• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 {
68 	if (fs_info->csum_shash)
69 		crypto_free_shash(fs_info->csum_shash);
70 }
71 
72 /*
73  * async submit bios are used to offload expensive checksumming
74  * onto the worker threads.  They checksum file and metadata bios
75  * just before they are sent down the IO stack.
76  */
77 struct async_submit_bio {
78 	struct inode *inode;
79 	struct bio *bio;
80 	extent_submit_bio_start_t *submit_bio_start;
81 	int mirror_num;
82 
83 	/* Optional parameter for submit_bio_start used by direct io */
84 	u64 dio_file_offset;
85 	struct btrfs_work work;
86 	blk_status_t status;
87 };
88 
89 /*
90  * Compute the csum of a btree block and store the result to provided buffer.
91  */
csum_tree_block(struct extent_buffer * buf,u8 * result)92 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
93 {
94 	struct btrfs_fs_info *fs_info = buf->fs_info;
95 	const int num_pages = num_extent_pages(buf);
96 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
97 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
98 	char *kaddr;
99 	int i;
100 
101 	shash->tfm = fs_info->csum_shash;
102 	crypto_shash_init(shash);
103 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
104 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
105 			    first_page_part - BTRFS_CSUM_SIZE);
106 
107 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
108 		kaddr = page_address(buf->pages[i]);
109 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
110 	}
111 	memset(result, 0, BTRFS_CSUM_SIZE);
112 	crypto_shash_final(shash, result);
113 }
114 
115 /*
116  * we can't consider a given block up to date unless the transid of the
117  * block matches the transid in the parent node's pointer.  This is how we
118  * detect blocks that either didn't get written at all or got written
119  * in the wrong place.
120  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)121 static int verify_parent_transid(struct extent_io_tree *io_tree,
122 				 struct extent_buffer *eb, u64 parent_transid,
123 				 int atomic)
124 {
125 	struct extent_state *cached_state = NULL;
126 	int ret;
127 
128 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 		return 0;
130 
131 	if (atomic)
132 		return -EAGAIN;
133 
134 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
135 	if (extent_buffer_uptodate(eb) &&
136 	    btrfs_header_generation(eb) == parent_transid) {
137 		ret = 0;
138 		goto out;
139 	}
140 	btrfs_err_rl(eb->fs_info,
141 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 			eb->start, eb->read_mirror,
143 			parent_transid, btrfs_header_generation(eb));
144 	ret = 1;
145 	clear_extent_buffer_uptodate(eb);
146 out:
147 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 		      &cached_state);
149 	return ret;
150 }
151 
btrfs_supported_super_csum(u16 csum_type)152 static bool btrfs_supported_super_csum(u16 csum_type)
153 {
154 	switch (csum_type) {
155 	case BTRFS_CSUM_TYPE_CRC32:
156 	case BTRFS_CSUM_TYPE_XXHASH:
157 	case BTRFS_CSUM_TYPE_SHA256:
158 	case BTRFS_CSUM_TYPE_BLAKE2:
159 		return true;
160 	default:
161 		return false;
162 	}
163 }
164 
165 /*
166  * Return 0 if the superblock checksum type matches the checksum value of that
167  * algorithm. Pass the raw disk superblock data.
168  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)169 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 			   const struct btrfs_super_block *disk_sb)
171 {
172 	char result[BTRFS_CSUM_SIZE];
173 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
174 
175 	shash->tfm = fs_info->csum_shash;
176 
177 	/*
178 	 * The super_block structure does not span the whole
179 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
180 	 * filled with zeros and is included in the checksum.
181 	 */
182 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
183 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
184 
185 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
186 		return 1;
187 
188 	return 0;
189 }
190 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)191 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
192 			   struct btrfs_key *first_key, u64 parent_transid)
193 {
194 	struct btrfs_fs_info *fs_info = eb->fs_info;
195 	int found_level;
196 	struct btrfs_key found_key;
197 	int ret;
198 
199 	found_level = btrfs_header_level(eb);
200 	if (found_level != level) {
201 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
202 		     KERN_ERR "BTRFS: tree level check failed\n");
203 		btrfs_err(fs_info,
204 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
205 			  eb->start, level, found_level);
206 		return -EIO;
207 	}
208 
209 	if (!first_key)
210 		return 0;
211 
212 	/*
213 	 * For live tree block (new tree blocks in current transaction),
214 	 * we need proper lock context to avoid race, which is impossible here.
215 	 * So we only checks tree blocks which is read from disk, whose
216 	 * generation <= fs_info->last_trans_committed.
217 	 */
218 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
219 		return 0;
220 
221 	/* We have @first_key, so this @eb must have at least one item */
222 	if (btrfs_header_nritems(eb) == 0) {
223 		btrfs_err(fs_info,
224 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
225 			  eb->start);
226 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
227 		return -EUCLEAN;
228 	}
229 
230 	if (found_level)
231 		btrfs_node_key_to_cpu(eb, &found_key, 0);
232 	else
233 		btrfs_item_key_to_cpu(eb, &found_key, 0);
234 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
235 
236 	if (ret) {
237 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 		     KERN_ERR "BTRFS: tree first key check failed\n");
239 		btrfs_err(fs_info,
240 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
241 			  eb->start, parent_transid, first_key->objectid,
242 			  first_key->type, first_key->offset,
243 			  found_key.objectid, found_key.type,
244 			  found_key.offset);
245 	}
246 	return ret;
247 }
248 
249 /*
250  * helper to read a given tree block, doing retries as required when
251  * the checksums don't match and we have alternate mirrors to try.
252  *
253  * @parent_transid:	expected transid, skip check if 0
254  * @level:		expected level, mandatory check
255  * @first_key:		expected key of first slot, skip check if NULL
256  */
btrfs_read_extent_buffer(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)257 int btrfs_read_extent_buffer(struct extent_buffer *eb,
258 			     u64 parent_transid, int level,
259 			     struct btrfs_key *first_key)
260 {
261 	struct btrfs_fs_info *fs_info = eb->fs_info;
262 	struct extent_io_tree *io_tree;
263 	int failed = 0;
264 	int ret;
265 	int num_copies = 0;
266 	int mirror_num = 0;
267 	int failed_mirror = 0;
268 
269 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
270 	while (1) {
271 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
272 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
273 		if (!ret) {
274 			if (verify_parent_transid(io_tree, eb,
275 						   parent_transid, 0))
276 				ret = -EIO;
277 			else if (btrfs_verify_level_key(eb, level,
278 						first_key, parent_transid))
279 				ret = -EUCLEAN;
280 			else
281 				break;
282 		}
283 
284 		num_copies = btrfs_num_copies(fs_info,
285 					      eb->start, eb->len);
286 		if (num_copies == 1)
287 			break;
288 
289 		if (!failed_mirror) {
290 			failed = 1;
291 			failed_mirror = eb->read_mirror;
292 		}
293 
294 		mirror_num++;
295 		if (mirror_num == failed_mirror)
296 			mirror_num++;
297 
298 		if (mirror_num > num_copies)
299 			break;
300 	}
301 
302 	if (failed && !ret && failed_mirror)
303 		btrfs_repair_eb_io_failure(eb, failed_mirror);
304 
305 	return ret;
306 }
307 
csum_one_extent_buffer(struct extent_buffer * eb)308 static int csum_one_extent_buffer(struct extent_buffer *eb)
309 {
310 	struct btrfs_fs_info *fs_info = eb->fs_info;
311 	u8 result[BTRFS_CSUM_SIZE];
312 	int ret;
313 
314 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
315 				    offsetof(struct btrfs_header, fsid),
316 				    BTRFS_FSID_SIZE) == 0);
317 	csum_tree_block(eb, result);
318 
319 	if (btrfs_header_level(eb))
320 		ret = btrfs_check_node(eb);
321 	else
322 		ret = btrfs_check_leaf_full(eb);
323 
324 	if (ret < 0)
325 		goto error;
326 
327 	/*
328 	 * Also check the generation, the eb reached here must be newer than
329 	 * last committed. Or something seriously wrong happened.
330 	 */
331 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
332 		ret = -EUCLEAN;
333 		btrfs_err(fs_info,
334 			"block=%llu bad generation, have %llu expect > %llu",
335 			  eb->start, btrfs_header_generation(eb),
336 			  fs_info->last_trans_committed);
337 		goto error;
338 	}
339 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
340 
341 	return 0;
342 
343 error:
344 	btrfs_print_tree(eb, 0);
345 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
346 		  eb->start);
347 	/*
348 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
349 	 * a transaction in case there's a bad log tree extent buffer, we just
350 	 * fallback to a transaction commit. Still we want to know when there is
351 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
352 	 */
353 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
354 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
355 	return ret;
356 }
357 
358 /* Checksum all dirty extent buffers in one bio_vec */
csum_dirty_subpage_buffers(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)359 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
360 				      struct bio_vec *bvec)
361 {
362 	struct page *page = bvec->bv_page;
363 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
364 	u64 cur;
365 	int ret = 0;
366 
367 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
368 	     cur += fs_info->nodesize) {
369 		struct extent_buffer *eb;
370 		bool uptodate;
371 
372 		eb = find_extent_buffer(fs_info, cur);
373 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
374 						       fs_info->nodesize);
375 
376 		/* A dirty eb shouldn't disappear from buffer_radix */
377 		if (WARN_ON(!eb))
378 			return -EUCLEAN;
379 
380 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
381 			free_extent_buffer(eb);
382 			return -EUCLEAN;
383 		}
384 		if (WARN_ON(!uptodate)) {
385 			free_extent_buffer(eb);
386 			return -EUCLEAN;
387 		}
388 
389 		ret = csum_one_extent_buffer(eb);
390 		free_extent_buffer(eb);
391 		if (ret < 0)
392 			return ret;
393 	}
394 	return ret;
395 }
396 
397 /*
398  * Checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block.
400  * For subpage extent buffers we need bvec to also read the offset in the page.
401  */
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct bio_vec * bvec)402 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
403 {
404 	struct page *page = bvec->bv_page;
405 	u64 start = page_offset(page);
406 	u64 found_start;
407 	struct extent_buffer *eb;
408 
409 	if (fs_info->nodesize < PAGE_SIZE)
410 		return csum_dirty_subpage_buffers(fs_info, bvec);
411 
412 	eb = (struct extent_buffer *)page->private;
413 	if (page != eb->pages[0])
414 		return 0;
415 
416 	found_start = btrfs_header_bytenr(eb);
417 
418 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
419 		WARN_ON(found_start != 0);
420 		return 0;
421 	}
422 
423 	/*
424 	 * Please do not consolidate these warnings into a single if.
425 	 * It is useful to know what went wrong.
426 	 */
427 	if (WARN_ON(found_start != start))
428 		return -EUCLEAN;
429 	if (WARN_ON(!PageUptodate(page)))
430 		return -EUCLEAN;
431 
432 	return csum_one_extent_buffer(eb);
433 }
434 
check_tree_block_fsid(struct extent_buffer * eb)435 static int check_tree_block_fsid(struct extent_buffer *eb)
436 {
437 	struct btrfs_fs_info *fs_info = eb->fs_info;
438 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
439 	u8 fsid[BTRFS_FSID_SIZE];
440 	u8 *metadata_uuid;
441 
442 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
443 			   BTRFS_FSID_SIZE);
444 	/*
445 	 * Checking the incompat flag is only valid for the current fs. For
446 	 * seed devices it's forbidden to have their uuid changed so reading
447 	 * ->fsid in this case is fine
448 	 */
449 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
450 		metadata_uuid = fs_devices->metadata_uuid;
451 	else
452 		metadata_uuid = fs_devices->fsid;
453 
454 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
455 		return 0;
456 
457 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
458 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
459 			return 0;
460 
461 	return 1;
462 }
463 
464 /* Do basic extent buffer checks at read time */
validate_extent_buffer(struct extent_buffer * eb)465 static int validate_extent_buffer(struct extent_buffer *eb)
466 {
467 	struct btrfs_fs_info *fs_info = eb->fs_info;
468 	u64 found_start;
469 	const u32 csum_size = fs_info->csum_size;
470 	u8 found_level;
471 	u8 result[BTRFS_CSUM_SIZE];
472 	const u8 *header_csum;
473 	int ret = 0;
474 
475 	found_start = btrfs_header_bytenr(eb);
476 	if (found_start != eb->start) {
477 		btrfs_err_rl(fs_info,
478 			"bad tree block start, mirror %u want %llu have %llu",
479 			     eb->read_mirror, eb->start, found_start);
480 		ret = -EIO;
481 		goto out;
482 	}
483 	if (check_tree_block_fsid(eb)) {
484 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
485 			     eb->start, eb->read_mirror);
486 		ret = -EIO;
487 		goto out;
488 	}
489 	found_level = btrfs_header_level(eb);
490 	if (found_level >= BTRFS_MAX_LEVEL) {
491 		btrfs_err(fs_info,
492 			"bad tree block level, mirror %u level %d on logical %llu",
493 			eb->read_mirror, btrfs_header_level(eb), eb->start);
494 		ret = -EIO;
495 		goto out;
496 	}
497 
498 	csum_tree_block(eb, result);
499 	header_csum = page_address(eb->pages[0]) +
500 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
501 
502 	if (memcmp(result, header_csum, csum_size) != 0) {
503 		btrfs_warn_rl(fs_info,
504 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
505 			      eb->start, eb->read_mirror,
506 			      CSUM_FMT_VALUE(csum_size, header_csum),
507 			      CSUM_FMT_VALUE(csum_size, result),
508 			      btrfs_header_level(eb));
509 		ret = -EUCLEAN;
510 		goto out;
511 	}
512 
513 	/*
514 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
515 	 * that we don't try and read the other copies of this block, just
516 	 * return -EIO.
517 	 */
518 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
519 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
520 		ret = -EIO;
521 	}
522 
523 	if (found_level > 0 && btrfs_check_node(eb))
524 		ret = -EIO;
525 
526 	if (!ret)
527 		set_extent_buffer_uptodate(eb);
528 	else
529 		btrfs_err(fs_info,
530 		"read time tree block corruption detected on logical %llu mirror %u",
531 			  eb->start, eb->read_mirror);
532 out:
533 	return ret;
534 }
535 
validate_subpage_buffer(struct page * page,u64 start,u64 end,int mirror)536 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
537 				   int mirror)
538 {
539 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
540 	struct extent_buffer *eb;
541 	bool reads_done;
542 	int ret = 0;
543 
544 	/*
545 	 * We don't allow bio merge for subpage metadata read, so we should
546 	 * only get one eb for each endio hook.
547 	 */
548 	ASSERT(end == start + fs_info->nodesize - 1);
549 	ASSERT(PagePrivate(page));
550 
551 	eb = find_extent_buffer(fs_info, start);
552 	/*
553 	 * When we are reading one tree block, eb must have been inserted into
554 	 * the radix tree. If not, something is wrong.
555 	 */
556 	ASSERT(eb);
557 
558 	reads_done = atomic_dec_and_test(&eb->io_pages);
559 	/* Subpage read must finish in page read */
560 	ASSERT(reads_done);
561 
562 	eb->read_mirror = mirror;
563 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
564 		ret = -EIO;
565 		goto err;
566 	}
567 	ret = validate_extent_buffer(eb);
568 	if (ret < 0)
569 		goto err;
570 
571 	set_extent_buffer_uptodate(eb);
572 
573 	free_extent_buffer(eb);
574 	return ret;
575 err:
576 	/*
577 	 * end_bio_extent_readpage decrements io_pages in case of error,
578 	 * make sure it has something to decrement.
579 	 */
580 	atomic_inc(&eb->io_pages);
581 	clear_extent_buffer_uptodate(eb);
582 	free_extent_buffer(eb);
583 	return ret;
584 }
585 
btrfs_validate_metadata_buffer(struct btrfs_bio * bbio,struct page * page,u64 start,u64 end,int mirror)586 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
587 				   struct page *page, u64 start, u64 end,
588 				   int mirror)
589 {
590 	struct extent_buffer *eb;
591 	int ret = 0;
592 	int reads_done;
593 
594 	ASSERT(page->private);
595 
596 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
597 		return validate_subpage_buffer(page, start, end, mirror);
598 
599 	eb = (struct extent_buffer *)page->private;
600 
601 	/*
602 	 * The pending IO might have been the only thing that kept this buffer
603 	 * in memory.  Make sure we have a ref for all this other checks
604 	 */
605 	atomic_inc(&eb->refs);
606 
607 	reads_done = atomic_dec_and_test(&eb->io_pages);
608 	if (!reads_done)
609 		goto err;
610 
611 	eb->read_mirror = mirror;
612 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
613 		ret = -EIO;
614 		goto err;
615 	}
616 	ret = validate_extent_buffer(eb);
617 err:
618 	if (ret) {
619 		/*
620 		 * our io error hook is going to dec the io pages
621 		 * again, we have to make sure it has something
622 		 * to decrement
623 		 */
624 		atomic_inc(&eb->io_pages);
625 		clear_extent_buffer_uptodate(eb);
626 	}
627 	free_extent_buffer(eb);
628 
629 	return ret;
630 }
631 
run_one_async_start(struct btrfs_work * work)632 static void run_one_async_start(struct btrfs_work *work)
633 {
634 	struct async_submit_bio *async;
635 	blk_status_t ret;
636 
637 	async = container_of(work, struct  async_submit_bio, work);
638 	ret = async->submit_bio_start(async->inode, async->bio,
639 				      async->dio_file_offset);
640 	if (ret)
641 		async->status = ret;
642 }
643 
644 /*
645  * In order to insert checksums into the metadata in large chunks, we wait
646  * until bio submission time.   All the pages in the bio are checksummed and
647  * sums are attached onto the ordered extent record.
648  *
649  * At IO completion time the csums attached on the ordered extent record are
650  * inserted into the tree.
651  */
run_one_async_done(struct btrfs_work * work)652 static void run_one_async_done(struct btrfs_work *work)
653 {
654 	struct async_submit_bio *async =
655 		container_of(work, struct  async_submit_bio, work);
656 	struct inode *inode = async->inode;
657 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
658 
659 	/* If an error occurred we just want to clean up the bio and move on */
660 	if (async->status) {
661 		btrfs_bio_end_io(bbio, async->status);
662 		return;
663 	}
664 
665 	/*
666 	 * All of the bios that pass through here are from async helpers.
667 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
668 	 * This changes nothing when cgroups aren't in use.
669 	 */
670 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
671 	btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
672 }
673 
run_one_async_free(struct btrfs_work * work)674 static void run_one_async_free(struct btrfs_work *work)
675 {
676 	struct async_submit_bio *async;
677 
678 	async = container_of(work, struct  async_submit_bio, work);
679 	kfree(async);
680 }
681 
682 /*
683  * Submit bio to an async queue.
684  *
685  * Retrun:
686  * - true if the work has been succesfuly submitted
687  * - false in case of error
688  */
btrfs_wq_submit_bio(struct inode * inode,struct bio * bio,int mirror_num,u64 dio_file_offset,extent_submit_bio_start_t * submit_bio_start)689 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
690 			 u64 dio_file_offset,
691 			 extent_submit_bio_start_t *submit_bio_start)
692 {
693 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
694 	struct async_submit_bio *async;
695 
696 	async = kmalloc(sizeof(*async), GFP_NOFS);
697 	if (!async)
698 		return false;
699 
700 	async->inode = inode;
701 	async->bio = bio;
702 	async->mirror_num = mirror_num;
703 	async->submit_bio_start = submit_bio_start;
704 
705 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
706 			run_one_async_free);
707 
708 	async->dio_file_offset = dio_file_offset;
709 
710 	async->status = 0;
711 
712 	if (op_is_sync(bio->bi_opf))
713 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
714 	else
715 		btrfs_queue_work(fs_info->workers, &async->work);
716 	return true;
717 }
718 
btree_csum_one_bio(struct bio * bio)719 static blk_status_t btree_csum_one_bio(struct bio *bio)
720 {
721 	struct bio_vec *bvec;
722 	struct btrfs_root *root;
723 	int ret = 0;
724 	struct bvec_iter_all iter_all;
725 
726 	ASSERT(!bio_flagged(bio, BIO_CLONED));
727 	bio_for_each_segment_all(bvec, bio, iter_all) {
728 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
729 		ret = csum_dirty_buffer(root->fs_info, bvec);
730 		if (ret)
731 			break;
732 	}
733 
734 	return errno_to_blk_status(ret);
735 }
736 
btree_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)737 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
738 					   u64 dio_file_offset)
739 {
740 	/*
741 	 * when we're called for a write, we're already in the async
742 	 * submission context.  Just jump into btrfs_submit_bio.
743 	 */
744 	return btree_csum_one_bio(bio);
745 }
746 
should_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)747 static bool should_async_write(struct btrfs_fs_info *fs_info,
748 			     struct btrfs_inode *bi)
749 {
750 	if (btrfs_is_zoned(fs_info))
751 		return false;
752 	if (atomic_read(&bi->sync_writers))
753 		return false;
754 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
755 		return false;
756 	return true;
757 }
758 
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num)759 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
760 {
761 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
762 	struct btrfs_bio *bbio = btrfs_bio(bio);
763 	blk_status_t ret;
764 
765 	bio->bi_opf |= REQ_META;
766 
767 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
768 		btrfs_submit_bio(fs_info, bio, mirror_num);
769 		return;
770 	}
771 
772 	/*
773 	 * Kthread helpers are used to submit writes so that checksumming can
774 	 * happen in parallel across all CPUs.
775 	 */
776 	if (should_async_write(fs_info, BTRFS_I(inode)) &&
777 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
778 		return;
779 
780 	ret = btree_csum_one_bio(bio);
781 	if (ret) {
782 		btrfs_bio_end_io(bbio, ret);
783 		return;
784 	}
785 
786 	btrfs_submit_bio(fs_info, bio, mirror_num);
787 }
788 
789 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)790 static int btree_migrate_folio(struct address_space *mapping,
791 		struct folio *dst, struct folio *src, enum migrate_mode mode)
792 {
793 	/*
794 	 * we can't safely write a btree page from here,
795 	 * we haven't done the locking hook
796 	 */
797 	if (folio_test_dirty(src))
798 		return -EAGAIN;
799 	/*
800 	 * Buffers may be managed in a filesystem specific way.
801 	 * We must have no buffers or drop them.
802 	 */
803 	if (folio_get_private(src) &&
804 	    !filemap_release_folio(src, GFP_KERNEL))
805 		return -EAGAIN;
806 	return migrate_folio(mapping, dst, src, mode);
807 }
808 #else
809 #define btree_migrate_folio NULL
810 #endif
811 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)812 static int btree_writepages(struct address_space *mapping,
813 			    struct writeback_control *wbc)
814 {
815 	struct btrfs_fs_info *fs_info;
816 	int ret;
817 
818 	if (wbc->sync_mode == WB_SYNC_NONE) {
819 
820 		if (wbc->for_kupdate)
821 			return 0;
822 
823 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
824 		/* this is a bit racy, but that's ok */
825 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
826 					     BTRFS_DIRTY_METADATA_THRESH,
827 					     fs_info->dirty_metadata_batch);
828 		if (ret < 0)
829 			return 0;
830 	}
831 	return btree_write_cache_pages(mapping, wbc);
832 }
833 
btree_release_folio(struct folio * folio,gfp_t gfp_flags)834 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
835 {
836 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
837 		return false;
838 
839 	return try_release_extent_buffer(&folio->page);
840 }
841 
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)842 static void btree_invalidate_folio(struct folio *folio, size_t offset,
843 				 size_t length)
844 {
845 	struct extent_io_tree *tree;
846 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
847 	extent_invalidate_folio(tree, folio, offset);
848 	btree_release_folio(folio, GFP_NOFS);
849 	if (folio_get_private(folio)) {
850 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
851 			   "folio private not zero on folio %llu",
852 			   (unsigned long long)folio_pos(folio));
853 		folio_detach_private(folio);
854 	}
855 }
856 
857 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)858 static bool btree_dirty_folio(struct address_space *mapping,
859 		struct folio *folio)
860 {
861 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
862 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
863 	struct btrfs_subpage *subpage;
864 	struct extent_buffer *eb;
865 	int cur_bit = 0;
866 	u64 page_start = folio_pos(folio);
867 
868 	if (fs_info->sectorsize == PAGE_SIZE) {
869 		eb = folio_get_private(folio);
870 		BUG_ON(!eb);
871 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
872 		BUG_ON(!atomic_read(&eb->refs));
873 		btrfs_assert_tree_write_locked(eb);
874 		return filemap_dirty_folio(mapping, folio);
875 	}
876 
877 	ASSERT(spi);
878 	subpage = folio_get_private(folio);
879 
880 	for (cur_bit = spi->dirty_offset;
881 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
882 	     cur_bit++) {
883 		unsigned long flags;
884 		u64 cur;
885 
886 		spin_lock_irqsave(&subpage->lock, flags);
887 		if (!test_bit(cur_bit, subpage->bitmaps)) {
888 			spin_unlock_irqrestore(&subpage->lock, flags);
889 			continue;
890 		}
891 		spin_unlock_irqrestore(&subpage->lock, flags);
892 		cur = page_start + cur_bit * fs_info->sectorsize;
893 
894 		eb = find_extent_buffer(fs_info, cur);
895 		ASSERT(eb);
896 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
897 		ASSERT(atomic_read(&eb->refs));
898 		btrfs_assert_tree_write_locked(eb);
899 		free_extent_buffer(eb);
900 
901 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
902 	}
903 	return filemap_dirty_folio(mapping, folio);
904 }
905 #else
906 #define btree_dirty_folio filemap_dirty_folio
907 #endif
908 
909 static const struct address_space_operations btree_aops = {
910 	.writepages	= btree_writepages,
911 	.release_folio	= btree_release_folio,
912 	.invalidate_folio = btree_invalidate_folio,
913 	.migrate_folio	= btree_migrate_folio,
914 	.dirty_folio	= btree_dirty_folio,
915 };
916 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)917 struct extent_buffer *btrfs_find_create_tree_block(
918 						struct btrfs_fs_info *fs_info,
919 						u64 bytenr, u64 owner_root,
920 						int level)
921 {
922 	if (btrfs_is_testing(fs_info))
923 		return alloc_test_extent_buffer(fs_info, bytenr);
924 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
925 }
926 
927 /*
928  * Read tree block at logical address @bytenr and do variant basic but critical
929  * verification.
930  *
931  * @owner_root:		the objectid of the root owner for this block.
932  * @parent_transid:	expected transid of this tree block, skip check if 0
933  * @level:		expected level, mandatory check
934  * @first_key:		expected key in slot 0, skip check if NULL
935  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 parent_transid,int level,struct btrfs_key * first_key)936 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
937 				      u64 owner_root, u64 parent_transid,
938 				      int level, struct btrfs_key *first_key)
939 {
940 	struct extent_buffer *buf = NULL;
941 	int ret;
942 
943 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
944 	if (IS_ERR(buf))
945 		return buf;
946 
947 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
948 	if (ret) {
949 		free_extent_buffer_stale(buf);
950 		return ERR_PTR(ret);
951 	}
952 	if (btrfs_check_eb_owner(buf, owner_root)) {
953 		free_extent_buffer_stale(buf);
954 		return ERR_PTR(-EUCLEAN);
955 	}
956 	return buf;
957 
958 }
959 
btrfs_clean_tree_block(struct extent_buffer * buf)960 void btrfs_clean_tree_block(struct extent_buffer *buf)
961 {
962 	struct btrfs_fs_info *fs_info = buf->fs_info;
963 	if (btrfs_header_generation(buf) ==
964 	    fs_info->running_transaction->transid) {
965 		btrfs_assert_tree_write_locked(buf);
966 
967 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
968 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
969 						 -buf->len,
970 						 fs_info->dirty_metadata_batch);
971 			clear_extent_buffer_dirty(buf);
972 		}
973 	}
974 }
975 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)976 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
977 			 u64 objectid)
978 {
979 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
980 
981 	memset(&root->root_key, 0, sizeof(root->root_key));
982 	memset(&root->root_item, 0, sizeof(root->root_item));
983 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
984 	root->fs_info = fs_info;
985 	root->root_key.objectid = objectid;
986 	root->node = NULL;
987 	root->commit_root = NULL;
988 	root->state = 0;
989 	RB_CLEAR_NODE(&root->rb_node);
990 
991 	root->last_trans = 0;
992 	root->free_objectid = 0;
993 	root->nr_delalloc_inodes = 0;
994 	root->nr_ordered_extents = 0;
995 	root->inode_tree = RB_ROOT;
996 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
997 
998 	btrfs_init_root_block_rsv(root);
999 
1000 	INIT_LIST_HEAD(&root->dirty_list);
1001 	INIT_LIST_HEAD(&root->root_list);
1002 	INIT_LIST_HEAD(&root->delalloc_inodes);
1003 	INIT_LIST_HEAD(&root->delalloc_root);
1004 	INIT_LIST_HEAD(&root->ordered_extents);
1005 	INIT_LIST_HEAD(&root->ordered_root);
1006 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1007 	INIT_LIST_HEAD(&root->logged_list[0]);
1008 	INIT_LIST_HEAD(&root->logged_list[1]);
1009 	spin_lock_init(&root->inode_lock);
1010 	spin_lock_init(&root->delalloc_lock);
1011 	spin_lock_init(&root->ordered_extent_lock);
1012 	spin_lock_init(&root->accounting_lock);
1013 	spin_lock_init(&root->log_extents_lock[0]);
1014 	spin_lock_init(&root->log_extents_lock[1]);
1015 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1016 	mutex_init(&root->objectid_mutex);
1017 	mutex_init(&root->log_mutex);
1018 	mutex_init(&root->ordered_extent_mutex);
1019 	mutex_init(&root->delalloc_mutex);
1020 	init_waitqueue_head(&root->qgroup_flush_wait);
1021 	init_waitqueue_head(&root->log_writer_wait);
1022 	init_waitqueue_head(&root->log_commit_wait[0]);
1023 	init_waitqueue_head(&root->log_commit_wait[1]);
1024 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1025 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1026 	atomic_set(&root->log_commit[0], 0);
1027 	atomic_set(&root->log_commit[1], 0);
1028 	atomic_set(&root->log_writers, 0);
1029 	atomic_set(&root->log_batch, 0);
1030 	refcount_set(&root->refs, 1);
1031 	atomic_set(&root->snapshot_force_cow, 0);
1032 	atomic_set(&root->nr_swapfiles, 0);
1033 	root->log_transid = 0;
1034 	root->log_transid_committed = -1;
1035 	root->last_log_commit = 0;
1036 	root->anon_dev = 0;
1037 	if (!dummy) {
1038 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1039 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1040 		extent_io_tree_init(fs_info, &root->log_csum_range,
1041 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1042 	}
1043 
1044 	spin_lock_init(&root->root_item_lock);
1045 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1046 #ifdef CONFIG_BTRFS_DEBUG
1047 	INIT_LIST_HEAD(&root->leak_list);
1048 	spin_lock(&fs_info->fs_roots_radix_lock);
1049 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1050 	spin_unlock(&fs_info->fs_roots_radix_lock);
1051 #endif
1052 }
1053 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1054 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1055 					   u64 objectid, gfp_t flags)
1056 {
1057 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1058 	if (root)
1059 		__setup_root(root, fs_info, objectid);
1060 	return root;
1061 }
1062 
1063 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1064 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1065 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1066 {
1067 	struct btrfs_root *root;
1068 
1069 	if (!fs_info)
1070 		return ERR_PTR(-EINVAL);
1071 
1072 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1073 	if (!root)
1074 		return ERR_PTR(-ENOMEM);
1075 
1076 	/* We don't use the stripesize in selftest, set it as sectorsize */
1077 	root->alloc_bytenr = 0;
1078 
1079 	return root;
1080 }
1081 #endif
1082 
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)1083 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1084 {
1085 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1086 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1087 
1088 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1089 }
1090 
global_root_key_cmp(const void * k,const struct rb_node * node)1091 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1092 {
1093 	const struct btrfs_key *key = k;
1094 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1095 
1096 	return btrfs_comp_cpu_keys(key, &root->root_key);
1097 }
1098 
btrfs_global_root_insert(struct btrfs_root * root)1099 int btrfs_global_root_insert(struct btrfs_root *root)
1100 {
1101 	struct btrfs_fs_info *fs_info = root->fs_info;
1102 	struct rb_node *tmp;
1103 	int ret = 0;
1104 
1105 	write_lock(&fs_info->global_root_lock);
1106 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1107 	write_unlock(&fs_info->global_root_lock);
1108 
1109 	if (tmp) {
1110 		ret = -EEXIST;
1111 		btrfs_warn(fs_info, "global root %llu %llu already exists",
1112 				root->root_key.objectid, root->root_key.offset);
1113 	}
1114 	return ret;
1115 }
1116 
btrfs_global_root_delete(struct btrfs_root * root)1117 void btrfs_global_root_delete(struct btrfs_root *root)
1118 {
1119 	struct btrfs_fs_info *fs_info = root->fs_info;
1120 
1121 	write_lock(&fs_info->global_root_lock);
1122 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1123 	write_unlock(&fs_info->global_root_lock);
1124 }
1125 
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)1126 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1127 				     struct btrfs_key *key)
1128 {
1129 	struct rb_node *node;
1130 	struct btrfs_root *root = NULL;
1131 
1132 	read_lock(&fs_info->global_root_lock);
1133 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1134 	if (node)
1135 		root = container_of(node, struct btrfs_root, rb_node);
1136 	read_unlock(&fs_info->global_root_lock);
1137 
1138 	return root;
1139 }
1140 
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)1141 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1142 {
1143 	struct btrfs_block_group *block_group;
1144 	u64 ret;
1145 
1146 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1147 		return 0;
1148 
1149 	if (bytenr)
1150 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1151 	else
1152 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1153 	ASSERT(block_group);
1154 	if (!block_group)
1155 		return 0;
1156 	ret = block_group->global_root_id;
1157 	btrfs_put_block_group(block_group);
1158 
1159 	return ret;
1160 }
1161 
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)1162 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1163 {
1164 	struct btrfs_key key = {
1165 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1166 		.type = BTRFS_ROOT_ITEM_KEY,
1167 		.offset = btrfs_global_root_id(fs_info, bytenr),
1168 	};
1169 
1170 	return btrfs_global_root(fs_info, &key);
1171 }
1172 
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)1173 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1174 {
1175 	struct btrfs_key key = {
1176 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1177 		.type = BTRFS_ROOT_ITEM_KEY,
1178 		.offset = btrfs_global_root_id(fs_info, bytenr),
1179 	};
1180 
1181 	return btrfs_global_root(fs_info, &key);
1182 }
1183 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1184 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1185 				     u64 objectid)
1186 {
1187 	struct btrfs_fs_info *fs_info = trans->fs_info;
1188 	struct extent_buffer *leaf;
1189 	struct btrfs_root *tree_root = fs_info->tree_root;
1190 	struct btrfs_root *root;
1191 	struct btrfs_key key;
1192 	unsigned int nofs_flag;
1193 	int ret = 0;
1194 
1195 	/*
1196 	 * We're holding a transaction handle, so use a NOFS memory allocation
1197 	 * context to avoid deadlock if reclaim happens.
1198 	 */
1199 	nofs_flag = memalloc_nofs_save();
1200 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1201 	memalloc_nofs_restore(nofs_flag);
1202 	if (!root)
1203 		return ERR_PTR(-ENOMEM);
1204 
1205 	root->root_key.objectid = objectid;
1206 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1207 	root->root_key.offset = 0;
1208 
1209 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1210 				      BTRFS_NESTING_NORMAL);
1211 	if (IS_ERR(leaf)) {
1212 		ret = PTR_ERR(leaf);
1213 		leaf = NULL;
1214 		goto fail_unlock;
1215 	}
1216 
1217 	root->node = leaf;
1218 	btrfs_mark_buffer_dirty(leaf);
1219 
1220 	root->commit_root = btrfs_root_node(root);
1221 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1222 
1223 	btrfs_set_root_flags(&root->root_item, 0);
1224 	btrfs_set_root_limit(&root->root_item, 0);
1225 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1226 	btrfs_set_root_generation(&root->root_item, trans->transid);
1227 	btrfs_set_root_level(&root->root_item, 0);
1228 	btrfs_set_root_refs(&root->root_item, 1);
1229 	btrfs_set_root_used(&root->root_item, leaf->len);
1230 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1231 	btrfs_set_root_dirid(&root->root_item, 0);
1232 	if (is_fstree(objectid))
1233 		generate_random_guid(root->root_item.uuid);
1234 	else
1235 		export_guid(root->root_item.uuid, &guid_null);
1236 	btrfs_set_root_drop_level(&root->root_item, 0);
1237 
1238 	btrfs_tree_unlock(leaf);
1239 
1240 	key.objectid = objectid;
1241 	key.type = BTRFS_ROOT_ITEM_KEY;
1242 	key.offset = 0;
1243 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1244 	if (ret)
1245 		goto fail;
1246 
1247 	return root;
1248 
1249 fail_unlock:
1250 	if (leaf)
1251 		btrfs_tree_unlock(leaf);
1252 fail:
1253 	btrfs_put_root(root);
1254 
1255 	return ERR_PTR(ret);
1256 }
1257 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1258 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259 					 struct btrfs_fs_info *fs_info)
1260 {
1261 	struct btrfs_root *root;
1262 
1263 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1264 	if (!root)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1268 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1269 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1270 
1271 	return root;
1272 }
1273 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)1274 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1275 			      struct btrfs_root *root)
1276 {
1277 	struct extent_buffer *leaf;
1278 
1279 	/*
1280 	 * DON'T set SHAREABLE bit for log trees.
1281 	 *
1282 	 * Log trees are not exposed to user space thus can't be snapshotted,
1283 	 * and they go away before a real commit is actually done.
1284 	 *
1285 	 * They do store pointers to file data extents, and those reference
1286 	 * counts still get updated (along with back refs to the log tree).
1287 	 */
1288 
1289 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1290 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1291 	if (IS_ERR(leaf))
1292 		return PTR_ERR(leaf);
1293 
1294 	root->node = leaf;
1295 
1296 	btrfs_mark_buffer_dirty(root->node);
1297 	btrfs_tree_unlock(root->node);
1298 
1299 	return 0;
1300 }
1301 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1302 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1303 			     struct btrfs_fs_info *fs_info)
1304 {
1305 	struct btrfs_root *log_root;
1306 
1307 	log_root = alloc_log_tree(trans, fs_info);
1308 	if (IS_ERR(log_root))
1309 		return PTR_ERR(log_root);
1310 
1311 	if (!btrfs_is_zoned(fs_info)) {
1312 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1313 
1314 		if (ret) {
1315 			btrfs_put_root(log_root);
1316 			return ret;
1317 		}
1318 	}
1319 
1320 	WARN_ON(fs_info->log_root_tree);
1321 	fs_info->log_root_tree = log_root;
1322 	return 0;
1323 }
1324 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1325 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1326 		       struct btrfs_root *root)
1327 {
1328 	struct btrfs_fs_info *fs_info = root->fs_info;
1329 	struct btrfs_root *log_root;
1330 	struct btrfs_inode_item *inode_item;
1331 	int ret;
1332 
1333 	log_root = alloc_log_tree(trans, fs_info);
1334 	if (IS_ERR(log_root))
1335 		return PTR_ERR(log_root);
1336 
1337 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1338 	if (ret) {
1339 		btrfs_put_root(log_root);
1340 		return ret;
1341 	}
1342 
1343 	log_root->last_trans = trans->transid;
1344 	log_root->root_key.offset = root->root_key.objectid;
1345 
1346 	inode_item = &log_root->root_item.inode;
1347 	btrfs_set_stack_inode_generation(inode_item, 1);
1348 	btrfs_set_stack_inode_size(inode_item, 3);
1349 	btrfs_set_stack_inode_nlink(inode_item, 1);
1350 	btrfs_set_stack_inode_nbytes(inode_item,
1351 				     fs_info->nodesize);
1352 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1353 
1354 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1355 
1356 	WARN_ON(root->log_root);
1357 	root->log_root = log_root;
1358 	root->log_transid = 0;
1359 	root->log_transid_committed = -1;
1360 	root->last_log_commit = 0;
1361 	return 0;
1362 }
1363 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1364 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1365 					      struct btrfs_path *path,
1366 					      struct btrfs_key *key)
1367 {
1368 	struct btrfs_root *root;
1369 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1370 	u64 generation;
1371 	int ret;
1372 	int level;
1373 
1374 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1375 	if (!root)
1376 		return ERR_PTR(-ENOMEM);
1377 
1378 	ret = btrfs_find_root(tree_root, key, path,
1379 			      &root->root_item, &root->root_key);
1380 	if (ret) {
1381 		if (ret > 0)
1382 			ret = -ENOENT;
1383 		goto fail;
1384 	}
1385 
1386 	generation = btrfs_root_generation(&root->root_item);
1387 	level = btrfs_root_level(&root->root_item);
1388 	root->node = read_tree_block(fs_info,
1389 				     btrfs_root_bytenr(&root->root_item),
1390 				     key->objectid, generation, level, NULL);
1391 	if (IS_ERR(root->node)) {
1392 		ret = PTR_ERR(root->node);
1393 		root->node = NULL;
1394 		goto fail;
1395 	}
1396 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1397 		ret = -EIO;
1398 		goto fail;
1399 	}
1400 
1401 	/*
1402 	 * For real fs, and not log/reloc trees, root owner must
1403 	 * match its root node owner
1404 	 */
1405 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1406 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1407 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1408 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1409 		btrfs_crit(fs_info,
1410 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1411 			   root->root_key.objectid, root->node->start,
1412 			   btrfs_header_owner(root->node),
1413 			   root->root_key.objectid);
1414 		ret = -EUCLEAN;
1415 		goto fail;
1416 	}
1417 	root->commit_root = btrfs_root_node(root);
1418 	return root;
1419 fail:
1420 	btrfs_put_root(root);
1421 	return ERR_PTR(ret);
1422 }
1423 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1424 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1425 					struct btrfs_key *key)
1426 {
1427 	struct btrfs_root *root;
1428 	struct btrfs_path *path;
1429 
1430 	path = btrfs_alloc_path();
1431 	if (!path)
1432 		return ERR_PTR(-ENOMEM);
1433 	root = read_tree_root_path(tree_root, path, key);
1434 	btrfs_free_path(path);
1435 
1436 	return root;
1437 }
1438 
1439 /*
1440  * Initialize subvolume root in-memory structure
1441  *
1442  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1443  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1444 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1445 {
1446 	int ret;
1447 	unsigned int nofs_flag;
1448 
1449 	/*
1450 	 * We might be called under a transaction (e.g. indirect backref
1451 	 * resolution) which could deadlock if it triggers memory reclaim
1452 	 */
1453 	nofs_flag = memalloc_nofs_save();
1454 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1455 	memalloc_nofs_restore(nofs_flag);
1456 	if (ret)
1457 		goto fail;
1458 
1459 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1460 	    !btrfs_is_data_reloc_root(root) &&
1461 	    is_fstree(root->root_key.objectid)) {
1462 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1463 		btrfs_check_and_init_root_item(&root->root_item);
1464 	}
1465 
1466 	/*
1467 	 * Don't assign anonymous block device to roots that are not exposed to
1468 	 * userspace, the id pool is limited to 1M
1469 	 */
1470 	if (is_fstree(root->root_key.objectid) &&
1471 	    btrfs_root_refs(&root->root_item) > 0) {
1472 		if (!anon_dev) {
1473 			ret = get_anon_bdev(&root->anon_dev);
1474 			if (ret)
1475 				goto fail;
1476 		} else {
1477 			root->anon_dev = anon_dev;
1478 		}
1479 	}
1480 
1481 	mutex_lock(&root->objectid_mutex);
1482 	ret = btrfs_init_root_free_objectid(root);
1483 	if (ret) {
1484 		mutex_unlock(&root->objectid_mutex);
1485 		goto fail;
1486 	}
1487 
1488 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1489 
1490 	mutex_unlock(&root->objectid_mutex);
1491 
1492 	return 0;
1493 fail:
1494 	/* The caller is responsible to call btrfs_free_fs_root */
1495 	return ret;
1496 }
1497 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1498 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1499 					       u64 root_id)
1500 {
1501 	struct btrfs_root *root;
1502 
1503 	spin_lock(&fs_info->fs_roots_radix_lock);
1504 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1505 				 (unsigned long)root_id);
1506 	if (root)
1507 		root = btrfs_grab_root(root);
1508 	spin_unlock(&fs_info->fs_roots_radix_lock);
1509 	return root;
1510 }
1511 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1512 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1513 						u64 objectid)
1514 {
1515 	struct btrfs_key key = {
1516 		.objectid = objectid,
1517 		.type = BTRFS_ROOT_ITEM_KEY,
1518 		.offset = 0,
1519 	};
1520 
1521 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1522 		return btrfs_grab_root(fs_info->tree_root);
1523 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1524 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1525 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1526 		return btrfs_grab_root(fs_info->chunk_root);
1527 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1528 		return btrfs_grab_root(fs_info->dev_root);
1529 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1530 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1531 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1532 		return btrfs_grab_root(fs_info->quota_root) ?
1533 			fs_info->quota_root : ERR_PTR(-ENOENT);
1534 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1535 		return btrfs_grab_root(fs_info->uuid_root) ?
1536 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1537 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1538 		return btrfs_grab_root(fs_info->block_group_root) ?
1539 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1540 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1541 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1542 
1543 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1544 	}
1545 	return NULL;
1546 }
1547 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1548 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1549 			 struct btrfs_root *root)
1550 {
1551 	int ret;
1552 
1553 	ret = radix_tree_preload(GFP_NOFS);
1554 	if (ret)
1555 		return ret;
1556 
1557 	spin_lock(&fs_info->fs_roots_radix_lock);
1558 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1559 				(unsigned long)root->root_key.objectid,
1560 				root);
1561 	if (ret == 0) {
1562 		btrfs_grab_root(root);
1563 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1564 	}
1565 	spin_unlock(&fs_info->fs_roots_radix_lock);
1566 	radix_tree_preload_end();
1567 
1568 	return ret;
1569 }
1570 
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1571 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1572 {
1573 #ifdef CONFIG_BTRFS_DEBUG
1574 	struct btrfs_root *root;
1575 
1576 	while (!list_empty(&fs_info->allocated_roots)) {
1577 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1578 
1579 		root = list_first_entry(&fs_info->allocated_roots,
1580 					struct btrfs_root, leak_list);
1581 		btrfs_err(fs_info, "leaked root %s refcount %d",
1582 			  btrfs_root_name(&root->root_key, buf),
1583 			  refcount_read(&root->refs));
1584 		while (refcount_read(&root->refs) > 1)
1585 			btrfs_put_root(root);
1586 		btrfs_put_root(root);
1587 	}
1588 #endif
1589 }
1590 
free_global_roots(struct btrfs_fs_info * fs_info)1591 static void free_global_roots(struct btrfs_fs_info *fs_info)
1592 {
1593 	struct btrfs_root *root;
1594 	struct rb_node *node;
1595 
1596 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1597 		root = rb_entry(node, struct btrfs_root, rb_node);
1598 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1599 		btrfs_put_root(root);
1600 	}
1601 }
1602 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1603 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1604 {
1605 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1606 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1607 	percpu_counter_destroy(&fs_info->ordered_bytes);
1608 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1609 	btrfs_free_csum_hash(fs_info);
1610 	btrfs_free_stripe_hash_table(fs_info);
1611 	btrfs_free_ref_cache(fs_info);
1612 	kfree(fs_info->balance_ctl);
1613 	kfree(fs_info->delayed_root);
1614 	free_global_roots(fs_info);
1615 	btrfs_put_root(fs_info->tree_root);
1616 	btrfs_put_root(fs_info->chunk_root);
1617 	btrfs_put_root(fs_info->dev_root);
1618 	btrfs_put_root(fs_info->quota_root);
1619 	btrfs_put_root(fs_info->uuid_root);
1620 	btrfs_put_root(fs_info->fs_root);
1621 	btrfs_put_root(fs_info->data_reloc_root);
1622 	btrfs_put_root(fs_info->block_group_root);
1623 	btrfs_check_leaked_roots(fs_info);
1624 	btrfs_extent_buffer_leak_debug_check(fs_info);
1625 	kfree(fs_info->super_copy);
1626 	kfree(fs_info->super_for_commit);
1627 	kfree(fs_info->subpage_info);
1628 	kvfree(fs_info);
1629 }
1630 
1631 
1632 /*
1633  * Get an in-memory reference of a root structure.
1634  *
1635  * For essential trees like root/extent tree, we grab it from fs_info directly.
1636  * For subvolume trees, we check the cached filesystem roots first. If not
1637  * found, then read it from disk and add it to cached fs roots.
1638  *
1639  * Caller should release the root by calling btrfs_put_root() after the usage.
1640  *
1641  * NOTE: Reloc and log trees can't be read by this function as they share the
1642  *	 same root objectid.
1643  *
1644  * @objectid:	root id
1645  * @anon_dev:	preallocated anonymous block device number for new roots,
1646  * 		pass 0 for new allocation.
1647  * @check_ref:	whether to check root item references, If true, return -ENOENT
1648  *		for orphan roots
1649  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1650 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1651 					     u64 objectid, dev_t anon_dev,
1652 					     bool check_ref)
1653 {
1654 	struct btrfs_root *root;
1655 	struct btrfs_path *path;
1656 	struct btrfs_key key;
1657 	int ret;
1658 
1659 	root = btrfs_get_global_root(fs_info, objectid);
1660 	if (root)
1661 		return root;
1662 again:
1663 	root = btrfs_lookup_fs_root(fs_info, objectid);
1664 	if (root) {
1665 		/*
1666 		 * Some other caller may have read out the newly inserted
1667 		 * subvolume already (for things like backref walk etc).  Not
1668 		 * that common but still possible.  In that case, we just need
1669 		 * to free the anon_dev.
1670 		 */
1671 		if (unlikely(anon_dev)) {
1672 			free_anon_bdev(anon_dev);
1673 			anon_dev = 0;
1674 		}
1675 
1676 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1677 			btrfs_put_root(root);
1678 			return ERR_PTR(-ENOENT);
1679 		}
1680 		return root;
1681 	}
1682 
1683 	key.objectid = objectid;
1684 	key.type = BTRFS_ROOT_ITEM_KEY;
1685 	key.offset = (u64)-1;
1686 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1687 	if (IS_ERR(root))
1688 		return root;
1689 
1690 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1691 		ret = -ENOENT;
1692 		goto fail;
1693 	}
1694 
1695 	ret = btrfs_init_fs_root(root, anon_dev);
1696 	if (ret)
1697 		goto fail;
1698 
1699 	path = btrfs_alloc_path();
1700 	if (!path) {
1701 		ret = -ENOMEM;
1702 		goto fail;
1703 	}
1704 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1705 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1706 	key.offset = objectid;
1707 
1708 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1709 	btrfs_free_path(path);
1710 	if (ret < 0)
1711 		goto fail;
1712 	if (ret == 0)
1713 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1714 
1715 	ret = btrfs_insert_fs_root(fs_info, root);
1716 	if (ret) {
1717 		if (ret == -EEXIST) {
1718 			btrfs_put_root(root);
1719 			goto again;
1720 		}
1721 		goto fail;
1722 	}
1723 	return root;
1724 fail:
1725 	/*
1726 	 * If our caller provided us an anonymous device, then it's his
1727 	 * responsibility to free it in case we fail. So we have to set our
1728 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1729 	 * and once again by our caller.
1730 	 */
1731 	if (anon_dev)
1732 		root->anon_dev = 0;
1733 	btrfs_put_root(root);
1734 	return ERR_PTR(ret);
1735 }
1736 
1737 /*
1738  * Get in-memory reference of a root structure
1739  *
1740  * @objectid:	tree objectid
1741  * @check_ref:	if set, verify that the tree exists and the item has at least
1742  *		one reference
1743  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1744 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1745 				     u64 objectid, bool check_ref)
1746 {
1747 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1748 }
1749 
1750 /*
1751  * Get in-memory reference of a root structure, created as new, optionally pass
1752  * the anonymous block device id
1753  *
1754  * @objectid:	tree objectid
1755  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1756  *		parameter value
1757  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1758 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1759 					 u64 objectid, dev_t anon_dev)
1760 {
1761 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1762 }
1763 
1764 /*
1765  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1766  * @fs_info:	the fs_info
1767  * @objectid:	the objectid we need to lookup
1768  *
1769  * This is exclusively used for backref walking, and exists specifically because
1770  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1771  * creation time, which means we may have to read the tree_root in order to look
1772  * up a fs root that is not in memory.  If the root is not in memory we will
1773  * read the tree root commit root and look up the fs root from there.  This is a
1774  * temporary root, it will not be inserted into the radix tree as it doesn't
1775  * have the most uptodate information, it'll simply be discarded once the
1776  * backref code is finished using the root.
1777  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1778 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1779 						 struct btrfs_path *path,
1780 						 u64 objectid)
1781 {
1782 	struct btrfs_root *root;
1783 	struct btrfs_key key;
1784 
1785 	ASSERT(path->search_commit_root && path->skip_locking);
1786 
1787 	/*
1788 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1789 	 * since this is called via the backref walking code we won't be looking
1790 	 * up a root that doesn't exist, unless there's corruption.  So if root
1791 	 * != NULL just return it.
1792 	 */
1793 	root = btrfs_get_global_root(fs_info, objectid);
1794 	if (root)
1795 		return root;
1796 
1797 	root = btrfs_lookup_fs_root(fs_info, objectid);
1798 	if (root)
1799 		return root;
1800 
1801 	key.objectid = objectid;
1802 	key.type = BTRFS_ROOT_ITEM_KEY;
1803 	key.offset = (u64)-1;
1804 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1805 	btrfs_release_path(path);
1806 
1807 	return root;
1808 }
1809 
cleaner_kthread(void * arg)1810 static int cleaner_kthread(void *arg)
1811 {
1812 	struct btrfs_fs_info *fs_info = arg;
1813 	int again;
1814 
1815 	while (1) {
1816 		again = 0;
1817 
1818 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1819 
1820 		/* Make the cleaner go to sleep early. */
1821 		if (btrfs_need_cleaner_sleep(fs_info))
1822 			goto sleep;
1823 
1824 		/*
1825 		 * Do not do anything if we might cause open_ctree() to block
1826 		 * before we have finished mounting the filesystem.
1827 		 */
1828 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1829 			goto sleep;
1830 
1831 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1832 			goto sleep;
1833 
1834 		/*
1835 		 * Avoid the problem that we change the status of the fs
1836 		 * during the above check and trylock.
1837 		 */
1838 		if (btrfs_need_cleaner_sleep(fs_info)) {
1839 			mutex_unlock(&fs_info->cleaner_mutex);
1840 			goto sleep;
1841 		}
1842 
1843 		btrfs_run_delayed_iputs(fs_info);
1844 
1845 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1846 		mutex_unlock(&fs_info->cleaner_mutex);
1847 
1848 		/*
1849 		 * The defragger has dealt with the R/O remount and umount,
1850 		 * needn't do anything special here.
1851 		 */
1852 		btrfs_run_defrag_inodes(fs_info);
1853 
1854 		/*
1855 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1856 		 * with relocation (btrfs_relocate_chunk) and relocation
1857 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1858 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1859 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1860 		 * unused block groups.
1861 		 */
1862 		btrfs_delete_unused_bgs(fs_info);
1863 
1864 		/*
1865 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1866 		 * all unused block_groups. This possibly gives us some more free
1867 		 * space.
1868 		 */
1869 		btrfs_reclaim_bgs(fs_info);
1870 sleep:
1871 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1872 		if (kthread_should_park())
1873 			kthread_parkme();
1874 		if (kthread_should_stop())
1875 			return 0;
1876 		if (!again) {
1877 			set_current_state(TASK_INTERRUPTIBLE);
1878 			schedule();
1879 			__set_current_state(TASK_RUNNING);
1880 		}
1881 	}
1882 }
1883 
transaction_kthread(void * arg)1884 static int transaction_kthread(void *arg)
1885 {
1886 	struct btrfs_root *root = arg;
1887 	struct btrfs_fs_info *fs_info = root->fs_info;
1888 	struct btrfs_trans_handle *trans;
1889 	struct btrfs_transaction *cur;
1890 	u64 transid;
1891 	time64_t delta;
1892 	unsigned long delay;
1893 	bool cannot_commit;
1894 
1895 	do {
1896 		cannot_commit = false;
1897 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1898 		mutex_lock(&fs_info->transaction_kthread_mutex);
1899 
1900 		spin_lock(&fs_info->trans_lock);
1901 		cur = fs_info->running_transaction;
1902 		if (!cur) {
1903 			spin_unlock(&fs_info->trans_lock);
1904 			goto sleep;
1905 		}
1906 
1907 		delta = ktime_get_seconds() - cur->start_time;
1908 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1909 		    cur->state < TRANS_STATE_COMMIT_START &&
1910 		    delta < fs_info->commit_interval) {
1911 			spin_unlock(&fs_info->trans_lock);
1912 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1913 			delay = min(delay,
1914 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1915 			goto sleep;
1916 		}
1917 		transid = cur->transid;
1918 		spin_unlock(&fs_info->trans_lock);
1919 
1920 		/* If the file system is aborted, this will always fail. */
1921 		trans = btrfs_attach_transaction(root);
1922 		if (IS_ERR(trans)) {
1923 			if (PTR_ERR(trans) != -ENOENT)
1924 				cannot_commit = true;
1925 			goto sleep;
1926 		}
1927 		if (transid == trans->transid) {
1928 			btrfs_commit_transaction(trans);
1929 		} else {
1930 			btrfs_end_transaction(trans);
1931 		}
1932 sleep:
1933 		wake_up_process(fs_info->cleaner_kthread);
1934 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1935 
1936 		if (BTRFS_FS_ERROR(fs_info))
1937 			btrfs_cleanup_transaction(fs_info);
1938 		if (!kthread_should_stop() &&
1939 				(!btrfs_transaction_blocked(fs_info) ||
1940 				 cannot_commit))
1941 			schedule_timeout_interruptible(delay);
1942 	} while (!kthread_should_stop());
1943 	return 0;
1944 }
1945 
1946 /*
1947  * This will find the highest generation in the array of root backups.  The
1948  * index of the highest array is returned, or -EINVAL if we can't find
1949  * anything.
1950  *
1951  * We check to make sure the array is valid by comparing the
1952  * generation of the latest  root in the array with the generation
1953  * in the super block.  If they don't match we pitch it.
1954  */
find_newest_super_backup(struct btrfs_fs_info * info)1955 static int find_newest_super_backup(struct btrfs_fs_info *info)
1956 {
1957 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1958 	u64 cur;
1959 	struct btrfs_root_backup *root_backup;
1960 	int i;
1961 
1962 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1963 		root_backup = info->super_copy->super_roots + i;
1964 		cur = btrfs_backup_tree_root_gen(root_backup);
1965 		if (cur == newest_gen)
1966 			return i;
1967 	}
1968 
1969 	return -EINVAL;
1970 }
1971 
1972 /*
1973  * copy all the root pointers into the super backup array.
1974  * this will bump the backup pointer by one when it is
1975  * done
1976  */
backup_super_roots(struct btrfs_fs_info * info)1977 static void backup_super_roots(struct btrfs_fs_info *info)
1978 {
1979 	const int next_backup = info->backup_root_index;
1980 	struct btrfs_root_backup *root_backup;
1981 
1982 	root_backup = info->super_for_commit->super_roots + next_backup;
1983 
1984 	/*
1985 	 * make sure all of our padding and empty slots get zero filled
1986 	 * regardless of which ones we use today
1987 	 */
1988 	memset(root_backup, 0, sizeof(*root_backup));
1989 
1990 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991 
1992 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1993 	btrfs_set_backup_tree_root_gen(root_backup,
1994 			       btrfs_header_generation(info->tree_root->node));
1995 
1996 	btrfs_set_backup_tree_root_level(root_backup,
1997 			       btrfs_header_level(info->tree_root->node));
1998 
1999 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2000 	btrfs_set_backup_chunk_root_gen(root_backup,
2001 			       btrfs_header_generation(info->chunk_root->node));
2002 	btrfs_set_backup_chunk_root_level(root_backup,
2003 			       btrfs_header_level(info->chunk_root->node));
2004 
2005 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
2006 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2007 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2008 
2009 		btrfs_set_backup_extent_root(root_backup,
2010 					     extent_root->node->start);
2011 		btrfs_set_backup_extent_root_gen(root_backup,
2012 				btrfs_header_generation(extent_root->node));
2013 		btrfs_set_backup_extent_root_level(root_backup,
2014 					btrfs_header_level(extent_root->node));
2015 
2016 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2017 		btrfs_set_backup_csum_root_gen(root_backup,
2018 					       btrfs_header_generation(csum_root->node));
2019 		btrfs_set_backup_csum_root_level(root_backup,
2020 						 btrfs_header_level(csum_root->node));
2021 	}
2022 
2023 	/*
2024 	 * we might commit during log recovery, which happens before we set
2025 	 * the fs_root.  Make sure it is valid before we fill it in.
2026 	 */
2027 	if (info->fs_root && info->fs_root->node) {
2028 		btrfs_set_backup_fs_root(root_backup,
2029 					 info->fs_root->node->start);
2030 		btrfs_set_backup_fs_root_gen(root_backup,
2031 			       btrfs_header_generation(info->fs_root->node));
2032 		btrfs_set_backup_fs_root_level(root_backup,
2033 			       btrfs_header_level(info->fs_root->node));
2034 	}
2035 
2036 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2037 	btrfs_set_backup_dev_root_gen(root_backup,
2038 			       btrfs_header_generation(info->dev_root->node));
2039 	btrfs_set_backup_dev_root_level(root_backup,
2040 				       btrfs_header_level(info->dev_root->node));
2041 
2042 	btrfs_set_backup_total_bytes(root_backup,
2043 			     btrfs_super_total_bytes(info->super_copy));
2044 	btrfs_set_backup_bytes_used(root_backup,
2045 			     btrfs_super_bytes_used(info->super_copy));
2046 	btrfs_set_backup_num_devices(root_backup,
2047 			     btrfs_super_num_devices(info->super_copy));
2048 
2049 	/*
2050 	 * if we don't copy this out to the super_copy, it won't get remembered
2051 	 * for the next commit
2052 	 */
2053 	memcpy(&info->super_copy->super_roots,
2054 	       &info->super_for_commit->super_roots,
2055 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2056 }
2057 
2058 /*
2059  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2060  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2061  *
2062  * fs_info - filesystem whose backup roots need to be read
2063  * priority - priority of backup root required
2064  *
2065  * Returns backup root index on success and -EINVAL otherwise.
2066  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)2067 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2068 {
2069 	int backup_index = find_newest_super_backup(fs_info);
2070 	struct btrfs_super_block *super = fs_info->super_copy;
2071 	struct btrfs_root_backup *root_backup;
2072 
2073 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2074 		if (priority == 0)
2075 			return backup_index;
2076 
2077 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2078 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2079 	} else {
2080 		return -EINVAL;
2081 	}
2082 
2083 	root_backup = super->super_roots + backup_index;
2084 
2085 	btrfs_set_super_generation(super,
2086 				   btrfs_backup_tree_root_gen(root_backup));
2087 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2088 	btrfs_set_super_root_level(super,
2089 				   btrfs_backup_tree_root_level(root_backup));
2090 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2091 
2092 	/*
2093 	 * Fixme: the total bytes and num_devices need to match or we should
2094 	 * need a fsck
2095 	 */
2096 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2097 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2098 
2099 	return backup_index;
2100 }
2101 
2102 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2103 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2104 {
2105 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2106 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2107 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2108 	btrfs_destroy_workqueue(fs_info->workers);
2109 	if (fs_info->endio_workers)
2110 		destroy_workqueue(fs_info->endio_workers);
2111 	if (fs_info->endio_raid56_workers)
2112 		destroy_workqueue(fs_info->endio_raid56_workers);
2113 	if (fs_info->rmw_workers)
2114 		destroy_workqueue(fs_info->rmw_workers);
2115 	if (fs_info->compressed_write_workers)
2116 		destroy_workqueue(fs_info->compressed_write_workers);
2117 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2118 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2119 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2120 	btrfs_destroy_workqueue(fs_info->caching_workers);
2121 	btrfs_destroy_workqueue(fs_info->flush_workers);
2122 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2123 	if (fs_info->discard_ctl.discard_workers)
2124 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2125 	/*
2126 	 * Now that all other work queues are destroyed, we can safely destroy
2127 	 * the queues used for metadata I/O, since tasks from those other work
2128 	 * queues can do metadata I/O operations.
2129 	 */
2130 	if (fs_info->endio_meta_workers)
2131 		destroy_workqueue(fs_info->endio_meta_workers);
2132 }
2133 
free_root_extent_buffers(struct btrfs_root * root)2134 static void free_root_extent_buffers(struct btrfs_root *root)
2135 {
2136 	if (root) {
2137 		free_extent_buffer(root->node);
2138 		free_extent_buffer(root->commit_root);
2139 		root->node = NULL;
2140 		root->commit_root = NULL;
2141 	}
2142 }
2143 
free_global_root_pointers(struct btrfs_fs_info * fs_info)2144 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2145 {
2146 	struct btrfs_root *root, *tmp;
2147 
2148 	rbtree_postorder_for_each_entry_safe(root, tmp,
2149 					     &fs_info->global_root_tree,
2150 					     rb_node)
2151 		free_root_extent_buffers(root);
2152 }
2153 
2154 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2155 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2156 {
2157 	free_root_extent_buffers(info->tree_root);
2158 
2159 	free_global_root_pointers(info);
2160 	free_root_extent_buffers(info->dev_root);
2161 	free_root_extent_buffers(info->quota_root);
2162 	free_root_extent_buffers(info->uuid_root);
2163 	free_root_extent_buffers(info->fs_root);
2164 	free_root_extent_buffers(info->data_reloc_root);
2165 	free_root_extent_buffers(info->block_group_root);
2166 	if (free_chunk_root)
2167 		free_root_extent_buffers(info->chunk_root);
2168 }
2169 
btrfs_put_root(struct btrfs_root * root)2170 void btrfs_put_root(struct btrfs_root *root)
2171 {
2172 	if (!root)
2173 		return;
2174 
2175 	if (refcount_dec_and_test(&root->refs)) {
2176 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2177 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2178 		if (root->anon_dev)
2179 			free_anon_bdev(root->anon_dev);
2180 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2181 		free_root_extent_buffers(root);
2182 #ifdef CONFIG_BTRFS_DEBUG
2183 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2184 		list_del_init(&root->leak_list);
2185 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2186 #endif
2187 		kfree(root);
2188 	}
2189 }
2190 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2191 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2192 {
2193 	int ret;
2194 	struct btrfs_root *gang[8];
2195 	int i;
2196 
2197 	while (!list_empty(&fs_info->dead_roots)) {
2198 		gang[0] = list_entry(fs_info->dead_roots.next,
2199 				     struct btrfs_root, root_list);
2200 		list_del(&gang[0]->root_list);
2201 
2202 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2203 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2204 		btrfs_put_root(gang[0]);
2205 	}
2206 
2207 	while (1) {
2208 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2209 					     (void **)gang, 0,
2210 					     ARRAY_SIZE(gang));
2211 		if (!ret)
2212 			break;
2213 		for (i = 0; i < ret; i++)
2214 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2215 	}
2216 }
2217 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2218 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2219 {
2220 	mutex_init(&fs_info->scrub_lock);
2221 	atomic_set(&fs_info->scrubs_running, 0);
2222 	atomic_set(&fs_info->scrub_pause_req, 0);
2223 	atomic_set(&fs_info->scrubs_paused, 0);
2224 	atomic_set(&fs_info->scrub_cancel_req, 0);
2225 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2226 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2227 }
2228 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2229 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2230 {
2231 	spin_lock_init(&fs_info->balance_lock);
2232 	mutex_init(&fs_info->balance_mutex);
2233 	atomic_set(&fs_info->balance_pause_req, 0);
2234 	atomic_set(&fs_info->balance_cancel_req, 0);
2235 	fs_info->balance_ctl = NULL;
2236 	init_waitqueue_head(&fs_info->balance_wait_q);
2237 	atomic_set(&fs_info->reloc_cancel_req, 0);
2238 }
2239 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2240 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2241 {
2242 	struct inode *inode = fs_info->btree_inode;
2243 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2244 					      fs_info->tree_root);
2245 
2246 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2247 	set_nlink(inode, 1);
2248 	/*
2249 	 * we set the i_size on the btree inode to the max possible int.
2250 	 * the real end of the address space is determined by all of
2251 	 * the devices in the system
2252 	 */
2253 	inode->i_size = OFFSET_MAX;
2254 	inode->i_mapping->a_ops = &btree_aops;
2255 
2256 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2257 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2258 			    IO_TREE_BTREE_INODE_IO, NULL);
2259 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2260 
2261 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2262 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2263 	BTRFS_I(inode)->location.type = 0;
2264 	BTRFS_I(inode)->location.offset = 0;
2265 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2266 	__insert_inode_hash(inode, hash);
2267 }
2268 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2269 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2270 {
2271 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2272 	init_rwsem(&fs_info->dev_replace.rwsem);
2273 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2274 }
2275 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2276 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2277 {
2278 	spin_lock_init(&fs_info->qgroup_lock);
2279 	mutex_init(&fs_info->qgroup_ioctl_lock);
2280 	fs_info->qgroup_tree = RB_ROOT;
2281 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2282 	fs_info->qgroup_seq = 1;
2283 	fs_info->qgroup_ulist = NULL;
2284 	fs_info->qgroup_rescan_running = false;
2285 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2286 	mutex_init(&fs_info->qgroup_rescan_lock);
2287 }
2288 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)2289 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2290 {
2291 	u32 max_active = fs_info->thread_pool_size;
2292 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2293 
2294 	fs_info->workers =
2295 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2296 	fs_info->hipri_workers =
2297 		btrfs_alloc_workqueue(fs_info, "worker-high",
2298 				      flags | WQ_HIGHPRI, max_active, 16);
2299 
2300 	fs_info->delalloc_workers =
2301 		btrfs_alloc_workqueue(fs_info, "delalloc",
2302 				      flags, max_active, 2);
2303 
2304 	fs_info->flush_workers =
2305 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2306 				      flags, max_active, 0);
2307 
2308 	fs_info->caching_workers =
2309 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2310 
2311 	fs_info->fixup_workers =
2312 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2313 
2314 	fs_info->endio_workers =
2315 		alloc_workqueue("btrfs-endio", flags, max_active);
2316 	fs_info->endio_meta_workers =
2317 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2318 	fs_info->endio_raid56_workers =
2319 		alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2320 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2321 	fs_info->endio_write_workers =
2322 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2323 				      max_active, 2);
2324 	fs_info->compressed_write_workers =
2325 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2326 	fs_info->endio_freespace_worker =
2327 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2328 				      max_active, 0);
2329 	fs_info->delayed_workers =
2330 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2331 				      max_active, 0);
2332 	fs_info->qgroup_rescan_workers =
2333 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2334 	fs_info->discard_ctl.discard_workers =
2335 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2336 
2337 	if (!(fs_info->workers && fs_info->hipri_workers &&
2338 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2339 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2340 	      fs_info->compressed_write_workers &&
2341 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2342 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2343 	      fs_info->caching_workers && fs_info->fixup_workers &&
2344 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2345 	      fs_info->discard_ctl.discard_workers)) {
2346 		return -ENOMEM;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2352 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2353 {
2354 	struct crypto_shash *csum_shash;
2355 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2356 
2357 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2358 
2359 	if (IS_ERR(csum_shash)) {
2360 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2361 			  csum_driver);
2362 		return PTR_ERR(csum_shash);
2363 	}
2364 
2365 	fs_info->csum_shash = csum_shash;
2366 
2367 	/*
2368 	 * Check if the checksum implementation is a fast accelerated one.
2369 	 * As-is this is a bit of a hack and should be replaced once the csum
2370 	 * implementations provide that information themselves.
2371 	 */
2372 	switch (csum_type) {
2373 	case BTRFS_CSUM_TYPE_CRC32:
2374 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2375 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2376 		break;
2377 	default:
2378 		break;
2379 	}
2380 
2381 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2382 			btrfs_super_csum_name(csum_type),
2383 			crypto_shash_driver_name(csum_shash));
2384 	return 0;
2385 }
2386 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2387 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2388 			    struct btrfs_fs_devices *fs_devices)
2389 {
2390 	int ret;
2391 	struct btrfs_root *log_tree_root;
2392 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2393 	u64 bytenr = btrfs_super_log_root(disk_super);
2394 	int level = btrfs_super_log_root_level(disk_super);
2395 
2396 	if (fs_devices->rw_devices == 0) {
2397 		btrfs_warn(fs_info, "log replay required on RO media");
2398 		return -EIO;
2399 	}
2400 
2401 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2402 					 GFP_KERNEL);
2403 	if (!log_tree_root)
2404 		return -ENOMEM;
2405 
2406 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2407 					      BTRFS_TREE_LOG_OBJECTID,
2408 					      fs_info->generation + 1, level,
2409 					      NULL);
2410 	if (IS_ERR(log_tree_root->node)) {
2411 		btrfs_warn(fs_info, "failed to read log tree");
2412 		ret = PTR_ERR(log_tree_root->node);
2413 		log_tree_root->node = NULL;
2414 		btrfs_put_root(log_tree_root);
2415 		return ret;
2416 	}
2417 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2418 		btrfs_err(fs_info, "failed to read log tree");
2419 		btrfs_put_root(log_tree_root);
2420 		return -EIO;
2421 	}
2422 
2423 	/* returns with log_tree_root freed on success */
2424 	ret = btrfs_recover_log_trees(log_tree_root);
2425 	if (ret) {
2426 		btrfs_handle_fs_error(fs_info, ret,
2427 				      "Failed to recover log tree");
2428 		btrfs_put_root(log_tree_root);
2429 		return ret;
2430 	}
2431 
2432 	if (sb_rdonly(fs_info->sb)) {
2433 		ret = btrfs_commit_super(fs_info);
2434 		if (ret)
2435 			return ret;
2436 	}
2437 
2438 	return 0;
2439 }
2440 
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2441 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2442 				      struct btrfs_path *path, u64 objectid,
2443 				      const char *name)
2444 {
2445 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2446 	struct btrfs_root *root;
2447 	u64 max_global_id = 0;
2448 	int ret;
2449 	struct btrfs_key key = {
2450 		.objectid = objectid,
2451 		.type = BTRFS_ROOT_ITEM_KEY,
2452 		.offset = 0,
2453 	};
2454 	bool found = false;
2455 
2456 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2457 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2458 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2459 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2460 		return 0;
2461 	}
2462 
2463 	while (1) {
2464 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2465 		if (ret < 0)
2466 			break;
2467 
2468 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2469 			ret = btrfs_next_leaf(tree_root, path);
2470 			if (ret) {
2471 				if (ret > 0)
2472 					ret = 0;
2473 				break;
2474 			}
2475 		}
2476 		ret = 0;
2477 
2478 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2479 		if (key.objectid != objectid)
2480 			break;
2481 		btrfs_release_path(path);
2482 
2483 		/*
2484 		 * Just worry about this for extent tree, it'll be the same for
2485 		 * everybody.
2486 		 */
2487 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2488 			max_global_id = max(max_global_id, key.offset);
2489 
2490 		found = true;
2491 		root = read_tree_root_path(tree_root, path, &key);
2492 		if (IS_ERR(root)) {
2493 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2494 				ret = PTR_ERR(root);
2495 			break;
2496 		}
2497 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2498 		ret = btrfs_global_root_insert(root);
2499 		if (ret) {
2500 			btrfs_put_root(root);
2501 			break;
2502 		}
2503 		key.offset++;
2504 	}
2505 	btrfs_release_path(path);
2506 
2507 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2508 		fs_info->nr_global_roots = max_global_id + 1;
2509 
2510 	if (!found || ret) {
2511 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2512 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2513 
2514 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2515 			ret = ret ? ret : -ENOENT;
2516 		else
2517 			ret = 0;
2518 		btrfs_err(fs_info, "failed to load root %s", name);
2519 	}
2520 	return ret;
2521 }
2522 
load_global_roots(struct btrfs_root * tree_root)2523 static int load_global_roots(struct btrfs_root *tree_root)
2524 {
2525 	struct btrfs_path *path;
2526 	int ret = 0;
2527 
2528 	path = btrfs_alloc_path();
2529 	if (!path)
2530 		return -ENOMEM;
2531 
2532 	ret = load_global_roots_objectid(tree_root, path,
2533 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2534 	if (ret)
2535 		goto out;
2536 	ret = load_global_roots_objectid(tree_root, path,
2537 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2538 	if (ret)
2539 		goto out;
2540 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2541 		goto out;
2542 	ret = load_global_roots_objectid(tree_root, path,
2543 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2544 					 "free space");
2545 out:
2546 	btrfs_free_path(path);
2547 	return ret;
2548 }
2549 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2550 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2551 {
2552 	struct btrfs_root *tree_root = fs_info->tree_root;
2553 	struct btrfs_root *root;
2554 	struct btrfs_key location;
2555 	int ret;
2556 
2557 	BUG_ON(!fs_info->tree_root);
2558 
2559 	ret = load_global_roots(tree_root);
2560 	if (ret)
2561 		return ret;
2562 
2563 	location.type = BTRFS_ROOT_ITEM_KEY;
2564 	location.offset = 0;
2565 
2566 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2567 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2568 		root = btrfs_read_tree_root(tree_root, &location);
2569 		if (IS_ERR(root)) {
2570 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2571 				ret = PTR_ERR(root);
2572 				goto out;
2573 			}
2574 		} else {
2575 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2576 			fs_info->block_group_root = root;
2577 		}
2578 	}
2579 
2580 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2581 	root = btrfs_read_tree_root(tree_root, &location);
2582 	if (IS_ERR(root)) {
2583 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2584 			ret = PTR_ERR(root);
2585 			goto out;
2586 		}
2587 	} else {
2588 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2589 		fs_info->dev_root = root;
2590 	}
2591 	/* Initialize fs_info for all devices in any case */
2592 	ret = btrfs_init_devices_late(fs_info);
2593 	if (ret)
2594 		goto out;
2595 
2596 	/*
2597 	 * This tree can share blocks with some other fs tree during relocation
2598 	 * and we need a proper setup by btrfs_get_fs_root
2599 	 */
2600 	root = btrfs_get_fs_root(tree_root->fs_info,
2601 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2602 	if (IS_ERR(root)) {
2603 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2604 			ret = PTR_ERR(root);
2605 			goto out;
2606 		}
2607 	} else {
2608 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2609 		fs_info->data_reloc_root = root;
2610 	}
2611 
2612 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2613 	root = btrfs_read_tree_root(tree_root, &location);
2614 	if (!IS_ERR(root)) {
2615 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2616 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2617 		fs_info->quota_root = root;
2618 	}
2619 
2620 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2621 	root = btrfs_read_tree_root(tree_root, &location);
2622 	if (IS_ERR(root)) {
2623 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2624 			ret = PTR_ERR(root);
2625 			if (ret != -ENOENT)
2626 				goto out;
2627 		}
2628 	} else {
2629 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2630 		fs_info->uuid_root = root;
2631 	}
2632 
2633 	return 0;
2634 out:
2635 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2636 		   location.objectid, ret);
2637 	return ret;
2638 }
2639 
2640 /*
2641  * Real super block validation
2642  * NOTE: super csum type and incompat features will not be checked here.
2643  *
2644  * @sb:		super block to check
2645  * @mirror_num:	the super block number to check its bytenr:
2646  * 		0	the primary (1st) sb
2647  * 		1, 2	2nd and 3rd backup copy
2648  * 	       -1	skip bytenr check
2649  */
btrfs_validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2650 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2651 			 struct btrfs_super_block *sb, int mirror_num)
2652 {
2653 	u64 nodesize = btrfs_super_nodesize(sb);
2654 	u64 sectorsize = btrfs_super_sectorsize(sb);
2655 	int ret = 0;
2656 
2657 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2658 		btrfs_err(fs_info, "no valid FS found");
2659 		ret = -EINVAL;
2660 	}
2661 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2662 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2663 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2664 		ret = -EINVAL;
2665 	}
2666 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2667 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2668 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2669 		ret = -EINVAL;
2670 	}
2671 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2672 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2673 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2674 		ret = -EINVAL;
2675 	}
2676 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2677 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2678 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2679 		ret = -EINVAL;
2680 	}
2681 
2682 	/*
2683 	 * Check sectorsize and nodesize first, other check will need it.
2684 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2685 	 */
2686 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2687 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2688 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2689 		ret = -EINVAL;
2690 	}
2691 
2692 	/*
2693 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2694 	 *
2695 	 * We can support 16K sectorsize with 64K page size without problem,
2696 	 * but such sectorsize/pagesize combination doesn't make much sense.
2697 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2698 	 * beginning.
2699 	 */
2700 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2701 		btrfs_err(fs_info,
2702 			"sectorsize %llu not yet supported for page size %lu",
2703 			sectorsize, PAGE_SIZE);
2704 		ret = -EINVAL;
2705 	}
2706 
2707 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2708 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2709 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2710 		ret = -EINVAL;
2711 	}
2712 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2713 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2714 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2715 		ret = -EINVAL;
2716 	}
2717 
2718 	/* Root alignment check */
2719 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2720 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2721 			   btrfs_super_root(sb));
2722 		ret = -EINVAL;
2723 	}
2724 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2725 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2726 			   btrfs_super_chunk_root(sb));
2727 		ret = -EINVAL;
2728 	}
2729 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2730 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2731 			   btrfs_super_log_root(sb));
2732 		ret = -EINVAL;
2733 	}
2734 
2735 	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2736 		btrfs_err(fs_info,
2737 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2738 			  sb->fsid, fs_info->fs_devices->fsid);
2739 		ret = -EINVAL;
2740 	}
2741 
2742 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2743 		   BTRFS_FSID_SIZE) != 0) {
2744 		btrfs_err(fs_info,
2745 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2746 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2747 		ret = -EINVAL;
2748 	}
2749 
2750 	/*
2751 	 * Artificial requirement for block-group-tree to force newer features
2752 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2753 	 */
2754 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2755 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2756 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2757 		btrfs_err(fs_info,
2758 		"block-group-tree feature requires fres-space-tree and no-holes");
2759 		ret = -EINVAL;
2760 	}
2761 
2762 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2763 		   BTRFS_FSID_SIZE) != 0) {
2764 		btrfs_err(fs_info,
2765 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2766 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2767 		ret = -EINVAL;
2768 	}
2769 
2770 	/*
2771 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2772 	 * done later
2773 	 */
2774 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2775 		btrfs_err(fs_info, "bytes_used is too small %llu",
2776 			  btrfs_super_bytes_used(sb));
2777 		ret = -EINVAL;
2778 	}
2779 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2780 		btrfs_err(fs_info, "invalid stripesize %u",
2781 			  btrfs_super_stripesize(sb));
2782 		ret = -EINVAL;
2783 	}
2784 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2785 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2786 			   btrfs_super_num_devices(sb));
2787 	if (btrfs_super_num_devices(sb) == 0) {
2788 		btrfs_err(fs_info, "number of devices is 0");
2789 		ret = -EINVAL;
2790 	}
2791 
2792 	if (mirror_num >= 0 &&
2793 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2794 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2795 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2796 		ret = -EINVAL;
2797 	}
2798 
2799 	/*
2800 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2801 	 * and one chunk
2802 	 */
2803 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2804 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2805 			  btrfs_super_sys_array_size(sb),
2806 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2807 		ret = -EINVAL;
2808 	}
2809 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2810 			+ sizeof(struct btrfs_chunk)) {
2811 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2812 			  btrfs_super_sys_array_size(sb),
2813 			  sizeof(struct btrfs_disk_key)
2814 			  + sizeof(struct btrfs_chunk));
2815 		ret = -EINVAL;
2816 	}
2817 
2818 	/*
2819 	 * The generation is a global counter, we'll trust it more than the others
2820 	 * but it's still possible that it's the one that's wrong.
2821 	 */
2822 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2823 		btrfs_warn(fs_info,
2824 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2825 			btrfs_super_generation(sb),
2826 			btrfs_super_chunk_root_generation(sb));
2827 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2828 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2829 		btrfs_warn(fs_info,
2830 			"suspicious: generation < cache_generation: %llu < %llu",
2831 			btrfs_super_generation(sb),
2832 			btrfs_super_cache_generation(sb));
2833 
2834 	return ret;
2835 }
2836 
2837 /*
2838  * Validation of super block at mount time.
2839  * Some checks already done early at mount time, like csum type and incompat
2840  * flags will be skipped.
2841  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2842 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2843 {
2844 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2845 }
2846 
2847 /*
2848  * Validation of super block at write time.
2849  * Some checks like bytenr check will be skipped as their values will be
2850  * overwritten soon.
2851  * Extra checks like csum type and incompat flags will be done here.
2852  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2853 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2854 				      struct btrfs_super_block *sb)
2855 {
2856 	int ret;
2857 
2858 	ret = btrfs_validate_super(fs_info, sb, -1);
2859 	if (ret < 0)
2860 		goto out;
2861 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2862 		ret = -EUCLEAN;
2863 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2864 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2865 		goto out;
2866 	}
2867 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2868 		ret = -EUCLEAN;
2869 		btrfs_err(fs_info,
2870 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2871 			  btrfs_super_incompat_flags(sb),
2872 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2873 		goto out;
2874 	}
2875 out:
2876 	if (ret < 0)
2877 		btrfs_err(fs_info,
2878 		"super block corruption detected before writing it to disk");
2879 	return ret;
2880 }
2881 
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2882 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2883 {
2884 	int ret = 0;
2885 
2886 	root->node = read_tree_block(root->fs_info, bytenr,
2887 				     root->root_key.objectid, gen, level, NULL);
2888 	if (IS_ERR(root->node)) {
2889 		ret = PTR_ERR(root->node);
2890 		root->node = NULL;
2891 		return ret;
2892 	}
2893 	if (!extent_buffer_uptodate(root->node)) {
2894 		free_extent_buffer(root->node);
2895 		root->node = NULL;
2896 		return -EIO;
2897 	}
2898 
2899 	btrfs_set_root_node(&root->root_item, root->node);
2900 	root->commit_root = btrfs_root_node(root);
2901 	btrfs_set_root_refs(&root->root_item, 1);
2902 	return ret;
2903 }
2904 
load_important_roots(struct btrfs_fs_info * fs_info)2905 static int load_important_roots(struct btrfs_fs_info *fs_info)
2906 {
2907 	struct btrfs_super_block *sb = fs_info->super_copy;
2908 	u64 gen, bytenr;
2909 	int level, ret;
2910 
2911 	bytenr = btrfs_super_root(sb);
2912 	gen = btrfs_super_generation(sb);
2913 	level = btrfs_super_root_level(sb);
2914 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2915 	if (ret) {
2916 		btrfs_warn(fs_info, "couldn't read tree root");
2917 		return ret;
2918 	}
2919 	return 0;
2920 }
2921 
init_tree_roots(struct btrfs_fs_info * fs_info)2922 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2923 {
2924 	int backup_index = find_newest_super_backup(fs_info);
2925 	struct btrfs_super_block *sb = fs_info->super_copy;
2926 	struct btrfs_root *tree_root = fs_info->tree_root;
2927 	bool handle_error = false;
2928 	int ret = 0;
2929 	int i;
2930 
2931 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2932 		if (handle_error) {
2933 			if (!IS_ERR(tree_root->node))
2934 				free_extent_buffer(tree_root->node);
2935 			tree_root->node = NULL;
2936 
2937 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2938 				break;
2939 
2940 			free_root_pointers(fs_info, 0);
2941 
2942 			/*
2943 			 * Don't use the log in recovery mode, it won't be
2944 			 * valid
2945 			 */
2946 			btrfs_set_super_log_root(sb, 0);
2947 
2948 			/* We can't trust the free space cache either */
2949 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2950 
2951 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2952 			ret = read_backup_root(fs_info, i);
2953 			backup_index = ret;
2954 			if (ret < 0)
2955 				return ret;
2956 		}
2957 
2958 		ret = load_important_roots(fs_info);
2959 		if (ret) {
2960 			handle_error = true;
2961 			continue;
2962 		}
2963 
2964 		/*
2965 		 * No need to hold btrfs_root::objectid_mutex since the fs
2966 		 * hasn't been fully initialised and we are the only user
2967 		 */
2968 		ret = btrfs_init_root_free_objectid(tree_root);
2969 		if (ret < 0) {
2970 			handle_error = true;
2971 			continue;
2972 		}
2973 
2974 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2975 
2976 		ret = btrfs_read_roots(fs_info);
2977 		if (ret < 0) {
2978 			handle_error = true;
2979 			continue;
2980 		}
2981 
2982 		/* All successful */
2983 		fs_info->generation = btrfs_header_generation(tree_root->node);
2984 		fs_info->last_trans_committed = fs_info->generation;
2985 		fs_info->last_reloc_trans = 0;
2986 
2987 		/* Always begin writing backup roots after the one being used */
2988 		if (backup_index < 0) {
2989 			fs_info->backup_root_index = 0;
2990 		} else {
2991 			fs_info->backup_root_index = backup_index + 1;
2992 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2993 		}
2994 		break;
2995 	}
2996 
2997 	return ret;
2998 }
2999 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)3000 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3001 {
3002 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3003 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3004 	INIT_LIST_HEAD(&fs_info->trans_list);
3005 	INIT_LIST_HEAD(&fs_info->dead_roots);
3006 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3007 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3008 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3009 	spin_lock_init(&fs_info->delalloc_root_lock);
3010 	spin_lock_init(&fs_info->trans_lock);
3011 	spin_lock_init(&fs_info->fs_roots_radix_lock);
3012 	spin_lock_init(&fs_info->delayed_iput_lock);
3013 	spin_lock_init(&fs_info->defrag_inodes_lock);
3014 	spin_lock_init(&fs_info->super_lock);
3015 	spin_lock_init(&fs_info->buffer_lock);
3016 	spin_lock_init(&fs_info->unused_bgs_lock);
3017 	spin_lock_init(&fs_info->treelog_bg_lock);
3018 	spin_lock_init(&fs_info->zone_active_bgs_lock);
3019 	spin_lock_init(&fs_info->relocation_bg_lock);
3020 	rwlock_init(&fs_info->tree_mod_log_lock);
3021 	rwlock_init(&fs_info->global_root_lock);
3022 	mutex_init(&fs_info->unused_bg_unpin_mutex);
3023 	mutex_init(&fs_info->reclaim_bgs_lock);
3024 	mutex_init(&fs_info->reloc_mutex);
3025 	mutex_init(&fs_info->delalloc_root_mutex);
3026 	mutex_init(&fs_info->zoned_meta_io_lock);
3027 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3028 	seqlock_init(&fs_info->profiles_lock);
3029 
3030 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3031 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3032 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3033 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3034 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3035 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3036 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3037 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3038 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3039 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3040 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3041 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3042 
3043 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3044 	INIT_LIST_HEAD(&fs_info->space_info);
3045 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3046 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3047 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3048 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3049 #ifdef CONFIG_BTRFS_DEBUG
3050 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3051 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3052 	spin_lock_init(&fs_info->eb_leak_lock);
3053 #endif
3054 	extent_map_tree_init(&fs_info->mapping_tree);
3055 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3056 			     BTRFS_BLOCK_RSV_GLOBAL);
3057 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3058 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3059 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3060 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3061 			     BTRFS_BLOCK_RSV_DELOPS);
3062 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3063 			     BTRFS_BLOCK_RSV_DELREFS);
3064 
3065 	atomic_set(&fs_info->async_delalloc_pages, 0);
3066 	atomic_set(&fs_info->defrag_running, 0);
3067 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3068 	atomic64_set(&fs_info->tree_mod_seq, 0);
3069 	fs_info->global_root_tree = RB_ROOT;
3070 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3071 	fs_info->metadata_ratio = 0;
3072 	fs_info->defrag_inodes = RB_ROOT;
3073 	atomic64_set(&fs_info->free_chunk_space, 0);
3074 	fs_info->tree_mod_log = RB_ROOT;
3075 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3076 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3077 	btrfs_init_ref_verify(fs_info);
3078 
3079 	fs_info->thread_pool_size = min_t(unsigned long,
3080 					  num_online_cpus() + 2, 8);
3081 
3082 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3083 	spin_lock_init(&fs_info->ordered_root_lock);
3084 
3085 	btrfs_init_scrub(fs_info);
3086 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3087 	fs_info->check_integrity_print_mask = 0;
3088 #endif
3089 	btrfs_init_balance(fs_info);
3090 	btrfs_init_async_reclaim_work(fs_info);
3091 
3092 	rwlock_init(&fs_info->block_group_cache_lock);
3093 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3094 
3095 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3096 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3097 
3098 	mutex_init(&fs_info->ordered_operations_mutex);
3099 	mutex_init(&fs_info->tree_log_mutex);
3100 	mutex_init(&fs_info->chunk_mutex);
3101 	mutex_init(&fs_info->transaction_kthread_mutex);
3102 	mutex_init(&fs_info->cleaner_mutex);
3103 	mutex_init(&fs_info->ro_block_group_mutex);
3104 	init_rwsem(&fs_info->commit_root_sem);
3105 	init_rwsem(&fs_info->cleanup_work_sem);
3106 	init_rwsem(&fs_info->subvol_sem);
3107 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3108 
3109 	btrfs_init_dev_replace_locks(fs_info);
3110 	btrfs_init_qgroup(fs_info);
3111 	btrfs_discard_init(fs_info);
3112 
3113 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3114 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3115 
3116 	init_waitqueue_head(&fs_info->transaction_throttle);
3117 	init_waitqueue_head(&fs_info->transaction_wait);
3118 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3119 	init_waitqueue_head(&fs_info->async_submit_wait);
3120 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3121 
3122 	/* Usable values until the real ones are cached from the superblock */
3123 	fs_info->nodesize = 4096;
3124 	fs_info->sectorsize = 4096;
3125 	fs_info->sectorsize_bits = ilog2(4096);
3126 	fs_info->stripesize = 4096;
3127 
3128 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3129 
3130 	spin_lock_init(&fs_info->swapfile_pins_lock);
3131 	fs_info->swapfile_pins = RB_ROOT;
3132 
3133 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3134 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3135 }
3136 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)3137 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3138 {
3139 	int ret;
3140 
3141 	fs_info->sb = sb;
3142 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3143 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3144 
3145 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3146 	if (ret)
3147 		return ret;
3148 
3149 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3150 	if (ret)
3151 		return ret;
3152 
3153 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3154 					(1 + ilog2(nr_cpu_ids));
3155 
3156 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3157 	if (ret)
3158 		return ret;
3159 
3160 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3161 			GFP_KERNEL);
3162 	if (ret)
3163 		return ret;
3164 
3165 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3166 					GFP_KERNEL);
3167 	if (!fs_info->delayed_root)
3168 		return -ENOMEM;
3169 	btrfs_init_delayed_root(fs_info->delayed_root);
3170 
3171 	if (sb_rdonly(sb))
3172 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3173 
3174 	return btrfs_alloc_stripe_hash_table(fs_info);
3175 }
3176 
btrfs_uuid_rescan_kthread(void * data)3177 static int btrfs_uuid_rescan_kthread(void *data)
3178 {
3179 	struct btrfs_fs_info *fs_info = data;
3180 	int ret;
3181 
3182 	/*
3183 	 * 1st step is to iterate through the existing UUID tree and
3184 	 * to delete all entries that contain outdated data.
3185 	 * 2nd step is to add all missing entries to the UUID tree.
3186 	 */
3187 	ret = btrfs_uuid_tree_iterate(fs_info);
3188 	if (ret < 0) {
3189 		if (ret != -EINTR)
3190 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3191 				   ret);
3192 		up(&fs_info->uuid_tree_rescan_sem);
3193 		return ret;
3194 	}
3195 	return btrfs_uuid_scan_kthread(data);
3196 }
3197 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)3198 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3199 {
3200 	struct task_struct *task;
3201 
3202 	down(&fs_info->uuid_tree_rescan_sem);
3203 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3204 	if (IS_ERR(task)) {
3205 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3206 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3207 		up(&fs_info->uuid_tree_rescan_sem);
3208 		return PTR_ERR(task);
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * Some options only have meaning at mount time and shouldn't persist across
3216  * remounts, or be displayed. Clear these at the end of mount and remount
3217  * code paths.
3218  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)3219 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3220 {
3221 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3222 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3223 }
3224 
3225 /*
3226  * Mounting logic specific to read-write file systems. Shared by open_ctree
3227  * and btrfs_remount when remounting from read-only to read-write.
3228  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3229 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3230 {
3231 	int ret;
3232 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3233 	bool rebuild_free_space_tree = false;
3234 
3235 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3236 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3237 		rebuild_free_space_tree = true;
3238 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3239 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3240 		btrfs_warn(fs_info, "free space tree is invalid");
3241 		rebuild_free_space_tree = true;
3242 	}
3243 
3244 	if (rebuild_free_space_tree) {
3245 		btrfs_info(fs_info, "rebuilding free space tree");
3246 		ret = btrfs_rebuild_free_space_tree(fs_info);
3247 		if (ret) {
3248 			btrfs_warn(fs_info,
3249 				   "failed to rebuild free space tree: %d", ret);
3250 			goto out;
3251 		}
3252 	}
3253 
3254 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3255 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3256 		btrfs_info(fs_info, "disabling free space tree");
3257 		ret = btrfs_delete_free_space_tree(fs_info);
3258 		if (ret) {
3259 			btrfs_warn(fs_info,
3260 				   "failed to disable free space tree: %d", ret);
3261 			goto out;
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3267 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3268 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3269 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3270 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3271 	 * item before the root's tree is deleted - this means that if we unmount
3272 	 * or crash before the deletion completes, on the next mount we will not
3273 	 * delete what remains of the tree because the orphan item does not
3274 	 * exists anymore, which is what tells us we have a pending deletion.
3275 	 */
3276 	ret = btrfs_find_orphan_roots(fs_info);
3277 	if (ret)
3278 		goto out;
3279 
3280 	ret = btrfs_cleanup_fs_roots(fs_info);
3281 	if (ret)
3282 		goto out;
3283 
3284 	down_read(&fs_info->cleanup_work_sem);
3285 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3286 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3287 		up_read(&fs_info->cleanup_work_sem);
3288 		goto out;
3289 	}
3290 	up_read(&fs_info->cleanup_work_sem);
3291 
3292 	mutex_lock(&fs_info->cleaner_mutex);
3293 	ret = btrfs_recover_relocation(fs_info);
3294 	mutex_unlock(&fs_info->cleaner_mutex);
3295 	if (ret < 0) {
3296 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3297 		goto out;
3298 	}
3299 
3300 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3301 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3302 		btrfs_info(fs_info, "creating free space tree");
3303 		ret = btrfs_create_free_space_tree(fs_info);
3304 		if (ret) {
3305 			btrfs_warn(fs_info,
3306 				"failed to create free space tree: %d", ret);
3307 			goto out;
3308 		}
3309 	}
3310 
3311 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3312 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3313 		if (ret)
3314 			goto out;
3315 	}
3316 
3317 	ret = btrfs_resume_balance_async(fs_info);
3318 	if (ret)
3319 		goto out;
3320 
3321 	ret = btrfs_resume_dev_replace_async(fs_info);
3322 	if (ret) {
3323 		btrfs_warn(fs_info, "failed to resume dev_replace");
3324 		goto out;
3325 	}
3326 
3327 	btrfs_qgroup_rescan_resume(fs_info);
3328 
3329 	if (!fs_info->uuid_root) {
3330 		btrfs_info(fs_info, "creating UUID tree");
3331 		ret = btrfs_create_uuid_tree(fs_info);
3332 		if (ret) {
3333 			btrfs_warn(fs_info,
3334 				   "failed to create the UUID tree %d", ret);
3335 			goto out;
3336 		}
3337 	}
3338 
3339 out:
3340 	return ret;
3341 }
3342 
3343 /*
3344  * Do various sanity and dependency checks of different features.
3345  *
3346  * @is_rw_mount:	If the mount is read-write.
3347  *
3348  * This is the place for less strict checks (like for subpage or artificial
3349  * feature dependencies).
3350  *
3351  * For strict checks or possible corruption detection, see
3352  * btrfs_validate_super().
3353  *
3354  * This should be called after btrfs_parse_options(), as some mount options
3355  * (space cache related) can modify on-disk format like free space tree and
3356  * screw up certain feature dependencies.
3357  */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3358 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3359 {
3360 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3361 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3362 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3363 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3364 
3365 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3366 		btrfs_err(fs_info,
3367 		"cannot mount because of unknown incompat features (0x%llx)",
3368 		    incompat);
3369 		return -EINVAL;
3370 	}
3371 
3372 	/* Runtime limitation for mixed block groups. */
3373 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3374 	    (fs_info->sectorsize != fs_info->nodesize)) {
3375 		btrfs_err(fs_info,
3376 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3377 			fs_info->nodesize, fs_info->sectorsize);
3378 		return -EINVAL;
3379 	}
3380 
3381 	/* Mixed backref is an always-enabled feature. */
3382 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3383 
3384 	/* Set compression related flags just in case. */
3385 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3386 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3387 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3388 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3389 
3390 	/*
3391 	 * An ancient flag, which should really be marked deprecated.
3392 	 * Such runtime limitation doesn't really need a incompat flag.
3393 	 */
3394 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3395 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3396 
3397 	if (compat_ro_unsupp && is_rw_mount) {
3398 		btrfs_err(fs_info,
3399 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3400 		       compat_ro);
3401 		return -EINVAL;
3402 	}
3403 
3404 	/*
3405 	 * We have unsupported RO compat features, although RO mounted, we
3406 	 * should not cause any metadata writes, including log replay.
3407 	 * Or we could screw up whatever the new feature requires.
3408 	 */
3409 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3410 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3411 		btrfs_err(fs_info,
3412 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3413 			  compat_ro);
3414 		return -EINVAL;
3415 	}
3416 
3417 	/*
3418 	 * Artificial limitations for block group tree, to force
3419 	 * block-group-tree to rely on no-holes and free-space-tree.
3420 	 */
3421 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3422 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3423 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3424 		btrfs_err(fs_info,
3425 "block-group-tree feature requires no-holes and free-space-tree features");
3426 		return -EINVAL;
3427 	}
3428 
3429 	/*
3430 	 * Subpage runtime limitation on v1 cache.
3431 	 *
3432 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3433 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3434 	 * going to be deprecated anyway.
3435 	 */
3436 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3437 		btrfs_warn(fs_info,
3438 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3439 			   PAGE_SIZE, fs_info->sectorsize);
3440 		return -EINVAL;
3441 	}
3442 
3443 	/* This can be called by remount, we need to protect the super block. */
3444 	spin_lock(&fs_info->super_lock);
3445 	btrfs_set_super_incompat_flags(disk_super, incompat);
3446 	spin_unlock(&fs_info->super_lock);
3447 
3448 	return 0;
3449 }
3450 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)3451 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3452 		      char *options)
3453 {
3454 	u32 sectorsize;
3455 	u32 nodesize;
3456 	u32 stripesize;
3457 	u64 generation;
3458 	u64 features;
3459 	u16 csum_type;
3460 	struct btrfs_super_block *disk_super;
3461 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3462 	struct btrfs_root *tree_root;
3463 	struct btrfs_root *chunk_root;
3464 	int ret;
3465 	int err = -EINVAL;
3466 	int level;
3467 
3468 	ret = init_mount_fs_info(fs_info, sb);
3469 	if (ret) {
3470 		err = ret;
3471 		goto fail;
3472 	}
3473 
3474 	/* These need to be init'ed before we start creating inodes and such. */
3475 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3476 				     GFP_KERNEL);
3477 	fs_info->tree_root = tree_root;
3478 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3479 				      GFP_KERNEL);
3480 	fs_info->chunk_root = chunk_root;
3481 	if (!tree_root || !chunk_root) {
3482 		err = -ENOMEM;
3483 		goto fail;
3484 	}
3485 
3486 	fs_info->btree_inode = new_inode(sb);
3487 	if (!fs_info->btree_inode) {
3488 		err = -ENOMEM;
3489 		goto fail;
3490 	}
3491 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3492 	btrfs_init_btree_inode(fs_info);
3493 
3494 	invalidate_bdev(fs_devices->latest_dev->bdev);
3495 
3496 	/*
3497 	 * Read super block and check the signature bytes only
3498 	 */
3499 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3500 	if (IS_ERR(disk_super)) {
3501 		err = PTR_ERR(disk_super);
3502 		goto fail_alloc;
3503 	}
3504 
3505 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3506 	/*
3507 	 * Verify the type first, if that or the checksum value are
3508 	 * corrupted, we'll find out
3509 	 */
3510 	csum_type = btrfs_super_csum_type(disk_super);
3511 	if (!btrfs_supported_super_csum(csum_type)) {
3512 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3513 			  csum_type);
3514 		err = -EINVAL;
3515 		btrfs_release_disk_super(disk_super);
3516 		goto fail_alloc;
3517 	}
3518 
3519 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3520 
3521 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3522 	if (ret) {
3523 		err = ret;
3524 		btrfs_release_disk_super(disk_super);
3525 		goto fail_alloc;
3526 	}
3527 
3528 	/*
3529 	 * We want to check superblock checksum, the type is stored inside.
3530 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3531 	 */
3532 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3533 		btrfs_err(fs_info, "superblock checksum mismatch");
3534 		err = -EINVAL;
3535 		btrfs_release_disk_super(disk_super);
3536 		goto fail_alloc;
3537 	}
3538 
3539 	/*
3540 	 * super_copy is zeroed at allocation time and we never touch the
3541 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3542 	 * the whole block of INFO_SIZE
3543 	 */
3544 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3545 	btrfs_release_disk_super(disk_super);
3546 
3547 	disk_super = fs_info->super_copy;
3548 
3549 
3550 	features = btrfs_super_flags(disk_super);
3551 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3552 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3553 		btrfs_set_super_flags(disk_super, features);
3554 		btrfs_info(fs_info,
3555 			"found metadata UUID change in progress flag, clearing");
3556 	}
3557 
3558 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3559 	       sizeof(*fs_info->super_for_commit));
3560 
3561 	ret = btrfs_validate_mount_super(fs_info);
3562 	if (ret) {
3563 		btrfs_err(fs_info, "superblock contains fatal errors");
3564 		err = -EINVAL;
3565 		goto fail_alloc;
3566 	}
3567 
3568 	if (!btrfs_super_root(disk_super))
3569 		goto fail_alloc;
3570 
3571 	/* check FS state, whether FS is broken. */
3572 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3573 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3574 
3575 	/*
3576 	 * In the long term, we'll store the compression type in the super
3577 	 * block, and it'll be used for per file compression control.
3578 	 */
3579 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3580 
3581 
3582 	/* Set up fs_info before parsing mount options */
3583 	nodesize = btrfs_super_nodesize(disk_super);
3584 	sectorsize = btrfs_super_sectorsize(disk_super);
3585 	stripesize = sectorsize;
3586 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3587 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3588 
3589 	fs_info->nodesize = nodesize;
3590 	fs_info->sectorsize = sectorsize;
3591 	fs_info->sectorsize_bits = ilog2(sectorsize);
3592 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3593 	fs_info->stripesize = stripesize;
3594 
3595 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3596 	if (ret) {
3597 		err = ret;
3598 		goto fail_alloc;
3599 	}
3600 
3601 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3602 	if (ret < 0) {
3603 		err = ret;
3604 		goto fail_alloc;
3605 	}
3606 
3607 	if (sectorsize < PAGE_SIZE) {
3608 		struct btrfs_subpage_info *subpage_info;
3609 
3610 		/*
3611 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3612 		 * going to be deprecated.
3613 		 *
3614 		 * Force to use v2 cache for subpage case.
3615 		 */
3616 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3617 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3618 			"forcing free space tree for sector size %u with page size %lu",
3619 			sectorsize, PAGE_SIZE);
3620 
3621 		btrfs_warn(fs_info,
3622 		"read-write for sector size %u with page size %lu is experimental",
3623 			   sectorsize, PAGE_SIZE);
3624 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3625 		if (!subpage_info)
3626 			goto fail_alloc;
3627 		btrfs_init_subpage_info(subpage_info, sectorsize);
3628 		fs_info->subpage_info = subpage_info;
3629 	}
3630 
3631 	ret = btrfs_init_workqueues(fs_info);
3632 	if (ret) {
3633 		err = ret;
3634 		goto fail_sb_buffer;
3635 	}
3636 
3637 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3638 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3639 
3640 	sb->s_blocksize = sectorsize;
3641 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3642 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3643 
3644 	mutex_lock(&fs_info->chunk_mutex);
3645 	ret = btrfs_read_sys_array(fs_info);
3646 	mutex_unlock(&fs_info->chunk_mutex);
3647 	if (ret) {
3648 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3649 		goto fail_sb_buffer;
3650 	}
3651 
3652 	generation = btrfs_super_chunk_root_generation(disk_super);
3653 	level = btrfs_super_chunk_root_level(disk_super);
3654 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3655 			      generation, level);
3656 	if (ret) {
3657 		btrfs_err(fs_info, "failed to read chunk root");
3658 		goto fail_tree_roots;
3659 	}
3660 
3661 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3662 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3663 			   BTRFS_UUID_SIZE);
3664 
3665 	ret = btrfs_read_chunk_tree(fs_info);
3666 	if (ret) {
3667 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3668 		goto fail_tree_roots;
3669 	}
3670 
3671 	/*
3672 	 * At this point we know all the devices that make this filesystem,
3673 	 * including the seed devices but we don't know yet if the replace
3674 	 * target is required. So free devices that are not part of this
3675 	 * filesystem but skip the replace target device which is checked
3676 	 * below in btrfs_init_dev_replace().
3677 	 */
3678 	btrfs_free_extra_devids(fs_devices);
3679 	if (!fs_devices->latest_dev->bdev) {
3680 		btrfs_err(fs_info, "failed to read devices");
3681 		goto fail_tree_roots;
3682 	}
3683 
3684 	ret = init_tree_roots(fs_info);
3685 	if (ret)
3686 		goto fail_tree_roots;
3687 
3688 	/*
3689 	 * Get zone type information of zoned block devices. This will also
3690 	 * handle emulation of a zoned filesystem if a regular device has the
3691 	 * zoned incompat feature flag set.
3692 	 */
3693 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3694 	if (ret) {
3695 		btrfs_err(fs_info,
3696 			  "zoned: failed to read device zone info: %d",
3697 			  ret);
3698 		goto fail_block_groups;
3699 	}
3700 
3701 	/*
3702 	 * If we have a uuid root and we're not being told to rescan we need to
3703 	 * check the generation here so we can set the
3704 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3705 	 * transaction during a balance or the log replay without updating the
3706 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3707 	 * even though it was perfectly fine.
3708 	 */
3709 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3710 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3711 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3712 
3713 	ret = btrfs_verify_dev_extents(fs_info);
3714 	if (ret) {
3715 		btrfs_err(fs_info,
3716 			  "failed to verify dev extents against chunks: %d",
3717 			  ret);
3718 		goto fail_block_groups;
3719 	}
3720 	ret = btrfs_recover_balance(fs_info);
3721 	if (ret) {
3722 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3723 		goto fail_block_groups;
3724 	}
3725 
3726 	ret = btrfs_init_dev_stats(fs_info);
3727 	if (ret) {
3728 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3729 		goto fail_block_groups;
3730 	}
3731 
3732 	ret = btrfs_init_dev_replace(fs_info);
3733 	if (ret) {
3734 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3735 		goto fail_block_groups;
3736 	}
3737 
3738 	ret = btrfs_check_zoned_mode(fs_info);
3739 	if (ret) {
3740 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3741 			  ret);
3742 		goto fail_block_groups;
3743 	}
3744 
3745 	ret = btrfs_sysfs_add_fsid(fs_devices);
3746 	if (ret) {
3747 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3748 				ret);
3749 		goto fail_block_groups;
3750 	}
3751 
3752 	ret = btrfs_sysfs_add_mounted(fs_info);
3753 	if (ret) {
3754 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3755 		goto fail_fsdev_sysfs;
3756 	}
3757 
3758 	ret = btrfs_init_space_info(fs_info);
3759 	if (ret) {
3760 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3761 		goto fail_sysfs;
3762 	}
3763 
3764 	ret = btrfs_read_block_groups(fs_info);
3765 	if (ret) {
3766 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3767 		goto fail_sysfs;
3768 	}
3769 
3770 	btrfs_free_zone_cache(fs_info);
3771 
3772 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3773 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3774 		btrfs_warn(fs_info,
3775 		"writable mount is not allowed due to too many missing devices");
3776 		goto fail_sysfs;
3777 	}
3778 
3779 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3780 					       "btrfs-cleaner");
3781 	if (IS_ERR(fs_info->cleaner_kthread))
3782 		goto fail_sysfs;
3783 
3784 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3785 						   tree_root,
3786 						   "btrfs-transaction");
3787 	if (IS_ERR(fs_info->transaction_kthread))
3788 		goto fail_cleaner;
3789 
3790 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3791 	    !fs_info->fs_devices->rotating) {
3792 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3793 	}
3794 
3795 	/*
3796 	 * Mount does not set all options immediately, we can do it now and do
3797 	 * not have to wait for transaction commit
3798 	 */
3799 	btrfs_apply_pending_changes(fs_info);
3800 
3801 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3802 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3803 		ret = btrfsic_mount(fs_info, fs_devices,
3804 				    btrfs_test_opt(fs_info,
3805 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3806 				    fs_info->check_integrity_print_mask);
3807 		if (ret)
3808 			btrfs_warn(fs_info,
3809 				"failed to initialize integrity check module: %d",
3810 				ret);
3811 	}
3812 #endif
3813 	ret = btrfs_read_qgroup_config(fs_info);
3814 	if (ret)
3815 		goto fail_trans_kthread;
3816 
3817 	if (btrfs_build_ref_tree(fs_info))
3818 		btrfs_err(fs_info, "couldn't build ref tree");
3819 
3820 	/* do not make disk changes in broken FS or nologreplay is given */
3821 	if (btrfs_super_log_root(disk_super) != 0 &&
3822 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3823 		btrfs_info(fs_info, "start tree-log replay");
3824 		ret = btrfs_replay_log(fs_info, fs_devices);
3825 		if (ret) {
3826 			err = ret;
3827 			goto fail_qgroup;
3828 		}
3829 	}
3830 
3831 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3832 	if (IS_ERR(fs_info->fs_root)) {
3833 		err = PTR_ERR(fs_info->fs_root);
3834 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3835 		fs_info->fs_root = NULL;
3836 		goto fail_qgroup;
3837 	}
3838 
3839 	if (sb_rdonly(sb))
3840 		goto clear_oneshot;
3841 
3842 	ret = btrfs_start_pre_rw_mount(fs_info);
3843 	if (ret) {
3844 		close_ctree(fs_info);
3845 		return ret;
3846 	}
3847 	btrfs_discard_resume(fs_info);
3848 
3849 	if (fs_info->uuid_root &&
3850 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3851 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3852 		btrfs_info(fs_info, "checking UUID tree");
3853 		ret = btrfs_check_uuid_tree(fs_info);
3854 		if (ret) {
3855 			btrfs_warn(fs_info,
3856 				"failed to check the UUID tree: %d", ret);
3857 			close_ctree(fs_info);
3858 			return ret;
3859 		}
3860 	}
3861 
3862 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3863 
3864 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3865 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3866 		wake_up_process(fs_info->cleaner_kthread);
3867 
3868 clear_oneshot:
3869 	btrfs_clear_oneshot_options(fs_info);
3870 	return 0;
3871 
3872 fail_qgroup:
3873 	btrfs_free_qgroup_config(fs_info);
3874 fail_trans_kthread:
3875 	kthread_stop(fs_info->transaction_kthread);
3876 	btrfs_cleanup_transaction(fs_info);
3877 	btrfs_free_fs_roots(fs_info);
3878 fail_cleaner:
3879 	kthread_stop(fs_info->cleaner_kthread);
3880 
3881 	/*
3882 	 * make sure we're done with the btree inode before we stop our
3883 	 * kthreads
3884 	 */
3885 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3886 
3887 fail_sysfs:
3888 	btrfs_sysfs_remove_mounted(fs_info);
3889 
3890 fail_fsdev_sysfs:
3891 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3892 
3893 fail_block_groups:
3894 	btrfs_put_block_group_cache(fs_info);
3895 
3896 fail_tree_roots:
3897 	if (fs_info->data_reloc_root)
3898 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3899 	free_root_pointers(fs_info, true);
3900 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3901 
3902 fail_sb_buffer:
3903 	btrfs_stop_all_workers(fs_info);
3904 	btrfs_free_block_groups(fs_info);
3905 fail_alloc:
3906 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3907 
3908 	iput(fs_info->btree_inode);
3909 fail:
3910 	btrfs_close_devices(fs_info->fs_devices);
3911 	return err;
3912 }
3913 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3914 
btrfs_end_super_write(struct bio * bio)3915 static void btrfs_end_super_write(struct bio *bio)
3916 {
3917 	struct btrfs_device *device = bio->bi_private;
3918 	struct bio_vec *bvec;
3919 	struct bvec_iter_all iter_all;
3920 	struct page *page;
3921 
3922 	bio_for_each_segment_all(bvec, bio, iter_all) {
3923 		page = bvec->bv_page;
3924 
3925 		if (bio->bi_status) {
3926 			btrfs_warn_rl_in_rcu(device->fs_info,
3927 				"lost page write due to IO error on %s (%d)",
3928 				rcu_str_deref(device->name),
3929 				blk_status_to_errno(bio->bi_status));
3930 			ClearPageUptodate(page);
3931 			SetPageError(page);
3932 			btrfs_dev_stat_inc_and_print(device,
3933 						     BTRFS_DEV_STAT_WRITE_ERRS);
3934 		} else {
3935 			SetPageUptodate(page);
3936 		}
3937 
3938 		put_page(page);
3939 		unlock_page(page);
3940 	}
3941 
3942 	bio_put(bio);
3943 }
3944 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3945 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3946 						   int copy_num, bool drop_cache)
3947 {
3948 	struct btrfs_super_block *super;
3949 	struct page *page;
3950 	u64 bytenr, bytenr_orig;
3951 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3952 	int ret;
3953 
3954 	bytenr_orig = btrfs_sb_offset(copy_num);
3955 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3956 	if (ret == -ENOENT)
3957 		return ERR_PTR(-EINVAL);
3958 	else if (ret)
3959 		return ERR_PTR(ret);
3960 
3961 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3962 		return ERR_PTR(-EINVAL);
3963 
3964 	if (drop_cache) {
3965 		/* This should only be called with the primary sb. */
3966 		ASSERT(copy_num == 0);
3967 
3968 		/*
3969 		 * Drop the page of the primary superblock, so later read will
3970 		 * always read from the device.
3971 		 */
3972 		invalidate_inode_pages2_range(mapping,
3973 				bytenr >> PAGE_SHIFT,
3974 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3975 	}
3976 
3977 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3978 	if (IS_ERR(page))
3979 		return ERR_CAST(page);
3980 
3981 	super = page_address(page);
3982 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3983 		btrfs_release_disk_super(super);
3984 		return ERR_PTR(-ENODATA);
3985 	}
3986 
3987 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3988 		btrfs_release_disk_super(super);
3989 		return ERR_PTR(-EINVAL);
3990 	}
3991 
3992 	return super;
3993 }
3994 
3995 
btrfs_read_dev_super(struct block_device * bdev)3996 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3997 {
3998 	struct btrfs_super_block *super, *latest = NULL;
3999 	int i;
4000 	u64 transid = 0;
4001 
4002 	/* we would like to check all the supers, but that would make
4003 	 * a btrfs mount succeed after a mkfs from a different FS.
4004 	 * So, we need to add a special mount option to scan for
4005 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4006 	 */
4007 	for (i = 0; i < 1; i++) {
4008 		super = btrfs_read_dev_one_super(bdev, i, false);
4009 		if (IS_ERR(super))
4010 			continue;
4011 
4012 		if (!latest || btrfs_super_generation(super) > transid) {
4013 			if (latest)
4014 				btrfs_release_disk_super(super);
4015 
4016 			latest = super;
4017 			transid = btrfs_super_generation(super);
4018 		}
4019 	}
4020 
4021 	return super;
4022 }
4023 
4024 /*
4025  * Write superblock @sb to the @device. Do not wait for completion, all the
4026  * pages we use for writing are locked.
4027  *
4028  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4029  * the expected device size at commit time. Note that max_mirrors must be
4030  * same for write and wait phases.
4031  *
4032  * Return number of errors when page is not found or submission fails.
4033  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)4034 static int write_dev_supers(struct btrfs_device *device,
4035 			    struct btrfs_super_block *sb, int max_mirrors)
4036 {
4037 	struct btrfs_fs_info *fs_info = device->fs_info;
4038 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4039 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4040 	int i;
4041 	int errors = 0;
4042 	int ret;
4043 	u64 bytenr, bytenr_orig;
4044 
4045 	if (max_mirrors == 0)
4046 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4047 
4048 	shash->tfm = fs_info->csum_shash;
4049 
4050 	for (i = 0; i < max_mirrors; i++) {
4051 		struct page *page;
4052 		struct bio *bio;
4053 		struct btrfs_super_block *disk_super;
4054 
4055 		bytenr_orig = btrfs_sb_offset(i);
4056 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4057 		if (ret == -ENOENT) {
4058 			continue;
4059 		} else if (ret < 0) {
4060 			btrfs_err(device->fs_info,
4061 				"couldn't get super block location for mirror %d",
4062 				i);
4063 			errors++;
4064 			continue;
4065 		}
4066 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4067 		    device->commit_total_bytes)
4068 			break;
4069 
4070 		btrfs_set_super_bytenr(sb, bytenr_orig);
4071 
4072 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4073 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4074 				    sb->csum);
4075 
4076 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4077 					   GFP_NOFS);
4078 		if (!page) {
4079 			btrfs_err(device->fs_info,
4080 			    "couldn't get super block page for bytenr %llu",
4081 			    bytenr);
4082 			errors++;
4083 			continue;
4084 		}
4085 
4086 		/* Bump the refcount for wait_dev_supers() */
4087 		get_page(page);
4088 
4089 		disk_super = page_address(page);
4090 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4091 
4092 		/*
4093 		 * Directly use bios here instead of relying on the page cache
4094 		 * to do I/O, so we don't lose the ability to do integrity
4095 		 * checking.
4096 		 */
4097 		bio = bio_alloc(device->bdev, 1,
4098 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4099 				GFP_NOFS);
4100 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4101 		bio->bi_private = device;
4102 		bio->bi_end_io = btrfs_end_super_write;
4103 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4104 			       offset_in_page(bytenr));
4105 
4106 		/*
4107 		 * We FUA only the first super block.  The others we allow to
4108 		 * go down lazy and there's a short window where the on-disk
4109 		 * copies might still contain the older version.
4110 		 */
4111 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4112 			bio->bi_opf |= REQ_FUA;
4113 
4114 		btrfsic_check_bio(bio);
4115 		submit_bio(bio);
4116 
4117 		if (btrfs_advance_sb_log(device, i))
4118 			errors++;
4119 	}
4120 	return errors < i ? 0 : -1;
4121 }
4122 
4123 /*
4124  * Wait for write completion of superblocks done by write_dev_supers,
4125  * @max_mirrors same for write and wait phases.
4126  *
4127  * Return number of errors when page is not found or not marked up to
4128  * date.
4129  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)4130 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4131 {
4132 	int i;
4133 	int errors = 0;
4134 	bool primary_failed = false;
4135 	int ret;
4136 	u64 bytenr;
4137 
4138 	if (max_mirrors == 0)
4139 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4140 
4141 	for (i = 0; i < max_mirrors; i++) {
4142 		struct page *page;
4143 
4144 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4145 		if (ret == -ENOENT) {
4146 			break;
4147 		} else if (ret < 0) {
4148 			errors++;
4149 			if (i == 0)
4150 				primary_failed = true;
4151 			continue;
4152 		}
4153 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4154 		    device->commit_total_bytes)
4155 			break;
4156 
4157 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4158 				     bytenr >> PAGE_SHIFT);
4159 		if (!page) {
4160 			errors++;
4161 			if (i == 0)
4162 				primary_failed = true;
4163 			continue;
4164 		}
4165 		/* Page is submitted locked and unlocked once the IO completes */
4166 		wait_on_page_locked(page);
4167 		if (PageError(page)) {
4168 			errors++;
4169 			if (i == 0)
4170 				primary_failed = true;
4171 		}
4172 
4173 		/* Drop our reference */
4174 		put_page(page);
4175 
4176 		/* Drop the reference from the writing run */
4177 		put_page(page);
4178 	}
4179 
4180 	/* log error, force error return */
4181 	if (primary_failed) {
4182 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4183 			  device->devid);
4184 		return -1;
4185 	}
4186 
4187 	return errors < i ? 0 : -1;
4188 }
4189 
4190 /*
4191  * endio for the write_dev_flush, this will wake anyone waiting
4192  * for the barrier when it is done
4193  */
btrfs_end_empty_barrier(struct bio * bio)4194 static void btrfs_end_empty_barrier(struct bio *bio)
4195 {
4196 	bio_uninit(bio);
4197 	complete(bio->bi_private);
4198 }
4199 
4200 /*
4201  * Submit a flush request to the device if it supports it. Error handling is
4202  * done in the waiting counterpart.
4203  */
write_dev_flush(struct btrfs_device * device)4204 static void write_dev_flush(struct btrfs_device *device)
4205 {
4206 	struct bio *bio = &device->flush_bio;
4207 
4208 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4209 	/*
4210 	 * When a disk has write caching disabled, we skip submission of a bio
4211 	 * with flush and sync requests before writing the superblock, since
4212 	 * it's not needed. However when the integrity checker is enabled, this
4213 	 * results in reports that there are metadata blocks referred by a
4214 	 * superblock that were not properly flushed. So don't skip the bio
4215 	 * submission only when the integrity checker is enabled for the sake
4216 	 * of simplicity, since this is a debug tool and not meant for use in
4217 	 * non-debug builds.
4218 	 */
4219 	if (!bdev_write_cache(device->bdev))
4220 		return;
4221 #endif
4222 
4223 	bio_init(bio, device->bdev, NULL, 0,
4224 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4225 	bio->bi_end_io = btrfs_end_empty_barrier;
4226 	init_completion(&device->flush_wait);
4227 	bio->bi_private = &device->flush_wait;
4228 
4229 	btrfsic_check_bio(bio);
4230 	submit_bio(bio);
4231 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4232 }
4233 
4234 /*
4235  * If the flush bio has been submitted by write_dev_flush, wait for it.
4236  */
wait_dev_flush(struct btrfs_device * device)4237 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4238 {
4239 	struct bio *bio = &device->flush_bio;
4240 
4241 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4242 		return BLK_STS_OK;
4243 
4244 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4245 	wait_for_completion_io(&device->flush_wait);
4246 
4247 	return bio->bi_status;
4248 }
4249 
check_barrier_error(struct btrfs_fs_info * fs_info)4250 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4251 {
4252 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4253 		return -EIO;
4254 	return 0;
4255 }
4256 
4257 /*
4258  * send an empty flush down to each device in parallel,
4259  * then wait for them
4260  */
barrier_all_devices(struct btrfs_fs_info * info)4261 static int barrier_all_devices(struct btrfs_fs_info *info)
4262 {
4263 	struct list_head *head;
4264 	struct btrfs_device *dev;
4265 	int errors_wait = 0;
4266 	blk_status_t ret;
4267 
4268 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4269 	/* send down all the barriers */
4270 	head = &info->fs_devices->devices;
4271 	list_for_each_entry(dev, head, dev_list) {
4272 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4273 			continue;
4274 		if (!dev->bdev)
4275 			continue;
4276 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4277 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4278 			continue;
4279 
4280 		write_dev_flush(dev);
4281 		dev->last_flush_error = BLK_STS_OK;
4282 	}
4283 
4284 	/* wait for all the barriers */
4285 	list_for_each_entry(dev, head, dev_list) {
4286 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4287 			continue;
4288 		if (!dev->bdev) {
4289 			errors_wait++;
4290 			continue;
4291 		}
4292 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4293 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4294 			continue;
4295 
4296 		ret = wait_dev_flush(dev);
4297 		if (ret) {
4298 			dev->last_flush_error = ret;
4299 			btrfs_dev_stat_inc_and_print(dev,
4300 					BTRFS_DEV_STAT_FLUSH_ERRS);
4301 			errors_wait++;
4302 		}
4303 	}
4304 
4305 	if (errors_wait) {
4306 		/*
4307 		 * At some point we need the status of all disks
4308 		 * to arrive at the volume status. So error checking
4309 		 * is being pushed to a separate loop.
4310 		 */
4311 		return check_barrier_error(info);
4312 	}
4313 	return 0;
4314 }
4315 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4316 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4317 {
4318 	int raid_type;
4319 	int min_tolerated = INT_MAX;
4320 
4321 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4322 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4323 		min_tolerated = min_t(int, min_tolerated,
4324 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4325 				    tolerated_failures);
4326 
4327 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4328 		if (raid_type == BTRFS_RAID_SINGLE)
4329 			continue;
4330 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4331 			continue;
4332 		min_tolerated = min_t(int, min_tolerated,
4333 				    btrfs_raid_array[raid_type].
4334 				    tolerated_failures);
4335 	}
4336 
4337 	if (min_tolerated == INT_MAX) {
4338 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4339 		min_tolerated = 0;
4340 	}
4341 
4342 	return min_tolerated;
4343 }
4344 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4345 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4346 {
4347 	struct list_head *head;
4348 	struct btrfs_device *dev;
4349 	struct btrfs_super_block *sb;
4350 	struct btrfs_dev_item *dev_item;
4351 	int ret;
4352 	int do_barriers;
4353 	int max_errors;
4354 	int total_errors = 0;
4355 	u64 flags;
4356 
4357 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4358 
4359 	/*
4360 	 * max_mirrors == 0 indicates we're from commit_transaction,
4361 	 * not from fsync where the tree roots in fs_info have not
4362 	 * been consistent on disk.
4363 	 */
4364 	if (max_mirrors == 0)
4365 		backup_super_roots(fs_info);
4366 
4367 	sb = fs_info->super_for_commit;
4368 	dev_item = &sb->dev_item;
4369 
4370 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4371 	head = &fs_info->fs_devices->devices;
4372 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4373 
4374 	if (do_barriers) {
4375 		ret = barrier_all_devices(fs_info);
4376 		if (ret) {
4377 			mutex_unlock(
4378 				&fs_info->fs_devices->device_list_mutex);
4379 			btrfs_handle_fs_error(fs_info, ret,
4380 					      "errors while submitting device barriers.");
4381 			return ret;
4382 		}
4383 	}
4384 
4385 	list_for_each_entry(dev, head, dev_list) {
4386 		if (!dev->bdev) {
4387 			total_errors++;
4388 			continue;
4389 		}
4390 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4391 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4392 			continue;
4393 
4394 		btrfs_set_stack_device_generation(dev_item, 0);
4395 		btrfs_set_stack_device_type(dev_item, dev->type);
4396 		btrfs_set_stack_device_id(dev_item, dev->devid);
4397 		btrfs_set_stack_device_total_bytes(dev_item,
4398 						   dev->commit_total_bytes);
4399 		btrfs_set_stack_device_bytes_used(dev_item,
4400 						  dev->commit_bytes_used);
4401 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4402 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4403 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4404 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4405 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4406 		       BTRFS_FSID_SIZE);
4407 
4408 		flags = btrfs_super_flags(sb);
4409 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4410 
4411 		ret = btrfs_validate_write_super(fs_info, sb);
4412 		if (ret < 0) {
4413 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4414 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4415 				"unexpected superblock corruption detected");
4416 			return -EUCLEAN;
4417 		}
4418 
4419 		ret = write_dev_supers(dev, sb, max_mirrors);
4420 		if (ret)
4421 			total_errors++;
4422 	}
4423 	if (total_errors > max_errors) {
4424 		btrfs_err(fs_info, "%d errors while writing supers",
4425 			  total_errors);
4426 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4427 
4428 		/* FUA is masked off if unsupported and can't be the reason */
4429 		btrfs_handle_fs_error(fs_info, -EIO,
4430 				      "%d errors while writing supers",
4431 				      total_errors);
4432 		return -EIO;
4433 	}
4434 
4435 	total_errors = 0;
4436 	list_for_each_entry(dev, head, dev_list) {
4437 		if (!dev->bdev)
4438 			continue;
4439 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4440 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4441 			continue;
4442 
4443 		ret = wait_dev_supers(dev, max_mirrors);
4444 		if (ret)
4445 			total_errors++;
4446 	}
4447 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4448 	if (total_errors > max_errors) {
4449 		btrfs_handle_fs_error(fs_info, -EIO,
4450 				      "%d errors while writing supers",
4451 				      total_errors);
4452 		return -EIO;
4453 	}
4454 	return 0;
4455 }
4456 
4457 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4458 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4459 				  struct btrfs_root *root)
4460 {
4461 	bool drop_ref = false;
4462 
4463 	spin_lock(&fs_info->fs_roots_radix_lock);
4464 	radix_tree_delete(&fs_info->fs_roots_radix,
4465 			  (unsigned long)root->root_key.objectid);
4466 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4467 		drop_ref = true;
4468 	spin_unlock(&fs_info->fs_roots_radix_lock);
4469 
4470 	if (BTRFS_FS_ERROR(fs_info)) {
4471 		ASSERT(root->log_root == NULL);
4472 		if (root->reloc_root) {
4473 			btrfs_put_root(root->reloc_root);
4474 			root->reloc_root = NULL;
4475 		}
4476 	}
4477 
4478 	if (drop_ref)
4479 		btrfs_put_root(root);
4480 }
4481 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4482 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4483 {
4484 	u64 root_objectid = 0;
4485 	struct btrfs_root *gang[8];
4486 	int i = 0;
4487 	int err = 0;
4488 	unsigned int ret = 0;
4489 
4490 	while (1) {
4491 		spin_lock(&fs_info->fs_roots_radix_lock);
4492 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4493 					     (void **)gang, root_objectid,
4494 					     ARRAY_SIZE(gang));
4495 		if (!ret) {
4496 			spin_unlock(&fs_info->fs_roots_radix_lock);
4497 			break;
4498 		}
4499 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4500 
4501 		for (i = 0; i < ret; i++) {
4502 			/* Avoid to grab roots in dead_roots */
4503 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4504 				gang[i] = NULL;
4505 				continue;
4506 			}
4507 			/* grab all the search result for later use */
4508 			gang[i] = btrfs_grab_root(gang[i]);
4509 		}
4510 		spin_unlock(&fs_info->fs_roots_radix_lock);
4511 
4512 		for (i = 0; i < ret; i++) {
4513 			if (!gang[i])
4514 				continue;
4515 			root_objectid = gang[i]->root_key.objectid;
4516 			err = btrfs_orphan_cleanup(gang[i]);
4517 			if (err)
4518 				break;
4519 			btrfs_put_root(gang[i]);
4520 		}
4521 		root_objectid++;
4522 	}
4523 
4524 	/* release the uncleaned roots due to error */
4525 	for (; i < ret; i++) {
4526 		if (gang[i])
4527 			btrfs_put_root(gang[i]);
4528 	}
4529 	return err;
4530 }
4531 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4532 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4533 {
4534 	struct btrfs_root *root = fs_info->tree_root;
4535 	struct btrfs_trans_handle *trans;
4536 
4537 	mutex_lock(&fs_info->cleaner_mutex);
4538 	btrfs_run_delayed_iputs(fs_info);
4539 	mutex_unlock(&fs_info->cleaner_mutex);
4540 	wake_up_process(fs_info->cleaner_kthread);
4541 
4542 	/* wait until ongoing cleanup work done */
4543 	down_write(&fs_info->cleanup_work_sem);
4544 	up_write(&fs_info->cleanup_work_sem);
4545 
4546 	trans = btrfs_join_transaction(root);
4547 	if (IS_ERR(trans))
4548 		return PTR_ERR(trans);
4549 	return btrfs_commit_transaction(trans);
4550 }
4551 
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4552 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4553 {
4554 	struct btrfs_transaction *trans;
4555 	struct btrfs_transaction *tmp;
4556 	bool found = false;
4557 
4558 	if (list_empty(&fs_info->trans_list))
4559 		return;
4560 
4561 	/*
4562 	 * This function is only called at the very end of close_ctree(),
4563 	 * thus no other running transaction, no need to take trans_lock.
4564 	 */
4565 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4566 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4567 		struct extent_state *cached = NULL;
4568 		u64 dirty_bytes = 0;
4569 		u64 cur = 0;
4570 		u64 found_start;
4571 		u64 found_end;
4572 
4573 		found = true;
4574 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4575 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4576 			dirty_bytes += found_end + 1 - found_start;
4577 			cur = found_end + 1;
4578 		}
4579 		btrfs_warn(fs_info,
4580 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4581 			   trans->transid, dirty_bytes);
4582 		btrfs_cleanup_one_transaction(trans, fs_info);
4583 
4584 		if (trans == fs_info->running_transaction)
4585 			fs_info->running_transaction = NULL;
4586 		list_del_init(&trans->list);
4587 
4588 		btrfs_put_transaction(trans);
4589 		trace_btrfs_transaction_commit(fs_info);
4590 	}
4591 	ASSERT(!found);
4592 }
4593 
close_ctree(struct btrfs_fs_info * fs_info)4594 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4595 {
4596 	int ret;
4597 
4598 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4599 
4600 	/*
4601 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4602 	 * clear that bit and wake up relocation so it can stop.
4603 	 * We must do this before stopping the block group reclaim task, because
4604 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4605 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4606 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4607 	 * return 1.
4608 	 */
4609 	btrfs_wake_unfinished_drop(fs_info);
4610 
4611 	/*
4612 	 * We may have the reclaim task running and relocating a data block group,
4613 	 * in which case it may create delayed iputs. So stop it before we park
4614 	 * the cleaner kthread otherwise we can get new delayed iputs after
4615 	 * parking the cleaner, and that can make the async reclaim task to hang
4616 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4617 	 * parked and can not run delayed iputs - this will make us hang when
4618 	 * trying to stop the async reclaim task.
4619 	 */
4620 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4621 	/*
4622 	 * We don't want the cleaner to start new transactions, add more delayed
4623 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4624 	 * because that frees the task_struct, and the transaction kthread might
4625 	 * still try to wake up the cleaner.
4626 	 */
4627 	kthread_park(fs_info->cleaner_kthread);
4628 
4629 	/* wait for the qgroup rescan worker to stop */
4630 	btrfs_qgroup_wait_for_completion(fs_info, false);
4631 
4632 	/* wait for the uuid_scan task to finish */
4633 	down(&fs_info->uuid_tree_rescan_sem);
4634 	/* avoid complains from lockdep et al., set sem back to initial state */
4635 	up(&fs_info->uuid_tree_rescan_sem);
4636 
4637 	/* pause restriper - we want to resume on mount */
4638 	btrfs_pause_balance(fs_info);
4639 
4640 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4641 
4642 	btrfs_scrub_cancel(fs_info);
4643 
4644 	/* wait for any defraggers to finish */
4645 	wait_event(fs_info->transaction_wait,
4646 		   (atomic_read(&fs_info->defrag_running) == 0));
4647 
4648 	/* clear out the rbtree of defraggable inodes */
4649 	btrfs_cleanup_defrag_inodes(fs_info);
4650 
4651 	/*
4652 	 * After we parked the cleaner kthread, ordered extents may have
4653 	 * completed and created new delayed iputs. If one of the async reclaim
4654 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4655 	 * can hang forever trying to stop it, because if a delayed iput is
4656 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4657 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4658 	 * no one else to run iputs.
4659 	 *
4660 	 * So wait for all ongoing ordered extents to complete and then run
4661 	 * delayed iputs. This works because once we reach this point no one
4662 	 * can either create new ordered extents nor create delayed iputs
4663 	 * through some other means.
4664 	 *
4665 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4666 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4667 	 * but the delayed iput for the respective inode is made only when doing
4668 	 * the final btrfs_put_ordered_extent() (which must happen at
4669 	 * btrfs_finish_ordered_io() when we are unmounting).
4670 	 */
4671 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4672 	/* Ordered extents for free space inodes. */
4673 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4674 	btrfs_run_delayed_iputs(fs_info);
4675 
4676 	cancel_work_sync(&fs_info->async_reclaim_work);
4677 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4678 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4679 
4680 	/* Cancel or finish ongoing discard work */
4681 	btrfs_discard_cleanup(fs_info);
4682 
4683 	if (!sb_rdonly(fs_info->sb)) {
4684 		/*
4685 		 * The cleaner kthread is stopped, so do one final pass over
4686 		 * unused block groups.
4687 		 */
4688 		btrfs_delete_unused_bgs(fs_info);
4689 
4690 		/*
4691 		 * There might be existing delayed inode workers still running
4692 		 * and holding an empty delayed inode item. We must wait for
4693 		 * them to complete first because they can create a transaction.
4694 		 * This happens when someone calls btrfs_balance_delayed_items()
4695 		 * and then a transaction commit runs the same delayed nodes
4696 		 * before any delayed worker has done something with the nodes.
4697 		 * We must wait for any worker here and not at transaction
4698 		 * commit time since that could cause a deadlock.
4699 		 * This is a very rare case.
4700 		 */
4701 		btrfs_flush_workqueue(fs_info->delayed_workers);
4702 
4703 		ret = btrfs_commit_super(fs_info);
4704 		if (ret)
4705 			btrfs_err(fs_info, "commit super ret %d", ret);
4706 	}
4707 
4708 	if (BTRFS_FS_ERROR(fs_info))
4709 		btrfs_error_commit_super(fs_info);
4710 
4711 	kthread_stop(fs_info->transaction_kthread);
4712 	kthread_stop(fs_info->cleaner_kthread);
4713 
4714 	ASSERT(list_empty(&fs_info->delayed_iputs));
4715 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4716 
4717 	if (btrfs_check_quota_leak(fs_info)) {
4718 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4719 		btrfs_err(fs_info, "qgroup reserved space leaked");
4720 	}
4721 
4722 	btrfs_free_qgroup_config(fs_info);
4723 	ASSERT(list_empty(&fs_info->delalloc_roots));
4724 
4725 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4726 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4727 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4728 	}
4729 
4730 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4731 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4732 			   percpu_counter_sum(&fs_info->ordered_bytes));
4733 
4734 	btrfs_sysfs_remove_mounted(fs_info);
4735 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4736 
4737 	btrfs_put_block_group_cache(fs_info);
4738 
4739 	/*
4740 	 * we must make sure there is not any read request to
4741 	 * submit after we stopping all workers.
4742 	 */
4743 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4744 	btrfs_stop_all_workers(fs_info);
4745 
4746 	/* We shouldn't have any transaction open at this point */
4747 	warn_about_uncommitted_trans(fs_info);
4748 
4749 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4750 	free_root_pointers(fs_info, true);
4751 	btrfs_free_fs_roots(fs_info);
4752 
4753 	/*
4754 	 * We must free the block groups after dropping the fs_roots as we could
4755 	 * have had an IO error and have left over tree log blocks that aren't
4756 	 * cleaned up until the fs roots are freed.  This makes the block group
4757 	 * accounting appear to be wrong because there's pending reserved bytes,
4758 	 * so make sure we do the block group cleanup afterwards.
4759 	 */
4760 	btrfs_free_block_groups(fs_info);
4761 
4762 	iput(fs_info->btree_inode);
4763 
4764 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4765 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4766 		btrfsic_unmount(fs_info->fs_devices);
4767 #endif
4768 
4769 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4770 	btrfs_close_devices(fs_info->fs_devices);
4771 }
4772 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4773 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4774 			  int atomic)
4775 {
4776 	int ret;
4777 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4778 
4779 	ret = extent_buffer_uptodate(buf);
4780 	if (!ret)
4781 		return ret;
4782 
4783 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4784 				    parent_transid, atomic);
4785 	if (ret == -EAGAIN)
4786 		return ret;
4787 	return !ret;
4788 }
4789 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4790 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4791 {
4792 	struct btrfs_fs_info *fs_info = buf->fs_info;
4793 	u64 transid = btrfs_header_generation(buf);
4794 	int was_dirty;
4795 
4796 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4797 	/*
4798 	 * This is a fast path so only do this check if we have sanity tests
4799 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4800 	 * outside of the sanity tests.
4801 	 */
4802 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4803 		return;
4804 #endif
4805 	btrfs_assert_tree_write_locked(buf);
4806 	if (transid != fs_info->generation)
4807 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4808 			buf->start, transid, fs_info->generation);
4809 	was_dirty = set_extent_buffer_dirty(buf);
4810 	if (!was_dirty)
4811 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4812 					 buf->len,
4813 					 fs_info->dirty_metadata_batch);
4814 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4815 	/*
4816 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4817 	 * but item data not updated.
4818 	 * So here we should only check item pointers, not item data.
4819 	 */
4820 	if (btrfs_header_level(buf) == 0 &&
4821 	    btrfs_check_leaf_relaxed(buf)) {
4822 		btrfs_print_leaf(buf);
4823 		ASSERT(0);
4824 	}
4825 #endif
4826 }
4827 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4828 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4829 					int flush_delayed)
4830 {
4831 	/*
4832 	 * looks as though older kernels can get into trouble with
4833 	 * this code, they end up stuck in balance_dirty_pages forever
4834 	 */
4835 	int ret;
4836 
4837 	if (current->flags & PF_MEMALLOC)
4838 		return;
4839 
4840 	if (flush_delayed)
4841 		btrfs_balance_delayed_items(fs_info);
4842 
4843 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4844 				     BTRFS_DIRTY_METADATA_THRESH,
4845 				     fs_info->dirty_metadata_batch);
4846 	if (ret > 0) {
4847 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4848 	}
4849 }
4850 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4851 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4852 {
4853 	__btrfs_btree_balance_dirty(fs_info, 1);
4854 }
4855 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4856 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4857 {
4858 	__btrfs_btree_balance_dirty(fs_info, 0);
4859 }
4860 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4861 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4862 {
4863 	/* cleanup FS via transaction */
4864 	btrfs_cleanup_transaction(fs_info);
4865 
4866 	mutex_lock(&fs_info->cleaner_mutex);
4867 	btrfs_run_delayed_iputs(fs_info);
4868 	mutex_unlock(&fs_info->cleaner_mutex);
4869 
4870 	down_write(&fs_info->cleanup_work_sem);
4871 	up_write(&fs_info->cleanup_work_sem);
4872 }
4873 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4874 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4875 {
4876 	struct btrfs_root *gang[8];
4877 	u64 root_objectid = 0;
4878 	int ret;
4879 
4880 	spin_lock(&fs_info->fs_roots_radix_lock);
4881 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4882 					     (void **)gang, root_objectid,
4883 					     ARRAY_SIZE(gang))) != 0) {
4884 		int i;
4885 
4886 		for (i = 0; i < ret; i++)
4887 			gang[i] = btrfs_grab_root(gang[i]);
4888 		spin_unlock(&fs_info->fs_roots_radix_lock);
4889 
4890 		for (i = 0; i < ret; i++) {
4891 			if (!gang[i])
4892 				continue;
4893 			root_objectid = gang[i]->root_key.objectid;
4894 			btrfs_free_log(NULL, gang[i]);
4895 			btrfs_put_root(gang[i]);
4896 		}
4897 		root_objectid++;
4898 		spin_lock(&fs_info->fs_roots_radix_lock);
4899 	}
4900 	spin_unlock(&fs_info->fs_roots_radix_lock);
4901 	btrfs_free_log_root_tree(NULL, fs_info);
4902 }
4903 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4904 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4905 {
4906 	struct btrfs_ordered_extent *ordered;
4907 
4908 	spin_lock(&root->ordered_extent_lock);
4909 	/*
4910 	 * This will just short circuit the ordered completion stuff which will
4911 	 * make sure the ordered extent gets properly cleaned up.
4912 	 */
4913 	list_for_each_entry(ordered, &root->ordered_extents,
4914 			    root_extent_list)
4915 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4916 	spin_unlock(&root->ordered_extent_lock);
4917 }
4918 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4919 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4920 {
4921 	struct btrfs_root *root;
4922 	struct list_head splice;
4923 
4924 	INIT_LIST_HEAD(&splice);
4925 
4926 	spin_lock(&fs_info->ordered_root_lock);
4927 	list_splice_init(&fs_info->ordered_roots, &splice);
4928 	while (!list_empty(&splice)) {
4929 		root = list_first_entry(&splice, struct btrfs_root,
4930 					ordered_root);
4931 		list_move_tail(&root->ordered_root,
4932 			       &fs_info->ordered_roots);
4933 
4934 		spin_unlock(&fs_info->ordered_root_lock);
4935 		btrfs_destroy_ordered_extents(root);
4936 
4937 		cond_resched();
4938 		spin_lock(&fs_info->ordered_root_lock);
4939 	}
4940 	spin_unlock(&fs_info->ordered_root_lock);
4941 
4942 	/*
4943 	 * We need this here because if we've been flipped read-only we won't
4944 	 * get sync() from the umount, so we need to make sure any ordered
4945 	 * extents that haven't had their dirty pages IO start writeout yet
4946 	 * actually get run and error out properly.
4947 	 */
4948 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4949 }
4950 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4951 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4952 				      struct btrfs_fs_info *fs_info)
4953 {
4954 	struct rb_node *node;
4955 	struct btrfs_delayed_ref_root *delayed_refs;
4956 	struct btrfs_delayed_ref_node *ref;
4957 	int ret = 0;
4958 
4959 	delayed_refs = &trans->delayed_refs;
4960 
4961 	spin_lock(&delayed_refs->lock);
4962 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4963 		spin_unlock(&delayed_refs->lock);
4964 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4965 		return ret;
4966 	}
4967 
4968 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4969 		struct btrfs_delayed_ref_head *head;
4970 		struct rb_node *n;
4971 		bool pin_bytes = false;
4972 
4973 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4974 				href_node);
4975 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4976 			continue;
4977 
4978 		spin_lock(&head->lock);
4979 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4980 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4981 				       ref_node);
4982 			ref->in_tree = 0;
4983 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4984 			RB_CLEAR_NODE(&ref->ref_node);
4985 			if (!list_empty(&ref->add_list))
4986 				list_del(&ref->add_list);
4987 			atomic_dec(&delayed_refs->num_entries);
4988 			btrfs_put_delayed_ref(ref);
4989 		}
4990 		if (head->must_insert_reserved)
4991 			pin_bytes = true;
4992 		btrfs_free_delayed_extent_op(head->extent_op);
4993 		btrfs_delete_ref_head(delayed_refs, head);
4994 		spin_unlock(&head->lock);
4995 		spin_unlock(&delayed_refs->lock);
4996 		mutex_unlock(&head->mutex);
4997 
4998 		if (pin_bytes) {
4999 			struct btrfs_block_group *cache;
5000 
5001 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5002 			BUG_ON(!cache);
5003 
5004 			spin_lock(&cache->space_info->lock);
5005 			spin_lock(&cache->lock);
5006 			cache->pinned += head->num_bytes;
5007 			btrfs_space_info_update_bytes_pinned(fs_info,
5008 				cache->space_info, head->num_bytes);
5009 			cache->reserved -= head->num_bytes;
5010 			cache->space_info->bytes_reserved -= head->num_bytes;
5011 			spin_unlock(&cache->lock);
5012 			spin_unlock(&cache->space_info->lock);
5013 
5014 			btrfs_put_block_group(cache);
5015 
5016 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5017 				head->bytenr + head->num_bytes - 1);
5018 		}
5019 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5020 		btrfs_put_delayed_ref_head(head);
5021 		cond_resched();
5022 		spin_lock(&delayed_refs->lock);
5023 	}
5024 	btrfs_qgroup_destroy_extent_records(trans);
5025 
5026 	spin_unlock(&delayed_refs->lock);
5027 
5028 	return ret;
5029 }
5030 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)5031 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5032 {
5033 	struct btrfs_inode *btrfs_inode;
5034 	struct list_head splice;
5035 
5036 	INIT_LIST_HEAD(&splice);
5037 
5038 	spin_lock(&root->delalloc_lock);
5039 	list_splice_init(&root->delalloc_inodes, &splice);
5040 
5041 	while (!list_empty(&splice)) {
5042 		struct inode *inode = NULL;
5043 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5044 					       delalloc_inodes);
5045 		__btrfs_del_delalloc_inode(root, btrfs_inode);
5046 		spin_unlock(&root->delalloc_lock);
5047 
5048 		/*
5049 		 * Make sure we get a live inode and that it'll not disappear
5050 		 * meanwhile.
5051 		 */
5052 		inode = igrab(&btrfs_inode->vfs_inode);
5053 		if (inode) {
5054 			unsigned int nofs_flag;
5055 
5056 			nofs_flag = memalloc_nofs_save();
5057 			invalidate_inode_pages2(inode->i_mapping);
5058 			memalloc_nofs_restore(nofs_flag);
5059 			iput(inode);
5060 		}
5061 		spin_lock(&root->delalloc_lock);
5062 	}
5063 	spin_unlock(&root->delalloc_lock);
5064 }
5065 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)5066 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5067 {
5068 	struct btrfs_root *root;
5069 	struct list_head splice;
5070 
5071 	INIT_LIST_HEAD(&splice);
5072 
5073 	spin_lock(&fs_info->delalloc_root_lock);
5074 	list_splice_init(&fs_info->delalloc_roots, &splice);
5075 	while (!list_empty(&splice)) {
5076 		root = list_first_entry(&splice, struct btrfs_root,
5077 					 delalloc_root);
5078 		root = btrfs_grab_root(root);
5079 		BUG_ON(!root);
5080 		spin_unlock(&fs_info->delalloc_root_lock);
5081 
5082 		btrfs_destroy_delalloc_inodes(root);
5083 		btrfs_put_root(root);
5084 
5085 		spin_lock(&fs_info->delalloc_root_lock);
5086 	}
5087 	spin_unlock(&fs_info->delalloc_root_lock);
5088 }
5089 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)5090 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5091 					struct extent_io_tree *dirty_pages,
5092 					int mark)
5093 {
5094 	int ret;
5095 	struct extent_buffer *eb;
5096 	u64 start = 0;
5097 	u64 end;
5098 
5099 	while (1) {
5100 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5101 					    mark, NULL);
5102 		if (ret)
5103 			break;
5104 
5105 		clear_extent_bits(dirty_pages, start, end, mark);
5106 		while (start <= end) {
5107 			eb = find_extent_buffer(fs_info, start);
5108 			start += fs_info->nodesize;
5109 			if (!eb)
5110 				continue;
5111 			wait_on_extent_buffer_writeback(eb);
5112 
5113 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5114 					       &eb->bflags))
5115 				clear_extent_buffer_dirty(eb);
5116 			free_extent_buffer_stale(eb);
5117 		}
5118 	}
5119 
5120 	return ret;
5121 }
5122 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)5123 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5124 				       struct extent_io_tree *unpin)
5125 {
5126 	u64 start;
5127 	u64 end;
5128 	int ret;
5129 
5130 	while (1) {
5131 		struct extent_state *cached_state = NULL;
5132 
5133 		/*
5134 		 * The btrfs_finish_extent_commit() may get the same range as
5135 		 * ours between find_first_extent_bit and clear_extent_dirty.
5136 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5137 		 * the same extent range.
5138 		 */
5139 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5140 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5141 					    EXTENT_DIRTY, &cached_state);
5142 		if (ret) {
5143 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5144 			break;
5145 		}
5146 
5147 		clear_extent_dirty(unpin, start, end, &cached_state);
5148 		free_extent_state(cached_state);
5149 		btrfs_error_unpin_extent_range(fs_info, start, end);
5150 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5151 		cond_resched();
5152 	}
5153 
5154 	return 0;
5155 }
5156 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)5157 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5158 {
5159 	struct inode *inode;
5160 
5161 	inode = cache->io_ctl.inode;
5162 	if (inode) {
5163 		unsigned int nofs_flag;
5164 
5165 		nofs_flag = memalloc_nofs_save();
5166 		invalidate_inode_pages2(inode->i_mapping);
5167 		memalloc_nofs_restore(nofs_flag);
5168 
5169 		BTRFS_I(inode)->generation = 0;
5170 		cache->io_ctl.inode = NULL;
5171 		iput(inode);
5172 	}
5173 	ASSERT(cache->io_ctl.pages == NULL);
5174 	btrfs_put_block_group(cache);
5175 }
5176 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5177 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5178 			     struct btrfs_fs_info *fs_info)
5179 {
5180 	struct btrfs_block_group *cache;
5181 
5182 	spin_lock(&cur_trans->dirty_bgs_lock);
5183 	while (!list_empty(&cur_trans->dirty_bgs)) {
5184 		cache = list_first_entry(&cur_trans->dirty_bgs,
5185 					 struct btrfs_block_group,
5186 					 dirty_list);
5187 
5188 		if (!list_empty(&cache->io_list)) {
5189 			spin_unlock(&cur_trans->dirty_bgs_lock);
5190 			list_del_init(&cache->io_list);
5191 			btrfs_cleanup_bg_io(cache);
5192 			spin_lock(&cur_trans->dirty_bgs_lock);
5193 		}
5194 
5195 		list_del_init(&cache->dirty_list);
5196 		spin_lock(&cache->lock);
5197 		cache->disk_cache_state = BTRFS_DC_ERROR;
5198 		spin_unlock(&cache->lock);
5199 
5200 		spin_unlock(&cur_trans->dirty_bgs_lock);
5201 		btrfs_put_block_group(cache);
5202 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5203 		spin_lock(&cur_trans->dirty_bgs_lock);
5204 	}
5205 	spin_unlock(&cur_trans->dirty_bgs_lock);
5206 
5207 	/*
5208 	 * Refer to the definition of io_bgs member for details why it's safe
5209 	 * to use it without any locking
5210 	 */
5211 	while (!list_empty(&cur_trans->io_bgs)) {
5212 		cache = list_first_entry(&cur_trans->io_bgs,
5213 					 struct btrfs_block_group,
5214 					 io_list);
5215 
5216 		list_del_init(&cache->io_list);
5217 		spin_lock(&cache->lock);
5218 		cache->disk_cache_state = BTRFS_DC_ERROR;
5219 		spin_unlock(&cache->lock);
5220 		btrfs_cleanup_bg_io(cache);
5221 	}
5222 }
5223 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)5224 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5225 				   struct btrfs_fs_info *fs_info)
5226 {
5227 	struct btrfs_device *dev, *tmp;
5228 
5229 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5230 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5231 	ASSERT(list_empty(&cur_trans->io_bgs));
5232 
5233 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5234 				 post_commit_list) {
5235 		list_del_init(&dev->post_commit_list);
5236 	}
5237 
5238 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5239 
5240 	cur_trans->state = TRANS_STATE_COMMIT_START;
5241 	wake_up(&fs_info->transaction_blocked_wait);
5242 
5243 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5244 	wake_up(&fs_info->transaction_wait);
5245 
5246 	btrfs_destroy_delayed_inodes(fs_info);
5247 
5248 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5249 				     EXTENT_DIRTY);
5250 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5251 
5252 	btrfs_free_redirty_list(cur_trans);
5253 
5254 	cur_trans->state =TRANS_STATE_COMPLETED;
5255 	wake_up(&cur_trans->commit_wait);
5256 }
5257 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)5258 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5259 {
5260 	struct btrfs_transaction *t;
5261 
5262 	mutex_lock(&fs_info->transaction_kthread_mutex);
5263 
5264 	spin_lock(&fs_info->trans_lock);
5265 	while (!list_empty(&fs_info->trans_list)) {
5266 		t = list_first_entry(&fs_info->trans_list,
5267 				     struct btrfs_transaction, list);
5268 		if (t->state >= TRANS_STATE_COMMIT_START) {
5269 			refcount_inc(&t->use_count);
5270 			spin_unlock(&fs_info->trans_lock);
5271 			btrfs_wait_for_commit(fs_info, t->transid);
5272 			btrfs_put_transaction(t);
5273 			spin_lock(&fs_info->trans_lock);
5274 			continue;
5275 		}
5276 		if (t == fs_info->running_transaction) {
5277 			t->state = TRANS_STATE_COMMIT_DOING;
5278 			spin_unlock(&fs_info->trans_lock);
5279 			/*
5280 			 * We wait for 0 num_writers since we don't hold a trans
5281 			 * handle open currently for this transaction.
5282 			 */
5283 			wait_event(t->writer_wait,
5284 				   atomic_read(&t->num_writers) == 0);
5285 		} else {
5286 			spin_unlock(&fs_info->trans_lock);
5287 		}
5288 		btrfs_cleanup_one_transaction(t, fs_info);
5289 
5290 		spin_lock(&fs_info->trans_lock);
5291 		if (t == fs_info->running_transaction)
5292 			fs_info->running_transaction = NULL;
5293 		list_del_init(&t->list);
5294 		spin_unlock(&fs_info->trans_lock);
5295 
5296 		btrfs_put_transaction(t);
5297 		trace_btrfs_transaction_commit(fs_info);
5298 		spin_lock(&fs_info->trans_lock);
5299 	}
5300 	spin_unlock(&fs_info->trans_lock);
5301 	btrfs_destroy_all_ordered_extents(fs_info);
5302 	btrfs_destroy_delayed_inodes(fs_info);
5303 	btrfs_assert_delayed_root_empty(fs_info);
5304 	btrfs_destroy_all_delalloc_inodes(fs_info);
5305 	btrfs_drop_all_logs(fs_info);
5306 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5307 
5308 	return 0;
5309 }
5310 
btrfs_init_root_free_objectid(struct btrfs_root * root)5311 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5312 {
5313 	struct btrfs_path *path;
5314 	int ret;
5315 	struct extent_buffer *l;
5316 	struct btrfs_key search_key;
5317 	struct btrfs_key found_key;
5318 	int slot;
5319 
5320 	path = btrfs_alloc_path();
5321 	if (!path)
5322 		return -ENOMEM;
5323 
5324 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5325 	search_key.type = -1;
5326 	search_key.offset = (u64)-1;
5327 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5328 	if (ret < 0)
5329 		goto error;
5330 	BUG_ON(ret == 0); /* Corruption */
5331 	if (path->slots[0] > 0) {
5332 		slot = path->slots[0] - 1;
5333 		l = path->nodes[0];
5334 		btrfs_item_key_to_cpu(l, &found_key, slot);
5335 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5336 					    BTRFS_FIRST_FREE_OBJECTID);
5337 	} else {
5338 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5339 	}
5340 	ret = 0;
5341 error:
5342 	btrfs_free_path(path);
5343 	return ret;
5344 }
5345 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)5346 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5347 {
5348 	int ret;
5349 	mutex_lock(&root->objectid_mutex);
5350 
5351 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5352 		btrfs_warn(root->fs_info,
5353 			   "the objectid of root %llu reaches its highest value",
5354 			   root->root_key.objectid);
5355 		ret = -ENOSPC;
5356 		goto out;
5357 	}
5358 
5359 	*objectid = root->free_objectid++;
5360 	ret = 0;
5361 out:
5362 	mutex_unlock(&root->objectid_mutex);
5363 	return ret;
5364 }
5365