1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/sh_dma.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/rspi.h>
28 #include <linux/spinlock.h>
29
30 #define RSPI_SPCR 0x00 /* Control Register */
31 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
32 #define RSPI_SPPCR 0x02 /* Pin Control Register */
33 #define RSPI_SPSR 0x03 /* Status Register */
34 #define RSPI_SPDR 0x04 /* Data Register */
35 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
36 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
37 #define RSPI_SPBR 0x0a /* Bit Rate Register */
38 #define RSPI_SPDCR 0x0b /* Data Control Register */
39 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
40 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
41 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
42 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
43 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
44 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
45 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
46 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
47 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
48 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
49 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
50 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
51 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
52 #define RSPI_NUM_SPCMD 8
53 #define RSPI_RZ_NUM_SPCMD 4
54 #define QSPI_NUM_SPCMD 4
55
56 /* RSPI on RZ only */
57 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
58 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
59
60 /* QSPI only */
61 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
62 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
63 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
64 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
65 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
66 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
67 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
68
69 /* SPCR - Control Register */
70 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
71 #define SPCR_SPE 0x40 /* Function Enable */
72 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
73 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
74 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
75 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
76 /* RSPI on SH only */
77 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
78 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
79 /* QSPI on R-Car Gen2 only */
80 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
81 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
82
83 /* SSLP - Slave Select Polarity Register */
84 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
85
86 /* SPPCR - Pin Control Register */
87 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
88 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
89 #define SPPCR_SPOM 0x04
90 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
91 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
92
93 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
94 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95
96 /* SPSR - Status Register */
97 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
98 #define SPSR_TEND 0x40 /* Transmit End */
99 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
100 #define SPSR_PERF 0x08 /* Parity Error Flag */
101 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
102 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
103 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
104
105 /* SPSCR - Sequence Control Register */
106 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
107
108 /* SPSSR - Sequence Status Register */
109 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
110 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
111
112 /* SPDCR - Data Control Register */
113 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
114 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
116 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
117 #define SPDCR_SPLWORD SPDCR_SPLW1
118 #define SPDCR_SPLBYTE SPDCR_SPLW0
119 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
120 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
121 #define SPDCR_SLSEL1 0x08
122 #define SPDCR_SLSEL0 0x04
123 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
124 #define SPDCR_SPFC1 0x02
125 #define SPDCR_SPFC0 0x01
126 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
127
128 /* SPCKD - Clock Delay Register */
129 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
130
131 /* SSLND - Slave Select Negation Delay Register */
132 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
133
134 /* SPND - Next-Access Delay Register */
135 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
136
137 /* SPCR2 - Control Register 2 */
138 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
139 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
140 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
141 #define SPCR2_SPPE 0x01 /* Parity Enable */
142
143 /* SPCMDn - Command Registers */
144 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
145 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
146 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
147 #define SPCMD_LSBF 0x1000 /* LSB First */
148 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
149 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
150 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
151 #define SPCMD_SPB_16BIT 0x0100
152 #define SPCMD_SPB_20BIT 0x0000
153 #define SPCMD_SPB_24BIT 0x0100
154 #define SPCMD_SPB_32BIT 0x0200
155 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
156 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
157 #define SPCMD_SPIMOD1 0x0040
158 #define SPCMD_SPIMOD0 0x0020
159 #define SPCMD_SPIMOD_SINGLE 0
160 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
161 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
162 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
163 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
164 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
165 #define SPCMD_BRDV(brdv) ((brdv) << 2)
166 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
167 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
168
169 /* SPBFCR - Buffer Control Register */
170 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
171 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
172 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
173 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
174 /* QSPI on R-Car Gen2 */
175 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
176 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
177 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
178 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
179
180 #define QSPI_BUFFER_SIZE 32u
181
182 struct rspi_data {
183 void __iomem *addr;
184 u32 speed_hz;
185 struct spi_controller *ctlr;
186 struct platform_device *pdev;
187 wait_queue_head_t wait;
188 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
189 struct clk *clk;
190 u16 spcmd;
191 u8 spsr;
192 u8 sppcr;
193 int rx_irq, tx_irq;
194 const struct spi_ops *ops;
195
196 unsigned dma_callbacked:1;
197 unsigned byte_access:1;
198 };
199
rspi_write8(const struct rspi_data * rspi,u8 data,u16 offset)200 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
201 {
202 iowrite8(data, rspi->addr + offset);
203 }
204
rspi_write16(const struct rspi_data * rspi,u16 data,u16 offset)205 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
206 {
207 iowrite16(data, rspi->addr + offset);
208 }
209
rspi_write32(const struct rspi_data * rspi,u32 data,u16 offset)210 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
211 {
212 iowrite32(data, rspi->addr + offset);
213 }
214
rspi_read8(const struct rspi_data * rspi,u16 offset)215 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
216 {
217 return ioread8(rspi->addr + offset);
218 }
219
rspi_read16(const struct rspi_data * rspi,u16 offset)220 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
221 {
222 return ioread16(rspi->addr + offset);
223 }
224
rspi_write_data(const struct rspi_data * rspi,u16 data)225 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
226 {
227 if (rspi->byte_access)
228 rspi_write8(rspi, data, RSPI_SPDR);
229 else /* 16 bit */
230 rspi_write16(rspi, data, RSPI_SPDR);
231 }
232
rspi_read_data(const struct rspi_data * rspi)233 static u16 rspi_read_data(const struct rspi_data *rspi)
234 {
235 if (rspi->byte_access)
236 return rspi_read8(rspi, RSPI_SPDR);
237 else /* 16 bit */
238 return rspi_read16(rspi, RSPI_SPDR);
239 }
240
241 /* optional functions */
242 struct spi_ops {
243 int (*set_config_register)(struct rspi_data *rspi, int access_size);
244 int (*transfer_one)(struct spi_controller *ctlr,
245 struct spi_device *spi, struct spi_transfer *xfer);
246 u16 extra_mode_bits;
247 u16 min_div;
248 u16 max_div;
249 u16 flags;
250 u16 fifo_size;
251 u8 num_hw_ss;
252 };
253
rspi_set_rate(struct rspi_data * rspi)254 static void rspi_set_rate(struct rspi_data *rspi)
255 {
256 unsigned long clksrc;
257 int brdv = 0, spbr;
258
259 clksrc = clk_get_rate(rspi->clk);
260 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
261 while (spbr > 255 && brdv < 3) {
262 brdv++;
263 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
264 }
265
266 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
267 rspi->spcmd |= SPCMD_BRDV(brdv);
268 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
269 }
270
271 /*
272 * functions for RSPI on legacy SH
273 */
rspi_set_config_register(struct rspi_data * rspi,int access_size)274 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
275 {
276 /* Sets output mode, MOSI signal, and (optionally) loopback */
277 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
278
279 /* Sets transfer bit rate */
280 rspi_set_rate(rspi);
281
282 /* Disable dummy transmission, set 16-bit word access, 1 frame */
283 rspi_write8(rspi, 0, RSPI_SPDCR);
284 rspi->byte_access = 0;
285
286 /* Sets RSPCK, SSL, next-access delay value */
287 rspi_write8(rspi, 0x00, RSPI_SPCKD);
288 rspi_write8(rspi, 0x00, RSPI_SSLND);
289 rspi_write8(rspi, 0x00, RSPI_SPND);
290
291 /* Sets parity, interrupt mask */
292 rspi_write8(rspi, 0x00, RSPI_SPCR2);
293
294 /* Resets sequencer */
295 rspi_write8(rspi, 0, RSPI_SPSCR);
296 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
297 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
298
299 /* Sets RSPI mode */
300 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
301
302 return 0;
303 }
304
305 /*
306 * functions for RSPI on RZ
307 */
rspi_rz_set_config_register(struct rspi_data * rspi,int access_size)308 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
309 {
310 /* Sets output mode, MOSI signal, and (optionally) loopback */
311 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
312
313 /* Sets transfer bit rate */
314 rspi_set_rate(rspi);
315
316 /* Disable dummy transmission, set byte access */
317 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
318 rspi->byte_access = 1;
319
320 /* Sets RSPCK, SSL, next-access delay value */
321 rspi_write8(rspi, 0x00, RSPI_SPCKD);
322 rspi_write8(rspi, 0x00, RSPI_SSLND);
323 rspi_write8(rspi, 0x00, RSPI_SPND);
324
325 /* Resets sequencer */
326 rspi_write8(rspi, 0, RSPI_SPSCR);
327 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329
330 /* Sets RSPI mode */
331 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332
333 return 0;
334 }
335
336 /*
337 * functions for QSPI
338 */
qspi_set_config_register(struct rspi_data * rspi,int access_size)339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340 {
341 unsigned long clksrc;
342 int brdv = 0, spbr;
343
344 /* Sets output mode, MOSI signal, and (optionally) loopback */
345 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
346
347 /* Sets transfer bit rate */
348 clksrc = clk_get_rate(rspi->clk);
349 if (rspi->speed_hz >= clksrc) {
350 spbr = 0;
351 rspi->speed_hz = clksrc;
352 } else {
353 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
354 while (spbr > 255 && brdv < 3) {
355 brdv++;
356 spbr = DIV_ROUND_UP(spbr, 2);
357 }
358 spbr = clamp(spbr, 0, 255);
359 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
360 }
361 rspi_write8(rspi, spbr, RSPI_SPBR);
362 rspi->spcmd |= SPCMD_BRDV(brdv);
363
364 /* Disable dummy transmission, set byte access */
365 rspi_write8(rspi, 0, RSPI_SPDCR);
366 rspi->byte_access = 1;
367
368 /* Sets RSPCK, SSL, next-access delay value */
369 rspi_write8(rspi, 0x00, RSPI_SPCKD);
370 rspi_write8(rspi, 0x00, RSPI_SSLND);
371 rspi_write8(rspi, 0x00, RSPI_SPND);
372
373 /* Data Length Setting */
374 if (access_size == 8)
375 rspi->spcmd |= SPCMD_SPB_8BIT;
376 else if (access_size == 16)
377 rspi->spcmd |= SPCMD_SPB_16BIT;
378 else
379 rspi->spcmd |= SPCMD_SPB_32BIT;
380
381 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
382
383 /* Resets transfer data length */
384 rspi_write32(rspi, 0, QSPI_SPBMUL0);
385
386 /* Resets transmit and receive buffer */
387 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
388 /* Sets buffer to allow normal operation */
389 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
390
391 /* Resets sequencer */
392 rspi_write8(rspi, 0, RSPI_SPSCR);
393 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
394
395 /* Sets RSPI mode */
396 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
397
398 return 0;
399 }
400
qspi_update(const struct rspi_data * rspi,u8 mask,u8 val,u8 reg)401 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
402 {
403 u8 data;
404
405 data = rspi_read8(rspi, reg);
406 data &= ~mask;
407 data |= (val & mask);
408 rspi_write8(rspi, data, reg);
409 }
410
qspi_set_send_trigger(struct rspi_data * rspi,unsigned int len)411 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
412 unsigned int len)
413 {
414 unsigned int n;
415
416 n = min(len, QSPI_BUFFER_SIZE);
417
418 if (len >= QSPI_BUFFER_SIZE) {
419 /* sets triggering number to 32 bytes */
420 qspi_update(rspi, SPBFCR_TXTRG_MASK,
421 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
422 } else {
423 /* sets triggering number to 1 byte */
424 qspi_update(rspi, SPBFCR_TXTRG_MASK,
425 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
426 }
427
428 return n;
429 }
430
qspi_set_receive_trigger(struct rspi_data * rspi,unsigned int len)431 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
432 {
433 unsigned int n;
434
435 n = min(len, QSPI_BUFFER_SIZE);
436
437 if (len >= QSPI_BUFFER_SIZE) {
438 /* sets triggering number to 32 bytes */
439 qspi_update(rspi, SPBFCR_RXTRG_MASK,
440 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
441 } else {
442 /* sets triggering number to 1 byte */
443 qspi_update(rspi, SPBFCR_RXTRG_MASK,
444 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
445 }
446 return n;
447 }
448
rspi_enable_irq(const struct rspi_data * rspi,u8 enable)449 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
450 {
451 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
452 }
453
rspi_disable_irq(const struct rspi_data * rspi,u8 disable)454 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
455 {
456 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
457 }
458
rspi_wait_for_interrupt(struct rspi_data * rspi,u8 wait_mask,u8 enable_bit)459 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
460 u8 enable_bit)
461 {
462 int ret;
463
464 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
465 if (rspi->spsr & wait_mask)
466 return 0;
467
468 rspi_enable_irq(rspi, enable_bit);
469 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
470 if (ret == 0 && !(rspi->spsr & wait_mask))
471 return -ETIMEDOUT;
472
473 return 0;
474 }
475
rspi_wait_for_tx_empty(struct rspi_data * rspi)476 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
477 {
478 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
479 }
480
rspi_wait_for_rx_full(struct rspi_data * rspi)481 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
482 {
483 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
484 }
485
rspi_data_out(struct rspi_data * rspi,u8 data)486 static int rspi_data_out(struct rspi_data *rspi, u8 data)
487 {
488 int error = rspi_wait_for_tx_empty(rspi);
489 if (error < 0) {
490 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
491 return error;
492 }
493 rspi_write_data(rspi, data);
494 return 0;
495 }
496
rspi_data_in(struct rspi_data * rspi)497 static int rspi_data_in(struct rspi_data *rspi)
498 {
499 int error;
500 u8 data;
501
502 error = rspi_wait_for_rx_full(rspi);
503 if (error < 0) {
504 dev_err(&rspi->ctlr->dev, "receive timeout\n");
505 return error;
506 }
507 data = rspi_read_data(rspi);
508 return data;
509 }
510
rspi_pio_transfer(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int n)511 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
512 unsigned int n)
513 {
514 while (n-- > 0) {
515 if (tx) {
516 int ret = rspi_data_out(rspi, *tx++);
517 if (ret < 0)
518 return ret;
519 }
520 if (rx) {
521 int ret = rspi_data_in(rspi);
522 if (ret < 0)
523 return ret;
524 *rx++ = ret;
525 }
526 }
527
528 return 0;
529 }
530
rspi_dma_complete(void * arg)531 static void rspi_dma_complete(void *arg)
532 {
533 struct rspi_data *rspi = arg;
534
535 rspi->dma_callbacked = 1;
536 wake_up_interruptible(&rspi->wait);
537 }
538
rspi_dma_transfer(struct rspi_data * rspi,struct sg_table * tx,struct sg_table * rx)539 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
540 struct sg_table *rx)
541 {
542 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
543 u8 irq_mask = 0;
544 unsigned int other_irq = 0;
545 dma_cookie_t cookie;
546 int ret;
547
548 /* First prepare and submit the DMA request(s), as this may fail */
549 if (rx) {
550 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
551 rx->nents, DMA_DEV_TO_MEM,
552 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
553 if (!desc_rx) {
554 ret = -EAGAIN;
555 goto no_dma_rx;
556 }
557
558 desc_rx->callback = rspi_dma_complete;
559 desc_rx->callback_param = rspi;
560 cookie = dmaengine_submit(desc_rx);
561 if (dma_submit_error(cookie)) {
562 ret = cookie;
563 goto no_dma_rx;
564 }
565
566 irq_mask |= SPCR_SPRIE;
567 }
568
569 if (tx) {
570 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
571 tx->nents, DMA_MEM_TO_DEV,
572 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
573 if (!desc_tx) {
574 ret = -EAGAIN;
575 goto no_dma_tx;
576 }
577
578 if (rx) {
579 /* No callback */
580 desc_tx->callback = NULL;
581 } else {
582 desc_tx->callback = rspi_dma_complete;
583 desc_tx->callback_param = rspi;
584 }
585 cookie = dmaengine_submit(desc_tx);
586 if (dma_submit_error(cookie)) {
587 ret = cookie;
588 goto no_dma_tx;
589 }
590
591 irq_mask |= SPCR_SPTIE;
592 }
593
594 /*
595 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
596 * called. So, this driver disables the IRQ while DMA transfer.
597 */
598 if (tx)
599 disable_irq(other_irq = rspi->tx_irq);
600 if (rx && rspi->rx_irq != other_irq)
601 disable_irq(rspi->rx_irq);
602
603 rspi_enable_irq(rspi, irq_mask);
604 rspi->dma_callbacked = 0;
605
606 /* Now start DMA */
607 if (rx)
608 dma_async_issue_pending(rspi->ctlr->dma_rx);
609 if (tx)
610 dma_async_issue_pending(rspi->ctlr->dma_tx);
611
612 ret = wait_event_interruptible_timeout(rspi->wait,
613 rspi->dma_callbacked, HZ);
614 if (ret > 0 && rspi->dma_callbacked) {
615 ret = 0;
616 if (tx)
617 dmaengine_synchronize(rspi->ctlr->dma_tx);
618 if (rx)
619 dmaengine_synchronize(rspi->ctlr->dma_rx);
620 } else {
621 if (!ret) {
622 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
623 ret = -ETIMEDOUT;
624 }
625 if (tx)
626 dmaengine_terminate_sync(rspi->ctlr->dma_tx);
627 if (rx)
628 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
629 }
630
631 rspi_disable_irq(rspi, irq_mask);
632
633 if (tx)
634 enable_irq(rspi->tx_irq);
635 if (rx && rspi->rx_irq != other_irq)
636 enable_irq(rspi->rx_irq);
637
638 return ret;
639
640 no_dma_tx:
641 if (rx)
642 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
643 no_dma_rx:
644 if (ret == -EAGAIN) {
645 dev_warn_once(&rspi->ctlr->dev,
646 "DMA not available, falling back to PIO\n");
647 }
648 return ret;
649 }
650
rspi_receive_init(const struct rspi_data * rspi)651 static void rspi_receive_init(const struct rspi_data *rspi)
652 {
653 u8 spsr;
654
655 spsr = rspi_read8(rspi, RSPI_SPSR);
656 if (spsr & SPSR_SPRF)
657 rspi_read_data(rspi); /* dummy read */
658 if (spsr & SPSR_OVRF)
659 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
660 RSPI_SPSR);
661 }
662
rspi_rz_receive_init(const struct rspi_data * rspi)663 static void rspi_rz_receive_init(const struct rspi_data *rspi)
664 {
665 rspi_receive_init(rspi);
666 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
667 rspi_write8(rspi, 0, RSPI_SPBFCR);
668 }
669
qspi_receive_init(const struct rspi_data * rspi)670 static void qspi_receive_init(const struct rspi_data *rspi)
671 {
672 u8 spsr;
673
674 spsr = rspi_read8(rspi, RSPI_SPSR);
675 if (spsr & SPSR_SPRF)
676 rspi_read_data(rspi); /* dummy read */
677 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
678 rspi_write8(rspi, 0, QSPI_SPBFCR);
679 }
680
__rspi_can_dma(const struct rspi_data * rspi,const struct spi_transfer * xfer)681 static bool __rspi_can_dma(const struct rspi_data *rspi,
682 const struct spi_transfer *xfer)
683 {
684 return xfer->len > rspi->ops->fifo_size;
685 }
686
rspi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)687 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
688 struct spi_transfer *xfer)
689 {
690 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
691
692 return __rspi_can_dma(rspi, xfer);
693 }
694
rspi_dma_check_then_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)695 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
696 struct spi_transfer *xfer)
697 {
698 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
699 return -EAGAIN;
700
701 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
702 return rspi_dma_transfer(rspi, &xfer->tx_sg,
703 xfer->rx_buf ? &xfer->rx_sg : NULL);
704 }
705
rspi_common_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)706 static int rspi_common_transfer(struct rspi_data *rspi,
707 struct spi_transfer *xfer)
708 {
709 int ret;
710
711 xfer->effective_speed_hz = rspi->speed_hz;
712
713 ret = rspi_dma_check_then_transfer(rspi, xfer);
714 if (ret != -EAGAIN)
715 return ret;
716
717 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
718 if (ret < 0)
719 return ret;
720
721 /* Wait for the last transmission */
722 rspi_wait_for_tx_empty(rspi);
723
724 return 0;
725 }
726
rspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)727 static int rspi_transfer_one(struct spi_controller *ctlr,
728 struct spi_device *spi, struct spi_transfer *xfer)
729 {
730 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
731 u8 spcr;
732
733 spcr = rspi_read8(rspi, RSPI_SPCR);
734 if (xfer->rx_buf) {
735 rspi_receive_init(rspi);
736 spcr &= ~SPCR_TXMD;
737 } else {
738 spcr |= SPCR_TXMD;
739 }
740 rspi_write8(rspi, spcr, RSPI_SPCR);
741
742 return rspi_common_transfer(rspi, xfer);
743 }
744
rspi_rz_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)745 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
746 struct spi_device *spi,
747 struct spi_transfer *xfer)
748 {
749 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
750
751 rspi_rz_receive_init(rspi);
752
753 return rspi_common_transfer(rspi, xfer);
754 }
755
qspi_trigger_transfer_out_in(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int len)756 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
757 u8 *rx, unsigned int len)
758 {
759 unsigned int i, n;
760 int ret;
761
762 while (len > 0) {
763 n = qspi_set_send_trigger(rspi, len);
764 qspi_set_receive_trigger(rspi, len);
765 ret = rspi_wait_for_tx_empty(rspi);
766 if (ret < 0) {
767 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
768 return ret;
769 }
770 for (i = 0; i < n; i++)
771 rspi_write_data(rspi, *tx++);
772
773 ret = rspi_wait_for_rx_full(rspi);
774 if (ret < 0) {
775 dev_err(&rspi->ctlr->dev, "receive timeout\n");
776 return ret;
777 }
778 for (i = 0; i < n; i++)
779 *rx++ = rspi_read_data(rspi);
780
781 len -= n;
782 }
783
784 return 0;
785 }
786
qspi_transfer_out_in(struct rspi_data * rspi,struct spi_transfer * xfer)787 static int qspi_transfer_out_in(struct rspi_data *rspi,
788 struct spi_transfer *xfer)
789 {
790 int ret;
791
792 qspi_receive_init(rspi);
793
794 ret = rspi_dma_check_then_transfer(rspi, xfer);
795 if (ret != -EAGAIN)
796 return ret;
797
798 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
799 xfer->rx_buf, xfer->len);
800 }
801
qspi_transfer_out(struct rspi_data * rspi,struct spi_transfer * xfer)802 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
803 {
804 const u8 *tx = xfer->tx_buf;
805 unsigned int n = xfer->len;
806 unsigned int i, len;
807 int ret;
808
809 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
810 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
811 if (ret != -EAGAIN)
812 return ret;
813 }
814
815 while (n > 0) {
816 len = qspi_set_send_trigger(rspi, n);
817 ret = rspi_wait_for_tx_empty(rspi);
818 if (ret < 0) {
819 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
820 return ret;
821 }
822 for (i = 0; i < len; i++)
823 rspi_write_data(rspi, *tx++);
824
825 n -= len;
826 }
827
828 /* Wait for the last transmission */
829 rspi_wait_for_tx_empty(rspi);
830
831 return 0;
832 }
833
qspi_transfer_in(struct rspi_data * rspi,struct spi_transfer * xfer)834 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
835 {
836 u8 *rx = xfer->rx_buf;
837 unsigned int n = xfer->len;
838 unsigned int i, len;
839 int ret;
840
841 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
842 ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
843 if (ret != -EAGAIN)
844 return ret;
845 }
846
847 while (n > 0) {
848 len = qspi_set_receive_trigger(rspi, n);
849 ret = rspi_wait_for_rx_full(rspi);
850 if (ret < 0) {
851 dev_err(&rspi->ctlr->dev, "receive timeout\n");
852 return ret;
853 }
854 for (i = 0; i < len; i++)
855 *rx++ = rspi_read_data(rspi);
856
857 n -= len;
858 }
859
860 return 0;
861 }
862
qspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)863 static int qspi_transfer_one(struct spi_controller *ctlr,
864 struct spi_device *spi, struct spi_transfer *xfer)
865 {
866 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
867
868 xfer->effective_speed_hz = rspi->speed_hz;
869 if (spi->mode & SPI_LOOP) {
870 return qspi_transfer_out_in(rspi, xfer);
871 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
872 /* Quad or Dual SPI Write */
873 return qspi_transfer_out(rspi, xfer);
874 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
875 /* Quad or Dual SPI Read */
876 return qspi_transfer_in(rspi, xfer);
877 } else {
878 /* Single SPI Transfer */
879 return qspi_transfer_out_in(rspi, xfer);
880 }
881 }
882
qspi_transfer_mode(const struct spi_transfer * xfer)883 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
884 {
885 if (xfer->tx_buf)
886 switch (xfer->tx_nbits) {
887 case SPI_NBITS_QUAD:
888 return SPCMD_SPIMOD_QUAD;
889 case SPI_NBITS_DUAL:
890 return SPCMD_SPIMOD_DUAL;
891 default:
892 return 0;
893 }
894 if (xfer->rx_buf)
895 switch (xfer->rx_nbits) {
896 case SPI_NBITS_QUAD:
897 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
898 case SPI_NBITS_DUAL:
899 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
900 default:
901 return 0;
902 }
903
904 return 0;
905 }
906
qspi_setup_sequencer(struct rspi_data * rspi,const struct spi_message * msg)907 static int qspi_setup_sequencer(struct rspi_data *rspi,
908 const struct spi_message *msg)
909 {
910 const struct spi_transfer *xfer;
911 unsigned int i = 0, len = 0;
912 u16 current_mode = 0xffff, mode;
913
914 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
915 mode = qspi_transfer_mode(xfer);
916 if (mode == current_mode) {
917 len += xfer->len;
918 continue;
919 }
920
921 /* Transfer mode change */
922 if (i) {
923 /* Set transfer data length of previous transfer */
924 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
925 }
926
927 if (i >= QSPI_NUM_SPCMD) {
928 dev_err(&msg->spi->dev,
929 "Too many different transfer modes");
930 return -EINVAL;
931 }
932
933 /* Program transfer mode for this transfer */
934 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
935 current_mode = mode;
936 len = xfer->len;
937 i++;
938 }
939 if (i) {
940 /* Set final transfer data length and sequence length */
941 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
942 rspi_write8(rspi, i - 1, RSPI_SPSCR);
943 }
944
945 return 0;
946 }
947
rspi_setup(struct spi_device * spi)948 static int rspi_setup(struct spi_device *spi)
949 {
950 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
951 u8 sslp;
952
953 if (spi->cs_gpiod)
954 return 0;
955
956 pm_runtime_get_sync(&rspi->pdev->dev);
957 spin_lock_irq(&rspi->lock);
958
959 sslp = rspi_read8(rspi, RSPI_SSLP);
960 if (spi->mode & SPI_CS_HIGH)
961 sslp |= SSLP_SSLP(spi->chip_select);
962 else
963 sslp &= ~SSLP_SSLP(spi->chip_select);
964 rspi_write8(rspi, sslp, RSPI_SSLP);
965
966 spin_unlock_irq(&rspi->lock);
967 pm_runtime_put(&rspi->pdev->dev);
968 return 0;
969 }
970
rspi_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)971 static int rspi_prepare_message(struct spi_controller *ctlr,
972 struct spi_message *msg)
973 {
974 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
975 struct spi_device *spi = msg->spi;
976 const struct spi_transfer *xfer;
977 int ret;
978
979 /*
980 * As the Bit Rate Register must not be changed while the device is
981 * active, all transfers in a message must use the same bit rate.
982 * In theory, the sequencer could be enabled, and each Command Register
983 * could divide the base bit rate by a different value.
984 * However, most RSPI variants do not have Transfer Data Length
985 * Multiplier Setting Registers, so each sequence step would be limited
986 * to a single word, making this feature unsuitable for large
987 * transfers, which would gain most from it.
988 */
989 rspi->speed_hz = spi->max_speed_hz;
990 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
991 if (xfer->speed_hz < rspi->speed_hz)
992 rspi->speed_hz = xfer->speed_hz;
993 }
994
995 rspi->spcmd = SPCMD_SSLKP;
996 if (spi->mode & SPI_CPOL)
997 rspi->spcmd |= SPCMD_CPOL;
998 if (spi->mode & SPI_CPHA)
999 rspi->spcmd |= SPCMD_CPHA;
1000 if (spi->mode & SPI_LSB_FIRST)
1001 rspi->spcmd |= SPCMD_LSBF;
1002
1003 /* Configure slave signal to assert */
1004 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1005 : spi->chip_select);
1006
1007 /* CMOS output mode and MOSI signal from previous transfer */
1008 rspi->sppcr = 0;
1009 if (spi->mode & SPI_LOOP)
1010 rspi->sppcr |= SPPCR_SPLP;
1011
1012 rspi->ops->set_config_register(rspi, 8);
1013
1014 if (msg->spi->mode &
1015 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1016 /* Setup sequencer for messages with multiple transfer modes */
1017 ret = qspi_setup_sequencer(rspi, msg);
1018 if (ret < 0)
1019 return ret;
1020 }
1021
1022 /* Enable SPI function in master mode */
1023 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1024 return 0;
1025 }
1026
rspi_unprepare_message(struct spi_controller * ctlr,struct spi_message * msg)1027 static int rspi_unprepare_message(struct spi_controller *ctlr,
1028 struct spi_message *msg)
1029 {
1030 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031
1032 /* Disable SPI function */
1033 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034
1035 /* Reset sequencer for Single SPI Transfers */
1036 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1037 rspi_write8(rspi, 0, RSPI_SPSCR);
1038 return 0;
1039 }
1040
rspi_irq_mux(int irq,void * _sr)1041 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042 {
1043 struct rspi_data *rspi = _sr;
1044 u8 spsr;
1045 irqreturn_t ret = IRQ_NONE;
1046 u8 disable_irq = 0;
1047
1048 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1049 if (spsr & SPSR_SPRF)
1050 disable_irq |= SPCR_SPRIE;
1051 if (spsr & SPSR_SPTEF)
1052 disable_irq |= SPCR_SPTIE;
1053
1054 if (disable_irq) {
1055 ret = IRQ_HANDLED;
1056 rspi_disable_irq(rspi, disable_irq);
1057 wake_up(&rspi->wait);
1058 }
1059
1060 return ret;
1061 }
1062
rspi_irq_rx(int irq,void * _sr)1063 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064 {
1065 struct rspi_data *rspi = _sr;
1066 u8 spsr;
1067
1068 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1069 if (spsr & SPSR_SPRF) {
1070 rspi_disable_irq(rspi, SPCR_SPRIE);
1071 wake_up(&rspi->wait);
1072 return IRQ_HANDLED;
1073 }
1074
1075 return 0;
1076 }
1077
rspi_irq_tx(int irq,void * _sr)1078 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079 {
1080 struct rspi_data *rspi = _sr;
1081 u8 spsr;
1082
1083 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1084 if (spsr & SPSR_SPTEF) {
1085 rspi_disable_irq(rspi, SPCR_SPTIE);
1086 wake_up(&rspi->wait);
1087 return IRQ_HANDLED;
1088 }
1089
1090 return 0;
1091 }
1092
rspi_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1093 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1094 enum dma_transfer_direction dir,
1095 unsigned int id,
1096 dma_addr_t port_addr)
1097 {
1098 dma_cap_mask_t mask;
1099 struct dma_chan *chan;
1100 struct dma_slave_config cfg;
1101 int ret;
1102
1103 dma_cap_zero(mask);
1104 dma_cap_set(DMA_SLAVE, mask);
1105
1106 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1107 (void *)(unsigned long)id, dev,
1108 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1109 if (!chan) {
1110 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1111 return NULL;
1112 }
1113
1114 memset(&cfg, 0, sizeof(cfg));
1115 cfg.dst_addr = port_addr + RSPI_SPDR;
1116 cfg.src_addr = port_addr + RSPI_SPDR;
1117 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1119 cfg.direction = dir;
1120
1121 ret = dmaengine_slave_config(chan, &cfg);
1122 if (ret) {
1123 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1124 dma_release_channel(chan);
1125 return NULL;
1126 }
1127
1128 return chan;
1129 }
1130
rspi_request_dma(struct device * dev,struct spi_controller * ctlr,const struct resource * res)1131 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1132 const struct resource *res)
1133 {
1134 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1135 unsigned int dma_tx_id, dma_rx_id;
1136
1137 if (dev->of_node) {
1138 /* In the OF case we will get the slave IDs from the DT */
1139 dma_tx_id = 0;
1140 dma_rx_id = 0;
1141 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1142 dma_tx_id = rspi_pd->dma_tx_id;
1143 dma_rx_id = rspi_pd->dma_rx_id;
1144 } else {
1145 /* The driver assumes no error. */
1146 return 0;
1147 }
1148
1149 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1150 res->start);
1151 if (!ctlr->dma_tx)
1152 return -ENODEV;
1153
1154 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1155 res->start);
1156 if (!ctlr->dma_rx) {
1157 dma_release_channel(ctlr->dma_tx);
1158 ctlr->dma_tx = NULL;
1159 return -ENODEV;
1160 }
1161
1162 ctlr->can_dma = rspi_can_dma;
1163 dev_info(dev, "DMA available");
1164 return 0;
1165 }
1166
rspi_release_dma(struct spi_controller * ctlr)1167 static void rspi_release_dma(struct spi_controller *ctlr)
1168 {
1169 if (ctlr->dma_tx)
1170 dma_release_channel(ctlr->dma_tx);
1171 if (ctlr->dma_rx)
1172 dma_release_channel(ctlr->dma_rx);
1173 }
1174
rspi_remove(struct platform_device * pdev)1175 static int rspi_remove(struct platform_device *pdev)
1176 {
1177 struct rspi_data *rspi = platform_get_drvdata(pdev);
1178
1179 rspi_release_dma(rspi->ctlr);
1180 pm_runtime_disable(&pdev->dev);
1181
1182 return 0;
1183 }
1184
1185 static const struct spi_ops rspi_ops = {
1186 .set_config_register = rspi_set_config_register,
1187 .transfer_one = rspi_transfer_one,
1188 .min_div = 2,
1189 .max_div = 4096,
1190 .flags = SPI_CONTROLLER_MUST_TX,
1191 .fifo_size = 8,
1192 .num_hw_ss = 2,
1193 };
1194
1195 static const struct spi_ops rspi_rz_ops = {
1196 .set_config_register = rspi_rz_set_config_register,
1197 .transfer_one = rspi_rz_transfer_one,
1198 .min_div = 2,
1199 .max_div = 4096,
1200 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1201 .fifo_size = 8, /* 8 for TX, 32 for RX */
1202 .num_hw_ss = 1,
1203 };
1204
1205 static const struct spi_ops qspi_ops = {
1206 .set_config_register = qspi_set_config_register,
1207 .transfer_one = qspi_transfer_one,
1208 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1209 SPI_RX_DUAL | SPI_RX_QUAD,
1210 .min_div = 1,
1211 .max_div = 4080,
1212 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1213 .fifo_size = 32,
1214 .num_hw_ss = 1,
1215 };
1216
1217 #ifdef CONFIG_OF
1218 static const struct of_device_id rspi_of_match[] = {
1219 /* RSPI on legacy SH */
1220 { .compatible = "renesas,rspi", .data = &rspi_ops },
1221 /* RSPI on RZ/A1H */
1222 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1223 /* QSPI on R-Car Gen2 */
1224 { .compatible = "renesas,qspi", .data = &qspi_ops },
1225 { /* sentinel */ }
1226 };
1227
1228 MODULE_DEVICE_TABLE(of, rspi_of_match);
1229
rspi_reset_control_assert(void * data)1230 static void rspi_reset_control_assert(void *data)
1231 {
1232 reset_control_assert(data);
1233 }
1234
rspi_parse_dt(struct device * dev,struct spi_controller * ctlr)1235 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1236 {
1237 struct reset_control *rstc;
1238 u32 num_cs;
1239 int error;
1240
1241 /* Parse DT properties */
1242 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1243 if (error) {
1244 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1245 return error;
1246 }
1247
1248 ctlr->num_chipselect = num_cs;
1249
1250 rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1251 if (IS_ERR(rstc))
1252 return dev_err_probe(dev, PTR_ERR(rstc),
1253 "failed to get reset ctrl\n");
1254
1255 error = reset_control_deassert(rstc);
1256 if (error) {
1257 dev_err(dev, "failed to deassert reset %d\n", error);
1258 return error;
1259 }
1260
1261 error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1262 if (error) {
1263 dev_err(dev, "failed to register assert devm action, %d\n", error);
1264 return error;
1265 }
1266
1267 return 0;
1268 }
1269 #else
1270 #define rspi_of_match NULL
rspi_parse_dt(struct device * dev,struct spi_controller * ctlr)1271 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1272 {
1273 return -EINVAL;
1274 }
1275 #endif /* CONFIG_OF */
1276
rspi_request_irq(struct device * dev,unsigned int irq,irq_handler_t handler,const char * suffix,void * dev_id)1277 static int rspi_request_irq(struct device *dev, unsigned int irq,
1278 irq_handler_t handler, const char *suffix,
1279 void *dev_id)
1280 {
1281 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1282 dev_name(dev), suffix);
1283 if (!name)
1284 return -ENOMEM;
1285
1286 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1287 }
1288
rspi_probe(struct platform_device * pdev)1289 static int rspi_probe(struct platform_device *pdev)
1290 {
1291 struct resource *res;
1292 struct spi_controller *ctlr;
1293 struct rspi_data *rspi;
1294 int ret;
1295 const struct rspi_plat_data *rspi_pd;
1296 const struct spi_ops *ops;
1297 unsigned long clksrc;
1298
1299 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1300 if (ctlr == NULL)
1301 return -ENOMEM;
1302
1303 ops = of_device_get_match_data(&pdev->dev);
1304 if (ops) {
1305 ret = rspi_parse_dt(&pdev->dev, ctlr);
1306 if (ret)
1307 goto error1;
1308 } else {
1309 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1310 rspi_pd = dev_get_platdata(&pdev->dev);
1311 if (rspi_pd && rspi_pd->num_chipselect)
1312 ctlr->num_chipselect = rspi_pd->num_chipselect;
1313 else
1314 ctlr->num_chipselect = 2; /* default */
1315 }
1316
1317 rspi = spi_controller_get_devdata(ctlr);
1318 platform_set_drvdata(pdev, rspi);
1319 rspi->ops = ops;
1320 rspi->ctlr = ctlr;
1321
1322 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1323 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1324 if (IS_ERR(rspi->addr)) {
1325 ret = PTR_ERR(rspi->addr);
1326 goto error1;
1327 }
1328
1329 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1330 if (IS_ERR(rspi->clk)) {
1331 dev_err(&pdev->dev, "cannot get clock\n");
1332 ret = PTR_ERR(rspi->clk);
1333 goto error1;
1334 }
1335
1336 rspi->pdev = pdev;
1337 pm_runtime_enable(&pdev->dev);
1338
1339 init_waitqueue_head(&rspi->wait);
1340 spin_lock_init(&rspi->lock);
1341
1342 ctlr->bus_num = pdev->id;
1343 ctlr->setup = rspi_setup;
1344 ctlr->auto_runtime_pm = true;
1345 ctlr->transfer_one = ops->transfer_one;
1346 ctlr->prepare_message = rspi_prepare_message;
1347 ctlr->unprepare_message = rspi_unprepare_message;
1348 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1349 SPI_LOOP | ops->extra_mode_bits;
1350 clksrc = clk_get_rate(rspi->clk);
1351 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1352 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1353 ctlr->flags = ops->flags;
1354 ctlr->dev.of_node = pdev->dev.of_node;
1355 ctlr->use_gpio_descriptors = true;
1356 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1357
1358 ret = platform_get_irq_byname_optional(pdev, "rx");
1359 if (ret < 0) {
1360 ret = platform_get_irq_byname_optional(pdev, "mux");
1361 if (ret < 0)
1362 ret = platform_get_irq(pdev, 0);
1363 if (ret >= 0)
1364 rspi->rx_irq = rspi->tx_irq = ret;
1365 } else {
1366 rspi->rx_irq = ret;
1367 ret = platform_get_irq_byname(pdev, "tx");
1368 if (ret >= 0)
1369 rspi->tx_irq = ret;
1370 }
1371
1372 if (rspi->rx_irq == rspi->tx_irq) {
1373 /* Single multiplexed interrupt */
1374 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1375 "mux", rspi);
1376 } else {
1377 /* Multi-interrupt mode, only SPRI and SPTI are used */
1378 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1379 "rx", rspi);
1380 if (!ret)
1381 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1382 rspi_irq_tx, "tx", rspi);
1383 }
1384 if (ret < 0) {
1385 dev_err(&pdev->dev, "request_irq error\n");
1386 goto error2;
1387 }
1388
1389 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1390 if (ret < 0)
1391 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1392
1393 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1394 if (ret < 0) {
1395 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1396 goto error3;
1397 }
1398
1399 dev_info(&pdev->dev, "probed\n");
1400
1401 return 0;
1402
1403 error3:
1404 rspi_release_dma(ctlr);
1405 error2:
1406 pm_runtime_disable(&pdev->dev);
1407 error1:
1408 spi_controller_put(ctlr);
1409
1410 return ret;
1411 }
1412
1413 static const struct platform_device_id spi_driver_ids[] = {
1414 { "rspi", (kernel_ulong_t)&rspi_ops },
1415 {},
1416 };
1417
1418 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1419
1420 #ifdef CONFIG_PM_SLEEP
rspi_suspend(struct device * dev)1421 static int rspi_suspend(struct device *dev)
1422 {
1423 struct rspi_data *rspi = dev_get_drvdata(dev);
1424
1425 return spi_controller_suspend(rspi->ctlr);
1426 }
1427
rspi_resume(struct device * dev)1428 static int rspi_resume(struct device *dev)
1429 {
1430 struct rspi_data *rspi = dev_get_drvdata(dev);
1431
1432 return spi_controller_resume(rspi->ctlr);
1433 }
1434
1435 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1436 #define DEV_PM_OPS &rspi_pm_ops
1437 #else
1438 #define DEV_PM_OPS NULL
1439 #endif /* CONFIG_PM_SLEEP */
1440
1441 static struct platform_driver rspi_driver = {
1442 .probe = rspi_probe,
1443 .remove = rspi_remove,
1444 .id_table = spi_driver_ids,
1445 .driver = {
1446 .name = "renesas_spi",
1447 .pm = DEV_PM_OPS,
1448 .of_match_table = of_match_ptr(rspi_of_match),
1449 },
1450 };
1451 module_platform_driver(rspi_driver);
1452
1453 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1454 MODULE_LICENSE("GPL v2");
1455 MODULE_AUTHOR("Yoshihiro Shimoda");
1456