1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21
22 #include "opp.h"
23
24 /*
25 * Returns opp descriptor node for a device node, caller must
26 * do of_node_put().
27 */
_opp_of_get_opp_desc_node(struct device_node * np,int index)28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 int index)
30 {
31 /* "operating-points-v2" can be an array for power domain providers */
32 return of_parse_phandle(np, "operating-points-v2", index);
33 }
34
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
dev_pm_opp_of_get_opp_desc_node(struct device * dev)36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38 return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41
_managed_opp(struct device * dev,int index)42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44 struct opp_table *opp_table, *managed_table = NULL;
45 struct device_node *np;
46
47 np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 if (!np)
49 return NULL;
50
51 list_for_each_entry(opp_table, &opp_tables, node) {
52 if (opp_table->np == np) {
53 /*
54 * Multiple devices can point to the same OPP table and
55 * so will have same node-pointer, np.
56 *
57 * But the OPPs will be considered as shared only if the
58 * OPP table contains a "opp-shared" property.
59 */
60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 _get_opp_table_kref(opp_table);
62 managed_table = opp_table;
63 }
64
65 break;
66 }
67 }
68
69 of_node_put(np);
70
71 return managed_table;
72 }
73
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
_find_opp_of_np(struct opp_table * opp_table,struct device_node * opp_np)75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 struct device_node *opp_np)
77 {
78 struct dev_pm_opp *opp;
79
80 mutex_lock(&opp_table->lock);
81
82 list_for_each_entry(opp, &opp_table->opp_list, node) {
83 if (opp->np == opp_np) {
84 dev_pm_opp_get(opp);
85 mutex_unlock(&opp_table->lock);
86 return opp;
87 }
88 }
89
90 mutex_unlock(&opp_table->lock);
91
92 return NULL;
93 }
94
of_parse_required_opp(struct device_node * np,int index)95 static struct device_node *of_parse_required_opp(struct device_node *np,
96 int index)
97 {
98 return of_parse_phandle(np, "required-opps", index);
99 }
100
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
_find_table_of_opp_np(struct device_node * opp_np)102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104 struct opp_table *opp_table;
105 struct device_node *opp_table_np;
106
107 opp_table_np = of_get_parent(opp_np);
108 if (!opp_table_np)
109 goto err;
110
111 /* It is safe to put the node now as all we need now is its address */
112 of_node_put(opp_table_np);
113
114 mutex_lock(&opp_table_lock);
115 list_for_each_entry(opp_table, &opp_tables, node) {
116 if (opp_table_np == opp_table->np) {
117 _get_opp_table_kref(opp_table);
118 mutex_unlock(&opp_table_lock);
119 return opp_table;
120 }
121 }
122 mutex_unlock(&opp_table_lock);
123
124 err:
125 return ERR_PTR(-ENODEV);
126 }
127
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
_opp_table_free_required_tables(struct opp_table * opp_table)129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 int i;
133
134 if (!required_opp_tables)
135 return;
136
137 for (i = 0; i < opp_table->required_opp_count; i++) {
138 if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 continue;
140
141 dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 }
143
144 kfree(required_opp_tables);
145
146 opp_table->required_opp_count = 0;
147 opp_table->required_opp_tables = NULL;
148 list_del(&opp_table->lazy);
149 }
150
151 /*
152 * Populate all devices and opp tables which are part of "required-opps" list.
153 * Checking only the first OPP node should be enough.
154 */
_opp_table_alloc_required_tables(struct opp_table * opp_table,struct device * dev,struct device_node * opp_np)155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 struct device *dev,
157 struct device_node *opp_np)
158 {
159 struct opp_table **required_opp_tables;
160 struct device_node *required_np, *np;
161 bool lazy = false;
162 int count, i;
163
164 /* Traversing the first OPP node is all we need */
165 np = of_get_next_available_child(opp_np, NULL);
166 if (!np) {
167 dev_warn(dev, "Empty OPP table\n");
168
169 return;
170 }
171
172 count = of_count_phandle_with_args(np, "required-opps", NULL);
173 if (count <= 0)
174 goto put_np;
175
176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 GFP_KERNEL);
178 if (!required_opp_tables)
179 goto put_np;
180
181 opp_table->required_opp_tables = required_opp_tables;
182 opp_table->required_opp_count = count;
183
184 for (i = 0; i < count; i++) {
185 required_np = of_parse_required_opp(np, i);
186 if (!required_np)
187 goto free_required_tables;
188
189 required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 of_node_put(required_np);
191
192 if (IS_ERR(required_opp_tables[i]))
193 lazy = true;
194 }
195
196 /* Let's do the linking later on */
197 if (lazy)
198 list_add(&opp_table->lazy, &lazy_opp_tables);
199
200 goto put_np;
201
202 free_required_tables:
203 _opp_table_free_required_tables(opp_table);
204 put_np:
205 of_node_put(np);
206 }
207
_of_init_opp_table(struct opp_table * opp_table,struct device * dev,int index)208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209 int index)
210 {
211 struct device_node *np, *opp_np;
212 u32 val;
213
214 /*
215 * Only required for backward compatibility with v1 bindings, but isn't
216 * harmful for other cases. And so we do it unconditionally.
217 */
218 np = of_node_get(dev->of_node);
219 if (!np)
220 return;
221
222 if (!of_property_read_u32(np, "clock-latency", &val))
223 opp_table->clock_latency_ns_max = val;
224 of_property_read_u32(np, "voltage-tolerance",
225 &opp_table->voltage_tolerance_v1);
226
227 if (of_find_property(np, "#power-domain-cells", NULL))
228 opp_table->is_genpd = true;
229
230 /* Get OPP table node */
231 opp_np = _opp_of_get_opp_desc_node(np, index);
232 of_node_put(np);
233
234 if (!opp_np)
235 return;
236
237 if (of_property_read_bool(opp_np, "opp-shared"))
238 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239 else
240 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241
242 opp_table->np = opp_np;
243
244 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
245 }
246
_of_clear_opp_table(struct opp_table * opp_table)247 void _of_clear_opp_table(struct opp_table *opp_table)
248 {
249 _opp_table_free_required_tables(opp_table);
250 of_node_put(opp_table->np);
251 }
252
253 /*
254 * Release all resources previously acquired with a call to
255 * _of_opp_alloc_required_opps().
256 */
_of_opp_free_required_opps(struct opp_table * opp_table,struct dev_pm_opp * opp)257 static void _of_opp_free_required_opps(struct opp_table *opp_table,
258 struct dev_pm_opp *opp)
259 {
260 struct dev_pm_opp **required_opps = opp->required_opps;
261 int i;
262
263 if (!required_opps)
264 return;
265
266 for (i = 0; i < opp_table->required_opp_count; i++) {
267 if (!required_opps[i])
268 continue;
269
270 /* Put the reference back */
271 dev_pm_opp_put(required_opps[i]);
272 }
273
274 opp->required_opps = NULL;
275 kfree(required_opps);
276 }
277
_of_clear_opp(struct opp_table * opp_table,struct dev_pm_opp * opp)278 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
279 {
280 _of_opp_free_required_opps(opp_table, opp);
281 of_node_put(opp->np);
282 }
283
284 /* Populate all required OPPs which are part of "required-opps" list */
_of_opp_alloc_required_opps(struct opp_table * opp_table,struct dev_pm_opp * opp)285 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
286 struct dev_pm_opp *opp)
287 {
288 struct dev_pm_opp **required_opps;
289 struct opp_table *required_table;
290 struct device_node *np;
291 int i, ret, count = opp_table->required_opp_count;
292
293 if (!count)
294 return 0;
295
296 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
297 if (!required_opps)
298 return -ENOMEM;
299
300 opp->required_opps = required_opps;
301
302 for (i = 0; i < count; i++) {
303 required_table = opp_table->required_opp_tables[i];
304
305 /* Required table not added yet, we will link later */
306 if (IS_ERR_OR_NULL(required_table))
307 continue;
308
309 np = of_parse_required_opp(opp->np, i);
310 if (unlikely(!np)) {
311 ret = -ENODEV;
312 goto free_required_opps;
313 }
314
315 required_opps[i] = _find_opp_of_np(required_table, np);
316 of_node_put(np);
317
318 if (!required_opps[i]) {
319 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
320 __func__, opp->np, i);
321 ret = -ENODEV;
322 goto free_required_opps;
323 }
324 }
325
326 return 0;
327
328 free_required_opps:
329 _of_opp_free_required_opps(opp_table, opp);
330
331 return ret;
332 }
333
334 /* Link required OPPs for an individual OPP */
lazy_link_required_opps(struct opp_table * opp_table,struct opp_table * new_table,int index)335 static int lazy_link_required_opps(struct opp_table *opp_table,
336 struct opp_table *new_table, int index)
337 {
338 struct device_node *required_np;
339 struct dev_pm_opp *opp;
340
341 list_for_each_entry(opp, &opp_table->opp_list, node) {
342 required_np = of_parse_required_opp(opp->np, index);
343 if (unlikely(!required_np))
344 return -ENODEV;
345
346 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
347 of_node_put(required_np);
348
349 if (!opp->required_opps[index]) {
350 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
351 __func__, opp->np, index);
352 return -ENODEV;
353 }
354 }
355
356 return 0;
357 }
358
359 /* Link required OPPs for all OPPs of the newly added OPP table */
lazy_link_required_opp_table(struct opp_table * new_table)360 static void lazy_link_required_opp_table(struct opp_table *new_table)
361 {
362 struct opp_table *opp_table, *temp, **required_opp_tables;
363 struct device_node *required_np, *opp_np, *required_table_np;
364 struct dev_pm_opp *opp;
365 int i, ret;
366
367 mutex_lock(&opp_table_lock);
368
369 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
370 bool lazy = false;
371
372 /* opp_np can't be invalid here */
373 opp_np = of_get_next_available_child(opp_table->np, NULL);
374
375 for (i = 0; i < opp_table->required_opp_count; i++) {
376 required_opp_tables = opp_table->required_opp_tables;
377
378 /* Required opp-table is already parsed */
379 if (!IS_ERR(required_opp_tables[i]))
380 continue;
381
382 /* required_np can't be invalid here */
383 required_np = of_parse_required_opp(opp_np, i);
384 required_table_np = of_get_parent(required_np);
385
386 of_node_put(required_table_np);
387 of_node_put(required_np);
388
389 /*
390 * Newly added table isn't the required opp-table for
391 * opp_table.
392 */
393 if (required_table_np != new_table->np) {
394 lazy = true;
395 continue;
396 }
397
398 required_opp_tables[i] = new_table;
399 _get_opp_table_kref(new_table);
400
401 /* Link OPPs now */
402 ret = lazy_link_required_opps(opp_table, new_table, i);
403 if (ret) {
404 /* The OPPs will be marked unusable */
405 lazy = false;
406 break;
407 }
408 }
409
410 of_node_put(opp_np);
411
412 /* All required opp-tables found, remove from lazy list */
413 if (!lazy) {
414 list_del_init(&opp_table->lazy);
415
416 list_for_each_entry(opp, &opp_table->opp_list, node)
417 _required_opps_available(opp, opp_table->required_opp_count);
418 }
419 }
420
421 mutex_unlock(&opp_table_lock);
422 }
423
_bandwidth_supported(struct device * dev,struct opp_table * opp_table)424 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
425 {
426 struct device_node *np, *opp_np;
427 struct property *prop;
428
429 if (!opp_table) {
430 np = of_node_get(dev->of_node);
431 if (!np)
432 return -ENODEV;
433
434 opp_np = _opp_of_get_opp_desc_node(np, 0);
435 of_node_put(np);
436 } else {
437 opp_np = of_node_get(opp_table->np);
438 }
439
440 /* Lets not fail in case we are parsing opp-v1 bindings */
441 if (!opp_np)
442 return 0;
443
444 /* Checking only first OPP is sufficient */
445 np = of_get_next_available_child(opp_np, NULL);
446 of_node_put(opp_np);
447 if (!np) {
448 dev_err(dev, "OPP table empty\n");
449 return -EINVAL;
450 }
451
452 prop = of_find_property(np, "opp-peak-kBps", NULL);
453 of_node_put(np);
454
455 if (!prop || !prop->length)
456 return 0;
457
458 return 1;
459 }
460
dev_pm_opp_of_find_icc_paths(struct device * dev,struct opp_table * opp_table)461 int dev_pm_opp_of_find_icc_paths(struct device *dev,
462 struct opp_table *opp_table)
463 {
464 struct device_node *np;
465 int ret, i, count, num_paths;
466 struct icc_path **paths;
467
468 ret = _bandwidth_supported(dev, opp_table);
469 if (ret == -EINVAL)
470 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
471 else if (ret <= 0)
472 return ret;
473
474 ret = 0;
475
476 np = of_node_get(dev->of_node);
477 if (!np)
478 return 0;
479
480 count = of_count_phandle_with_args(np, "interconnects",
481 "#interconnect-cells");
482 of_node_put(np);
483 if (count < 0)
484 return 0;
485
486 /* two phandles when #interconnect-cells = <1> */
487 if (count % 2) {
488 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
489 return -EINVAL;
490 }
491
492 num_paths = count / 2;
493 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
494 if (!paths)
495 return -ENOMEM;
496
497 for (i = 0; i < num_paths; i++) {
498 paths[i] = of_icc_get_by_index(dev, i);
499 if (IS_ERR(paths[i])) {
500 ret = PTR_ERR(paths[i]);
501 if (ret != -EPROBE_DEFER) {
502 dev_err(dev, "%s: Unable to get path%d: %d\n",
503 __func__, i, ret);
504 }
505 goto err;
506 }
507 }
508
509 if (opp_table) {
510 opp_table->paths = paths;
511 opp_table->path_count = num_paths;
512 return 0;
513 }
514
515 err:
516 while (i--)
517 icc_put(paths[i]);
518
519 kfree(paths);
520
521 return ret;
522 }
523 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
524
_opp_is_supported(struct device * dev,struct opp_table * opp_table,struct device_node * np)525 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
526 struct device_node *np)
527 {
528 unsigned int levels = opp_table->supported_hw_count;
529 int count, versions, ret, i, j;
530 u32 val;
531
532 if (!opp_table->supported_hw) {
533 /*
534 * In the case that no supported_hw has been set by the
535 * platform but there is an opp-supported-hw value set for
536 * an OPP then the OPP should not be enabled as there is
537 * no way to see if the hardware supports it.
538 */
539 if (of_find_property(np, "opp-supported-hw", NULL))
540 return false;
541 else
542 return true;
543 }
544
545 count = of_property_count_u32_elems(np, "opp-supported-hw");
546 if (count <= 0 || count % levels) {
547 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
548 __func__, count);
549 return false;
550 }
551
552 versions = count / levels;
553
554 /* All levels in at least one of the versions should match */
555 for (i = 0; i < versions; i++) {
556 bool supported = true;
557
558 for (j = 0; j < levels; j++) {
559 ret = of_property_read_u32_index(np, "opp-supported-hw",
560 i * levels + j, &val);
561 if (ret) {
562 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
563 __func__, i * levels + j, ret);
564 return false;
565 }
566
567 /* Check if the level is supported */
568 if (!(val & opp_table->supported_hw[j])) {
569 supported = false;
570 break;
571 }
572 }
573
574 if (supported)
575 return true;
576 }
577
578 return false;
579 }
580
opp_parse_supplies(struct dev_pm_opp * opp,struct device * dev,struct opp_table * opp_table)581 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
582 struct opp_table *opp_table)
583 {
584 u32 *microvolt, *microamp = NULL, *microwatt = NULL;
585 int supplies = opp_table->regulator_count;
586 int vcount, icount, pcount, ret, i, j;
587 struct property *prop = NULL;
588 char name[NAME_MAX];
589
590 /* Search for "opp-microvolt-<name>" */
591 if (opp_table->prop_name) {
592 snprintf(name, sizeof(name), "opp-microvolt-%s",
593 opp_table->prop_name);
594 prop = of_find_property(opp->np, name, NULL);
595 }
596
597 if (!prop) {
598 /* Search for "opp-microvolt" */
599 sprintf(name, "opp-microvolt");
600 prop = of_find_property(opp->np, name, NULL);
601
602 /* Missing property isn't a problem, but an invalid entry is */
603 if (!prop) {
604 if (unlikely(supplies == -1)) {
605 /* Initialize regulator_count */
606 opp_table->regulator_count = 0;
607 return 0;
608 }
609
610 if (!supplies)
611 return 0;
612
613 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
614 __func__);
615 return -EINVAL;
616 }
617 }
618
619 if (unlikely(supplies == -1)) {
620 /* Initialize regulator_count */
621 supplies = opp_table->regulator_count = 1;
622 } else if (unlikely(!supplies)) {
623 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
624 return -EINVAL;
625 }
626
627 vcount = of_property_count_u32_elems(opp->np, name);
628 if (vcount < 0) {
629 dev_err(dev, "%s: Invalid %s property (%d)\n",
630 __func__, name, vcount);
631 return vcount;
632 }
633
634 /* There can be one or three elements per supply */
635 if (vcount != supplies && vcount != supplies * 3) {
636 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
637 __func__, name, vcount, supplies);
638 return -EINVAL;
639 }
640
641 microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
642 if (!microvolt)
643 return -ENOMEM;
644
645 ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
646 if (ret) {
647 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
648 ret = -EINVAL;
649 goto free_microvolt;
650 }
651
652 /* Search for "opp-microamp-<name>" */
653 prop = NULL;
654 if (opp_table->prop_name) {
655 snprintf(name, sizeof(name), "opp-microamp-%s",
656 opp_table->prop_name);
657 prop = of_find_property(opp->np, name, NULL);
658 }
659
660 if (!prop) {
661 /* Search for "opp-microamp" */
662 sprintf(name, "opp-microamp");
663 prop = of_find_property(opp->np, name, NULL);
664 }
665
666 if (prop) {
667 icount = of_property_count_u32_elems(opp->np, name);
668 if (icount < 0) {
669 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
670 name, icount);
671 ret = icount;
672 goto free_microvolt;
673 }
674
675 if (icount != supplies) {
676 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
677 __func__, name, icount, supplies);
678 ret = -EINVAL;
679 goto free_microvolt;
680 }
681
682 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
683 if (!microamp) {
684 ret = -EINVAL;
685 goto free_microvolt;
686 }
687
688 ret = of_property_read_u32_array(opp->np, name, microamp,
689 icount);
690 if (ret) {
691 dev_err(dev, "%s: error parsing %s: %d\n", __func__,
692 name, ret);
693 ret = -EINVAL;
694 goto free_microamp;
695 }
696 }
697
698 /* Search for "opp-microwatt" */
699 sprintf(name, "opp-microwatt");
700 prop = of_find_property(opp->np, name, NULL);
701
702 if (prop) {
703 pcount = of_property_count_u32_elems(opp->np, name);
704 if (pcount < 0) {
705 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
706 name, pcount);
707 ret = pcount;
708 goto free_microamp;
709 }
710
711 if (pcount != supplies) {
712 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
713 __func__, name, pcount, supplies);
714 ret = -EINVAL;
715 goto free_microamp;
716 }
717
718 microwatt = kmalloc_array(pcount, sizeof(*microwatt),
719 GFP_KERNEL);
720 if (!microwatt) {
721 ret = -EINVAL;
722 goto free_microamp;
723 }
724
725 ret = of_property_read_u32_array(opp->np, name, microwatt,
726 pcount);
727 if (ret) {
728 dev_err(dev, "%s: error parsing %s: %d\n", __func__,
729 name, ret);
730 ret = -EINVAL;
731 goto free_microwatt;
732 }
733 }
734
735 for (i = 0, j = 0; i < supplies; i++) {
736 opp->supplies[i].u_volt = microvolt[j++];
737
738 if (vcount == supplies) {
739 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
740 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
741 } else {
742 opp->supplies[i].u_volt_min = microvolt[j++];
743 opp->supplies[i].u_volt_max = microvolt[j++];
744 }
745
746 if (microamp)
747 opp->supplies[i].u_amp = microamp[i];
748
749 if (microwatt)
750 opp->supplies[i].u_watt = microwatt[i];
751 }
752
753 free_microwatt:
754 kfree(microwatt);
755 free_microamp:
756 kfree(microamp);
757 free_microvolt:
758 kfree(microvolt);
759
760 return ret;
761 }
762
763 /**
764 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
765 * entries
766 * @dev: device pointer used to lookup OPP table.
767 *
768 * Free OPPs created using static entries present in DT.
769 */
dev_pm_opp_of_remove_table(struct device * dev)770 void dev_pm_opp_of_remove_table(struct device *dev)
771 {
772 dev_pm_opp_remove_table(dev);
773 }
774 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
775
_read_rate(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np)776 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
777 struct device_node *np)
778 {
779 struct property *prop;
780 int i, count, ret;
781 u64 *rates;
782
783 prop = of_find_property(np, "opp-hz", NULL);
784 if (!prop)
785 return -ENODEV;
786
787 count = prop->length / sizeof(u64);
788 if (opp_table->clk_count != count) {
789 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
790 __func__, count, opp_table->clk_count);
791 return -EINVAL;
792 }
793
794 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
795 if (!rates)
796 return -ENOMEM;
797
798 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
799 if (ret) {
800 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
801 } else {
802 /*
803 * Rate is defined as an unsigned long in clk API, and so
804 * casting explicitly to its type. Must be fixed once rate is 64
805 * bit guaranteed in clk API.
806 */
807 for (i = 0; i < count; i++) {
808 new_opp->rates[i] = (unsigned long)rates[i];
809
810 /* This will happen for frequencies > 4.29 GHz */
811 WARN_ON(new_opp->rates[i] != rates[i]);
812 }
813 }
814
815 kfree(rates);
816
817 return ret;
818 }
819
_read_bw(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np,bool peak)820 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
821 struct device_node *np, bool peak)
822 {
823 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
824 struct property *prop;
825 int i, count, ret;
826 u32 *bw;
827
828 prop = of_find_property(np, name, NULL);
829 if (!prop)
830 return -ENODEV;
831
832 count = prop->length / sizeof(u32);
833 if (opp_table->path_count != count) {
834 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
835 __func__, name, count, opp_table->path_count);
836 return -EINVAL;
837 }
838
839 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
840 if (!bw)
841 return -ENOMEM;
842
843 ret = of_property_read_u32_array(np, name, bw, count);
844 if (ret) {
845 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
846 goto out;
847 }
848
849 for (i = 0; i < count; i++) {
850 if (peak)
851 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
852 else
853 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
854 }
855
856 out:
857 kfree(bw);
858 return ret;
859 }
860
_read_opp_key(struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct device_node * np)861 static int _read_opp_key(struct dev_pm_opp *new_opp,
862 struct opp_table *opp_table, struct device_node *np)
863 {
864 bool found = false;
865 int ret;
866
867 ret = _read_rate(new_opp, opp_table, np);
868 if (!ret)
869 found = true;
870 else if (ret != -ENODEV)
871 return ret;
872
873 /*
874 * Bandwidth consists of peak and average (optional) values:
875 * opp-peak-kBps = <path1_value path2_value>;
876 * opp-avg-kBps = <path1_value path2_value>;
877 */
878 ret = _read_bw(new_opp, opp_table, np, true);
879 if (!ret) {
880 found = true;
881 ret = _read_bw(new_opp, opp_table, np, false);
882 }
883
884 /* The properties were found but we failed to parse them */
885 if (ret && ret != -ENODEV)
886 return ret;
887
888 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
889 found = true;
890
891 if (found)
892 return 0;
893
894 return ret;
895 }
896
897 /**
898 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
899 * @opp_table: OPP table
900 * @dev: device for which we do this operation
901 * @np: device node
902 *
903 * This function adds an opp definition to the opp table and returns status. The
904 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
905 * removed by dev_pm_opp_remove.
906 *
907 * Return:
908 * Valid OPP pointer:
909 * On success
910 * NULL:
911 * Duplicate OPPs (both freq and volt are same) and opp->available
912 * OR if the OPP is not supported by hardware.
913 * ERR_PTR(-EEXIST):
914 * Freq are same and volt are different OR
915 * Duplicate OPPs (both freq and volt are same) and !opp->available
916 * ERR_PTR(-ENOMEM):
917 * Memory allocation failure
918 * ERR_PTR(-EINVAL):
919 * Failed parsing the OPP node
920 */
_opp_add_static_v2(struct opp_table * opp_table,struct device * dev,struct device_node * np)921 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
922 struct device *dev, struct device_node *np)
923 {
924 struct dev_pm_opp *new_opp;
925 u32 val;
926 int ret;
927
928 new_opp = _opp_allocate(opp_table);
929 if (!new_opp)
930 return ERR_PTR(-ENOMEM);
931
932 ret = _read_opp_key(new_opp, opp_table, np);
933 if (ret < 0) {
934 dev_err(dev, "%s: opp key field not found\n", __func__);
935 goto free_opp;
936 }
937
938 /* Check if the OPP supports hardware's hierarchy of versions or not */
939 if (!_opp_is_supported(dev, opp_table, np)) {
940 dev_dbg(dev, "OPP not supported by hardware: %s\n",
941 of_node_full_name(np));
942 goto free_opp;
943 }
944
945 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
946
947 new_opp->np = of_node_get(np);
948 new_opp->dynamic = false;
949 new_opp->available = true;
950
951 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
952 if (ret)
953 goto free_opp;
954
955 if (!of_property_read_u32(np, "clock-latency-ns", &val))
956 new_opp->clock_latency_ns = val;
957
958 ret = opp_parse_supplies(new_opp, dev, opp_table);
959 if (ret)
960 goto free_required_opps;
961
962 if (opp_table->is_genpd)
963 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
964
965 ret = _opp_add(dev, new_opp, opp_table);
966 if (ret) {
967 /* Don't return error for duplicate OPPs */
968 if (ret == -EBUSY)
969 ret = 0;
970 goto free_required_opps;
971 }
972
973 /* OPP to select on device suspend */
974 if (of_property_read_bool(np, "opp-suspend")) {
975 if (opp_table->suspend_opp) {
976 /* Pick the OPP with higher rate/bw/level as suspend OPP */
977 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
978 opp_table->suspend_opp->suspend = false;
979 new_opp->suspend = true;
980 opp_table->suspend_opp = new_opp;
981 }
982 } else {
983 new_opp->suspend = true;
984 opp_table->suspend_opp = new_opp;
985 }
986 }
987
988 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
989 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
990
991 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
992 __func__, new_opp->turbo, new_opp->rates[0],
993 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
994 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
995 new_opp->level);
996
997 /*
998 * Notify the changes in the availability of the operable
999 * frequency/voltage list.
1000 */
1001 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1002 return new_opp;
1003
1004 free_required_opps:
1005 _of_opp_free_required_opps(opp_table, new_opp);
1006 free_opp:
1007 _opp_free(new_opp);
1008
1009 return ret ? ERR_PTR(ret) : NULL;
1010 }
1011
1012 /* Initializes OPP tables based on new bindings */
_of_add_opp_table_v2(struct device * dev,struct opp_table * opp_table)1013 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1014 {
1015 struct device_node *np;
1016 int ret, count = 0;
1017 struct dev_pm_opp *opp;
1018
1019 /* OPP table is already initialized for the device */
1020 mutex_lock(&opp_table->lock);
1021 if (opp_table->parsed_static_opps) {
1022 opp_table->parsed_static_opps++;
1023 mutex_unlock(&opp_table->lock);
1024 return 0;
1025 }
1026
1027 opp_table->parsed_static_opps = 1;
1028 mutex_unlock(&opp_table->lock);
1029
1030 /* We have opp-table node now, iterate over it and add OPPs */
1031 for_each_available_child_of_node(opp_table->np, np) {
1032 opp = _opp_add_static_v2(opp_table, dev, np);
1033 if (IS_ERR(opp)) {
1034 ret = PTR_ERR(opp);
1035 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1036 ret);
1037 of_node_put(np);
1038 goto remove_static_opp;
1039 } else if (opp) {
1040 count++;
1041 }
1042 }
1043
1044 /* There should be one or more OPPs defined */
1045 if (!count) {
1046 dev_err(dev, "%s: no supported OPPs", __func__);
1047 ret = -ENOENT;
1048 goto remove_static_opp;
1049 }
1050
1051 list_for_each_entry(opp, &opp_table->opp_list, node) {
1052 /* Any non-zero performance state would enable the feature */
1053 if (opp->pstate) {
1054 opp_table->genpd_performance_state = true;
1055 break;
1056 }
1057 }
1058
1059 lazy_link_required_opp_table(opp_table);
1060
1061 return 0;
1062
1063 remove_static_opp:
1064 _opp_remove_all_static(opp_table);
1065
1066 return ret;
1067 }
1068
1069 /* Initializes OPP tables based on old-deprecated bindings */
_of_add_opp_table_v1(struct device * dev,struct opp_table * opp_table)1070 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1071 {
1072 const struct property *prop;
1073 const __be32 *val;
1074 int nr, ret = 0;
1075
1076 mutex_lock(&opp_table->lock);
1077 if (opp_table->parsed_static_opps) {
1078 opp_table->parsed_static_opps++;
1079 mutex_unlock(&opp_table->lock);
1080 return 0;
1081 }
1082
1083 opp_table->parsed_static_opps = 1;
1084 mutex_unlock(&opp_table->lock);
1085
1086 prop = of_find_property(dev->of_node, "operating-points", NULL);
1087 if (!prop) {
1088 ret = -ENODEV;
1089 goto remove_static_opp;
1090 }
1091 if (!prop->value) {
1092 ret = -ENODATA;
1093 goto remove_static_opp;
1094 }
1095
1096 /*
1097 * Each OPP is a set of tuples consisting of frequency and
1098 * voltage like <freq-kHz vol-uV>.
1099 */
1100 nr = prop->length / sizeof(u32);
1101 if (nr % 2) {
1102 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1103 ret = -EINVAL;
1104 goto remove_static_opp;
1105 }
1106
1107 val = prop->value;
1108 while (nr) {
1109 unsigned long freq = be32_to_cpup(val++) * 1000;
1110 unsigned long volt = be32_to_cpup(val++);
1111
1112 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1113 if (ret) {
1114 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1115 __func__, freq, ret);
1116 goto remove_static_opp;
1117 }
1118 nr -= 2;
1119 }
1120
1121 return 0;
1122
1123 remove_static_opp:
1124 _opp_remove_all_static(opp_table);
1125
1126 return ret;
1127 }
1128
_of_add_table_indexed(struct device * dev,int index)1129 static int _of_add_table_indexed(struct device *dev, int index)
1130 {
1131 struct opp_table *opp_table;
1132 int ret, count;
1133
1134 if (index) {
1135 /*
1136 * If only one phandle is present, then the same OPP table
1137 * applies for all index requests.
1138 */
1139 count = of_count_phandle_with_args(dev->of_node,
1140 "operating-points-v2", NULL);
1141 if (count == 1)
1142 index = 0;
1143 }
1144
1145 opp_table = _add_opp_table_indexed(dev, index, true);
1146 if (IS_ERR(opp_table))
1147 return PTR_ERR(opp_table);
1148
1149 /*
1150 * OPPs have two version of bindings now. Also try the old (v1)
1151 * bindings for backward compatibility with older dtbs.
1152 */
1153 if (opp_table->np)
1154 ret = _of_add_opp_table_v2(dev, opp_table);
1155 else
1156 ret = _of_add_opp_table_v1(dev, opp_table);
1157
1158 if (ret)
1159 dev_pm_opp_put_opp_table(opp_table);
1160
1161 return ret;
1162 }
1163
devm_pm_opp_of_table_release(void * data)1164 static void devm_pm_opp_of_table_release(void *data)
1165 {
1166 dev_pm_opp_of_remove_table(data);
1167 }
1168
_devm_of_add_table_indexed(struct device * dev,int index)1169 static int _devm_of_add_table_indexed(struct device *dev, int index)
1170 {
1171 int ret;
1172
1173 ret = _of_add_table_indexed(dev, index);
1174 if (ret)
1175 return ret;
1176
1177 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1178 }
1179
1180 /**
1181 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1182 * @dev: device pointer used to lookup OPP table.
1183 *
1184 * Register the initial OPP table with the OPP library for given device.
1185 *
1186 * The opp_table structure will be freed after the device is destroyed.
1187 *
1188 * Return:
1189 * 0 On success OR
1190 * Duplicate OPPs (both freq and volt are same) and opp->available
1191 * -EEXIST Freq are same and volt are different OR
1192 * Duplicate OPPs (both freq and volt are same) and !opp->available
1193 * -ENOMEM Memory allocation failure
1194 * -ENODEV when 'operating-points' property is not found or is invalid data
1195 * in device node.
1196 * -ENODATA when empty 'operating-points' property is found
1197 * -EINVAL when invalid entries are found in opp-v2 table
1198 */
devm_pm_opp_of_add_table(struct device * dev)1199 int devm_pm_opp_of_add_table(struct device *dev)
1200 {
1201 return _devm_of_add_table_indexed(dev, 0);
1202 }
1203 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1204
1205 /**
1206 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1207 * @dev: device pointer used to lookup OPP table.
1208 *
1209 * Register the initial OPP table with the OPP library for given device.
1210 *
1211 * Return:
1212 * 0 On success OR
1213 * Duplicate OPPs (both freq and volt are same) and opp->available
1214 * -EEXIST Freq are same and volt are different OR
1215 * Duplicate OPPs (both freq and volt are same) and !opp->available
1216 * -ENOMEM Memory allocation failure
1217 * -ENODEV when 'operating-points' property is not found or is invalid data
1218 * in device node.
1219 * -ENODATA when empty 'operating-points' property is found
1220 * -EINVAL when invalid entries are found in opp-v2 table
1221 */
dev_pm_opp_of_add_table(struct device * dev)1222 int dev_pm_opp_of_add_table(struct device *dev)
1223 {
1224 return _of_add_table_indexed(dev, 0);
1225 }
1226 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1227
1228 /**
1229 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1230 * @dev: device pointer used to lookup OPP table.
1231 * @index: Index number.
1232 *
1233 * Register the initial OPP table with the OPP library for given device only
1234 * using the "operating-points-v2" property.
1235 *
1236 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1237 */
dev_pm_opp_of_add_table_indexed(struct device * dev,int index)1238 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1239 {
1240 return _of_add_table_indexed(dev, index);
1241 }
1242 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1243
1244 /**
1245 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1246 * @dev: device pointer used to lookup OPP table.
1247 * @index: Index number.
1248 *
1249 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1250 */
devm_pm_opp_of_add_table_indexed(struct device * dev,int index)1251 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1252 {
1253 return _devm_of_add_table_indexed(dev, index);
1254 }
1255 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1256
1257 /* CPU device specific helpers */
1258
1259 /**
1260 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1261 * @cpumask: cpumask for which OPP table needs to be removed
1262 *
1263 * This removes the OPP tables for CPUs present in the @cpumask.
1264 * This should be used only to remove static entries created from DT.
1265 */
dev_pm_opp_of_cpumask_remove_table(const struct cpumask * cpumask)1266 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1267 {
1268 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1269 }
1270 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1271
1272 /**
1273 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1274 * @cpumask: cpumask for which OPP table needs to be added.
1275 *
1276 * This adds the OPP tables for CPUs present in the @cpumask.
1277 */
dev_pm_opp_of_cpumask_add_table(const struct cpumask * cpumask)1278 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1279 {
1280 struct device *cpu_dev;
1281 int cpu, ret;
1282
1283 if (WARN_ON(cpumask_empty(cpumask)))
1284 return -ENODEV;
1285
1286 for_each_cpu(cpu, cpumask) {
1287 cpu_dev = get_cpu_device(cpu);
1288 if (!cpu_dev) {
1289 pr_err("%s: failed to get cpu%d device\n", __func__,
1290 cpu);
1291 ret = -ENODEV;
1292 goto remove_table;
1293 }
1294
1295 ret = dev_pm_opp_of_add_table(cpu_dev);
1296 if (ret) {
1297 /*
1298 * OPP may get registered dynamically, don't print error
1299 * message here.
1300 */
1301 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1302 __func__, cpu, ret);
1303
1304 goto remove_table;
1305 }
1306 }
1307
1308 return 0;
1309
1310 remove_table:
1311 /* Free all other OPPs */
1312 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1313
1314 return ret;
1315 }
1316 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1317
1318 /*
1319 * Works only for OPP v2 bindings.
1320 *
1321 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1322 */
1323 /**
1324 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1325 * @cpu_dev using operating-points-v2
1326 * bindings.
1327 *
1328 * @cpu_dev: CPU device for which we do this operation
1329 * @cpumask: cpumask to update with information of sharing CPUs
1330 *
1331 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1332 *
1333 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1334 */
dev_pm_opp_of_get_sharing_cpus(struct device * cpu_dev,struct cpumask * cpumask)1335 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1336 struct cpumask *cpumask)
1337 {
1338 struct device_node *np, *tmp_np, *cpu_np;
1339 int cpu, ret = 0;
1340
1341 /* Get OPP descriptor node */
1342 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1343 if (!np) {
1344 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1345 return -ENOENT;
1346 }
1347
1348 cpumask_set_cpu(cpu_dev->id, cpumask);
1349
1350 /* OPPs are shared ? */
1351 if (!of_property_read_bool(np, "opp-shared"))
1352 goto put_cpu_node;
1353
1354 for_each_possible_cpu(cpu) {
1355 if (cpu == cpu_dev->id)
1356 continue;
1357
1358 cpu_np = of_cpu_device_node_get(cpu);
1359 if (!cpu_np) {
1360 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1361 __func__, cpu);
1362 ret = -ENOENT;
1363 goto put_cpu_node;
1364 }
1365
1366 /* Get OPP descriptor node */
1367 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1368 of_node_put(cpu_np);
1369 if (!tmp_np) {
1370 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1371 ret = -ENOENT;
1372 goto put_cpu_node;
1373 }
1374
1375 /* CPUs are sharing opp node */
1376 if (np == tmp_np)
1377 cpumask_set_cpu(cpu, cpumask);
1378
1379 of_node_put(tmp_np);
1380 }
1381
1382 put_cpu_node:
1383 of_node_put(np);
1384 return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1387
1388 /**
1389 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1390 * @np: Node that contains the "required-opps" property.
1391 * @index: Index of the phandle to parse.
1392 *
1393 * Returns the performance state of the OPP pointed out by the "required-opps"
1394 * property at @index in @np.
1395 *
1396 * Return: Zero or positive performance state on success, otherwise negative
1397 * value on errors.
1398 */
of_get_required_opp_performance_state(struct device_node * np,int index)1399 int of_get_required_opp_performance_state(struct device_node *np, int index)
1400 {
1401 struct dev_pm_opp *opp;
1402 struct device_node *required_np;
1403 struct opp_table *opp_table;
1404 int pstate = -EINVAL;
1405
1406 required_np = of_parse_required_opp(np, index);
1407 if (!required_np)
1408 return -ENODEV;
1409
1410 opp_table = _find_table_of_opp_np(required_np);
1411 if (IS_ERR(opp_table)) {
1412 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1413 __func__, np, PTR_ERR(opp_table));
1414 goto put_required_np;
1415 }
1416
1417 opp = _find_opp_of_np(opp_table, required_np);
1418 if (opp) {
1419 pstate = opp->pstate;
1420 dev_pm_opp_put(opp);
1421 }
1422
1423 dev_pm_opp_put_opp_table(opp_table);
1424
1425 put_required_np:
1426 of_node_put(required_np);
1427
1428 return pstate;
1429 }
1430 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1431
1432 /**
1433 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1434 * @opp: opp for which DT node has to be returned for
1435 *
1436 * Return: DT node corresponding to the opp, else 0 on success.
1437 *
1438 * The caller needs to put the node with of_node_put() after using it.
1439 */
dev_pm_opp_get_of_node(struct dev_pm_opp * opp)1440 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1441 {
1442 if (IS_ERR_OR_NULL(opp)) {
1443 pr_err("%s: Invalid parameters\n", __func__);
1444 return NULL;
1445 }
1446
1447 return of_node_get(opp->np);
1448 }
1449 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1450
1451 /*
1452 * Callback function provided to the Energy Model framework upon registration.
1453 * It provides the power used by @dev at @kHz if it is the frequency of an
1454 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1455 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1456 * frequency and @uW to the associated power.
1457 *
1458 * Returns 0 on success or a proper -EINVAL value in case of error.
1459 */
1460 static int __maybe_unused
_get_dt_power(struct device * dev,unsigned long * uW,unsigned long * kHz)1461 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1462 {
1463 struct dev_pm_opp *opp;
1464 unsigned long opp_freq, opp_power;
1465
1466 /* Find the right frequency and related OPP */
1467 opp_freq = *kHz * 1000;
1468 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1469 if (IS_ERR(opp))
1470 return -EINVAL;
1471
1472 opp_power = dev_pm_opp_get_power(opp);
1473 dev_pm_opp_put(opp);
1474 if (!opp_power)
1475 return -EINVAL;
1476
1477 *kHz = opp_freq / 1000;
1478 *uW = opp_power;
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * Callback function provided to the Energy Model framework upon registration.
1485 * This computes the power estimated by @dev at @kHz if it is the frequency
1486 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1487 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1488 * frequency and @uW to the associated power. The power is estimated as
1489 * P = C * V^2 * f with C being the device's capacitance and V and f
1490 * respectively the voltage and frequency of the OPP.
1491 *
1492 * Returns -EINVAL if the power calculation failed because of missing
1493 * parameters, 0 otherwise.
1494 */
_get_power(struct device * dev,unsigned long * uW,unsigned long * kHz)1495 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1496 unsigned long *kHz)
1497 {
1498 struct dev_pm_opp *opp;
1499 struct device_node *np;
1500 unsigned long mV, Hz;
1501 u32 cap;
1502 u64 tmp;
1503 int ret;
1504
1505 np = of_node_get(dev->of_node);
1506 if (!np)
1507 return -EINVAL;
1508
1509 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1510 of_node_put(np);
1511 if (ret)
1512 return -EINVAL;
1513
1514 Hz = *kHz * 1000;
1515 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1516 if (IS_ERR(opp))
1517 return -EINVAL;
1518
1519 mV = dev_pm_opp_get_voltage(opp) / 1000;
1520 dev_pm_opp_put(opp);
1521 if (!mV)
1522 return -EINVAL;
1523
1524 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1525 /* Provide power in micro-Watts */
1526 do_div(tmp, 1000000);
1527
1528 *uW = (unsigned long)tmp;
1529 *kHz = Hz / 1000;
1530
1531 return 0;
1532 }
1533
_of_has_opp_microwatt_property(struct device * dev)1534 static bool _of_has_opp_microwatt_property(struct device *dev)
1535 {
1536 unsigned long power, freq = 0;
1537 struct dev_pm_opp *opp;
1538
1539 /* Check if at least one OPP has needed property */
1540 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1541 if (IS_ERR(opp))
1542 return false;
1543
1544 power = dev_pm_opp_get_power(opp);
1545 dev_pm_opp_put(opp);
1546 if (!power)
1547 return false;
1548
1549 return true;
1550 }
1551
1552 /**
1553 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1554 * @dev : Device for which an Energy Model has to be registered
1555 * @cpus : CPUs for which an Energy Model has to be registered. For
1556 * other type of devices it should be set to NULL.
1557 *
1558 * This checks whether the "dynamic-power-coefficient" devicetree property has
1559 * been specified, and tries to register an Energy Model with it if it has.
1560 * Having this property means the voltages are known for OPPs and the EM
1561 * might be calculated.
1562 */
dev_pm_opp_of_register_em(struct device * dev,struct cpumask * cpus)1563 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1564 {
1565 struct em_data_callback em_cb;
1566 struct device_node *np;
1567 int ret, nr_opp;
1568 u32 cap;
1569
1570 if (IS_ERR_OR_NULL(dev)) {
1571 ret = -EINVAL;
1572 goto failed;
1573 }
1574
1575 nr_opp = dev_pm_opp_get_opp_count(dev);
1576 if (nr_opp <= 0) {
1577 ret = -EINVAL;
1578 goto failed;
1579 }
1580
1581 /* First, try to find more precised Energy Model in DT */
1582 if (_of_has_opp_microwatt_property(dev)) {
1583 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1584 goto register_em;
1585 }
1586
1587 np = of_node_get(dev->of_node);
1588 if (!np) {
1589 ret = -EINVAL;
1590 goto failed;
1591 }
1592
1593 /*
1594 * Register an EM only if the 'dynamic-power-coefficient' property is
1595 * set in devicetree. It is assumed the voltage values are known if that
1596 * property is set since it is useless otherwise. If voltages are not
1597 * known, just let the EM registration fail with an error to alert the
1598 * user about the inconsistent configuration.
1599 */
1600 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1601 of_node_put(np);
1602 if (ret || !cap) {
1603 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1604 ret = -EINVAL;
1605 goto failed;
1606 }
1607
1608 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1609
1610 register_em:
1611 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1612 if (ret)
1613 goto failed;
1614
1615 return 0;
1616
1617 failed:
1618 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1619 return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1622