• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /*
25  * Returns opp descriptor node for a device node, caller must
26  * do of_node_put().
27  */
_opp_of_get_opp_desc_node(struct device_node * np,int index)28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 						     int index)
30 {
31 	/* "operating-points-v2" can be an array for power domain providers */
32 	return of_parse_phandle(np, "operating-points-v2", index);
33 }
34 
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
dev_pm_opp_of_get_opp_desc_node(struct device * dev)36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41 
_managed_opp(struct device * dev,int index)42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44 	struct opp_table *opp_table, *managed_table = NULL;
45 	struct device_node *np;
46 
47 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 	if (!np)
49 		return NULL;
50 
51 	list_for_each_entry(opp_table, &opp_tables, node) {
52 		if (opp_table->np == np) {
53 			/*
54 			 * Multiple devices can point to the same OPP table and
55 			 * so will have same node-pointer, np.
56 			 *
57 			 * But the OPPs will be considered as shared only if the
58 			 * OPP table contains a "opp-shared" property.
59 			 */
60 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 				_get_opp_table_kref(opp_table);
62 				managed_table = opp_table;
63 			}
64 
65 			break;
66 		}
67 	}
68 
69 	of_node_put(np);
70 
71 	return managed_table;
72 }
73 
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
_find_opp_of_np(struct opp_table * opp_table,struct device_node * opp_np)75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 					  struct device_node *opp_np)
77 {
78 	struct dev_pm_opp *opp;
79 
80 	mutex_lock(&opp_table->lock);
81 
82 	list_for_each_entry(opp, &opp_table->opp_list, node) {
83 		if (opp->np == opp_np) {
84 			dev_pm_opp_get(opp);
85 			mutex_unlock(&opp_table->lock);
86 			return opp;
87 		}
88 	}
89 
90 	mutex_unlock(&opp_table->lock);
91 
92 	return NULL;
93 }
94 
of_parse_required_opp(struct device_node * np,int index)95 static struct device_node *of_parse_required_opp(struct device_node *np,
96 						 int index)
97 {
98 	return of_parse_phandle(np, "required-opps", index);
99 }
100 
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
_find_table_of_opp_np(struct device_node * opp_np)102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104 	struct opp_table *opp_table;
105 	struct device_node *opp_table_np;
106 
107 	opp_table_np = of_get_parent(opp_np);
108 	if (!opp_table_np)
109 		goto err;
110 
111 	/* It is safe to put the node now as all we need now is its address */
112 	of_node_put(opp_table_np);
113 
114 	mutex_lock(&opp_table_lock);
115 	list_for_each_entry(opp_table, &opp_tables, node) {
116 		if (opp_table_np == opp_table->np) {
117 			_get_opp_table_kref(opp_table);
118 			mutex_unlock(&opp_table_lock);
119 			return opp_table;
120 		}
121 	}
122 	mutex_unlock(&opp_table_lock);
123 
124 err:
125 	return ERR_PTR(-ENODEV);
126 }
127 
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
_opp_table_free_required_tables(struct opp_table * opp_table)129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 	int i;
133 
134 	if (!required_opp_tables)
135 		return;
136 
137 	for (i = 0; i < opp_table->required_opp_count; i++) {
138 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 			continue;
140 
141 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 	}
143 
144 	kfree(required_opp_tables);
145 
146 	opp_table->required_opp_count = 0;
147 	opp_table->required_opp_tables = NULL;
148 	list_del(&opp_table->lazy);
149 }
150 
151 /*
152  * Populate all devices and opp tables which are part of "required-opps" list.
153  * Checking only the first OPP node should be enough.
154  */
_opp_table_alloc_required_tables(struct opp_table * opp_table,struct device * dev,struct device_node * opp_np)155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 					     struct device *dev,
157 					     struct device_node *opp_np)
158 {
159 	struct opp_table **required_opp_tables;
160 	struct device_node *required_np, *np;
161 	bool lazy = false;
162 	int count, i;
163 
164 	/* Traversing the first OPP node is all we need */
165 	np = of_get_next_available_child(opp_np, NULL);
166 	if (!np) {
167 		dev_warn(dev, "Empty OPP table\n");
168 
169 		return;
170 	}
171 
172 	count = of_count_phandle_with_args(np, "required-opps", NULL);
173 	if (count <= 0)
174 		goto put_np;
175 
176 	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 				      GFP_KERNEL);
178 	if (!required_opp_tables)
179 		goto put_np;
180 
181 	opp_table->required_opp_tables = required_opp_tables;
182 	opp_table->required_opp_count = count;
183 
184 	for (i = 0; i < count; i++) {
185 		required_np = of_parse_required_opp(np, i);
186 		if (!required_np)
187 			goto free_required_tables;
188 
189 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 		of_node_put(required_np);
191 
192 		if (IS_ERR(required_opp_tables[i]))
193 			lazy = true;
194 	}
195 
196 	/* Let's do the linking later on */
197 	if (lazy)
198 		list_add(&opp_table->lazy, &lazy_opp_tables);
199 
200 	goto put_np;
201 
202 free_required_tables:
203 	_opp_table_free_required_tables(opp_table);
204 put_np:
205 	of_node_put(np);
206 }
207 
_of_init_opp_table(struct opp_table * opp_table,struct device * dev,int index)208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209 			int index)
210 {
211 	struct device_node *np, *opp_np;
212 	u32 val;
213 
214 	/*
215 	 * Only required for backward compatibility with v1 bindings, but isn't
216 	 * harmful for other cases. And so we do it unconditionally.
217 	 */
218 	np = of_node_get(dev->of_node);
219 	if (!np)
220 		return;
221 
222 	if (!of_property_read_u32(np, "clock-latency", &val))
223 		opp_table->clock_latency_ns_max = val;
224 	of_property_read_u32(np, "voltage-tolerance",
225 			     &opp_table->voltage_tolerance_v1);
226 
227 	if (of_find_property(np, "#power-domain-cells", NULL))
228 		opp_table->is_genpd = true;
229 
230 	/* Get OPP table node */
231 	opp_np = _opp_of_get_opp_desc_node(np, index);
232 	of_node_put(np);
233 
234 	if (!opp_np)
235 		return;
236 
237 	if (of_property_read_bool(opp_np, "opp-shared"))
238 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239 	else
240 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241 
242 	opp_table->np = opp_np;
243 
244 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
245 }
246 
_of_clear_opp_table(struct opp_table * opp_table)247 void _of_clear_opp_table(struct opp_table *opp_table)
248 {
249 	_opp_table_free_required_tables(opp_table);
250 	of_node_put(opp_table->np);
251 }
252 
253 /*
254  * Release all resources previously acquired with a call to
255  * _of_opp_alloc_required_opps().
256  */
_of_opp_free_required_opps(struct opp_table * opp_table,struct dev_pm_opp * opp)257 static void _of_opp_free_required_opps(struct opp_table *opp_table,
258 				       struct dev_pm_opp *opp)
259 {
260 	struct dev_pm_opp **required_opps = opp->required_opps;
261 	int i;
262 
263 	if (!required_opps)
264 		return;
265 
266 	for (i = 0; i < opp_table->required_opp_count; i++) {
267 		if (!required_opps[i])
268 			continue;
269 
270 		/* Put the reference back */
271 		dev_pm_opp_put(required_opps[i]);
272 	}
273 
274 	opp->required_opps = NULL;
275 	kfree(required_opps);
276 }
277 
_of_clear_opp(struct opp_table * opp_table,struct dev_pm_opp * opp)278 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
279 {
280 	_of_opp_free_required_opps(opp_table, opp);
281 	of_node_put(opp->np);
282 }
283 
284 /* Populate all required OPPs which are part of "required-opps" list */
_of_opp_alloc_required_opps(struct opp_table * opp_table,struct dev_pm_opp * opp)285 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
286 				       struct dev_pm_opp *opp)
287 {
288 	struct dev_pm_opp **required_opps;
289 	struct opp_table *required_table;
290 	struct device_node *np;
291 	int i, ret, count = opp_table->required_opp_count;
292 
293 	if (!count)
294 		return 0;
295 
296 	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
297 	if (!required_opps)
298 		return -ENOMEM;
299 
300 	opp->required_opps = required_opps;
301 
302 	for (i = 0; i < count; i++) {
303 		required_table = opp_table->required_opp_tables[i];
304 
305 		/* Required table not added yet, we will link later */
306 		if (IS_ERR_OR_NULL(required_table))
307 			continue;
308 
309 		np = of_parse_required_opp(opp->np, i);
310 		if (unlikely(!np)) {
311 			ret = -ENODEV;
312 			goto free_required_opps;
313 		}
314 
315 		required_opps[i] = _find_opp_of_np(required_table, np);
316 		of_node_put(np);
317 
318 		if (!required_opps[i]) {
319 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
320 			       __func__, opp->np, i);
321 			ret = -ENODEV;
322 			goto free_required_opps;
323 		}
324 	}
325 
326 	return 0;
327 
328 free_required_opps:
329 	_of_opp_free_required_opps(opp_table, opp);
330 
331 	return ret;
332 }
333 
334 /* Link required OPPs for an individual OPP */
lazy_link_required_opps(struct opp_table * opp_table,struct opp_table * new_table,int index)335 static int lazy_link_required_opps(struct opp_table *opp_table,
336 				   struct opp_table *new_table, int index)
337 {
338 	struct device_node *required_np;
339 	struct dev_pm_opp *opp;
340 
341 	list_for_each_entry(opp, &opp_table->opp_list, node) {
342 		required_np = of_parse_required_opp(opp->np, index);
343 		if (unlikely(!required_np))
344 			return -ENODEV;
345 
346 		opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
347 		of_node_put(required_np);
348 
349 		if (!opp->required_opps[index]) {
350 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
351 			       __func__, opp->np, index);
352 			return -ENODEV;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /* Link required OPPs for all OPPs of the newly added OPP table */
lazy_link_required_opp_table(struct opp_table * new_table)360 static void lazy_link_required_opp_table(struct opp_table *new_table)
361 {
362 	struct opp_table *opp_table, *temp, **required_opp_tables;
363 	struct device_node *required_np, *opp_np, *required_table_np;
364 	struct dev_pm_opp *opp;
365 	int i, ret;
366 
367 	mutex_lock(&opp_table_lock);
368 
369 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
370 		bool lazy = false;
371 
372 		/* opp_np can't be invalid here */
373 		opp_np = of_get_next_available_child(opp_table->np, NULL);
374 
375 		for (i = 0; i < opp_table->required_opp_count; i++) {
376 			required_opp_tables = opp_table->required_opp_tables;
377 
378 			/* Required opp-table is already parsed */
379 			if (!IS_ERR(required_opp_tables[i]))
380 				continue;
381 
382 			/* required_np can't be invalid here */
383 			required_np = of_parse_required_opp(opp_np, i);
384 			required_table_np = of_get_parent(required_np);
385 
386 			of_node_put(required_table_np);
387 			of_node_put(required_np);
388 
389 			/*
390 			 * Newly added table isn't the required opp-table for
391 			 * opp_table.
392 			 */
393 			if (required_table_np != new_table->np) {
394 				lazy = true;
395 				continue;
396 			}
397 
398 			required_opp_tables[i] = new_table;
399 			_get_opp_table_kref(new_table);
400 
401 			/* Link OPPs now */
402 			ret = lazy_link_required_opps(opp_table, new_table, i);
403 			if (ret) {
404 				/* The OPPs will be marked unusable */
405 				lazy = false;
406 				break;
407 			}
408 		}
409 
410 		of_node_put(opp_np);
411 
412 		/* All required opp-tables found, remove from lazy list */
413 		if (!lazy) {
414 			list_del_init(&opp_table->lazy);
415 
416 			list_for_each_entry(opp, &opp_table->opp_list, node)
417 				_required_opps_available(opp, opp_table->required_opp_count);
418 		}
419 	}
420 
421 	mutex_unlock(&opp_table_lock);
422 }
423 
_bandwidth_supported(struct device * dev,struct opp_table * opp_table)424 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
425 {
426 	struct device_node *np, *opp_np;
427 	struct property *prop;
428 
429 	if (!opp_table) {
430 		np = of_node_get(dev->of_node);
431 		if (!np)
432 			return -ENODEV;
433 
434 		opp_np = _opp_of_get_opp_desc_node(np, 0);
435 		of_node_put(np);
436 	} else {
437 		opp_np = of_node_get(opp_table->np);
438 	}
439 
440 	/* Lets not fail in case we are parsing opp-v1 bindings */
441 	if (!opp_np)
442 		return 0;
443 
444 	/* Checking only first OPP is sufficient */
445 	np = of_get_next_available_child(opp_np, NULL);
446 	of_node_put(opp_np);
447 	if (!np) {
448 		dev_err(dev, "OPP table empty\n");
449 		return -EINVAL;
450 	}
451 
452 	prop = of_find_property(np, "opp-peak-kBps", NULL);
453 	of_node_put(np);
454 
455 	if (!prop || !prop->length)
456 		return 0;
457 
458 	return 1;
459 }
460 
dev_pm_opp_of_find_icc_paths(struct device * dev,struct opp_table * opp_table)461 int dev_pm_opp_of_find_icc_paths(struct device *dev,
462 				 struct opp_table *opp_table)
463 {
464 	struct device_node *np;
465 	int ret, i, count, num_paths;
466 	struct icc_path **paths;
467 
468 	ret = _bandwidth_supported(dev, opp_table);
469 	if (ret == -EINVAL)
470 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
471 	else if (ret <= 0)
472 		return ret;
473 
474 	ret = 0;
475 
476 	np = of_node_get(dev->of_node);
477 	if (!np)
478 		return 0;
479 
480 	count = of_count_phandle_with_args(np, "interconnects",
481 					   "#interconnect-cells");
482 	of_node_put(np);
483 	if (count < 0)
484 		return 0;
485 
486 	/* two phandles when #interconnect-cells = <1> */
487 	if (count % 2) {
488 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
489 		return -EINVAL;
490 	}
491 
492 	num_paths = count / 2;
493 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
494 	if (!paths)
495 		return -ENOMEM;
496 
497 	for (i = 0; i < num_paths; i++) {
498 		paths[i] = of_icc_get_by_index(dev, i);
499 		if (IS_ERR(paths[i])) {
500 			ret = PTR_ERR(paths[i]);
501 			if (ret != -EPROBE_DEFER) {
502 				dev_err(dev, "%s: Unable to get path%d: %d\n",
503 					__func__, i, ret);
504 			}
505 			goto err;
506 		}
507 	}
508 
509 	if (opp_table) {
510 		opp_table->paths = paths;
511 		opp_table->path_count = num_paths;
512 		return 0;
513 	}
514 
515 err:
516 	while (i--)
517 		icc_put(paths[i]);
518 
519 	kfree(paths);
520 
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
524 
_opp_is_supported(struct device * dev,struct opp_table * opp_table,struct device_node * np)525 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
526 			      struct device_node *np)
527 {
528 	unsigned int levels = opp_table->supported_hw_count;
529 	int count, versions, ret, i, j;
530 	u32 val;
531 
532 	if (!opp_table->supported_hw) {
533 		/*
534 		 * In the case that no supported_hw has been set by the
535 		 * platform but there is an opp-supported-hw value set for
536 		 * an OPP then the OPP should not be enabled as there is
537 		 * no way to see if the hardware supports it.
538 		 */
539 		if (of_find_property(np, "opp-supported-hw", NULL))
540 			return false;
541 		else
542 			return true;
543 	}
544 
545 	count = of_property_count_u32_elems(np, "opp-supported-hw");
546 	if (count <= 0 || count % levels) {
547 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
548 			__func__, count);
549 		return false;
550 	}
551 
552 	versions = count / levels;
553 
554 	/* All levels in at least one of the versions should match */
555 	for (i = 0; i < versions; i++) {
556 		bool supported = true;
557 
558 		for (j = 0; j < levels; j++) {
559 			ret = of_property_read_u32_index(np, "opp-supported-hw",
560 							 i * levels + j, &val);
561 			if (ret) {
562 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
563 					 __func__, i * levels + j, ret);
564 				return false;
565 			}
566 
567 			/* Check if the level is supported */
568 			if (!(val & opp_table->supported_hw[j])) {
569 				supported = false;
570 				break;
571 			}
572 		}
573 
574 		if (supported)
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
opp_parse_supplies(struct dev_pm_opp * opp,struct device * dev,struct opp_table * opp_table)581 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
582 			      struct opp_table *opp_table)
583 {
584 	u32 *microvolt, *microamp = NULL, *microwatt = NULL;
585 	int supplies = opp_table->regulator_count;
586 	int vcount, icount, pcount, ret, i, j;
587 	struct property *prop = NULL;
588 	char name[NAME_MAX];
589 
590 	/* Search for "opp-microvolt-<name>" */
591 	if (opp_table->prop_name) {
592 		snprintf(name, sizeof(name), "opp-microvolt-%s",
593 			 opp_table->prop_name);
594 		prop = of_find_property(opp->np, name, NULL);
595 	}
596 
597 	if (!prop) {
598 		/* Search for "opp-microvolt" */
599 		sprintf(name, "opp-microvolt");
600 		prop = of_find_property(opp->np, name, NULL);
601 
602 		/* Missing property isn't a problem, but an invalid entry is */
603 		if (!prop) {
604 			if (unlikely(supplies == -1)) {
605 				/* Initialize regulator_count */
606 				opp_table->regulator_count = 0;
607 				return 0;
608 			}
609 
610 			if (!supplies)
611 				return 0;
612 
613 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
614 				__func__);
615 			return -EINVAL;
616 		}
617 	}
618 
619 	if (unlikely(supplies == -1)) {
620 		/* Initialize regulator_count */
621 		supplies = opp_table->regulator_count = 1;
622 	} else if (unlikely(!supplies)) {
623 		dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
624 		return -EINVAL;
625 	}
626 
627 	vcount = of_property_count_u32_elems(opp->np, name);
628 	if (vcount < 0) {
629 		dev_err(dev, "%s: Invalid %s property (%d)\n",
630 			__func__, name, vcount);
631 		return vcount;
632 	}
633 
634 	/* There can be one or three elements per supply */
635 	if (vcount != supplies && vcount != supplies * 3) {
636 		dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
637 			__func__, name, vcount, supplies);
638 		return -EINVAL;
639 	}
640 
641 	microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
642 	if (!microvolt)
643 		return -ENOMEM;
644 
645 	ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
646 	if (ret) {
647 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
648 		ret = -EINVAL;
649 		goto free_microvolt;
650 	}
651 
652 	/* Search for "opp-microamp-<name>" */
653 	prop = NULL;
654 	if (opp_table->prop_name) {
655 		snprintf(name, sizeof(name), "opp-microamp-%s",
656 			 opp_table->prop_name);
657 		prop = of_find_property(opp->np, name, NULL);
658 	}
659 
660 	if (!prop) {
661 		/* Search for "opp-microamp" */
662 		sprintf(name, "opp-microamp");
663 		prop = of_find_property(opp->np, name, NULL);
664 	}
665 
666 	if (prop) {
667 		icount = of_property_count_u32_elems(opp->np, name);
668 		if (icount < 0) {
669 			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
670 				name, icount);
671 			ret = icount;
672 			goto free_microvolt;
673 		}
674 
675 		if (icount != supplies) {
676 			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
677 				__func__, name, icount, supplies);
678 			ret = -EINVAL;
679 			goto free_microvolt;
680 		}
681 
682 		microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
683 		if (!microamp) {
684 			ret = -EINVAL;
685 			goto free_microvolt;
686 		}
687 
688 		ret = of_property_read_u32_array(opp->np, name, microamp,
689 						 icount);
690 		if (ret) {
691 			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
692 				name, ret);
693 			ret = -EINVAL;
694 			goto free_microamp;
695 		}
696 	}
697 
698 	/* Search for "opp-microwatt" */
699 	sprintf(name, "opp-microwatt");
700 	prop = of_find_property(opp->np, name, NULL);
701 
702 	if (prop) {
703 		pcount = of_property_count_u32_elems(opp->np, name);
704 		if (pcount < 0) {
705 			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
706 				name, pcount);
707 			ret = pcount;
708 			goto free_microamp;
709 		}
710 
711 		if (pcount != supplies) {
712 			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
713 				__func__, name, pcount, supplies);
714 			ret = -EINVAL;
715 			goto free_microamp;
716 		}
717 
718 		microwatt = kmalloc_array(pcount, sizeof(*microwatt),
719 					  GFP_KERNEL);
720 		if (!microwatt) {
721 			ret = -EINVAL;
722 			goto free_microamp;
723 		}
724 
725 		ret = of_property_read_u32_array(opp->np, name, microwatt,
726 						 pcount);
727 		if (ret) {
728 			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
729 				name, ret);
730 			ret = -EINVAL;
731 			goto free_microwatt;
732 		}
733 	}
734 
735 	for (i = 0, j = 0; i < supplies; i++) {
736 		opp->supplies[i].u_volt = microvolt[j++];
737 
738 		if (vcount == supplies) {
739 			opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
740 			opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
741 		} else {
742 			opp->supplies[i].u_volt_min = microvolt[j++];
743 			opp->supplies[i].u_volt_max = microvolt[j++];
744 		}
745 
746 		if (microamp)
747 			opp->supplies[i].u_amp = microamp[i];
748 
749 		if (microwatt)
750 			opp->supplies[i].u_watt = microwatt[i];
751 	}
752 
753 free_microwatt:
754 	kfree(microwatt);
755 free_microamp:
756 	kfree(microamp);
757 free_microvolt:
758 	kfree(microvolt);
759 
760 	return ret;
761 }
762 
763 /**
764  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
765  *				  entries
766  * @dev:	device pointer used to lookup OPP table.
767  *
768  * Free OPPs created using static entries present in DT.
769  */
dev_pm_opp_of_remove_table(struct device * dev)770 void dev_pm_opp_of_remove_table(struct device *dev)
771 {
772 	dev_pm_opp_remove_table(dev);
773 }
774 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
775 
_read_rate(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np)776 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
777 		      struct device_node *np)
778 {
779 	struct property *prop;
780 	int i, count, ret;
781 	u64 *rates;
782 
783 	prop = of_find_property(np, "opp-hz", NULL);
784 	if (!prop)
785 		return -ENODEV;
786 
787 	count = prop->length / sizeof(u64);
788 	if (opp_table->clk_count != count) {
789 		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
790 		       __func__, count, opp_table->clk_count);
791 		return -EINVAL;
792 	}
793 
794 	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
795 	if (!rates)
796 		return -ENOMEM;
797 
798 	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
799 	if (ret) {
800 		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
801 	} else {
802 		/*
803 		 * Rate is defined as an unsigned long in clk API, and so
804 		 * casting explicitly to its type. Must be fixed once rate is 64
805 		 * bit guaranteed in clk API.
806 		 */
807 		for (i = 0; i < count; i++) {
808 			new_opp->rates[i] = (unsigned long)rates[i];
809 
810 			/* This will happen for frequencies > 4.29 GHz */
811 			WARN_ON(new_opp->rates[i] != rates[i]);
812 		}
813 	}
814 
815 	kfree(rates);
816 
817 	return ret;
818 }
819 
_read_bw(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np,bool peak)820 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
821 		    struct device_node *np, bool peak)
822 {
823 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
824 	struct property *prop;
825 	int i, count, ret;
826 	u32 *bw;
827 
828 	prop = of_find_property(np, name, NULL);
829 	if (!prop)
830 		return -ENODEV;
831 
832 	count = prop->length / sizeof(u32);
833 	if (opp_table->path_count != count) {
834 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
835 				__func__, name, count, opp_table->path_count);
836 		return -EINVAL;
837 	}
838 
839 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
840 	if (!bw)
841 		return -ENOMEM;
842 
843 	ret = of_property_read_u32_array(np, name, bw, count);
844 	if (ret) {
845 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
846 		goto out;
847 	}
848 
849 	for (i = 0; i < count; i++) {
850 		if (peak)
851 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
852 		else
853 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
854 	}
855 
856 out:
857 	kfree(bw);
858 	return ret;
859 }
860 
_read_opp_key(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np)861 static int _read_opp_key(struct dev_pm_opp *new_opp,
862 			 struct opp_table *opp_table, struct device_node *np)
863 {
864 	bool found = false;
865 	int ret;
866 
867 	ret = _read_rate(new_opp, opp_table, np);
868 	if (!ret)
869 		found = true;
870 	else if (ret != -ENODEV)
871 		return ret;
872 
873 	/*
874 	 * Bandwidth consists of peak and average (optional) values:
875 	 * opp-peak-kBps = <path1_value path2_value>;
876 	 * opp-avg-kBps = <path1_value path2_value>;
877 	 */
878 	ret = _read_bw(new_opp, opp_table, np, true);
879 	if (!ret) {
880 		found = true;
881 		ret = _read_bw(new_opp, opp_table, np, false);
882 	}
883 
884 	/* The properties were found but we failed to parse them */
885 	if (ret && ret != -ENODEV)
886 		return ret;
887 
888 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
889 		found = true;
890 
891 	if (found)
892 		return 0;
893 
894 	return ret;
895 }
896 
897 /**
898  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
899  * @opp_table:	OPP table
900  * @dev:	device for which we do this operation
901  * @np:		device node
902  *
903  * This function adds an opp definition to the opp table and returns status. The
904  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
905  * removed by dev_pm_opp_remove.
906  *
907  * Return:
908  * Valid OPP pointer:
909  *		On success
910  * NULL:
911  *		Duplicate OPPs (both freq and volt are same) and opp->available
912  *		OR if the OPP is not supported by hardware.
913  * ERR_PTR(-EEXIST):
914  *		Freq are same and volt are different OR
915  *		Duplicate OPPs (both freq and volt are same) and !opp->available
916  * ERR_PTR(-ENOMEM):
917  *		Memory allocation failure
918  * ERR_PTR(-EINVAL):
919  *		Failed parsing the OPP node
920  */
_opp_add_static_v2(struct opp_table * opp_table,struct device * dev,struct device_node * np)921 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
922 		struct device *dev, struct device_node *np)
923 {
924 	struct dev_pm_opp *new_opp;
925 	u32 val;
926 	int ret;
927 
928 	new_opp = _opp_allocate(opp_table);
929 	if (!new_opp)
930 		return ERR_PTR(-ENOMEM);
931 
932 	ret = _read_opp_key(new_opp, opp_table, np);
933 	if (ret < 0) {
934 		dev_err(dev, "%s: opp key field not found\n", __func__);
935 		goto free_opp;
936 	}
937 
938 	/* Check if the OPP supports hardware's hierarchy of versions or not */
939 	if (!_opp_is_supported(dev, opp_table, np)) {
940 		dev_dbg(dev, "OPP not supported by hardware: %s\n",
941 			of_node_full_name(np));
942 		goto free_opp;
943 	}
944 
945 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
946 
947 	new_opp->np = of_node_get(np);
948 	new_opp->dynamic = false;
949 	new_opp->available = true;
950 
951 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
952 	if (ret)
953 		goto free_opp;
954 
955 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
956 		new_opp->clock_latency_ns = val;
957 
958 	ret = opp_parse_supplies(new_opp, dev, opp_table);
959 	if (ret)
960 		goto free_required_opps;
961 
962 	if (opp_table->is_genpd)
963 		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
964 
965 	ret = _opp_add(dev, new_opp, opp_table);
966 	if (ret) {
967 		/* Don't return error for duplicate OPPs */
968 		if (ret == -EBUSY)
969 			ret = 0;
970 		goto free_required_opps;
971 	}
972 
973 	/* OPP to select on device suspend */
974 	if (of_property_read_bool(np, "opp-suspend")) {
975 		if (opp_table->suspend_opp) {
976 			/* Pick the OPP with higher rate/bw/level as suspend OPP */
977 			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
978 				opp_table->suspend_opp->suspend = false;
979 				new_opp->suspend = true;
980 				opp_table->suspend_opp = new_opp;
981 			}
982 		} else {
983 			new_opp->suspend = true;
984 			opp_table->suspend_opp = new_opp;
985 		}
986 	}
987 
988 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
989 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
990 
991 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
992 		 __func__, new_opp->turbo, new_opp->rates[0],
993 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
994 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
995 		 new_opp->level);
996 
997 	/*
998 	 * Notify the changes in the availability of the operable
999 	 * frequency/voltage list.
1000 	 */
1001 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1002 	return new_opp;
1003 
1004 free_required_opps:
1005 	_of_opp_free_required_opps(opp_table, new_opp);
1006 free_opp:
1007 	_opp_free(new_opp);
1008 
1009 	return ret ? ERR_PTR(ret) : NULL;
1010 }
1011 
1012 /* Initializes OPP tables based on new bindings */
_of_add_opp_table_v2(struct device * dev,struct opp_table * opp_table)1013 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1014 {
1015 	struct device_node *np;
1016 	int ret, count = 0;
1017 	struct dev_pm_opp *opp;
1018 
1019 	/* OPP table is already initialized for the device */
1020 	mutex_lock(&opp_table->lock);
1021 	if (opp_table->parsed_static_opps) {
1022 		opp_table->parsed_static_opps++;
1023 		mutex_unlock(&opp_table->lock);
1024 		return 0;
1025 	}
1026 
1027 	opp_table->parsed_static_opps = 1;
1028 	mutex_unlock(&opp_table->lock);
1029 
1030 	/* We have opp-table node now, iterate over it and add OPPs */
1031 	for_each_available_child_of_node(opp_table->np, np) {
1032 		opp = _opp_add_static_v2(opp_table, dev, np);
1033 		if (IS_ERR(opp)) {
1034 			ret = PTR_ERR(opp);
1035 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1036 				ret);
1037 			of_node_put(np);
1038 			goto remove_static_opp;
1039 		} else if (opp) {
1040 			count++;
1041 		}
1042 	}
1043 
1044 	/* There should be one or more OPPs defined */
1045 	if (!count) {
1046 		dev_err(dev, "%s: no supported OPPs", __func__);
1047 		ret = -ENOENT;
1048 		goto remove_static_opp;
1049 	}
1050 
1051 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1052 		/* Any non-zero performance state would enable the feature */
1053 		if (opp->pstate) {
1054 			opp_table->genpd_performance_state = true;
1055 			break;
1056 		}
1057 	}
1058 
1059 	lazy_link_required_opp_table(opp_table);
1060 
1061 	return 0;
1062 
1063 remove_static_opp:
1064 	_opp_remove_all_static(opp_table);
1065 
1066 	return ret;
1067 }
1068 
1069 /* Initializes OPP tables based on old-deprecated bindings */
_of_add_opp_table_v1(struct device * dev,struct opp_table * opp_table)1070 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1071 {
1072 	const struct property *prop;
1073 	const __be32 *val;
1074 	int nr, ret = 0;
1075 
1076 	mutex_lock(&opp_table->lock);
1077 	if (opp_table->parsed_static_opps) {
1078 		opp_table->parsed_static_opps++;
1079 		mutex_unlock(&opp_table->lock);
1080 		return 0;
1081 	}
1082 
1083 	opp_table->parsed_static_opps = 1;
1084 	mutex_unlock(&opp_table->lock);
1085 
1086 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1087 	if (!prop) {
1088 		ret = -ENODEV;
1089 		goto remove_static_opp;
1090 	}
1091 	if (!prop->value) {
1092 		ret = -ENODATA;
1093 		goto remove_static_opp;
1094 	}
1095 
1096 	/*
1097 	 * Each OPP is a set of tuples consisting of frequency and
1098 	 * voltage like <freq-kHz vol-uV>.
1099 	 */
1100 	nr = prop->length / sizeof(u32);
1101 	if (nr % 2) {
1102 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1103 		ret = -EINVAL;
1104 		goto remove_static_opp;
1105 	}
1106 
1107 	val = prop->value;
1108 	while (nr) {
1109 		unsigned long freq = be32_to_cpup(val++) * 1000;
1110 		unsigned long volt = be32_to_cpup(val++);
1111 
1112 		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1113 		if (ret) {
1114 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1115 				__func__, freq, ret);
1116 			goto remove_static_opp;
1117 		}
1118 		nr -= 2;
1119 	}
1120 
1121 	return 0;
1122 
1123 remove_static_opp:
1124 	_opp_remove_all_static(opp_table);
1125 
1126 	return ret;
1127 }
1128 
_of_add_table_indexed(struct device * dev,int index)1129 static int _of_add_table_indexed(struct device *dev, int index)
1130 {
1131 	struct opp_table *opp_table;
1132 	int ret, count;
1133 
1134 	if (index) {
1135 		/*
1136 		 * If only one phandle is present, then the same OPP table
1137 		 * applies for all index requests.
1138 		 */
1139 		count = of_count_phandle_with_args(dev->of_node,
1140 						   "operating-points-v2", NULL);
1141 		if (count == 1)
1142 			index = 0;
1143 	}
1144 
1145 	opp_table = _add_opp_table_indexed(dev, index, true);
1146 	if (IS_ERR(opp_table))
1147 		return PTR_ERR(opp_table);
1148 
1149 	/*
1150 	 * OPPs have two version of bindings now. Also try the old (v1)
1151 	 * bindings for backward compatibility with older dtbs.
1152 	 */
1153 	if (opp_table->np)
1154 		ret = _of_add_opp_table_v2(dev, opp_table);
1155 	else
1156 		ret = _of_add_opp_table_v1(dev, opp_table);
1157 
1158 	if (ret)
1159 		dev_pm_opp_put_opp_table(opp_table);
1160 
1161 	return ret;
1162 }
1163 
devm_pm_opp_of_table_release(void * data)1164 static void devm_pm_opp_of_table_release(void *data)
1165 {
1166 	dev_pm_opp_of_remove_table(data);
1167 }
1168 
_devm_of_add_table_indexed(struct device * dev,int index)1169 static int _devm_of_add_table_indexed(struct device *dev, int index)
1170 {
1171 	int ret;
1172 
1173 	ret = _of_add_table_indexed(dev, index);
1174 	if (ret)
1175 		return ret;
1176 
1177 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1178 }
1179 
1180 /**
1181  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1182  * @dev:	device pointer used to lookup OPP table.
1183  *
1184  * Register the initial OPP table with the OPP library for given device.
1185  *
1186  * The opp_table structure will be freed after the device is destroyed.
1187  *
1188  * Return:
1189  * 0		On success OR
1190  *		Duplicate OPPs (both freq and volt are same) and opp->available
1191  * -EEXIST	Freq are same and volt are different OR
1192  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1193  * -ENOMEM	Memory allocation failure
1194  * -ENODEV	when 'operating-points' property is not found or is invalid data
1195  *		in device node.
1196  * -ENODATA	when empty 'operating-points' property is found
1197  * -EINVAL	when invalid entries are found in opp-v2 table
1198  */
devm_pm_opp_of_add_table(struct device * dev)1199 int devm_pm_opp_of_add_table(struct device *dev)
1200 {
1201 	return _devm_of_add_table_indexed(dev, 0);
1202 }
1203 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1204 
1205 /**
1206  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1207  * @dev:	device pointer used to lookup OPP table.
1208  *
1209  * Register the initial OPP table with the OPP library for given device.
1210  *
1211  * Return:
1212  * 0		On success OR
1213  *		Duplicate OPPs (both freq and volt are same) and opp->available
1214  * -EEXIST	Freq are same and volt are different OR
1215  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1216  * -ENOMEM	Memory allocation failure
1217  * -ENODEV	when 'operating-points' property is not found or is invalid data
1218  *		in device node.
1219  * -ENODATA	when empty 'operating-points' property is found
1220  * -EINVAL	when invalid entries are found in opp-v2 table
1221  */
dev_pm_opp_of_add_table(struct device * dev)1222 int dev_pm_opp_of_add_table(struct device *dev)
1223 {
1224 	return _of_add_table_indexed(dev, 0);
1225 }
1226 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1227 
1228 /**
1229  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1230  * @dev:	device pointer used to lookup OPP table.
1231  * @index:	Index number.
1232  *
1233  * Register the initial OPP table with the OPP library for given device only
1234  * using the "operating-points-v2" property.
1235  *
1236  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1237  */
dev_pm_opp_of_add_table_indexed(struct device * dev,int index)1238 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1239 {
1240 	return _of_add_table_indexed(dev, index);
1241 }
1242 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1243 
1244 /**
1245  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1246  * @dev:	device pointer used to lookup OPP table.
1247  * @index:	Index number.
1248  *
1249  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1250  */
devm_pm_opp_of_add_table_indexed(struct device * dev,int index)1251 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1252 {
1253 	return _devm_of_add_table_indexed(dev, index);
1254 }
1255 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1256 
1257 /* CPU device specific helpers */
1258 
1259 /**
1260  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1261  * @cpumask:	cpumask for which OPP table needs to be removed
1262  *
1263  * This removes the OPP tables for CPUs present in the @cpumask.
1264  * This should be used only to remove static entries created from DT.
1265  */
dev_pm_opp_of_cpumask_remove_table(const struct cpumask * cpumask)1266 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1267 {
1268 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1269 }
1270 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1271 
1272 /**
1273  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1274  * @cpumask:	cpumask for which OPP table needs to be added.
1275  *
1276  * This adds the OPP tables for CPUs present in the @cpumask.
1277  */
dev_pm_opp_of_cpumask_add_table(const struct cpumask * cpumask)1278 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1279 {
1280 	struct device *cpu_dev;
1281 	int cpu, ret;
1282 
1283 	if (WARN_ON(cpumask_empty(cpumask)))
1284 		return -ENODEV;
1285 
1286 	for_each_cpu(cpu, cpumask) {
1287 		cpu_dev = get_cpu_device(cpu);
1288 		if (!cpu_dev) {
1289 			pr_err("%s: failed to get cpu%d device\n", __func__,
1290 			       cpu);
1291 			ret = -ENODEV;
1292 			goto remove_table;
1293 		}
1294 
1295 		ret = dev_pm_opp_of_add_table(cpu_dev);
1296 		if (ret) {
1297 			/*
1298 			 * OPP may get registered dynamically, don't print error
1299 			 * message here.
1300 			 */
1301 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1302 				 __func__, cpu, ret);
1303 
1304 			goto remove_table;
1305 		}
1306 	}
1307 
1308 	return 0;
1309 
1310 remove_table:
1311 	/* Free all other OPPs */
1312 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1313 
1314 	return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1317 
1318 /*
1319  * Works only for OPP v2 bindings.
1320  *
1321  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1322  */
1323 /**
1324  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1325  *				      @cpu_dev using operating-points-v2
1326  *				      bindings.
1327  *
1328  * @cpu_dev:	CPU device for which we do this operation
1329  * @cpumask:	cpumask to update with information of sharing CPUs
1330  *
1331  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1332  *
1333  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1334  */
dev_pm_opp_of_get_sharing_cpus(struct device * cpu_dev,struct cpumask * cpumask)1335 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1336 				   struct cpumask *cpumask)
1337 {
1338 	struct device_node *np, *tmp_np, *cpu_np;
1339 	int cpu, ret = 0;
1340 
1341 	/* Get OPP descriptor node */
1342 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1343 	if (!np) {
1344 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1345 		return -ENOENT;
1346 	}
1347 
1348 	cpumask_set_cpu(cpu_dev->id, cpumask);
1349 
1350 	/* OPPs are shared ? */
1351 	if (!of_property_read_bool(np, "opp-shared"))
1352 		goto put_cpu_node;
1353 
1354 	for_each_possible_cpu(cpu) {
1355 		if (cpu == cpu_dev->id)
1356 			continue;
1357 
1358 		cpu_np = of_cpu_device_node_get(cpu);
1359 		if (!cpu_np) {
1360 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1361 				__func__, cpu);
1362 			ret = -ENOENT;
1363 			goto put_cpu_node;
1364 		}
1365 
1366 		/* Get OPP descriptor node */
1367 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1368 		of_node_put(cpu_np);
1369 		if (!tmp_np) {
1370 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1371 			ret = -ENOENT;
1372 			goto put_cpu_node;
1373 		}
1374 
1375 		/* CPUs are sharing opp node */
1376 		if (np == tmp_np)
1377 			cpumask_set_cpu(cpu, cpumask);
1378 
1379 		of_node_put(tmp_np);
1380 	}
1381 
1382 put_cpu_node:
1383 	of_node_put(np);
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1387 
1388 /**
1389  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1390  * @np: Node that contains the "required-opps" property.
1391  * @index: Index of the phandle to parse.
1392  *
1393  * Returns the performance state of the OPP pointed out by the "required-opps"
1394  * property at @index in @np.
1395  *
1396  * Return: Zero or positive performance state on success, otherwise negative
1397  * value on errors.
1398  */
of_get_required_opp_performance_state(struct device_node * np,int index)1399 int of_get_required_opp_performance_state(struct device_node *np, int index)
1400 {
1401 	struct dev_pm_opp *opp;
1402 	struct device_node *required_np;
1403 	struct opp_table *opp_table;
1404 	int pstate = -EINVAL;
1405 
1406 	required_np = of_parse_required_opp(np, index);
1407 	if (!required_np)
1408 		return -ENODEV;
1409 
1410 	opp_table = _find_table_of_opp_np(required_np);
1411 	if (IS_ERR(opp_table)) {
1412 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1413 		       __func__, np, PTR_ERR(opp_table));
1414 		goto put_required_np;
1415 	}
1416 
1417 	opp = _find_opp_of_np(opp_table, required_np);
1418 	if (opp) {
1419 		pstate = opp->pstate;
1420 		dev_pm_opp_put(opp);
1421 	}
1422 
1423 	dev_pm_opp_put_opp_table(opp_table);
1424 
1425 put_required_np:
1426 	of_node_put(required_np);
1427 
1428 	return pstate;
1429 }
1430 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1431 
1432 /**
1433  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1434  * @opp:	opp for which DT node has to be returned for
1435  *
1436  * Return: DT node corresponding to the opp, else 0 on success.
1437  *
1438  * The caller needs to put the node with of_node_put() after using it.
1439  */
dev_pm_opp_get_of_node(struct dev_pm_opp * opp)1440 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1441 {
1442 	if (IS_ERR_OR_NULL(opp)) {
1443 		pr_err("%s: Invalid parameters\n", __func__);
1444 		return NULL;
1445 	}
1446 
1447 	return of_node_get(opp->np);
1448 }
1449 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1450 
1451 /*
1452  * Callback function provided to the Energy Model framework upon registration.
1453  * It provides the power used by @dev at @kHz if it is the frequency of an
1454  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1455  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1456  * frequency and @uW to the associated power.
1457  *
1458  * Returns 0 on success or a proper -EINVAL value in case of error.
1459  */
1460 static int __maybe_unused
_get_dt_power(struct device * dev,unsigned long * uW,unsigned long * kHz)1461 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1462 {
1463 	struct dev_pm_opp *opp;
1464 	unsigned long opp_freq, opp_power;
1465 
1466 	/* Find the right frequency and related OPP */
1467 	opp_freq = *kHz * 1000;
1468 	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1469 	if (IS_ERR(opp))
1470 		return -EINVAL;
1471 
1472 	opp_power = dev_pm_opp_get_power(opp);
1473 	dev_pm_opp_put(opp);
1474 	if (!opp_power)
1475 		return -EINVAL;
1476 
1477 	*kHz = opp_freq / 1000;
1478 	*uW = opp_power;
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Callback function provided to the Energy Model framework upon registration.
1485  * This computes the power estimated by @dev at @kHz if it is the frequency
1486  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1487  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1488  * frequency and @uW to the associated power. The power is estimated as
1489  * P = C * V^2 * f with C being the device's capacitance and V and f
1490  * respectively the voltage and frequency of the OPP.
1491  *
1492  * Returns -EINVAL if the power calculation failed because of missing
1493  * parameters, 0 otherwise.
1494  */
_get_power(struct device * dev,unsigned long * uW,unsigned long * kHz)1495 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1496 				     unsigned long *kHz)
1497 {
1498 	struct dev_pm_opp *opp;
1499 	struct device_node *np;
1500 	unsigned long mV, Hz;
1501 	u32 cap;
1502 	u64 tmp;
1503 	int ret;
1504 
1505 	np = of_node_get(dev->of_node);
1506 	if (!np)
1507 		return -EINVAL;
1508 
1509 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1510 	of_node_put(np);
1511 	if (ret)
1512 		return -EINVAL;
1513 
1514 	Hz = *kHz * 1000;
1515 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1516 	if (IS_ERR(opp))
1517 		return -EINVAL;
1518 
1519 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1520 	dev_pm_opp_put(opp);
1521 	if (!mV)
1522 		return -EINVAL;
1523 
1524 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1525 	/* Provide power in micro-Watts */
1526 	do_div(tmp, 1000000);
1527 
1528 	*uW = (unsigned long)tmp;
1529 	*kHz = Hz / 1000;
1530 
1531 	return 0;
1532 }
1533 
_of_has_opp_microwatt_property(struct device * dev)1534 static bool _of_has_opp_microwatt_property(struct device *dev)
1535 {
1536 	unsigned long power, freq = 0;
1537 	struct dev_pm_opp *opp;
1538 
1539 	/* Check if at least one OPP has needed property */
1540 	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1541 	if (IS_ERR(opp))
1542 		return false;
1543 
1544 	power = dev_pm_opp_get_power(opp);
1545 	dev_pm_opp_put(opp);
1546 	if (!power)
1547 		return false;
1548 
1549 	return true;
1550 }
1551 
1552 /**
1553  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1554  * @dev		: Device for which an Energy Model has to be registered
1555  * @cpus	: CPUs for which an Energy Model has to be registered. For
1556  *		other type of devices it should be set to NULL.
1557  *
1558  * This checks whether the "dynamic-power-coefficient" devicetree property has
1559  * been specified, and tries to register an Energy Model with it if it has.
1560  * Having this property means the voltages are known for OPPs and the EM
1561  * might be calculated.
1562  */
dev_pm_opp_of_register_em(struct device * dev,struct cpumask * cpus)1563 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1564 {
1565 	struct em_data_callback em_cb;
1566 	struct device_node *np;
1567 	int ret, nr_opp;
1568 	u32 cap;
1569 
1570 	if (IS_ERR_OR_NULL(dev)) {
1571 		ret = -EINVAL;
1572 		goto failed;
1573 	}
1574 
1575 	nr_opp = dev_pm_opp_get_opp_count(dev);
1576 	if (nr_opp <= 0) {
1577 		ret = -EINVAL;
1578 		goto failed;
1579 	}
1580 
1581 	/* First, try to find more precised Energy Model in DT */
1582 	if (_of_has_opp_microwatt_property(dev)) {
1583 		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1584 		goto register_em;
1585 	}
1586 
1587 	np = of_node_get(dev->of_node);
1588 	if (!np) {
1589 		ret = -EINVAL;
1590 		goto failed;
1591 	}
1592 
1593 	/*
1594 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1595 	 * set in devicetree. It is assumed the voltage values are known if that
1596 	 * property is set since it is useless otherwise. If voltages are not
1597 	 * known, just let the EM registration fail with an error to alert the
1598 	 * user about the inconsistent configuration.
1599 	 */
1600 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1601 	of_node_put(np);
1602 	if (ret || !cap) {
1603 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1604 		ret = -EINVAL;
1605 		goto failed;
1606 	}
1607 
1608 	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1609 
1610 register_em:
1611 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1612 	if (ret)
1613 		goto failed;
1614 
1615 	return 0;
1616 
1617 failed:
1618 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1622