_irq(dev->irq);
1318 smc_interrupt(dev->irq, dev);
1319 enable_irq(dev->irq);
1320 }
1321 #endif
1322
1323 /* Our watchdog timed out. Called by the networking layer */
smc_timeout(struct net_device * dev,unsigned int txqueue)1324 static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1325 {
1326 struct smc_local *lp = netdev_priv(dev);
1327 void __iomem *ioaddr = lp->base;
1328 int status, mask, eph_st, meminfo, fifo;
1329
1330 DBG(2, dev, "%s\n", __func__);
1331
1332 spin_lock_irq(&lp->lock);
1333 status = SMC_GET_INT(lp);
1334 mask = SMC_GET_INT_MASK(lp);
1335 fifo = SMC_GET_FIFO(lp);
1336 SMC_SELECT_BANK(lp, 0);
1337 eph_st = SMC_GET_EPH_STATUS(lp);
1338 meminfo = SMC_GET_MIR(lp);
1339 SMC_SELECT_BANK(lp, 2);
1340 spin_unlock_irq(&lp->lock);
1341 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1342 status, mask, meminfo, fifo, eph_st);
1343
1344 smc_reset(dev);
1345 smc_enable(dev);
1346
1347 /*
1348 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1349 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1350 * which calls schedule(). Hence we use a work queue.
1351 */
1352 if (lp->phy_type != 0)
1353 schedule_work(&lp->phy_configure);
1354
1355 /* We can accept TX packets again */
1356 netif_trans_update(dev); /* prevent tx timeout */
1357 netif_wake_queue(dev);
1358 }
1359
1360 /*
1361 * This routine will, depending on the values passed to it,
1362 * either make it accept multicast packets, go into
1363 * promiscuous mode (for TCPDUMP and cousins) or accept
1364 * a select set of multicast packets
1365 */
smc_set_multicast_list(struct net_device * dev)1366 static void smc_set_multicast_list(struct net_device *dev)
1367 {
1368 struct smc_local *lp = netdev_priv(dev);
1369 void __iomem *ioaddr = lp->base;
1370 unsigned char multicast_table[8];
1371 int update_multicast = 0;
1372
1373 DBG(2, dev, "%s\n", __func__);
1374
1375 if (dev->flags & IFF_PROMISC) {
1376 DBG(2, dev, "RCR_PRMS\n");
1377 lp->rcr_cur_mode |= RCR_PRMS;
1378 }
1379
1380 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1381 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1382 when promiscuous mode is turned on.
1383 */
1384
1385 /*
1386 * Here, I am setting this to accept all multicast packets.
1387 * I don't need to zero the multicast table, because the flag is
1388 * checked before the table is
1389 */
1390 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1391 DBG(2, dev, "RCR_ALMUL\n");
1392 lp->rcr_cur_mode |= RCR_ALMUL;
1393 }
1394
1395 /*
1396 * This sets the internal hardware table to filter out unwanted
1397 * multicast packets before they take up memory.
1398 *
1399 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1400 * address are the offset into the table. If that bit is 1, then the
1401 * multicast packet is accepted. Otherwise, it's dropped silently.
1402 *
1403 * To use the 6 bits as an offset into the table, the high 3 bits are
1404 * the number of the 8 bit register, while the low 3 bits are the bit
1405 * within that register.
1406 */
1407 else if (!netdev_mc_empty(dev)) {
1408 struct netdev_hw_addr *ha;
1409
1410 /* table for flipping the order of 3 bits */
1411 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1412
1413 /* start with a table of all zeros: reject all */
1414 memset(multicast_table, 0, sizeof(multicast_table));
1415
1416 netdev_for_each_mc_addr(ha, dev) {
1417 int position;
1418
1419 /* only use the low order bits */
1420 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1421
1422 /* do some messy swapping to put the bit in the right spot */
1423 multicast_table[invert3[position&7]] |=
1424 (1<<invert3[(position>>3)&7]);
1425 }
1426
1427 /* be sure I get rid of flags I might have set */
1428 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1429
1430 /* now, the table can be loaded into the chipset */
1431 update_multicast = 1;
1432 } else {
1433 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1434 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1435
1436 /*
1437 * since I'm disabling all multicast entirely, I need to
1438 * clear the multicast list
1439 */
1440 memset(multicast_table, 0, sizeof(multicast_table));
1441 update_multicast = 1;
1442 }
1443
1444 spin_lock_irq(&lp->lock);
1445 SMC_SELECT_BANK(lp, 0);
1446 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1447 if (update_multicast) {
1448 SMC_SELECT_BANK(lp, 3);
1449 SMC_SET_MCAST(lp, multicast_table);
1450 }
1451 SMC_SELECT_BANK(lp, 2);
1452 spin_unlock_irq(&lp->lock);
1453 }
1454
1455
1456 /*
1457 * Open and Initialize the board
1458 *
1459 * Set up everything, reset the card, etc..
1460 */
1461 static int
smc_open(struct net_device * dev)1462 smc_open(struct net_device *dev)
1463 {
1464 struct smc_local *lp = netdev_priv(dev);
1465
1466 DBG(2, dev, "%s\n", __func__);
1467
1468 /* Setup the default Register Modes */
1469 lp->tcr_cur_mode = TCR_DEFAULT;
1470 lp->rcr_cur_mode = RCR_DEFAULT;
1471 lp->rpc_cur_mode = RPC_DEFAULT |
1472 lp->cfg.leda << RPC_LSXA_SHFT |
1473 lp->cfg.ledb << RPC_LSXB_SHFT;
1474
1475 /*
1476 * If we are not using a MII interface, we need to
1477 * monitor our own carrier signal to detect faults.
1478 */
1479 if (lp->phy_type == 0)
1480 lp->tcr_cur_mode |= TCR_MON_CSN;
1481
1482 /* reset the hardware */
1483 smc_reset(dev);
1484 smc_enable(dev);
1485
1486 /* Configure the PHY, initialize the link state */
1487 if (lp->phy_type != 0)
1488 smc_phy_configure(&lp->phy_configure);
1489 else {
1490 spin_lock_irq(&lp->lock);
1491 smc_10bt_check_media(dev, 1);
1492 spin_unlock_irq(&lp->lock);
1493 }
1494
1495 netif_start_queue(dev);
1496 return 0;
1497 }
1498
1499 /*
1500 * smc_close
1501 *
1502 * this makes the board clean up everything that it can
1503 * and not talk to the outside world. Caused by
1504 * an 'ifconfig ethX down'
1505 */
smc_close(struct net_device * dev)1506 static int smc_close(struct net_device *dev)
1507 {
1508 struct smc_local *lp = netdev_priv(dev);
1509
1510 DBG(2, dev, "%s\n", __func__);
1511
1512 netif_stop_queue(dev);
1513 netif_carrier_off(dev);
1514
1515 /* clear everything */
1516 smc_shutdown(dev);
1517 tasklet_kill(&lp->tx_task);
1518 smc_phy_powerdown(dev);
1519 return 0;
1520 }
1521
1522 /*
1523 * Ethtool support
1524 */
1525 static int
smc_ethtool_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1526 smc_ethtool_get_link_ksettings(struct net_device *dev,
1527 struct ethtool_link_ksettings *cmd)
1528 {
1529 struct smc_local *lp = netdev_priv(dev);
1530
1531 if (lp->phy_type != 0) {
1532 spin_lock_irq(&lp->lock);
1533 mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1534 spin_unlock_irq(&lp->lock);
1535 } else {
1536 u32 supported = SUPPORTED_10baseT_Half |
1537 SUPPORTED_10baseT_Full |
1538 SUPPORTED_TP | SUPPORTED_AUI;
1539
1540 if (lp->ctl_rspeed == 10)
1541 cmd->base.speed = SPEED_10;
1542 else if (lp->ctl_rspeed == 100)
1543 cmd->base.speed = SPEED_100;
1544
1545 cmd->base.autoneg = AUTONEG_DISABLE;
1546 cmd->base.port = 0;
1547 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1548 DUPLEX_FULL : DUPLEX_HALF;
1549
1550 ethtool_convert_legacy_u32_to_link_mode(
1551 cmd->link_modes.supported, supported);
1552 }
1553
1554 return 0;
1555 }
1556
1557 static int
smc_ethtool_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1558 smc_ethtool_set_link_ksettings(struct net_device *dev,
1559 const struct ethtool_link_ksettings *cmd)
1560 {
1561 struct smc_local *lp = netdev_priv(dev);
1562 int ret;
1563
1564 if (lp->phy_type != 0) {
1565 spin_lock_irq(&lp->lock);
1566 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1567 spin_unlock_irq(&lp->lock);
1568 } else {
1569 if (cmd->base.autoneg != AUTONEG_DISABLE ||
1570 cmd->base.speed != SPEED_10 ||
1571 (cmd->base.duplex != DUPLEX_HALF &&
1572 cmd->base.duplex != DUPLEX_FULL) ||
1573 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1574 return -EINVAL;
1575
1576 // lp->port = cmd->base.port;
1577 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578
1579 // if (netif_running(dev))
1580 // smc_set_port(dev);
1581
1582 ret = 0;
1583 }
1584
1585 return ret;
1586 }
1587
1588 static void
smc_ethtool_getdrvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1589 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1590 {
1591 strscpy(info->driver, CARDNAME, sizeof(info->driver));
1592 strscpy(info->version, version, sizeof(info->version));
1593 strscpy(info->bus_info, dev_name(dev->dev.parent),
1594 sizeof(info->bus_info));
1595 }
1596
smc_ethtool_nwayreset(struct net_device * dev)1597 static int smc_ethtool_nwayreset(struct net_device *dev)
1598 {
1599 struct smc_local *lp = netdev_priv(dev);
1600 int ret = -EINVAL;
1601
1602 if (lp->phy_type != 0) {
1603 spin_lock_irq(&lp->lock);
1604 ret = mii_nway_restart(&lp->mii);
1605 spin_unlock_irq(&lp->lock);
1606 }
1607
1608 return ret;
1609 }
1610
smc_ethtool_getmsglevel(struct net_device * dev)1611 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1612 {
1613 struct smc_local *lp = netdev_priv(dev);
1614 return lp->msg_enable;
1615 }
1616
smc_ethtool_setmsglevel(struct net_device * dev,u32 level)1617 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1618 {
1619 struct smc_local *lp = netdev_priv(dev);
1620 lp->msg_enable = level;
1621 }
1622
smc_write_eeprom_word(struct net_device * dev,u16 addr,u16 word)1623 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1624 {
1625 u16 ctl;
1626 struct smc_local *lp = netdev_priv(dev);
1627 void __iomem *ioaddr = lp->base;
1628
1629 spin_lock_irq(&lp->lock);
1630 /* load word into GP register */
1631 SMC_SELECT_BANK(lp, 1);
1632 SMC_SET_GP(lp, word);
1633 /* set the address to put the data in EEPROM */
1634 SMC_SELECT_BANK(lp, 2);
1635 SMC_SET_PTR(lp, addr);
1636 /* tell it to write */
1637 SMC_SELECT_BANK(lp, 1);
1638 ctl = SMC_GET_CTL(lp);
1639 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1640 /* wait for it to finish */
1641 do {
1642 udelay(1);
1643 } while (SMC_GET_CTL(lp) & CTL_STORE);
1644 /* clean up */
1645 SMC_SET_CTL(lp, ctl);
1646 SMC_SELECT_BANK(lp, 2);
1647 spin_unlock_irq(&lp->lock);
1648 return 0;
1649 }
1650
smc_read_eeprom_word(struct net_device * dev,u16 addr,u16 * word)1651 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1652 {
1653 u16 ctl;
1654 struct smc_local *lp = netdev_priv(dev);
1655 void __iomem *ioaddr = lp->base;
1656
1657 spin_lock_irq(&lp->lock);
1658 /* set the EEPROM address to get the data from */
1659 SMC_SELECT_BANK(lp, 2);
1660 SMC_SET_PTR(lp, addr | PTR_READ);
1661 /* tell it to load */
1662 SMC_SELECT_BANK(lp, 1);
1663 SMC_SET_GP(lp, 0xffff); /* init to known */
1664 ctl = SMC_GET_CTL(lp);
1665 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1666 /* wait for it to finish */
1667 do {
1668 udelay(1);
1669 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1670 /* read word from GP register */
1671 *word = SMC_GET_GP(lp);
1672 /* clean up */
1673 SMC_SET_CTL(lp, ctl);
1674 SMC_SELECT_BANK(lp, 2);
1675 spin_unlock_irq(&lp->lock);
1676 return 0;
1677 }
1678
smc_ethtool_geteeprom_len(struct net_device * dev)1679 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1680 {
1681 return 0x23 * 2;
1682 }
1683
smc_ethtool_geteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1684 static int smc_ethtool_geteeprom(struct net_device *dev,
1685 struct ethtool_eeprom *eeprom, u8 *data)
1686 {
1687 int i;
1688 int imax;
1689
1690 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1691 eeprom->len, eeprom->offset, eeprom->offset);
1692 imax = smc_ethtool_geteeprom_len(dev);
1693 for (i = 0; i < eeprom->len; i += 2) {
1694 int ret;
1695 u16 wbuf;
1696 int offset = i + eeprom->offset;
1697 if (offset > imax)
1698 break;
1699 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1700 if (ret != 0)
1701 return ret;
1702 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1703 data[i] = (wbuf >> 8) & 0xff;
1704 data[i+1] = wbuf & 0xff;
1705 }
1706 return 0;
1707 }
1708
smc_ethtool_seteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1709 static int smc_ethtool_seteeprom(struct net_device *dev,
1710 struct ethtool_eeprom *eeprom, u8 *data)
1711 {
1712 int i;
1713 int imax;
1714
1715 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1716 eeprom->len, eeprom->offset, eeprom->offset);
1717 imax = smc_ethtool_geteeprom_len(dev);
1718 for (i = 0; i < eeprom->len; i += 2) {
1719 int ret;
1720 u16 wbuf;
1721 int offset = i + eeprom->offset;
1722 if (offset > imax)
1723 break;
1724 wbuf = (data[i] << 8) | data[i + 1];
1725 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1726 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1727 if (ret != 0)
1728 return ret;
1729 }
1730 return 0;
1731 }
1732
1733
1734 static const struct ethtool_ops smc_ethtool_ops = {
1735 .get_drvinfo = smc_ethtool_getdrvinfo,
1736
1737 .get_msglevel = smc_ethtool_getmsglevel,
1738 .set_msglevel = smc_ethtool_setmsglevel,
1739 .nway_reset = smc_ethtool_nwayreset,
1740 .get_link = ethtool_op_get_link,
1741 .get_eeprom_len = smc_ethtool_geteeprom_len,
1742 .get_eeprom = smc_ethtool_geteeprom,
1743 .set_eeprom = smc_ethtool_seteeprom,
1744 .get_link_ksettings = smc_ethtool_get_link_ksettings,
1745 .set_link_ksettings = smc_ethtool_set_link_ksettings,
1746 };
1747
1748 static const struct net_device_ops smc_netdev_ops = {
1749 .ndo_open = smc_open,
1750 .ndo_stop = smc_close,
1751 .ndo_start_xmit = smc_hard_start_xmit,
1752 .ndo_tx_timeout = smc_timeout,
1753 .ndo_set_rx_mode = smc_set_multicast_list,
1754 .ndo_validate_addr = eth_validate_addr,
1755 .ndo_set_mac_address = eth_mac_addr,
1756 #ifdef CONFIG_NET_POLL_CONTROLLER
1757 .ndo_poll_controller = smc_poll_controller,
1758 #endif
1759 };
1760
1761 /*
1762 * smc_findirq
1763 *
1764 * This routine has a simple purpose -- make the SMC chip generate an
1765 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1766 */
1767 /*
1768 * does this still work?
1769 *
1770 * I just deleted auto_irq.c, since it was never built...
1771 * --jgarzik
1772 */
smc_findirq(struct smc_local * lp)1773 static int smc_findirq(struct smc_local *lp)
1774 {
1775 void __iomem *ioaddr = lp->base;
1776 int timeout = 20;
1777 unsigned long cookie;
1778
1779 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1780
1781 cookie = probe_irq_on();
1782
1783 /*
1784 * What I try to do here is trigger an ALLOC_INT. This is done
1785 * by allocating a small chunk of memory, which will give an interrupt
1786 * when done.
1787 */
1788 /* enable ALLOCation interrupts ONLY */
1789 SMC_SELECT_BANK(lp, 2);
1790 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1791
1792 /*
1793 * Allocate 512 bytes of memory. Note that the chip was just
1794 * reset so all the memory is available
1795 */
1796 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1797
1798 /*
1799 * Wait until positive that the interrupt has been generated
1800 */
1801 do {
1802 int int_status;
1803 udelay(10);
1804 int_status = SMC_GET_INT(lp);
1805 if (int_status & IM_ALLOC_INT)
1806 break; /* got the interrupt */
1807 } while (--timeout);
1808
1809 /*
1810 * there is really nothing that I can do here if timeout fails,
1811 * as autoirq_report will return a 0 anyway, which is what I
1812 * want in this case. Plus, the clean up is needed in both
1813 * cases.
1814 */
1815
1816 /* and disable all interrupts again */
1817 SMC_SET_INT_MASK(lp, 0);
1818
1819 /* and return what I found */
1820 return probe_irq_off(cookie);
1821 }
1822
1823 /*
1824 * Function: smc_probe(unsigned long ioaddr)
1825 *
1826 * Purpose:
1827 * Tests to see if a given ioaddr points to an SMC91x chip.
1828 * Returns a 0 on success
1829 *
1830 * Algorithm:
1831 * (1) see if the high byte of BANK_SELECT is 0x33
1832 * (2) compare the ioaddr with the base register's address
1833 * (3) see if I recognize the chip ID in the appropriate register
1834 *
1835 * Here I do typical initialization tasks.
1836 *
1837 * o Initialize the structure if needed
1838 * o print out my vanity message if not done so already
1839 * o print out what type of hardware is detected
1840 * o print out the ethernet address
1841 * o find the IRQ
1842 * o set up my private data
1843 * o configure the dev structure with my subroutines
1844 * o actually GRAB the irq.
1845 * o GRAB the region
1846 */
smc_probe(struct net_device * dev,void __iomem * ioaddr,unsigned long irq_flags)1847 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1848 unsigned long irq_flags)
1849 {
1850 struct smc_local *lp = netdev_priv(dev);
1851 int retval;
1852 unsigned int val, revision_register;
1853 const char *version_string;
1854 u8 addr[ETH_ALEN];
1855
1856 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1857
1858 /* First, see if the high byte is 0x33 */
1859 val = SMC_CURRENT_BANK(lp);
1860 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1861 CARDNAME, val);
1862 if ((val & 0xFF00) != 0x3300) {
1863 if ((val & 0xFF) == 0x33) {
1864 netdev_warn(dev,
1865 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1866 CARDNAME, ioaddr);
1867 }
1868 retval = -ENODEV;
1869 goto err_out;
1870 }
1871
1872 /*
1873 * The above MIGHT indicate a device, but I need to write to
1874 * further test this.
1875 */
1876 SMC_SELECT_BANK(lp, 0);
1877 val = SMC_CURRENT_BANK(lp);
1878 if ((val & 0xFF00) != 0x3300) {
1879 retval = -ENODEV;
1880 goto err_out;
1881 }
1882
1883 /*
1884 * well, we've already written once, so hopefully another
1885 * time won't hurt. This time, I need to switch the bank
1886 * register to bank 1, so I can access the base address
1887 * register
1888 */
1889 SMC_SELECT_BANK(lp, 1);
1890 val = SMC_GET_BASE(lp);
1891 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1892 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1893 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1894 CARDNAME, ioaddr, val);
1895 }
1896
1897 /*
1898 * check if the revision register is something that I
1899 * recognize. These might need to be added to later,
1900 * as future revisions could be added.
1901 */
1902 SMC_SELECT_BANK(lp, 3);
1903 revision_register = SMC_GET_REV(lp);
1904 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1905 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1906 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1907 /* I don't recognize this chip, so... */
1908 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1909 CARDNAME, ioaddr, revision_register);
1910
1911 retval = -ENODEV;
1912 goto err_out;
1913 }
1914
1915 /* At this point I'll assume that the chip is an SMC91x. */
1916 pr_info_once("%s\n", version);
1917
1918 /* fill in some of the fields */
1919 dev->base_addr = (unsigned long)ioaddr;
1920 lp->base = ioaddr;
1921 lp->version = revision_register & 0xff;
1922 spin_lock_init(&lp->lock);
1923
1924 /* Get the MAC address */
1925 SMC_SELECT_BANK(lp, 1);
1926 SMC_GET_MAC_ADDR(lp, addr);
1927 eth_hw_addr_set(dev, addr);
1928
1929 /* now, reset the chip, and put it into a known state */
1930 smc_reset(dev);
1931
1932 /*
1933 * If dev->irq is 0, then the device has to be banged on to see
1934 * what the IRQ is.
1935 *
1936 * This banging doesn't always detect the IRQ, for unknown reasons.
1937 * a workaround is to reset the chip and try again.
1938 *
1939 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1940 * be what is requested on the command line. I don't do that, mostly
1941 * because the card that I have uses a non-standard method of accessing
1942 * the IRQs, and because this _should_ work in most configurations.
1943 *
1944 * Specifying an IRQ is done with the assumption that the user knows
1945 * what (s)he is doing. No checking is done!!!!
1946 */
1947 if (dev->irq < 1) {
1948 int trials;
1949
1950 trials = 3;
1951 while (trials--) {
1952 dev->irq = smc_findirq(lp);
1953 if (dev->irq)
1954 break;
1955 /* kick the card and try again */
1956 smc_reset(dev);
1957 }
1958 }
1959 if (dev->irq == 0) {
1960 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1961 retval = -ENODEV;
1962 goto err_out;
1963 }
1964 dev->irq = irq_canonicalize(dev->irq);
1965
1966 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1967 dev->netdev_ops = &smc_netdev_ops;
1968 dev->ethtool_ops = &smc_ethtool_ops;
1969
1970 tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1971 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1972 lp->dev = dev;
1973 lp->mii.phy_id_mask = 0x1f;
1974 lp->mii.reg_num_mask = 0x1f;
1975 lp->mii.force_media = 0;
1976 lp->mii.full_duplex = 0;
1977 lp->mii.dev = dev;
1978 lp->mii.mdio_read = smc_phy_read;
1979 lp->mii.mdio_write = smc_phy_write;
1980
1981 /*
1982 * Locate the phy, if any.
1983 */
1984 if (lp->version >= (CHIP_91100 << 4))
1985 smc_phy_detect(dev);
1986
1987 /* then shut everything down to save power */
1988 smc_shutdown(dev);
1989 smc_phy_powerdown(dev);
1990
1991 /* Set default parameters */
1992 lp->msg_enable = NETIF_MSG_LINK;
1993 lp->ctl_rfduplx = 0;
1994 lp->ctl_rspeed = 10;
1995
1996 if (lp->version >= (CHIP_91100 << 4)) {
1997 lp->ctl_rfduplx = 1;
1998 lp->ctl_rspeed = 100;
1999 }
2000
2001 /* Grab the IRQ */
2002 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2003 if (retval)
2004 goto err_out;
2005
2006 #ifdef CONFIG_ARCH_PXA
2007 # ifdef SMC_USE_PXA_DMA
2008 lp->cfg.flags |= SMC91X_USE_DMA;
2009 # endif
2010 if (lp->cfg.flags & SMC91X_USE_DMA) {
2011 dma_cap_mask_t mask;
2012
2013 dma_cap_zero(mask);
2014 dma_cap_set(DMA_SLAVE, mask);
2015 lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2016 }
2017 #endif
2018
2019 retval = register_netdev(dev);
2020 if (retval == 0) {
2021 /* now, print out the card info, in a short format.. */
2022 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2023 version_string, revision_register & 0x0f,
2024 lp->base, dev->irq);
2025
2026 if (lp->dma_chan)
2027 pr_cont(" DMA %p", lp->dma_chan);
2028
2029 pr_cont("%s%s\n",
2030 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2031 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2032
2033 if (!is_valid_ether_addr(dev->dev_addr)) {
2034 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2035 } else {
2036 /* Print the Ethernet address */
2037 netdev_info(dev, "Ethernet addr: %pM\n",
2038 dev->dev_addr);
2039 }
2040
2041 if (lp->phy_type == 0) {
2042 PRINTK(dev, "No PHY found\n");
2043 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2044 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2045 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2046 PRINTK(dev, "PHY LAN83C180\n");
2047 }
2048 }
2049
2050 err_out:
2051 #ifdef CONFIG_ARCH_PXA
2052 if (retval && lp->dma_chan)
2053 dma_release_channel(lp->dma_chan);
2054 #endif
2055 return retval;
2056 }
2057
smc_enable_device(struct platform_device * pdev)2058 static int smc_enable_device(struct platform_device *pdev)
2059 {
2060 struct net_device *ndev = platform_get_drvdata(pdev);
2061 struct smc_local *lp = netdev_priv(ndev);
2062 unsigned long flags;
2063 unsigned char ecor, ecsr;
2064 void __iomem *addr;
2065 struct resource * res;
2066
2067 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2068 if (!res)
2069 return 0;
2070
2071 /*
2072 * Map the attribute space. This is overkill, but clean.
2073 */
2074 addr = ioremap(res->start, ATTRIB_SIZE);
2075 if (!addr)
2076 return -ENOMEM;
2077
2078 /*
2079 * Reset the device. We must disable IRQs around this
2080 * since a reset causes the IRQ line become active.
2081 */
2082 local_irq_save(flags);
2083 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2084 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2085 readb(addr + (ECOR << SMC_IO_SHIFT));
2086
2087 /*
2088 * Wait 100us for the chip to reset.
2089 */
2090 udelay(100);
2091
2092 /*
2093 * The device will ignore all writes to the enable bit while
2094 * reset is asserted, even if the reset bit is cleared in the
2095 * same write. Must clear reset first, then enable the device.
2096 */
2097 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2098 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2099
2100 /*
2101 * Set the appropriate byte/word mode.
2102 */
2103 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2104 if (!SMC_16BIT(lp))
2105 ecsr |= ECSR_IOIS8;
2106 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2107 local_irq_restore(flags);
2108
2109 iounmap(addr);
2110
2111 /*
2112 * Wait for the chip to wake up. We could poll the control
2113 * register in the main register space, but that isn't mapped
2114 * yet. We know this is going to take 750us.
2115 */
2116 msleep(1);
2117
2118 return 0;
2119 }
2120
smc_request_attrib(struct platform_device * pdev,struct net_device * ndev)2121 static int smc_request_attrib(struct platform_device *pdev,
2122 struct net_device *ndev)
2123 {
2124 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2125 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2126
2127 if (!res)
2128 return 0;
2129
2130 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2131 return -EBUSY;
2132
2133 return 0;
2134 }
2135
smc_release_attrib(struct platform_device * pdev,struct net_device * ndev)2136 static void smc_release_attrib(struct platform_device *pdev,
2137 struct net_device *ndev)
2138 {
2139 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2140 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2141
2142 if (res)
2143 release_mem_region(res->start, ATTRIB_SIZE);
2144 }
2145
smc_request_datacs(struct platform_device * pdev,struct net_device * ndev)2146 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2147 {
2148 if (SMC_CAN_USE_DATACS) {
2149 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2150 struct smc_local *lp = netdev_priv(ndev);
2151
2152 if (!res)
2153 return;
2154
2155 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2156 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2157 CARDNAME);
2158 return;
2159 }
2160
2161 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2162 }
2163 }
2164
smc_release_datacs(struct platform_device * pdev,struct net_device * ndev)2165 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2166 {
2167 if (SMC_CAN_USE_DATACS) {
2168 struct smc_local *lp = netdev_priv(ndev);
2169 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2170
2171 if (lp->datacs)
2172 iounmap(lp->datacs);
2173
2174 lp->datacs = NULL;
2175
2176 if (res)
2177 release_mem_region(res->start, SMC_DATA_EXTENT);
2178 }
2179 }
2180
2181 static const struct acpi_device_id smc91x_acpi_match[] = {
2182 { "LNRO0003", 0 },
2183 { }
2184 };
2185 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2186
2187 #if IS_BUILTIN(CONFIG_OF)
2188 static const struct of_device_id smc91x_match[] = {
2189 { .compatible = "smsc,lan91c94", },
2190 { .compatible = "smsc,lan91c111", },
2191 {},
2192 };
2193 MODULE_DEVICE_TABLE(of, smc91x_match);
2194
2195 /**
2196 * try_toggle_control_gpio - configure a gpio if it exists
2197 * @dev: net device
2198 * @desc: where to store the GPIO descriptor, if it exists
2199 * @name: name of the GPIO in DT
2200 * @index: index of the GPIO in DT
2201 * @value: set the GPIO to this value
2202 * @nsdelay: delay before setting the GPIO
2203 */
try_toggle_control_gpio(struct device * dev,struct gpio_desc ** desc,const char * name,int index,int value,unsigned int nsdelay)2204 static int try_toggle_control_gpio(struct device *dev,
2205 struct gpio_desc **desc,
2206 const char *name, int index,
2207 int value, unsigned int nsdelay)
2208 {
2209 struct gpio_desc *gpio;
2210 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2211
2212 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2213 if (IS_ERR(gpio))
2214 return PTR_ERR(gpio);
2215
2216 if (gpio) {
2217 if (nsdelay)
2218 usleep_range(nsdelay, 2 * nsdelay);
2219 gpiod_set_value_cansleep(gpio, value);
2220 }
2221 *desc = gpio;
2222
2223 return 0;
2224 }
2225 #endif
2226
2227 /*
2228 * smc_init(void)
2229 * Input parameters:
2230 * dev->base_addr == 0, try to find all possible locations
2231 * dev->base_addr > 0x1ff, this is the address to check
2232 * dev->base_addr == <anything else>, return failure code
2233 *
2234 * Output:
2235 * 0 --> there is a device
2236 * anything else, error
2237 */
smc_drv_probe(struct platform_device * pdev)2238 static int smc_drv_probe(struct platform_device *pdev)
2239 {
2240 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2241 const struct of_device_id *match = NULL;
2242 struct smc_local *lp;
2243 struct net_device *ndev;
2244 struct resource *res;
2245 unsigned int __iomem *addr;
2246 unsigned long irq_flags = SMC_IRQ_FLAGS;
2247 unsigned long irq_resflags;
2248 int ret;
2249
2250 ndev = alloc_etherdev(sizeof(struct smc_local));
2251 if (!ndev) {
2252 ret = -ENOMEM;
2253 goto out;
2254 }
2255 SET_NETDEV_DEV(ndev, &pdev->dev);
2256
2257 /* get configuration from platform data, only allow use of
2258 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2259 */
2260
2261 lp = netdev_priv(ndev);
2262 lp->cfg.flags = 0;
2263
2264 if (pd) {
2265 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2266 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2267
2268 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2269 dev_err(&pdev->dev,
2270 "at least one of 8-bit or 16-bit access support is required.\n");
2271 ret = -ENXIO;
2272 goto out_free_netdev;
2273 }
2274 }
2275
2276 #if IS_BUILTIN(CONFIG_OF)
2277 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2278 if (match) {
2279 u32 val;
2280
2281 /* Optional pwrdwn GPIO configured? */
2282 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2283 "power", 0, 0, 100);
2284 if (ret)
2285 goto out_free_netdev;
2286
2287 /*
2288 * Optional reset GPIO configured? Minimum 100 ns reset needed
2289 * according to LAN91C96 datasheet page 14.
2290 */
2291 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2292 "reset", 0, 0, 100);
2293 if (ret)
2294 goto out_free_netdev;
2295
2296 /*
2297 * Need to wait for optional EEPROM to load, max 750 us according
2298 * to LAN91C96 datasheet page 55.
2299 */
2300 if (lp->reset_gpio)
2301 usleep_range(750, 1000);
2302
2303 /* Combination of IO widths supported, default to 16-bit */
2304 if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2305 &val)) {
2306 if (val & 1)
2307 lp->cfg.flags |= SMC91X_USE_8BIT;
2308 if ((val == 0) || (val & 2))
2309 lp->cfg.flags |= SMC91X_USE_16BIT;
2310 if (val & 4)
2311 lp->cfg.flags |= SMC91X_USE_32BIT;
2312 } else {
2313 lp->cfg.flags |= SMC91X_USE_16BIT;
2314 }
2315 if (!device_property_read_u32(&pdev->dev, "reg-shift",
2316 &val))
2317 lp->io_shift = val;
2318 lp->cfg.pxa_u16_align4 =
2319 device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2320 }
2321 #endif
2322
2323 if (!pd && !match) {
2324 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2325 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2326 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2327 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2328 }
2329
2330 if (!lp->cfg.leda && !lp->cfg.ledb) {
2331 lp->cfg.leda = RPC_LSA_DEFAULT;
2332 lp->cfg.ledb = RPC_LSB_DEFAULT;
2333 }
2334
2335 ndev->dma = (unsigned char)-1;
2336
2337 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2338 if (!res)
2339 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2340 if (!res) {
2341 ret = -ENODEV;
2342 goto out_free_netdev;
2343 }
2344
2345
2346 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2347 ret = -EBUSY;
2348 goto out_free_netdev;
2349 }
2350
2351 ndev->irq = platform_get_irq(pdev, 0);
2352 if (ndev->irq < 0) {
2353 ret = ndev->irq;
2354 goto out_release_io;
2355 }
2356 /*
2357 * If this platform does not specify any special irqflags, or if
2358 * the resource supplies a trigger, override the irqflags with
2359 * the trigger flags from the resource.
2360 */
2361 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2362 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2363 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2364
2365 ret = smc_request_attrib(pdev, ndev);
2366 if (ret)
2367 goto out_release_io;
2368 #if defined(CONFIG_ASSABET_NEPONSET)
2369 if (machine_is_assabet() && machine_has_neponset())
2370 neponset_ncr_set(NCR_ENET_OSC_EN);
2371 #endif
2372 platform_set_drvdata(pdev, ndev);
2373 ret = smc_enable_device(pdev);
2374 if (ret)
2375 goto out_release_attrib;
2376
2377 addr = ioremap(res->start, SMC_IO_EXTENT);
2378 if (!addr) {
2379 ret = -ENOMEM;
2380 goto out_release_attrib;
2381 }
2382
2383 #ifdef CONFIG_ARCH_PXA
2384 {
2385 struct smc_local *lp = netdev_priv(ndev);
2386 lp->device = &pdev->dev;
2387 lp->physaddr = res->start;
2388
2389 }
2390 #endif
2391
2392 ret = smc_probe(ndev, addr, irq_flags);
2393 if (ret != 0)
2394 goto out_iounmap;
2395
2396 smc_request_datacs(pdev, ndev);
2397
2398 return 0;
2399
2400 out_iounmap:
2401 iounmap(addr);
2402 out_release_attrib:
2403 smc_release_attrib(pdev, ndev);
2404 out_release_io:
2405 release_mem_region(res->start, SMC_IO_EXTENT);
2406 out_free_netdev:
2407 free_netdev(ndev);
2408 out:
2409 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2410
2411 return ret;
2412 }
2413
smc_drv_remove(struct platform_device * pdev)2414 static int smc_drv_remove(struct platform_device *pdev)
2415 {
2416 struct net_device *ndev = platform_get_drvdata(pdev);
2417 struct smc_local *lp = netdev_priv(ndev);
2418 struct resource *res;
2419
2420 unregister_netdev(ndev);
2421
2422 free_irq(ndev->irq, ndev);
2423
2424 #ifdef CONFIG_ARCH_PXA
2425 if (lp->dma_chan)
2426 dma_release_channel(lp->dma_chan);
2427 #endif
2428 iounmap(lp->base);
2429
2430 smc_release_datacs(pdev,ndev);
2431 smc_release_attrib(pdev,ndev);
2432
2433 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2434 if (!res)
2435 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2436 release_mem_region(res->start, SMC_IO_EXTENT);
2437
2438 free_netdev(ndev);
2439
2440 return 0;
2441 }
2442
smc_drv_suspend(struct device * dev)2443 static int smc_drv_suspend(struct device *dev)
2444 {
2445 struct net_device *ndev = dev_get_drvdata(dev);
2446
2447 if (ndev) {
2448 if (netif_running(ndev)) {
2449 netif_device_detach(ndev);
2450 smc_shutdown(ndev);
2451 smc_phy_powerdown(ndev);
2452 }
2453 }
2454 return 0;
2455 }
2456
smc_drv_resume(struct device * dev)2457 static int smc_drv_resume(struct device *dev)
2458 {
2459 struct platform_device *pdev = to_platform_device(dev);
2460 struct net_device *ndev = platform_get_drvdata(pdev);
2461
2462 if (ndev) {
2463 struct smc_local *lp = netdev_priv(ndev);
2464 smc_enable_device(pdev);
2465 if (netif_running(ndev)) {
2466 smc_reset(ndev);
2467 smc_enable(ndev);
2468 if (lp->phy_type != 0)
2469 smc_phy_configure(&lp->phy_configure);
2470 netif_device_attach(ndev);
2471 }
2472 }
2473 return 0;
2474 }
2475
2476 static const struct dev_pm_ops smc_drv_pm_ops = {
2477 .suspend = smc_drv_suspend,
2478 .resume = smc_drv_resume,
2479 };
2480
2481 static struct platform_driver smc_driver = {
2482 .probe = smc_drv_probe,
2483 .remove = smc_drv_remove,
2484 .driver = {
2485 .name = CARDNAME,
2486 .pm = &smc_drv_pm_ops,
2487 .of_match_table = of_match_ptr(smc91x_match),
2488 .acpi_match_table = smc91x_acpi_match,
2489 },
2490 };
2491
2492 module_platform_driver(smc_driver);
2493