• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Octeon Watchdog driver
4  *
5  * Copyright (C) 2007-2017 Cavium, Inc.
6  *
7  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8  *
9  * Some parts derived from wdt.c
10  *
11  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
12  *						All Rights Reserved.
13  *
14  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
15  *	warranty for any of this software. This material is provided
16  *	"AS-IS" and at no charge.
17  *
18  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
19  *
20  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
21  * For most systems this is less than 10 seconds, so to allow for
22  * software to request longer watchdog heartbeats, we maintain software
23  * counters to count multiples of the base rate.  If the system locks
24  * up in such a manner that we can not run the software counters, the
25  * only result is a watchdog reset sooner than was requested.  But
26  * that is OK, because in this case userspace would likely not be able
27  * to do anything anyhow.
28  *
29  * The hardware watchdog interval we call the period.  The OCTEON
30  * watchdog goes through several stages, after the first period an
31  * irq is asserted, then if it is not reset, after the next period NMI
32  * is asserted, then after an additional period a chip wide soft reset.
33  * So for the software counters, we reset watchdog after each period
34  * and decrement the counter.  But for the last two periods we need to
35  * let the watchdog progress to the NMI stage so we disable the irq
36  * and let it proceed.  Once in the NMI, we print the register state
37  * to the serial port and then wait for the reset.
38  *
39  * A watchdog is maintained for each CPU in the system, that way if
40  * one CPU suffers a lockup, we also get a register dump and reset.
41  * The userspace ping resets the watchdog on all CPUs.
42  *
43  * Before userspace opens the watchdog device, we still run the
44  * watchdogs to catch any lockups that may be kernel related.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/interrupt.h>
51 #include <linux/watchdog.h>
52 #include <linux/cpumask.h>
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/cpu.h>
56 #include <linux/irq.h>
57 #include <linux/irqdomain.h>
58 
59 #include <asm/mipsregs.h>
60 #include <asm/uasm.h>
61 
62 #include <asm/octeon/octeon.h>
63 #include <asm/octeon/cvmx-boot-vector.h>
64 #include <asm/octeon/cvmx-ciu2-defs.h>
65 #include <asm/octeon/cvmx-rst-defs.h>
66 
67 /* Watchdog interrupt major block number (8 MSBs of intsn) */
68 #define WD_BLOCK_NUMBER		0x01
69 
70 static int divisor;
71 
72 /* The count needed to achieve timeout_sec. */
73 static unsigned int timeout_cnt;
74 
75 /* The maximum period supported. */
76 static unsigned int max_timeout_sec;
77 
78 /* The current period.  */
79 static unsigned int timeout_sec;
80 
81 /* Set to non-zero when userspace countdown mode active */
82 static bool do_countdown;
83 static unsigned int countdown_reset;
84 static unsigned int per_cpu_countdown[NR_CPUS];
85 
86 static cpumask_t irq_enabled_cpus;
87 
88 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
89 
90 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
91 
92 static int heartbeat = WD_TIMO;
93 module_param(heartbeat, int, 0444);
94 MODULE_PARM_DESC(heartbeat,
95 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
96 				__MODULE_STRING(WD_TIMO) ")");
97 
98 static bool nowayout = WATCHDOG_NOWAYOUT;
99 module_param(nowayout, bool, 0444);
100 MODULE_PARM_DESC(nowayout,
101 	"Watchdog cannot be stopped once started (default="
102 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103 
104 static int disable;
105 module_param(disable, int, 0444);
106 MODULE_PARM_DESC(disable,
107 	"Disable the watchdog entirely (default=0)");
108 
109 static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
110 
111 void octeon_wdt_nmi_stage2(void);
112 
cpu2core(int cpu)113 static int cpu2core(int cpu)
114 {
115 #ifdef CONFIG_SMP
116 	return cpu_logical_map(cpu) & 0x3f;
117 #else
118 	return cvmx_get_core_num();
119 #endif
120 }
121 
122 /**
123  * octeon_wdt_poke_irq - Poke the watchdog when an interrupt is received
124  *
125  * @cpl:
126  * @dev_id:
127  *
128  * Returns
129  */
octeon_wdt_poke_irq(int cpl,void * dev_id)130 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
131 {
132 	int cpu = raw_smp_processor_id();
133 	unsigned int core = cpu2core(cpu);
134 	int node = cpu_to_node(cpu);
135 
136 	if (do_countdown) {
137 		if (per_cpu_countdown[cpu] > 0) {
138 			/* We're alive, poke the watchdog */
139 			cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
140 			per_cpu_countdown[cpu]--;
141 		} else {
142 			/* Bad news, you are about to reboot. */
143 			disable_irq_nosync(cpl);
144 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
145 		}
146 	} else {
147 		/* Not open, just ping away... */
148 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
149 	}
150 	return IRQ_HANDLED;
151 }
152 
153 /* From setup.c */
154 extern int prom_putchar(char c);
155 
156 /**
157  * octeon_wdt_write_string - Write a string to the uart
158  *
159  * @str:        String to write
160  */
octeon_wdt_write_string(const char * str)161 static void octeon_wdt_write_string(const char *str)
162 {
163 	/* Just loop writing one byte at a time */
164 	while (*str)
165 		prom_putchar(*str++);
166 }
167 
168 /**
169  * octeon_wdt_write_hex() - Write a hex number out of the uart
170  *
171  * @value:      Number to display
172  * @digits:     Number of digits to print (1 to 16)
173  */
octeon_wdt_write_hex(u64 value,int digits)174 static void octeon_wdt_write_hex(u64 value, int digits)
175 {
176 	int d;
177 	int v;
178 
179 	for (d = 0; d < digits; d++) {
180 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
181 		if (v >= 10)
182 			prom_putchar('a' + v - 10);
183 		else
184 			prom_putchar('0' + v);
185 	}
186 }
187 
188 static const char reg_name[][3] = {
189 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
190 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
191 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
192 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
193 };
194 
195 /**
196  * octeon_wdt_nmi_stage3:
197  *
198  * NMI stage 3 handler. NMIs are handled in the following manner:
199  * 1) The first NMI handler enables CVMSEG and transfers from
200  * the bootbus region into normal memory. It is careful to not
201  * destroy any registers.
202  * 2) The second stage handler uses CVMSEG to save the registers
203  * and create a stack for C code. It then calls the third level
204  * handler with one argument, a pointer to the register values.
205  * 3) The third, and final, level handler is the following C
206  * function that prints out some useful infomration.
207  *
208  * @reg:    Pointer to register state before the NMI
209  */
octeon_wdt_nmi_stage3(u64 reg[32])210 void octeon_wdt_nmi_stage3(u64 reg[32])
211 {
212 	u64 i;
213 
214 	unsigned int coreid = cvmx_get_core_num();
215 	/*
216 	 * Save status and cause early to get them before any changes
217 	 * might happen.
218 	 */
219 	u64 cp0_cause = read_c0_cause();
220 	u64 cp0_status = read_c0_status();
221 	u64 cp0_error_epc = read_c0_errorepc();
222 	u64 cp0_epc = read_c0_epc();
223 
224 	/* Delay so output from all cores output is not jumbled together. */
225 	udelay(85000 * coreid);
226 
227 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
228 	octeon_wdt_write_hex(coreid, 2);
229 	octeon_wdt_write_string(" ***\r\n");
230 	for (i = 0; i < 32; i++) {
231 		octeon_wdt_write_string("\t");
232 		octeon_wdt_write_string(reg_name[i]);
233 		octeon_wdt_write_string("\t0x");
234 		octeon_wdt_write_hex(reg[i], 16);
235 		if (i & 1)
236 			octeon_wdt_write_string("\r\n");
237 	}
238 	octeon_wdt_write_string("\terr_epc\t0x");
239 	octeon_wdt_write_hex(cp0_error_epc, 16);
240 
241 	octeon_wdt_write_string("\tepc\t0x");
242 	octeon_wdt_write_hex(cp0_epc, 16);
243 	octeon_wdt_write_string("\r\n");
244 
245 	octeon_wdt_write_string("\tstatus\t0x");
246 	octeon_wdt_write_hex(cp0_status, 16);
247 	octeon_wdt_write_string("\tcause\t0x");
248 	octeon_wdt_write_hex(cp0_cause, 16);
249 	octeon_wdt_write_string("\r\n");
250 
251 	/* The CIU register is different for each Octeon model. */
252 	if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
253 		octeon_wdt_write_string("\tsrc_wd\t0x");
254 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
255 		octeon_wdt_write_string("\ten_wd\t0x");
256 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
257 		octeon_wdt_write_string("\r\n");
258 		octeon_wdt_write_string("\tsrc_rml\t0x");
259 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
260 		octeon_wdt_write_string("\ten_rml\t0x");
261 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
262 		octeon_wdt_write_string("\r\n");
263 		octeon_wdt_write_string("\tsum\t0x");
264 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
265 		octeon_wdt_write_string("\r\n");
266 	} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
267 		octeon_wdt_write_string("\tsum0\t0x");
268 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
269 		octeon_wdt_write_string("\ten0\t0x");
270 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
271 		octeon_wdt_write_string("\r\n");
272 	}
273 
274 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
275 
276 	/*
277 	 * G-30204: We must trigger a soft reset before watchdog
278 	 * does an incomplete job of doing it.
279 	 */
280 	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
281 		u64 scr;
282 		unsigned int node = cvmx_get_node_num();
283 		unsigned int lcore = cvmx_get_local_core_num();
284 		union cvmx_ciu_wdogx ciu_wdog;
285 
286 		/*
287 		 * Wait for other cores to print out information, but
288 		 * not too long.  Do the soft reset before watchdog
289 		 * can trigger it.
290 		 */
291 		do {
292 			ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
293 		} while (ciu_wdog.s.cnt > 0x10000);
294 
295 		scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
296 		scr |= 1 << 11; /* Indicate watchdog in bit 11 */
297 		cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
298 		cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
299 	}
300 }
301 
octeon_wdt_cpu_to_irq(int cpu)302 static int octeon_wdt_cpu_to_irq(int cpu)
303 {
304 	unsigned int coreid;
305 	int node;
306 	int irq;
307 
308 	coreid = cpu2core(cpu);
309 	node = cpu_to_node(cpu);
310 
311 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
312 		struct irq_domain *domain;
313 		int hwirq;
314 
315 		domain = octeon_irq_get_block_domain(node,
316 						     WD_BLOCK_NUMBER);
317 		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
318 		irq = irq_find_mapping(domain, hwirq);
319 	} else {
320 		irq = OCTEON_IRQ_WDOG0 + coreid;
321 	}
322 	return irq;
323 }
324 
octeon_wdt_cpu_pre_down(unsigned int cpu)325 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
326 {
327 	unsigned int core;
328 	int node;
329 	union cvmx_ciu_wdogx ciu_wdog;
330 
331 	core = cpu2core(cpu);
332 
333 	node = cpu_to_node(cpu);
334 
335 	/* Poke the watchdog to clear out its state */
336 	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
337 
338 	/* Disable the hardware. */
339 	ciu_wdog.u64 = 0;
340 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
341 
342 	free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
343 	return 0;
344 }
345 
octeon_wdt_cpu_online(unsigned int cpu)346 static int octeon_wdt_cpu_online(unsigned int cpu)
347 {
348 	unsigned int core;
349 	unsigned int irq;
350 	union cvmx_ciu_wdogx ciu_wdog;
351 	int node;
352 	struct irq_domain *domain;
353 	int hwirq;
354 
355 	core = cpu2core(cpu);
356 	node = cpu_to_node(cpu);
357 
358 	octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
359 
360 	/* Disable it before doing anything with the interrupts. */
361 	ciu_wdog.u64 = 0;
362 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
363 
364 	per_cpu_countdown[cpu] = countdown_reset;
365 
366 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
367 		/* Must get the domain for the watchdog block */
368 		domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
369 
370 		/* Get a irq for the wd intsn (hardware interrupt) */
371 		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
372 		irq = irq_create_mapping(domain, hwirq);
373 		irqd_set_trigger_type(irq_get_irq_data(irq),
374 				      IRQ_TYPE_EDGE_RISING);
375 	} else
376 		irq = OCTEON_IRQ_WDOG0 + core;
377 
378 	if (request_irq(irq, octeon_wdt_poke_irq,
379 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
380 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
381 
382 	/* Must set the irq affinity here */
383 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
384 		cpumask_t mask;
385 
386 		cpumask_clear(&mask);
387 		cpumask_set_cpu(cpu, &mask);
388 		irq_set_affinity(irq, &mask);
389 	}
390 
391 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
392 
393 	/* Poke the watchdog to clear out its state */
394 	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
395 
396 	/* Finally enable the watchdog now that all handlers are installed */
397 	ciu_wdog.u64 = 0;
398 	ciu_wdog.s.len = timeout_cnt;
399 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
400 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
401 
402 	return 0;
403 }
404 
octeon_wdt_ping(struct watchdog_device __always_unused * wdog)405 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
406 {
407 	int cpu;
408 	int coreid;
409 	int node;
410 
411 	if (disable)
412 		return 0;
413 
414 	for_each_online_cpu(cpu) {
415 		coreid = cpu2core(cpu);
416 		node = cpu_to_node(cpu);
417 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
418 		per_cpu_countdown[cpu] = countdown_reset;
419 		if ((countdown_reset || !do_countdown) &&
420 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
421 			/* We have to enable the irq */
422 			enable_irq(octeon_wdt_cpu_to_irq(cpu));
423 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
424 		}
425 	}
426 	return 0;
427 }
428 
octeon_wdt_calc_parameters(int t)429 static void octeon_wdt_calc_parameters(int t)
430 {
431 	unsigned int periods;
432 
433 	timeout_sec = max_timeout_sec;
434 
435 
436 	/*
437 	 * Find the largest interrupt period, that can evenly divide
438 	 * the requested heartbeat time.
439 	 */
440 	while ((t % timeout_sec) != 0)
441 		timeout_sec--;
442 
443 	periods = t / timeout_sec;
444 
445 	/*
446 	 * The last two periods are after the irq is disabled, and
447 	 * then to the nmi, so we subtract them off.
448 	 */
449 
450 	countdown_reset = periods > 2 ? periods - 2 : 0;
451 	heartbeat = t;
452 	timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
453 }
454 
octeon_wdt_set_timeout(struct watchdog_device * wdog,unsigned int t)455 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
456 				  unsigned int t)
457 {
458 	int cpu;
459 	int coreid;
460 	union cvmx_ciu_wdogx ciu_wdog;
461 	int node;
462 
463 	if (t <= 0)
464 		return -1;
465 
466 	octeon_wdt_calc_parameters(t);
467 
468 	if (disable)
469 		return 0;
470 
471 	for_each_online_cpu(cpu) {
472 		coreid = cpu2core(cpu);
473 		node = cpu_to_node(cpu);
474 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
475 		ciu_wdog.u64 = 0;
476 		ciu_wdog.s.len = timeout_cnt;
477 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
478 		cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
479 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
480 	}
481 	octeon_wdt_ping(wdog); /* Get the irqs back on. */
482 	return 0;
483 }
484 
octeon_wdt_start(struct watchdog_device * wdog)485 static int octeon_wdt_start(struct watchdog_device *wdog)
486 {
487 	octeon_wdt_ping(wdog);
488 	do_countdown = 1;
489 	return 0;
490 }
491 
octeon_wdt_stop(struct watchdog_device * wdog)492 static int octeon_wdt_stop(struct watchdog_device *wdog)
493 {
494 	do_countdown = 0;
495 	octeon_wdt_ping(wdog);
496 	return 0;
497 }
498 
499 static const struct watchdog_info octeon_wdt_info = {
500 	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
501 	.identity = "OCTEON",
502 };
503 
504 static const struct watchdog_ops octeon_wdt_ops = {
505 	.owner		= THIS_MODULE,
506 	.start		= octeon_wdt_start,
507 	.stop		= octeon_wdt_stop,
508 	.ping		= octeon_wdt_ping,
509 	.set_timeout	= octeon_wdt_set_timeout,
510 };
511 
512 static struct watchdog_device octeon_wdt = {
513 	.info	= &octeon_wdt_info,
514 	.ops	= &octeon_wdt_ops,
515 };
516 
517 static enum cpuhp_state octeon_wdt_online;
518 /**
519  * octeon_wdt_init - Module/ driver initialization.
520  *
521  * Returns Zero on success
522  */
octeon_wdt_init(void)523 static int __init octeon_wdt_init(void)
524 {
525 	int ret;
526 
527 	octeon_wdt_bootvector = cvmx_boot_vector_get();
528 	if (!octeon_wdt_bootvector) {
529 		pr_err("Error: Cannot allocate boot vector.\n");
530 		return -ENOMEM;
531 	}
532 
533 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
534 		divisor = 0x200;
535 	else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
536 		divisor = 0x400;
537 	else
538 		divisor = 0x100;
539 
540 	/*
541 	 * Watchdog time expiration length = The 16 bits of LEN
542 	 * represent the most significant bits of a 24 bit decrementer
543 	 * that decrements every divisor cycle.
544 	 *
545 	 * Try for a timeout of 5 sec, if that fails a smaller number
546 	 * of even seconds,
547 	 */
548 	max_timeout_sec = 6;
549 	do {
550 		max_timeout_sec--;
551 		timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
552 	} while (timeout_cnt > 65535);
553 
554 	BUG_ON(timeout_cnt == 0);
555 
556 	octeon_wdt_calc_parameters(heartbeat);
557 
558 	pr_info("Initial granularity %d Sec\n", timeout_sec);
559 
560 	octeon_wdt.timeout	= timeout_sec;
561 	octeon_wdt.max_timeout	= UINT_MAX;
562 
563 	watchdog_set_nowayout(&octeon_wdt, nowayout);
564 
565 	ret = watchdog_register_device(&octeon_wdt);
566 	if (ret) {
567 		pr_err("watchdog_register_device() failed: %d\n", ret);
568 		return ret;
569 	}
570 
571 	if (disable) {
572 		pr_notice("disabled\n");
573 		return 0;
574 	}
575 
576 	cpumask_clear(&irq_enabled_cpus);
577 
578 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
579 				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
580 	if (ret < 0)
581 		goto err;
582 	octeon_wdt_online = ret;
583 	return 0;
584 err:
585 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
586 	watchdog_unregister_device(&octeon_wdt);
587 	return ret;
588 }
589 
590 /**
591  * octeon_wdt_cleanup - Module / driver shutdown
592  */
octeon_wdt_cleanup(void)593 static void __exit octeon_wdt_cleanup(void)
594 {
595 	watchdog_unregister_device(&octeon_wdt);
596 
597 	if (disable)
598 		return;
599 
600 	cpuhp_remove_state(octeon_wdt_online);
601 
602 	/*
603 	 * Disable the boot-bus memory, the code it points to is soon
604 	 * to go missing.
605 	 */
606 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
607 }
608 
609 MODULE_LICENSE("GPL");
610 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
611 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
612 module_init(octeon_wdt_init);
613 module_exit(octeon_wdt_cleanup);
614