• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 
25 #define MAX_CONFLICT_INODES 10
26 
27 /* magic values for the inode_only field in btrfs_log_inode:
28  *
29  * LOG_INODE_ALL means to log everything
30  * LOG_INODE_EXISTS means to log just enough to recreate the inode
31  * during log replay
32  */
33 enum {
34 	LOG_INODE_ALL,
35 	LOG_INODE_EXISTS,
36 };
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 enum {
91 	LOG_WALK_PIN_ONLY,
92 	LOG_WALK_REPLAY_INODES,
93 	LOG_WALK_REPLAY_DIR_INDEX,
94 	LOG_WALK_REPLAY_ALL,
95 };
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_inode *inode,
99 			   int inode_only,
100 			   struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct btrfs_root *tree_root = fs_info->tree_root;
145 	const bool zoned = btrfs_is_zoned(fs_info);
146 	int ret = 0;
147 	bool created = false;
148 
149 	/*
150 	 * First check if the log root tree was already created. If not, create
151 	 * it before locking the root's log_mutex, just to keep lockdep happy.
152 	 */
153 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 		mutex_lock(&tree_root->log_mutex);
155 		if (!fs_info->log_root_tree) {
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 			if (!ret) {
158 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 				created = true;
160 			}
161 		}
162 		mutex_unlock(&tree_root->log_mutex);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	mutex_lock(&root->log_mutex);
168 
169 again:
170 	if (root->log_root) {
171 		int index = (root->log_transid + 1) % 2;
172 
173 		if (btrfs_need_log_full_commit(trans)) {
174 			ret = BTRFS_LOG_FORCE_COMMIT;
175 			goto out;
176 		}
177 
178 		if (zoned && atomic_read(&root->log_commit[index])) {
179 			wait_log_commit(root, root->log_transid - 1);
180 			goto again;
181 		}
182 
183 		if (!root->log_start_pid) {
184 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 			root->log_start_pid = current->pid;
186 		} else if (root->log_start_pid != current->pid) {
187 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 		}
189 	} else {
190 		/*
191 		 * This means fs_info->log_root_tree was already created
192 		 * for some other FS trees. Do the full commit not to mix
193 		 * nodes from multiple log transactions to do sequential
194 		 * writing.
195 		 */
196 		if (zoned && !created) {
197 			ret = BTRFS_LOG_FORCE_COMMIT;
198 			goto out;
199 		}
200 
201 		ret = btrfs_add_log_tree(trans, root);
202 		if (ret)
203 			goto out;
204 
205 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 		root->log_start_pid = current->pid;
208 	}
209 
210 	atomic_inc(&root->log_writers);
211 	if (!ctx->logging_new_name) {
212 		int index = root->log_transid % 2;
213 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 		ctx->log_transid = root->log_transid;
215 	}
216 
217 out:
218 	mutex_unlock(&root->log_mutex);
219 	return ret;
220 }
221 
222 /*
223  * returns 0 if there was a log transaction running and we were able
224  * to join, or returns -ENOENT if there were not transactions
225  * in progress
226  */
join_running_log_trans(struct btrfs_root * root)227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 	const bool zoned = btrfs_is_zoned(root->fs_info);
230 	int ret = -ENOENT;
231 
232 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 		return ret;
234 
235 	mutex_lock(&root->log_mutex);
236 again:
237 	if (root->log_root) {
238 		int index = (root->log_transid + 1) % 2;
239 
240 		ret = 0;
241 		if (zoned && atomic_read(&root->log_commit[index])) {
242 			wait_log_commit(root, root->log_transid - 1);
243 			goto again;
244 		}
245 		atomic_inc(&root->log_writers);
246 	}
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * This either makes the current running log transaction wait
253  * until you call btrfs_end_log_trans() or it makes any future
254  * log transactions wait until you call btrfs_end_log_trans()
255  */
btrfs_pin_log_trans(struct btrfs_root * root)256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 	atomic_inc(&root->log_writers);
259 }
260 
261 /*
262  * indicate we're done making changes to the log tree
263  * and wake up anyone waiting to do a sync
264  */
btrfs_end_log_trans(struct btrfs_root * root)265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 	if (atomic_dec_and_test(&root->log_writers)) {
268 		/* atomic_dec_and_test implies a barrier */
269 		cond_wake_up_nomb(&root->log_writer_wait);
270 	}
271 }
272 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274 {
275 	filemap_fdatawait_range(buf->pages[0]->mapping,
276 			        buf->start, buf->start + buf->len - 1);
277 }
278 
279 /*
280  * the walk control struct is used to pass state down the chain when
281  * processing the log tree.  The stage field tells us which part
282  * of the log tree processing we are currently doing.  The others
283  * are state fields used for that specific part
284  */
285 struct walk_control {
286 	/* should we free the extent on disk when done?  This is used
287 	 * at transaction commit time while freeing a log tree
288 	 */
289 	int free;
290 
291 	/* pin only walk, we record which extents on disk belong to the
292 	 * log trees
293 	 */
294 	int pin;
295 
296 	/* what stage of the replay code we're currently in */
297 	int stage;
298 
299 	/*
300 	 * Ignore any items from the inode currently being processed. Needs
301 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 	 * the LOG_WALK_REPLAY_INODES stage.
303 	 */
304 	bool ignore_cur_inode;
305 
306 	/* the root we are currently replaying */
307 	struct btrfs_root *replay_dest;
308 
309 	/* the trans handle for the current replay */
310 	struct btrfs_trans_handle *trans;
311 
312 	/* the function that gets used to process blocks we find in the
313 	 * tree.  Note the extent_buffer might not be up to date when it is
314 	 * passed in, and it must be checked or read if you need the data
315 	 * inside it
316 	 */
317 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 			    struct walk_control *wc, u64 gen, int level);
319 };
320 
321 /*
322  * process_func used to pin down extents, write them or wait on them
323  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)324 static int process_one_buffer(struct btrfs_root *log,
325 			      struct extent_buffer *eb,
326 			      struct walk_control *wc, u64 gen, int level)
327 {
328 	struct btrfs_fs_info *fs_info = log->fs_info;
329 	int ret = 0;
330 
331 	/*
332 	 * If this fs is mixed then we need to be able to process the leaves to
333 	 * pin down any logged extents, so we have to read the block.
334 	 */
335 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 		ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	if (wc->pin) {
342 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
343 						      eb->len);
344 		if (ret)
345 			return ret;
346 
347 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 		    btrfs_header_level(eb) == 0)
349 			ret = btrfs_exclude_logged_extents(eb);
350 	}
351 	return ret;
352 }
353 
do_overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 			     struct btrfs_root *root,
356 			     struct btrfs_path *path,
357 			     struct extent_buffer *eb, int slot,
358 			     struct btrfs_key *key)
359 {
360 	int ret;
361 	u32 item_size;
362 	u64 saved_i_size = 0;
363 	int save_old_i_size = 0;
364 	unsigned long src_ptr;
365 	unsigned long dst_ptr;
366 	int overwrite_root = 0;
367 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
368 
369 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 		overwrite_root = 1;
371 
372 	item_size = btrfs_item_size(eb, slot);
373 	src_ptr = btrfs_item_ptr_offset(eb, slot);
374 
375 	/* Our caller must have done a search for the key for us. */
376 	ASSERT(path->nodes[0] != NULL);
377 
378 	/*
379 	 * And the slot must point to the exact key or the slot where the key
380 	 * should be at (the first item with a key greater than 'key')
381 	 */
382 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 		struct btrfs_key found_key;
384 
385 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 		ret = btrfs_comp_cpu_keys(&found_key, key);
387 		ASSERT(ret >= 0);
388 	} else {
389 		ret = 1;
390 	}
391 
392 	if (ret == 0) {
393 		char *src_copy;
394 		char *dst_copy;
395 		u32 dst_size = btrfs_item_size(path->nodes[0],
396 						  path->slots[0]);
397 		if (dst_size != item_size)
398 			goto insert;
399 
400 		if (item_size == 0) {
401 			btrfs_release_path(path);
402 			return 0;
403 		}
404 		dst_copy = kmalloc(item_size, GFP_NOFS);
405 		src_copy = kmalloc(item_size, GFP_NOFS);
406 		if (!dst_copy || !src_copy) {
407 			btrfs_release_path(path);
408 			kfree(dst_copy);
409 			kfree(src_copy);
410 			return -ENOMEM;
411 		}
412 
413 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
414 
415 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 				   item_size);
418 		ret = memcmp(dst_copy, src_copy, item_size);
419 
420 		kfree(dst_copy);
421 		kfree(src_copy);
422 		/*
423 		 * they have the same contents, just return, this saves
424 		 * us from cowing blocks in the destination tree and doing
425 		 * extra writes that may not have been done by a previous
426 		 * sync
427 		 */
428 		if (ret == 0) {
429 			btrfs_release_path(path);
430 			return 0;
431 		}
432 
433 		/*
434 		 * We need to load the old nbytes into the inode so when we
435 		 * replay the extents we've logged we get the right nbytes.
436 		 */
437 		if (inode_item) {
438 			struct btrfs_inode_item *item;
439 			u64 nbytes;
440 			u32 mode;
441 
442 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 					      struct btrfs_inode_item);
444 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 			item = btrfs_item_ptr(eb, slot,
446 					      struct btrfs_inode_item);
447 			btrfs_set_inode_nbytes(eb, item, nbytes);
448 
449 			/*
450 			 * If this is a directory we need to reset the i_size to
451 			 * 0 so that we can set it up properly when replaying
452 			 * the rest of the items in this log.
453 			 */
454 			mode = btrfs_inode_mode(eb, item);
455 			if (S_ISDIR(mode))
456 				btrfs_set_inode_size(eb, item, 0);
457 		}
458 	} else if (inode_item) {
459 		struct btrfs_inode_item *item;
460 		u32 mode;
461 
462 		/*
463 		 * New inode, set nbytes to 0 so that the nbytes comes out
464 		 * properly when we replay the extents.
465 		 */
466 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 		btrfs_set_inode_nbytes(eb, item, 0);
468 
469 		/*
470 		 * If this is a directory we need to reset the i_size to 0 so
471 		 * that we can set it up properly when replaying the rest of
472 		 * the items in this log.
473 		 */
474 		mode = btrfs_inode_mode(eb, item);
475 		if (S_ISDIR(mode))
476 			btrfs_set_inode_size(eb, item, 0);
477 	}
478 insert:
479 	btrfs_release_path(path);
480 	/* try to insert the key into the destination tree */
481 	path->skip_release_on_error = 1;
482 	ret = btrfs_insert_empty_item(trans, root, path,
483 				      key, item_size);
484 	path->skip_release_on_error = 0;
485 
486 	/* make sure any existing item is the correct size */
487 	if (ret == -EEXIST || ret == -EOVERFLOW) {
488 		u32 found_size;
489 		found_size = btrfs_item_size(path->nodes[0],
490 						path->slots[0]);
491 		if (found_size > item_size)
492 			btrfs_truncate_item(path, item_size, 1);
493 		else if (found_size < item_size)
494 			btrfs_extend_item(path, item_size - found_size);
495 	} else if (ret) {
496 		return ret;
497 	}
498 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 					path->slots[0]);
500 
501 	/* don't overwrite an existing inode if the generation number
502 	 * was logged as zero.  This is done when the tree logging code
503 	 * is just logging an inode to make sure it exists after recovery.
504 	 *
505 	 * Also, don't overwrite i_size on directories during replay.
506 	 * log replay inserts and removes directory items based on the
507 	 * state of the tree found in the subvolume, and i_size is modified
508 	 * as it goes
509 	 */
510 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 		struct btrfs_inode_item *src_item;
512 		struct btrfs_inode_item *dst_item;
513 
514 		src_item = (struct btrfs_inode_item *)src_ptr;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 
517 		if (btrfs_inode_generation(eb, src_item) == 0) {
518 			struct extent_buffer *dst_eb = path->nodes[0];
519 			const u64 ino_size = btrfs_inode_size(eb, src_item);
520 
521 			/*
522 			 * For regular files an ino_size == 0 is used only when
523 			 * logging that an inode exists, as part of a directory
524 			 * fsync, and the inode wasn't fsynced before. In this
525 			 * case don't set the size of the inode in the fs/subvol
526 			 * tree, otherwise we would be throwing valid data away.
527 			 */
528 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
530 			    ino_size != 0)
531 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
532 			goto no_copy;
533 		}
534 
535 		if (overwrite_root &&
536 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 			save_old_i_size = 1;
539 			saved_i_size = btrfs_inode_size(path->nodes[0],
540 							dst_item);
541 		}
542 	}
543 
544 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 			   src_ptr, item_size);
546 
547 	if (save_old_i_size) {
548 		struct btrfs_inode_item *dst_item;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 	}
552 
553 	/* make sure the generation is filled in */
554 	if (key->type == BTRFS_INODE_ITEM_KEY) {
555 		struct btrfs_inode_item *dst_item;
556 		dst_item = (struct btrfs_inode_item *)dst_ptr;
557 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 			btrfs_set_inode_generation(path->nodes[0], dst_item,
559 						   trans->transid);
560 		}
561 	}
562 no_copy:
563 	btrfs_mark_buffer_dirty(path->nodes[0]);
564 	btrfs_release_path(path);
565 	return 0;
566 }
567 
568 /*
569  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
570  * to the src data we are copying out.
571  *
572  * root is the tree we are copying into, and path is a scratch
573  * path for use in this function (it should be released on entry and
574  * will be released on exit).
575  *
576  * If the key is already in the destination tree the existing item is
577  * overwritten.  If the existing item isn't big enough, it is extended.
578  * If it is too large, it is truncated.
579  *
580  * If the key isn't in the destination yet, a new item is inserted.
581  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 			  struct btrfs_root *root,
584 			  struct btrfs_path *path,
585 			  struct extent_buffer *eb, int slot,
586 			  struct btrfs_key *key)
587 {
588 	int ret;
589 
590 	/* Look for the key in the destination tree. */
591 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 	if (ret < 0)
593 		return ret;
594 
595 	return do_overwrite_item(trans, root, path, eb, slot, key);
596 }
597 
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)598 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
599 			       struct fscrypt_str *name)
600 {
601 	char *buf;
602 
603 	buf = kmalloc(len, GFP_NOFS);
604 	if (!buf)
605 		return -ENOMEM;
606 
607 	read_extent_buffer(eb, buf, (unsigned long)start, len);
608 	name->name = buf;
609 	name->len = len;
610 	return 0;
611 }
612 
613 /*
614  * simple helper to read an inode off the disk from a given root
615  * This can only be called for subvolume roots and not for the log
616  */
read_one_inode(struct btrfs_root * root,u64 objectid)617 static noinline struct inode *read_one_inode(struct btrfs_root *root,
618 					     u64 objectid)
619 {
620 	struct inode *inode;
621 
622 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
623 	if (IS_ERR(inode))
624 		inode = NULL;
625 	return inode;
626 }
627 
628 /* replays a single extent in 'eb' at 'slot' with 'key' into the
629  * subvolume 'root'.  path is released on entry and should be released
630  * on exit.
631  *
632  * extents in the log tree have not been allocated out of the extent
633  * tree yet.  So, this completes the allocation, taking a reference
634  * as required if the extent already exists or creating a new extent
635  * if it isn't in the extent allocation tree yet.
636  *
637  * The extent is inserted into the file, dropping any existing extents
638  * from the file that overlap the new one.
639  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)640 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
641 				      struct btrfs_root *root,
642 				      struct btrfs_path *path,
643 				      struct extent_buffer *eb, int slot,
644 				      struct btrfs_key *key)
645 {
646 	struct btrfs_drop_extents_args drop_args = { 0 };
647 	struct btrfs_fs_info *fs_info = root->fs_info;
648 	int found_type;
649 	u64 extent_end;
650 	u64 start = key->offset;
651 	u64 nbytes = 0;
652 	struct btrfs_file_extent_item *item;
653 	struct inode *inode = NULL;
654 	unsigned long size;
655 	int ret = 0;
656 
657 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
658 	found_type = btrfs_file_extent_type(eb, item);
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		nbytes = btrfs_file_extent_num_bytes(eb, item);
663 		extent_end = start + nbytes;
664 
665 		/*
666 		 * We don't add to the inodes nbytes if we are prealloc or a
667 		 * hole.
668 		 */
669 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
670 			nbytes = 0;
671 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
672 		size = btrfs_file_extent_ram_bytes(eb, item);
673 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
674 		extent_end = ALIGN(start + size,
675 				   fs_info->sectorsize);
676 	} else {
677 		ret = 0;
678 		goto out;
679 	}
680 
681 	inode = read_one_inode(root, key->objectid);
682 	if (!inode) {
683 		ret = -EIO;
684 		goto out;
685 	}
686 
687 	/*
688 	 * first check to see if we already have this extent in the
689 	 * file.  This must be done before the btrfs_drop_extents run
690 	 * so we don't try to drop this extent.
691 	 */
692 	ret = btrfs_lookup_file_extent(trans, root, path,
693 			btrfs_ino(BTRFS_I(inode)), start, 0);
694 
695 	if (ret == 0 &&
696 	    (found_type == BTRFS_FILE_EXTENT_REG ||
697 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
698 		struct btrfs_file_extent_item cmp1;
699 		struct btrfs_file_extent_item cmp2;
700 		struct btrfs_file_extent_item *existing;
701 		struct extent_buffer *leaf;
702 
703 		leaf = path->nodes[0];
704 		existing = btrfs_item_ptr(leaf, path->slots[0],
705 					  struct btrfs_file_extent_item);
706 
707 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
708 				   sizeof(cmp1));
709 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
710 				   sizeof(cmp2));
711 
712 		/*
713 		 * we already have a pointer to this exact extent,
714 		 * we don't have to do anything
715 		 */
716 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
717 			btrfs_release_path(path);
718 			goto out;
719 		}
720 	}
721 	btrfs_release_path(path);
722 
723 	/* drop any overlapping extents */
724 	drop_args.start = start;
725 	drop_args.end = extent_end;
726 	drop_args.drop_cache = true;
727 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
728 	if (ret)
729 		goto out;
730 
731 	if (found_type == BTRFS_FILE_EXTENT_REG ||
732 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
733 		u64 offset;
734 		unsigned long dest_offset;
735 		struct btrfs_key ins;
736 
737 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
738 		    btrfs_fs_incompat(fs_info, NO_HOLES))
739 			goto update_inode;
740 
741 		ret = btrfs_insert_empty_item(trans, root, path, key,
742 					      sizeof(*item));
743 		if (ret)
744 			goto out;
745 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
746 						    path->slots[0]);
747 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
748 				(unsigned long)item,  sizeof(*item));
749 
750 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
751 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
752 		ins.type = BTRFS_EXTENT_ITEM_KEY;
753 		offset = key->offset - btrfs_file_extent_offset(eb, item);
754 
755 		/*
756 		 * Manually record dirty extent, as here we did a shallow
757 		 * file extent item copy and skip normal backref update,
758 		 * but modifying extent tree all by ourselves.
759 		 * So need to manually record dirty extent for qgroup,
760 		 * as the owner of the file extent changed from log tree
761 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
762 		 */
763 		ret = btrfs_qgroup_trace_extent(trans,
764 				btrfs_file_extent_disk_bytenr(eb, item),
765 				btrfs_file_extent_disk_num_bytes(eb, item),
766 				GFP_NOFS);
767 		if (ret < 0)
768 			goto out;
769 
770 		if (ins.objectid > 0) {
771 			struct btrfs_ref ref = { 0 };
772 			u64 csum_start;
773 			u64 csum_end;
774 			LIST_HEAD(ordered_sums);
775 
776 			/*
777 			 * is this extent already allocated in the extent
778 			 * allocation tree?  If so, just add a reference
779 			 */
780 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
781 						ins.offset);
782 			if (ret < 0) {
783 				goto out;
784 			} else if (ret == 0) {
785 				btrfs_init_generic_ref(&ref,
786 						BTRFS_ADD_DELAYED_REF,
787 						ins.objectid, ins.offset, 0);
788 				btrfs_init_data_ref(&ref,
789 						root->root_key.objectid,
790 						key->objectid, offset, 0, false);
791 				ret = btrfs_inc_extent_ref(trans, &ref);
792 				if (ret)
793 					goto out;
794 			} else {
795 				/*
796 				 * insert the extent pointer in the extent
797 				 * allocation tree
798 				 */
799 				ret = btrfs_alloc_logged_file_extent(trans,
800 						root->root_key.objectid,
801 						key->objectid, offset, &ins);
802 				if (ret)
803 					goto out;
804 			}
805 			btrfs_release_path(path);
806 
807 			if (btrfs_file_extent_compression(eb, item)) {
808 				csum_start = ins.objectid;
809 				csum_end = csum_start + ins.offset;
810 			} else {
811 				csum_start = ins.objectid +
812 					btrfs_file_extent_offset(eb, item);
813 				csum_end = csum_start +
814 					btrfs_file_extent_num_bytes(eb, item);
815 			}
816 
817 			ret = btrfs_lookup_csums_range(root->log_root,
818 						csum_start, csum_end - 1,
819 						&ordered_sums, 0, false);
820 			if (ret)
821 				goto out;
822 			/*
823 			 * Now delete all existing cums in the csum root that
824 			 * cover our range. We do this because we can have an
825 			 * extent that is completely referenced by one file
826 			 * extent item and partially referenced by another
827 			 * file extent item (like after using the clone or
828 			 * extent_same ioctls). In this case if we end up doing
829 			 * the replay of the one that partially references the
830 			 * extent first, and we do not do the csum deletion
831 			 * below, we can get 2 csum items in the csum tree that
832 			 * overlap each other. For example, imagine our log has
833 			 * the two following file extent items:
834 			 *
835 			 * key (257 EXTENT_DATA 409600)
836 			 *     extent data disk byte 12845056 nr 102400
837 			 *     extent data offset 20480 nr 20480 ram 102400
838 			 *
839 			 * key (257 EXTENT_DATA 819200)
840 			 *     extent data disk byte 12845056 nr 102400
841 			 *     extent data offset 0 nr 102400 ram 102400
842 			 *
843 			 * Where the second one fully references the 100K extent
844 			 * that starts at disk byte 12845056, and the log tree
845 			 * has a single csum item that covers the entire range
846 			 * of the extent:
847 			 *
848 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
849 			 *
850 			 * After the first file extent item is replayed, the
851 			 * csum tree gets the following csum item:
852 			 *
853 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
854 			 *
855 			 * Which covers the 20K sub-range starting at offset 20K
856 			 * of our extent. Now when we replay the second file
857 			 * extent item, if we do not delete existing csum items
858 			 * that cover any of its blocks, we end up getting two
859 			 * csum items in our csum tree that overlap each other:
860 			 *
861 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
862 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
863 			 *
864 			 * Which is a problem, because after this anyone trying
865 			 * to lookup up for the checksum of any block of our
866 			 * extent starting at an offset of 40K or higher, will
867 			 * end up looking at the second csum item only, which
868 			 * does not contain the checksum for any block starting
869 			 * at offset 40K or higher of our extent.
870 			 */
871 			while (!list_empty(&ordered_sums)) {
872 				struct btrfs_ordered_sum *sums;
873 				struct btrfs_root *csum_root;
874 
875 				sums = list_entry(ordered_sums.next,
876 						struct btrfs_ordered_sum,
877 						list);
878 				csum_root = btrfs_csum_root(fs_info,
879 							    sums->bytenr);
880 				if (!ret)
881 					ret = btrfs_del_csums(trans, csum_root,
882 							      sums->bytenr,
883 							      sums->len);
884 				if (!ret)
885 					ret = btrfs_csum_file_blocks(trans,
886 								     csum_root,
887 								     sums);
888 				list_del(&sums->list);
889 				kfree(sums);
890 			}
891 			if (ret)
892 				goto out;
893 		} else {
894 			btrfs_release_path(path);
895 		}
896 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
897 		/* inline extents are easy, we just overwrite them */
898 		ret = overwrite_item(trans, root, path, eb, slot, key);
899 		if (ret)
900 			goto out;
901 	}
902 
903 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
904 						extent_end - start);
905 	if (ret)
906 		goto out;
907 
908 update_inode:
909 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
910 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
911 out:
912 	iput(inode);
913 	return ret;
914 }
915 
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)916 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
917 				       struct btrfs_inode *dir,
918 				       struct btrfs_inode *inode,
919 				       const struct fscrypt_str *name)
920 {
921 	int ret;
922 
923 	ret = btrfs_unlink_inode(trans, dir, inode, name);
924 	if (ret)
925 		return ret;
926 	/*
927 	 * Whenever we need to check if a name exists or not, we check the
928 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
929 	 * that future checks for a name during log replay see that the name
930 	 * does not exists anymore.
931 	 */
932 	return btrfs_run_delayed_items(trans);
933 }
934 
935 /*
936  * when cleaning up conflicts between the directory names in the
937  * subvolume, directory names in the log and directory names in the
938  * inode back references, we may have to unlink inodes from directories.
939  *
940  * This is a helper function to do the unlink of a specific directory
941  * item
942  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)943 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
944 				      struct btrfs_path *path,
945 				      struct btrfs_inode *dir,
946 				      struct btrfs_dir_item *di)
947 {
948 	struct btrfs_root *root = dir->root;
949 	struct inode *inode;
950 	struct fscrypt_str name;
951 	struct extent_buffer *leaf;
952 	struct btrfs_key location;
953 	int ret;
954 
955 	leaf = path->nodes[0];
956 
957 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
958 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
959 	if (ret)
960 		return -ENOMEM;
961 
962 	btrfs_release_path(path);
963 
964 	inode = read_one_inode(root, location.objectid);
965 	if (!inode) {
966 		ret = -EIO;
967 		goto out;
968 	}
969 
970 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
971 	if (ret)
972 		goto out;
973 
974 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
975 out:
976 	kfree(name.name);
977 	iput(inode);
978 	return ret;
979 }
980 
981 /*
982  * See if a given name and sequence number found in an inode back reference are
983  * already in a directory and correctly point to this inode.
984  *
985  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
986  * exists.
987  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)988 static noinline int inode_in_dir(struct btrfs_root *root,
989 				 struct btrfs_path *path,
990 				 u64 dirid, u64 objectid, u64 index,
991 				 struct fscrypt_str *name)
992 {
993 	struct btrfs_dir_item *di;
994 	struct btrfs_key location;
995 	int ret = 0;
996 
997 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
998 					 index, name, 0);
999 	if (IS_ERR(di)) {
1000 		ret = PTR_ERR(di);
1001 		goto out;
1002 	} else if (di) {
1003 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1004 		if (location.objectid != objectid)
1005 			goto out;
1006 	} else {
1007 		goto out;
1008 	}
1009 
1010 	btrfs_release_path(path);
1011 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1012 	if (IS_ERR(di)) {
1013 		ret = PTR_ERR(di);
1014 		goto out;
1015 	} else if (di) {
1016 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1017 		if (location.objectid == objectid)
1018 			ret = 1;
1019 	}
1020 out:
1021 	btrfs_release_path(path);
1022 	return ret;
1023 }
1024 
1025 /*
1026  * helper function to check a log tree for a named back reference in
1027  * an inode.  This is used to decide if a back reference that is
1028  * found in the subvolume conflicts with what we find in the log.
1029  *
1030  * inode backreferences may have multiple refs in a single item,
1031  * during replay we process one reference at a time, and we don't
1032  * want to delete valid links to a file from the subvolume if that
1033  * link is also in the log.
1034  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1035 static noinline int backref_in_log(struct btrfs_root *log,
1036 				   struct btrfs_key *key,
1037 				   u64 ref_objectid,
1038 				   const struct fscrypt_str *name)
1039 {
1040 	struct btrfs_path *path;
1041 	int ret;
1042 
1043 	path = btrfs_alloc_path();
1044 	if (!path)
1045 		return -ENOMEM;
1046 
1047 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1048 	if (ret < 0) {
1049 		goto out;
1050 	} else if (ret == 1) {
1051 		ret = 0;
1052 		goto out;
1053 	}
1054 
1055 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1056 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1057 						       path->slots[0],
1058 						       ref_objectid, name);
1059 	else
1060 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1061 						   path->slots[0], name);
1062 out:
1063 	btrfs_free_path(path);
1064 	return ret;
1065 }
1066 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1067 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1068 				  struct btrfs_root *root,
1069 				  struct btrfs_path *path,
1070 				  struct btrfs_root *log_root,
1071 				  struct btrfs_inode *dir,
1072 				  struct btrfs_inode *inode,
1073 				  u64 inode_objectid, u64 parent_objectid,
1074 				  u64 ref_index, struct fscrypt_str *name)
1075 {
1076 	int ret;
1077 	struct extent_buffer *leaf;
1078 	struct btrfs_dir_item *di;
1079 	struct btrfs_key search_key;
1080 	struct btrfs_inode_extref *extref;
1081 
1082 again:
1083 	/* Search old style refs */
1084 	search_key.objectid = inode_objectid;
1085 	search_key.type = BTRFS_INODE_REF_KEY;
1086 	search_key.offset = parent_objectid;
1087 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1088 	if (ret == 0) {
1089 		struct btrfs_inode_ref *victim_ref;
1090 		unsigned long ptr;
1091 		unsigned long ptr_end;
1092 
1093 		leaf = path->nodes[0];
1094 
1095 		/* are we trying to overwrite a back ref for the root directory
1096 		 * if so, just jump out, we're done
1097 		 */
1098 		if (search_key.objectid == search_key.offset)
1099 			return 1;
1100 
1101 		/* check all the names in this back reference to see
1102 		 * if they are in the log.  if so, we allow them to stay
1103 		 * otherwise they must be unlinked as a conflict
1104 		 */
1105 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1106 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1107 		while (ptr < ptr_end) {
1108 			struct fscrypt_str victim_name;
1109 
1110 			victim_ref = (struct btrfs_inode_ref *)ptr;
1111 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1112 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1113 				 &victim_name);
1114 			if (ret)
1115 				return ret;
1116 
1117 			ret = backref_in_log(log_root, &search_key,
1118 					     parent_objectid, &victim_name);
1119 			if (ret < 0) {
1120 				kfree(victim_name.name);
1121 				return ret;
1122 			} else if (!ret) {
1123 				inc_nlink(&inode->vfs_inode);
1124 				btrfs_release_path(path);
1125 
1126 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1127 						&victim_name);
1128 				kfree(victim_name.name);
1129 				if (ret)
1130 					return ret;
1131 				goto again;
1132 			}
1133 			kfree(victim_name.name);
1134 
1135 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1136 		}
1137 	}
1138 	btrfs_release_path(path);
1139 
1140 	/* Same search but for extended refs */
1141 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1142 					   inode_objectid, parent_objectid, 0,
1143 					   0);
1144 	if (IS_ERR(extref)) {
1145 		return PTR_ERR(extref);
1146 	} else if (extref) {
1147 		u32 item_size;
1148 		u32 cur_offset = 0;
1149 		unsigned long base;
1150 		struct inode *victim_parent;
1151 
1152 		leaf = path->nodes[0];
1153 
1154 		item_size = btrfs_item_size(leaf, path->slots[0]);
1155 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1156 
1157 		while (cur_offset < item_size) {
1158 			struct fscrypt_str victim_name;
1159 
1160 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1161 
1162 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1163 				goto next;
1164 
1165 			ret = read_alloc_one_name(leaf, &extref->name,
1166 				 btrfs_inode_extref_name_len(leaf, extref),
1167 				 &victim_name);
1168 			if (ret)
1169 				return ret;
1170 
1171 			search_key.objectid = inode_objectid;
1172 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1173 			search_key.offset = btrfs_extref_hash(parent_objectid,
1174 							      victim_name.name,
1175 							      victim_name.len);
1176 			ret = backref_in_log(log_root, &search_key,
1177 					     parent_objectid, &victim_name);
1178 			if (ret < 0) {
1179 				kfree(victim_name.name);
1180 				return ret;
1181 			} else if (!ret) {
1182 				ret = -ENOENT;
1183 				victim_parent = read_one_inode(root,
1184 						parent_objectid);
1185 				if (victim_parent) {
1186 					inc_nlink(&inode->vfs_inode);
1187 					btrfs_release_path(path);
1188 
1189 					ret = unlink_inode_for_log_replay(trans,
1190 							BTRFS_I(victim_parent),
1191 							inode, &victim_name);
1192 				}
1193 				iput(victim_parent);
1194 				kfree(victim_name.name);
1195 				if (ret)
1196 					return ret;
1197 				goto again;
1198 			}
1199 			kfree(victim_name.name);
1200 next:
1201 			cur_offset += victim_name.len + sizeof(*extref);
1202 		}
1203 	}
1204 	btrfs_release_path(path);
1205 
1206 	/* look for a conflicting sequence number */
1207 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1208 					 ref_index, name, 0);
1209 	if (IS_ERR(di)) {
1210 		return PTR_ERR(di);
1211 	} else if (di) {
1212 		ret = drop_one_dir_item(trans, path, dir, di);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 	btrfs_release_path(path);
1217 
1218 	/* look for a conflicting name */
1219 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1220 	if (IS_ERR(di)) {
1221 		return PTR_ERR(di);
1222 	} else if (di) {
1223 		ret = drop_one_dir_item(trans, path, dir, di);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 	btrfs_release_path(path);
1228 
1229 	return 0;
1230 }
1231 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1232 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1233 			     struct fscrypt_str *name, u64 *index,
1234 			     u64 *parent_objectid)
1235 {
1236 	struct btrfs_inode_extref *extref;
1237 	int ret;
1238 
1239 	extref = (struct btrfs_inode_extref *)ref_ptr;
1240 
1241 	ret = read_alloc_one_name(eb, &extref->name,
1242 				  btrfs_inode_extref_name_len(eb, extref), name);
1243 	if (ret)
1244 		return ret;
1245 
1246 	if (index)
1247 		*index = btrfs_inode_extref_index(eb, extref);
1248 	if (parent_objectid)
1249 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1250 
1251 	return 0;
1252 }
1253 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1254 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1255 			  struct fscrypt_str *name, u64 *index)
1256 {
1257 	struct btrfs_inode_ref *ref;
1258 	int ret;
1259 
1260 	ref = (struct btrfs_inode_ref *)ref_ptr;
1261 
1262 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1263 				  name);
1264 	if (ret)
1265 		return ret;
1266 
1267 	if (index)
1268 		*index = btrfs_inode_ref_index(eb, ref);
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Take an inode reference item from the log tree and iterate all names from the
1275  * inode reference item in the subvolume tree with the same key (if it exists).
1276  * For any name that is not in the inode reference item from the log tree, do a
1277  * proper unlink of that name (that is, remove its entry from the inode
1278  * reference item and both dir index keys).
1279  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1280 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1281 				 struct btrfs_root *root,
1282 				 struct btrfs_path *path,
1283 				 struct btrfs_inode *inode,
1284 				 struct extent_buffer *log_eb,
1285 				 int log_slot,
1286 				 struct btrfs_key *key)
1287 {
1288 	int ret;
1289 	unsigned long ref_ptr;
1290 	unsigned long ref_end;
1291 	struct extent_buffer *eb;
1292 
1293 again:
1294 	btrfs_release_path(path);
1295 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1296 	if (ret > 0) {
1297 		ret = 0;
1298 		goto out;
1299 	}
1300 	if (ret < 0)
1301 		goto out;
1302 
1303 	eb = path->nodes[0];
1304 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1305 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1306 	while (ref_ptr < ref_end) {
1307 		struct fscrypt_str name;
1308 		u64 parent_id;
1309 
1310 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1311 			ret = extref_get_fields(eb, ref_ptr, &name,
1312 						NULL, &parent_id);
1313 		} else {
1314 			parent_id = key->offset;
1315 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1316 		}
1317 		if (ret)
1318 			goto out;
1319 
1320 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1321 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1322 							       parent_id, &name);
1323 		else
1324 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1325 
1326 		if (!ret) {
1327 			struct inode *dir;
1328 
1329 			btrfs_release_path(path);
1330 			dir = read_one_inode(root, parent_id);
1331 			if (!dir) {
1332 				ret = -ENOENT;
1333 				kfree(name.name);
1334 				goto out;
1335 			}
1336 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1337 						 inode, &name);
1338 			kfree(name.name);
1339 			iput(dir);
1340 			if (ret)
1341 				goto out;
1342 			goto again;
1343 		}
1344 
1345 		kfree(name.name);
1346 		ref_ptr += name.len;
1347 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1348 			ref_ptr += sizeof(struct btrfs_inode_extref);
1349 		else
1350 			ref_ptr += sizeof(struct btrfs_inode_ref);
1351 	}
1352 	ret = 0;
1353  out:
1354 	btrfs_release_path(path);
1355 	return ret;
1356 }
1357 
1358 /*
1359  * replay one inode back reference item found in the log tree.
1360  * eb, slot and key refer to the buffer and key found in the log tree.
1361  * root is the destination we are replaying into, and path is for temp
1362  * use by this function.  (it should be released on return).
1363  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1364 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1365 				  struct btrfs_root *root,
1366 				  struct btrfs_root *log,
1367 				  struct btrfs_path *path,
1368 				  struct extent_buffer *eb, int slot,
1369 				  struct btrfs_key *key)
1370 {
1371 	struct inode *dir = NULL;
1372 	struct inode *inode = NULL;
1373 	unsigned long ref_ptr;
1374 	unsigned long ref_end;
1375 	struct fscrypt_str name;
1376 	int ret;
1377 	int log_ref_ver = 0;
1378 	u64 parent_objectid;
1379 	u64 inode_objectid;
1380 	u64 ref_index = 0;
1381 	int ref_struct_size;
1382 
1383 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1384 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1385 
1386 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1387 		struct btrfs_inode_extref *r;
1388 
1389 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1390 		log_ref_ver = 1;
1391 		r = (struct btrfs_inode_extref *)ref_ptr;
1392 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1393 	} else {
1394 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1395 		parent_objectid = key->offset;
1396 	}
1397 	inode_objectid = key->objectid;
1398 
1399 	/*
1400 	 * it is possible that we didn't log all the parent directories
1401 	 * for a given inode.  If we don't find the dir, just don't
1402 	 * copy the back ref in.  The link count fixup code will take
1403 	 * care of the rest
1404 	 */
1405 	dir = read_one_inode(root, parent_objectid);
1406 	if (!dir) {
1407 		ret = -ENOENT;
1408 		goto out;
1409 	}
1410 
1411 	inode = read_one_inode(root, inode_objectid);
1412 	if (!inode) {
1413 		ret = -EIO;
1414 		goto out;
1415 	}
1416 
1417 	while (ref_ptr < ref_end) {
1418 		if (log_ref_ver) {
1419 			ret = extref_get_fields(eb, ref_ptr, &name,
1420 						&ref_index, &parent_objectid);
1421 			/*
1422 			 * parent object can change from one array
1423 			 * item to another.
1424 			 */
1425 			if (!dir)
1426 				dir = read_one_inode(root, parent_objectid);
1427 			if (!dir) {
1428 				ret = -ENOENT;
1429 				goto out;
1430 			}
1431 		} else {
1432 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1433 		}
1434 		if (ret)
1435 			goto out;
1436 
1437 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1438 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1439 		if (ret < 0) {
1440 			goto out;
1441 		} else if (ret == 0) {
1442 			/*
1443 			 * look for a conflicting back reference in the
1444 			 * metadata. if we find one we have to unlink that name
1445 			 * of the file before we add our new link.  Later on, we
1446 			 * overwrite any existing back reference, and we don't
1447 			 * want to create dangling pointers in the directory.
1448 			 */
1449 			ret = __add_inode_ref(trans, root, path, log,
1450 					      BTRFS_I(dir), BTRFS_I(inode),
1451 					      inode_objectid, parent_objectid,
1452 					      ref_index, &name);
1453 			if (ret) {
1454 				if (ret == 1)
1455 					ret = 0;
1456 				goto out;
1457 			}
1458 
1459 			/* insert our name */
1460 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1461 					     &name, 0, ref_index);
1462 			if (ret)
1463 				goto out;
1464 
1465 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1466 			if (ret)
1467 				goto out;
1468 		}
1469 		/* Else, ret == 1, we already have a perfect match, we're done. */
1470 
1471 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1472 		kfree(name.name);
1473 		name.name = NULL;
1474 		if (log_ref_ver) {
1475 			iput(dir);
1476 			dir = NULL;
1477 		}
1478 	}
1479 
1480 	/*
1481 	 * Before we overwrite the inode reference item in the subvolume tree
1482 	 * with the item from the log tree, we must unlink all names from the
1483 	 * parent directory that are in the subvolume's tree inode reference
1484 	 * item, otherwise we end up with an inconsistent subvolume tree where
1485 	 * dir index entries exist for a name but there is no inode reference
1486 	 * item with the same name.
1487 	 */
1488 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1489 				    key);
1490 	if (ret)
1491 		goto out;
1492 
1493 	/* finally write the back reference in the inode */
1494 	ret = overwrite_item(trans, root, path, eb, slot, key);
1495 out:
1496 	btrfs_release_path(path);
1497 	kfree(name.name);
1498 	iput(dir);
1499 	iput(inode);
1500 	return ret;
1501 }
1502 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1503 static int count_inode_extrefs(struct btrfs_root *root,
1504 		struct btrfs_inode *inode, struct btrfs_path *path)
1505 {
1506 	int ret = 0;
1507 	int name_len;
1508 	unsigned int nlink = 0;
1509 	u32 item_size;
1510 	u32 cur_offset = 0;
1511 	u64 inode_objectid = btrfs_ino(inode);
1512 	u64 offset = 0;
1513 	unsigned long ptr;
1514 	struct btrfs_inode_extref *extref;
1515 	struct extent_buffer *leaf;
1516 
1517 	while (1) {
1518 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1519 					    &extref, &offset);
1520 		if (ret)
1521 			break;
1522 
1523 		leaf = path->nodes[0];
1524 		item_size = btrfs_item_size(leaf, path->slots[0]);
1525 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1526 		cur_offset = 0;
1527 
1528 		while (cur_offset < item_size) {
1529 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1530 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1531 
1532 			nlink++;
1533 
1534 			cur_offset += name_len + sizeof(*extref);
1535 		}
1536 
1537 		offset++;
1538 		btrfs_release_path(path);
1539 	}
1540 	btrfs_release_path(path);
1541 
1542 	if (ret < 0 && ret != -ENOENT)
1543 		return ret;
1544 	return nlink;
1545 }
1546 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1547 static int count_inode_refs(struct btrfs_root *root,
1548 			struct btrfs_inode *inode, struct btrfs_path *path)
1549 {
1550 	int ret;
1551 	struct btrfs_key key;
1552 	unsigned int nlink = 0;
1553 	unsigned long ptr;
1554 	unsigned long ptr_end;
1555 	int name_len;
1556 	u64 ino = btrfs_ino(inode);
1557 
1558 	key.objectid = ino;
1559 	key.type = BTRFS_INODE_REF_KEY;
1560 	key.offset = (u64)-1;
1561 
1562 	while (1) {
1563 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1564 		if (ret < 0)
1565 			break;
1566 		if (ret > 0) {
1567 			if (path->slots[0] == 0)
1568 				break;
1569 			path->slots[0]--;
1570 		}
1571 process_slot:
1572 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1573 				      path->slots[0]);
1574 		if (key.objectid != ino ||
1575 		    key.type != BTRFS_INODE_REF_KEY)
1576 			break;
1577 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1578 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1579 						   path->slots[0]);
1580 		while (ptr < ptr_end) {
1581 			struct btrfs_inode_ref *ref;
1582 
1583 			ref = (struct btrfs_inode_ref *)ptr;
1584 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1585 							    ref);
1586 			ptr = (unsigned long)(ref + 1) + name_len;
1587 			nlink++;
1588 		}
1589 
1590 		if (key.offset == 0)
1591 			break;
1592 		if (path->slots[0] > 0) {
1593 			path->slots[0]--;
1594 			goto process_slot;
1595 		}
1596 		key.offset--;
1597 		btrfs_release_path(path);
1598 	}
1599 	btrfs_release_path(path);
1600 
1601 	return nlink;
1602 }
1603 
1604 /*
1605  * There are a few corners where the link count of the file can't
1606  * be properly maintained during replay.  So, instead of adding
1607  * lots of complexity to the log code, we just scan the backrefs
1608  * for any file that has been through replay.
1609  *
1610  * The scan will update the link count on the inode to reflect the
1611  * number of back refs found.  If it goes down to zero, the iput
1612  * will free the inode.
1613  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1614 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1615 					   struct btrfs_root *root,
1616 					   struct inode *inode)
1617 {
1618 	struct btrfs_path *path;
1619 	int ret;
1620 	u64 nlink = 0;
1621 	u64 ino = btrfs_ino(BTRFS_I(inode));
1622 
1623 	path = btrfs_alloc_path();
1624 	if (!path)
1625 		return -ENOMEM;
1626 
1627 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1628 	if (ret < 0)
1629 		goto out;
1630 
1631 	nlink = ret;
1632 
1633 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1634 	if (ret < 0)
1635 		goto out;
1636 
1637 	nlink += ret;
1638 
1639 	ret = 0;
1640 
1641 	if (nlink != inode->i_nlink) {
1642 		set_nlink(inode, nlink);
1643 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1644 		if (ret)
1645 			goto out;
1646 	}
1647 	BTRFS_I(inode)->index_cnt = (u64)-1;
1648 
1649 	if (inode->i_nlink == 0) {
1650 		if (S_ISDIR(inode->i_mode)) {
1651 			ret = replay_dir_deletes(trans, root, NULL, path,
1652 						 ino, 1);
1653 			if (ret)
1654 				goto out;
1655 		}
1656 		ret = btrfs_insert_orphan_item(trans, root, ino);
1657 		if (ret == -EEXIST)
1658 			ret = 0;
1659 	}
1660 
1661 out:
1662 	btrfs_free_path(path);
1663 	return ret;
1664 }
1665 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1666 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1667 					    struct btrfs_root *root,
1668 					    struct btrfs_path *path)
1669 {
1670 	int ret;
1671 	struct btrfs_key key;
1672 	struct inode *inode;
1673 
1674 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1675 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1676 	key.offset = (u64)-1;
1677 	while (1) {
1678 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1679 		if (ret < 0)
1680 			break;
1681 
1682 		if (ret == 1) {
1683 			ret = 0;
1684 			if (path->slots[0] == 0)
1685 				break;
1686 			path->slots[0]--;
1687 		}
1688 
1689 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1690 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1691 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1692 			break;
1693 
1694 		ret = btrfs_del_item(trans, root, path);
1695 		if (ret)
1696 			break;
1697 
1698 		btrfs_release_path(path);
1699 		inode = read_one_inode(root, key.offset);
1700 		if (!inode) {
1701 			ret = -EIO;
1702 			break;
1703 		}
1704 
1705 		ret = fixup_inode_link_count(trans, root, inode);
1706 		iput(inode);
1707 		if (ret)
1708 			break;
1709 
1710 		/*
1711 		 * fixup on a directory may create new entries,
1712 		 * make sure we always look for the highset possible
1713 		 * offset
1714 		 */
1715 		key.offset = (u64)-1;
1716 	}
1717 	btrfs_release_path(path);
1718 	return ret;
1719 }
1720 
1721 
1722 /*
1723  * record a given inode in the fixup dir so we can check its link
1724  * count when replay is done.  The link count is incremented here
1725  * so the inode won't go away until we check it
1726  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1727 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1728 				      struct btrfs_root *root,
1729 				      struct btrfs_path *path,
1730 				      u64 objectid)
1731 {
1732 	struct btrfs_key key;
1733 	int ret = 0;
1734 	struct inode *inode;
1735 
1736 	inode = read_one_inode(root, objectid);
1737 	if (!inode)
1738 		return -EIO;
1739 
1740 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1741 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1742 	key.offset = objectid;
1743 
1744 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1745 
1746 	btrfs_release_path(path);
1747 	if (ret == 0) {
1748 		if (!inode->i_nlink)
1749 			set_nlink(inode, 1);
1750 		else
1751 			inc_nlink(inode);
1752 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1753 	} else if (ret == -EEXIST) {
1754 		ret = 0;
1755 	}
1756 	iput(inode);
1757 
1758 	return ret;
1759 }
1760 
1761 /*
1762  * when replaying the log for a directory, we only insert names
1763  * for inodes that actually exist.  This means an fsync on a directory
1764  * does not implicitly fsync all the new files in it
1765  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1766 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1767 				    struct btrfs_root *root,
1768 				    u64 dirid, u64 index,
1769 				    const struct fscrypt_str *name,
1770 				    struct btrfs_key *location)
1771 {
1772 	struct inode *inode;
1773 	struct inode *dir;
1774 	int ret;
1775 
1776 	inode = read_one_inode(root, location->objectid);
1777 	if (!inode)
1778 		return -ENOENT;
1779 
1780 	dir = read_one_inode(root, dirid);
1781 	if (!dir) {
1782 		iput(inode);
1783 		return -EIO;
1784 	}
1785 
1786 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1787 			     1, index);
1788 
1789 	/* FIXME, put inode into FIXUP list */
1790 
1791 	iput(inode);
1792 	iput(dir);
1793 	return ret;
1794 }
1795 
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_type,bool exists)1796 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1797 					struct btrfs_inode *dir,
1798 					struct btrfs_path *path,
1799 					struct btrfs_dir_item *dst_di,
1800 					const struct btrfs_key *log_key,
1801 					u8 log_type,
1802 					bool exists)
1803 {
1804 	struct btrfs_key found_key;
1805 
1806 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1807 	/* The existing dentry points to the same inode, don't delete it. */
1808 	if (found_key.objectid == log_key->objectid &&
1809 	    found_key.type == log_key->type &&
1810 	    found_key.offset == log_key->offset &&
1811 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1812 		return 1;
1813 
1814 	/*
1815 	 * Don't drop the conflicting directory entry if the inode for the new
1816 	 * entry doesn't exist.
1817 	 */
1818 	if (!exists)
1819 		return 0;
1820 
1821 	return drop_one_dir_item(trans, path, dir, dst_di);
1822 }
1823 
1824 /*
1825  * take a single entry in a log directory item and replay it into
1826  * the subvolume.
1827  *
1828  * if a conflicting item exists in the subdirectory already,
1829  * the inode it points to is unlinked and put into the link count
1830  * fix up tree.
1831  *
1832  * If a name from the log points to a file or directory that does
1833  * not exist in the FS, it is skipped.  fsyncs on directories
1834  * do not force down inodes inside that directory, just changes to the
1835  * names or unlinks in a directory.
1836  *
1837  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1838  * non-existing inode) and 1 if the name was replayed.
1839  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1840 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1841 				    struct btrfs_root *root,
1842 				    struct btrfs_path *path,
1843 				    struct extent_buffer *eb,
1844 				    struct btrfs_dir_item *di,
1845 				    struct btrfs_key *key)
1846 {
1847 	struct fscrypt_str name;
1848 	struct btrfs_dir_item *dir_dst_di;
1849 	struct btrfs_dir_item *index_dst_di;
1850 	bool dir_dst_matches = false;
1851 	bool index_dst_matches = false;
1852 	struct btrfs_key log_key;
1853 	struct btrfs_key search_key;
1854 	struct inode *dir;
1855 	u8 log_type;
1856 	bool exists;
1857 	int ret;
1858 	bool update_size = true;
1859 	bool name_added = false;
1860 
1861 	dir = read_one_inode(root, key->objectid);
1862 	if (!dir)
1863 		return -EIO;
1864 
1865 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1866 	if (ret)
1867 		goto out;
1868 
1869 	log_type = btrfs_dir_type(eb, di);
1870 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1871 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1872 	btrfs_release_path(path);
1873 	if (ret < 0)
1874 		goto out;
1875 	exists = (ret == 0);
1876 	ret = 0;
1877 
1878 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1879 					   &name, 1);
1880 	if (IS_ERR(dir_dst_di)) {
1881 		ret = PTR_ERR(dir_dst_di);
1882 		goto out;
1883 	} else if (dir_dst_di) {
1884 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1885 						   dir_dst_di, &log_key, log_type,
1886 						   exists);
1887 		if (ret < 0)
1888 			goto out;
1889 		dir_dst_matches = (ret == 1);
1890 	}
1891 
1892 	btrfs_release_path(path);
1893 
1894 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1895 						   key->objectid, key->offset,
1896 						   &name, 1);
1897 	if (IS_ERR(index_dst_di)) {
1898 		ret = PTR_ERR(index_dst_di);
1899 		goto out;
1900 	} else if (index_dst_di) {
1901 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1902 						   index_dst_di, &log_key,
1903 						   log_type, exists);
1904 		if (ret < 0)
1905 			goto out;
1906 		index_dst_matches = (ret == 1);
1907 	}
1908 
1909 	btrfs_release_path(path);
1910 
1911 	if (dir_dst_matches && index_dst_matches) {
1912 		ret = 0;
1913 		update_size = false;
1914 		goto out;
1915 	}
1916 
1917 	/*
1918 	 * Check if the inode reference exists in the log for the given name,
1919 	 * inode and parent inode
1920 	 */
1921 	search_key.objectid = log_key.objectid;
1922 	search_key.type = BTRFS_INODE_REF_KEY;
1923 	search_key.offset = key->objectid;
1924 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1925 	if (ret < 0) {
1926 	        goto out;
1927 	} else if (ret) {
1928 	        /* The dentry will be added later. */
1929 	        ret = 0;
1930 	        update_size = false;
1931 	        goto out;
1932 	}
1933 
1934 	search_key.objectid = log_key.objectid;
1935 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1936 	search_key.offset = key->objectid;
1937 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1938 	if (ret < 0) {
1939 		goto out;
1940 	} else if (ret) {
1941 		/* The dentry will be added later. */
1942 		ret = 0;
1943 		update_size = false;
1944 		goto out;
1945 	}
1946 	btrfs_release_path(path);
1947 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1948 			      &name, &log_key);
1949 	if (ret && ret != -ENOENT && ret != -EEXIST)
1950 		goto out;
1951 	if (!ret)
1952 		name_added = true;
1953 	update_size = false;
1954 	ret = 0;
1955 
1956 out:
1957 	if (!ret && update_size) {
1958 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1959 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1960 	}
1961 	kfree(name.name);
1962 	iput(dir);
1963 	if (!ret && name_added)
1964 		ret = 1;
1965 	return ret;
1966 }
1967 
1968 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1969 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1970 					struct btrfs_root *root,
1971 					struct btrfs_path *path,
1972 					struct extent_buffer *eb, int slot,
1973 					struct btrfs_key *key)
1974 {
1975 	int ret;
1976 	struct btrfs_dir_item *di;
1977 
1978 	/* We only log dir index keys, which only contain a single dir item. */
1979 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1980 
1981 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1982 	ret = replay_one_name(trans, root, path, eb, di, key);
1983 	if (ret < 0)
1984 		return ret;
1985 
1986 	/*
1987 	 * If this entry refers to a non-directory (directories can not have a
1988 	 * link count > 1) and it was added in the transaction that was not
1989 	 * committed, make sure we fixup the link count of the inode the entry
1990 	 * points to. Otherwise something like the following would result in a
1991 	 * directory pointing to an inode with a wrong link that does not account
1992 	 * for this dir entry:
1993 	 *
1994 	 * mkdir testdir
1995 	 * touch testdir/foo
1996 	 * touch testdir/bar
1997 	 * sync
1998 	 *
1999 	 * ln testdir/bar testdir/bar_link
2000 	 * ln testdir/foo testdir/foo_link
2001 	 * xfs_io -c "fsync" testdir/bar
2002 	 *
2003 	 * <power failure>
2004 	 *
2005 	 * mount fs, log replay happens
2006 	 *
2007 	 * File foo would remain with a link count of 1 when it has two entries
2008 	 * pointing to it in the directory testdir. This would make it impossible
2009 	 * to ever delete the parent directory has it would result in stale
2010 	 * dentries that can never be deleted.
2011 	 */
2012 	if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2013 		struct btrfs_path *fixup_path;
2014 		struct btrfs_key di_key;
2015 
2016 		fixup_path = btrfs_alloc_path();
2017 		if (!fixup_path)
2018 			return -ENOMEM;
2019 
2020 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2021 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2022 		btrfs_free_path(fixup_path);
2023 	}
2024 
2025 	return ret;
2026 }
2027 
2028 /*
2029  * directory replay has two parts.  There are the standard directory
2030  * items in the log copied from the subvolume, and range items
2031  * created in the log while the subvolume was logged.
2032  *
2033  * The range items tell us which parts of the key space the log
2034  * is authoritative for.  During replay, if a key in the subvolume
2035  * directory is in a logged range item, but not actually in the log
2036  * that means it was deleted from the directory before the fsync
2037  * and should be removed.
2038  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2039 static noinline int find_dir_range(struct btrfs_root *root,
2040 				   struct btrfs_path *path,
2041 				   u64 dirid,
2042 				   u64 *start_ret, u64 *end_ret)
2043 {
2044 	struct btrfs_key key;
2045 	u64 found_end;
2046 	struct btrfs_dir_log_item *item;
2047 	int ret;
2048 	int nritems;
2049 
2050 	if (*start_ret == (u64)-1)
2051 		return 1;
2052 
2053 	key.objectid = dirid;
2054 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2055 	key.offset = *start_ret;
2056 
2057 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2058 	if (ret < 0)
2059 		goto out;
2060 	if (ret > 0) {
2061 		if (path->slots[0] == 0)
2062 			goto out;
2063 		path->slots[0]--;
2064 	}
2065 	if (ret != 0)
2066 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2067 
2068 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2069 		ret = 1;
2070 		goto next;
2071 	}
2072 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2073 			      struct btrfs_dir_log_item);
2074 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2075 
2076 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2077 		ret = 0;
2078 		*start_ret = key.offset;
2079 		*end_ret = found_end;
2080 		goto out;
2081 	}
2082 	ret = 1;
2083 next:
2084 	/* check the next slot in the tree to see if it is a valid item */
2085 	nritems = btrfs_header_nritems(path->nodes[0]);
2086 	path->slots[0]++;
2087 	if (path->slots[0] >= nritems) {
2088 		ret = btrfs_next_leaf(root, path);
2089 		if (ret)
2090 			goto out;
2091 	}
2092 
2093 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2094 
2095 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2096 		ret = 1;
2097 		goto out;
2098 	}
2099 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2100 			      struct btrfs_dir_log_item);
2101 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2102 	*start_ret = key.offset;
2103 	*end_ret = found_end;
2104 	ret = 0;
2105 out:
2106 	btrfs_release_path(path);
2107 	return ret;
2108 }
2109 
2110 /*
2111  * this looks for a given directory item in the log.  If the directory
2112  * item is not in the log, the item is removed and the inode it points
2113  * to is unlinked
2114  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2115 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2116 				      struct btrfs_root *log,
2117 				      struct btrfs_path *path,
2118 				      struct btrfs_path *log_path,
2119 				      struct inode *dir,
2120 				      struct btrfs_key *dir_key)
2121 {
2122 	struct btrfs_root *root = BTRFS_I(dir)->root;
2123 	int ret;
2124 	struct extent_buffer *eb;
2125 	int slot;
2126 	struct btrfs_dir_item *di;
2127 	struct fscrypt_str name;
2128 	struct inode *inode = NULL;
2129 	struct btrfs_key location;
2130 
2131 	/*
2132 	 * Currently we only log dir index keys. Even if we replay a log created
2133 	 * by an older kernel that logged both dir index and dir item keys, all
2134 	 * we need to do is process the dir index keys, we (and our caller) can
2135 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2136 	 */
2137 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2138 
2139 	eb = path->nodes[0];
2140 	slot = path->slots[0];
2141 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2142 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2143 	if (ret)
2144 		goto out;
2145 
2146 	if (log) {
2147 		struct btrfs_dir_item *log_di;
2148 
2149 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2150 						     dir_key->objectid,
2151 						     dir_key->offset, &name, 0);
2152 		if (IS_ERR(log_di)) {
2153 			ret = PTR_ERR(log_di);
2154 			goto out;
2155 		} else if (log_di) {
2156 			/* The dentry exists in the log, we have nothing to do. */
2157 			ret = 0;
2158 			goto out;
2159 		}
2160 	}
2161 
2162 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2163 	btrfs_release_path(path);
2164 	btrfs_release_path(log_path);
2165 	inode = read_one_inode(root, location.objectid);
2166 	if (!inode) {
2167 		ret = -EIO;
2168 		goto out;
2169 	}
2170 
2171 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2172 	if (ret)
2173 		goto out;
2174 
2175 	inc_nlink(inode);
2176 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2177 					  &name);
2178 	/*
2179 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2180 	 * them, as there are no key collisions since each key has a unique offset
2181 	 * (an index number), so we're done.
2182 	 */
2183 out:
2184 	btrfs_release_path(path);
2185 	btrfs_release_path(log_path);
2186 	kfree(name.name);
2187 	iput(inode);
2188 	return ret;
2189 }
2190 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2191 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2192 			      struct btrfs_root *root,
2193 			      struct btrfs_root *log,
2194 			      struct btrfs_path *path,
2195 			      const u64 ino)
2196 {
2197 	struct btrfs_key search_key;
2198 	struct btrfs_path *log_path;
2199 	int i;
2200 	int nritems;
2201 	int ret;
2202 
2203 	log_path = btrfs_alloc_path();
2204 	if (!log_path)
2205 		return -ENOMEM;
2206 
2207 	search_key.objectid = ino;
2208 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2209 	search_key.offset = 0;
2210 again:
2211 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2212 	if (ret < 0)
2213 		goto out;
2214 process_leaf:
2215 	nritems = btrfs_header_nritems(path->nodes[0]);
2216 	for (i = path->slots[0]; i < nritems; i++) {
2217 		struct btrfs_key key;
2218 		struct btrfs_dir_item *di;
2219 		struct btrfs_dir_item *log_di;
2220 		u32 total_size;
2221 		u32 cur;
2222 
2223 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2224 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2225 			ret = 0;
2226 			goto out;
2227 		}
2228 
2229 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2230 		total_size = btrfs_item_size(path->nodes[0], i);
2231 		cur = 0;
2232 		while (cur < total_size) {
2233 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2234 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2235 			u32 this_len = sizeof(*di) + name_len + data_len;
2236 			char *name;
2237 
2238 			name = kmalloc(name_len, GFP_NOFS);
2239 			if (!name) {
2240 				ret = -ENOMEM;
2241 				goto out;
2242 			}
2243 			read_extent_buffer(path->nodes[0], name,
2244 					   (unsigned long)(di + 1), name_len);
2245 
2246 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2247 						    name, name_len, 0);
2248 			btrfs_release_path(log_path);
2249 			if (!log_di) {
2250 				/* Doesn't exist in log tree, so delete it. */
2251 				btrfs_release_path(path);
2252 				di = btrfs_lookup_xattr(trans, root, path, ino,
2253 							name, name_len, -1);
2254 				kfree(name);
2255 				if (IS_ERR(di)) {
2256 					ret = PTR_ERR(di);
2257 					goto out;
2258 				}
2259 				ASSERT(di);
2260 				ret = btrfs_delete_one_dir_name(trans, root,
2261 								path, di);
2262 				if (ret)
2263 					goto out;
2264 				btrfs_release_path(path);
2265 				search_key = key;
2266 				goto again;
2267 			}
2268 			kfree(name);
2269 			if (IS_ERR(log_di)) {
2270 				ret = PTR_ERR(log_di);
2271 				goto out;
2272 			}
2273 			cur += this_len;
2274 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2275 		}
2276 	}
2277 	ret = btrfs_next_leaf(root, path);
2278 	if (ret > 0)
2279 		ret = 0;
2280 	else if (ret == 0)
2281 		goto process_leaf;
2282 out:
2283 	btrfs_free_path(log_path);
2284 	btrfs_release_path(path);
2285 	return ret;
2286 }
2287 
2288 
2289 /*
2290  * deletion replay happens before we copy any new directory items
2291  * out of the log or out of backreferences from inodes.  It
2292  * scans the log to find ranges of keys that log is authoritative for,
2293  * and then scans the directory to find items in those ranges that are
2294  * not present in the log.
2295  *
2296  * Anything we don't find in the log is unlinked and removed from the
2297  * directory.
2298  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2299 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2300 				       struct btrfs_root *root,
2301 				       struct btrfs_root *log,
2302 				       struct btrfs_path *path,
2303 				       u64 dirid, int del_all)
2304 {
2305 	u64 range_start;
2306 	u64 range_end;
2307 	int ret = 0;
2308 	struct btrfs_key dir_key;
2309 	struct btrfs_key found_key;
2310 	struct btrfs_path *log_path;
2311 	struct inode *dir;
2312 
2313 	dir_key.objectid = dirid;
2314 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2315 	log_path = btrfs_alloc_path();
2316 	if (!log_path)
2317 		return -ENOMEM;
2318 
2319 	dir = read_one_inode(root, dirid);
2320 	/* it isn't an error if the inode isn't there, that can happen
2321 	 * because we replay the deletes before we copy in the inode item
2322 	 * from the log
2323 	 */
2324 	if (!dir) {
2325 		btrfs_free_path(log_path);
2326 		return 0;
2327 	}
2328 
2329 	range_start = 0;
2330 	range_end = 0;
2331 	while (1) {
2332 		if (del_all)
2333 			range_end = (u64)-1;
2334 		else {
2335 			ret = find_dir_range(log, path, dirid,
2336 					     &range_start, &range_end);
2337 			if (ret < 0)
2338 				goto out;
2339 			else if (ret > 0)
2340 				break;
2341 		}
2342 
2343 		dir_key.offset = range_start;
2344 		while (1) {
2345 			int nritems;
2346 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2347 						0, 0);
2348 			if (ret < 0)
2349 				goto out;
2350 
2351 			nritems = btrfs_header_nritems(path->nodes[0]);
2352 			if (path->slots[0] >= nritems) {
2353 				ret = btrfs_next_leaf(root, path);
2354 				if (ret == 1)
2355 					break;
2356 				else if (ret < 0)
2357 					goto out;
2358 			}
2359 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2360 					      path->slots[0]);
2361 			if (found_key.objectid != dirid ||
2362 			    found_key.type != dir_key.type) {
2363 				ret = 0;
2364 				goto out;
2365 			}
2366 
2367 			if (found_key.offset > range_end)
2368 				break;
2369 
2370 			ret = check_item_in_log(trans, log, path,
2371 						log_path, dir,
2372 						&found_key);
2373 			if (ret)
2374 				goto out;
2375 			if (found_key.offset == (u64)-1)
2376 				break;
2377 			dir_key.offset = found_key.offset + 1;
2378 		}
2379 		btrfs_release_path(path);
2380 		if (range_end == (u64)-1)
2381 			break;
2382 		range_start = range_end + 1;
2383 	}
2384 	ret = 0;
2385 out:
2386 	btrfs_release_path(path);
2387 	btrfs_free_path(log_path);
2388 	iput(dir);
2389 	return ret;
2390 }
2391 
2392 /*
2393  * the process_func used to replay items from the log tree.  This
2394  * gets called in two different stages.  The first stage just looks
2395  * for inodes and makes sure they are all copied into the subvolume.
2396  *
2397  * The second stage copies all the other item types from the log into
2398  * the subvolume.  The two stage approach is slower, but gets rid of
2399  * lots of complexity around inodes referencing other inodes that exist
2400  * only in the log (references come from either directory items or inode
2401  * back refs).
2402  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2403 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2404 			     struct walk_control *wc, u64 gen, int level)
2405 {
2406 	int nritems;
2407 	struct btrfs_path *path;
2408 	struct btrfs_root *root = wc->replay_dest;
2409 	struct btrfs_key key;
2410 	int i;
2411 	int ret;
2412 
2413 	ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2414 	if (ret)
2415 		return ret;
2416 
2417 	level = btrfs_header_level(eb);
2418 
2419 	if (level != 0)
2420 		return 0;
2421 
2422 	path = btrfs_alloc_path();
2423 	if (!path)
2424 		return -ENOMEM;
2425 
2426 	nritems = btrfs_header_nritems(eb);
2427 	for (i = 0; i < nritems; i++) {
2428 		btrfs_item_key_to_cpu(eb, &key, i);
2429 
2430 		/* inode keys are done during the first stage */
2431 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2432 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2433 			struct btrfs_inode_item *inode_item;
2434 			u32 mode;
2435 
2436 			inode_item = btrfs_item_ptr(eb, i,
2437 					    struct btrfs_inode_item);
2438 			/*
2439 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2440 			 * and never got linked before the fsync, skip it, as
2441 			 * replaying it is pointless since it would be deleted
2442 			 * later. We skip logging tmpfiles, but it's always
2443 			 * possible we are replaying a log created with a kernel
2444 			 * that used to log tmpfiles.
2445 			 */
2446 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2447 				wc->ignore_cur_inode = true;
2448 				continue;
2449 			} else {
2450 				wc->ignore_cur_inode = false;
2451 			}
2452 			ret = replay_xattr_deletes(wc->trans, root, log,
2453 						   path, key.objectid);
2454 			if (ret)
2455 				break;
2456 			mode = btrfs_inode_mode(eb, inode_item);
2457 			if (S_ISDIR(mode)) {
2458 				ret = replay_dir_deletes(wc->trans,
2459 					 root, log, path, key.objectid, 0);
2460 				if (ret)
2461 					break;
2462 			}
2463 			ret = overwrite_item(wc->trans, root, path,
2464 					     eb, i, &key);
2465 			if (ret)
2466 				break;
2467 
2468 			/*
2469 			 * Before replaying extents, truncate the inode to its
2470 			 * size. We need to do it now and not after log replay
2471 			 * because before an fsync we can have prealloc extents
2472 			 * added beyond the inode's i_size. If we did it after,
2473 			 * through orphan cleanup for example, we would drop
2474 			 * those prealloc extents just after replaying them.
2475 			 */
2476 			if (S_ISREG(mode)) {
2477 				struct btrfs_drop_extents_args drop_args = { 0 };
2478 				struct inode *inode;
2479 				u64 from;
2480 
2481 				inode = read_one_inode(root, key.objectid);
2482 				if (!inode) {
2483 					ret = -EIO;
2484 					break;
2485 				}
2486 				from = ALIGN(i_size_read(inode),
2487 					     root->fs_info->sectorsize);
2488 				drop_args.start = from;
2489 				drop_args.end = (u64)-1;
2490 				drop_args.drop_cache = true;
2491 				ret = btrfs_drop_extents(wc->trans, root,
2492 							 BTRFS_I(inode),
2493 							 &drop_args);
2494 				if (!ret) {
2495 					inode_sub_bytes(inode,
2496 							drop_args.bytes_found);
2497 					/* Update the inode's nbytes. */
2498 					ret = btrfs_update_inode(wc->trans,
2499 							root, BTRFS_I(inode));
2500 				}
2501 				iput(inode);
2502 				if (ret)
2503 					break;
2504 			}
2505 
2506 			ret = link_to_fixup_dir(wc->trans, root,
2507 						path, key.objectid);
2508 			if (ret)
2509 				break;
2510 		}
2511 
2512 		if (wc->ignore_cur_inode)
2513 			continue;
2514 
2515 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2516 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2517 			ret = replay_one_dir_item(wc->trans, root, path,
2518 						  eb, i, &key);
2519 			if (ret)
2520 				break;
2521 		}
2522 
2523 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2524 			continue;
2525 
2526 		/* these keys are simply copied */
2527 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2528 			ret = overwrite_item(wc->trans, root, path,
2529 					     eb, i, &key);
2530 			if (ret)
2531 				break;
2532 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2533 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2534 			ret = add_inode_ref(wc->trans, root, log, path,
2535 					    eb, i, &key);
2536 			if (ret && ret != -ENOENT)
2537 				break;
2538 			ret = 0;
2539 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2540 			ret = replay_one_extent(wc->trans, root, path,
2541 						eb, i, &key);
2542 			if (ret)
2543 				break;
2544 		}
2545 		/*
2546 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2547 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2548 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2549 		 * older kernel with such keys, ignore them.
2550 		 */
2551 	}
2552 	btrfs_free_path(path);
2553 	return ret;
2554 }
2555 
2556 /*
2557  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2558  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2559 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2560 {
2561 	struct btrfs_block_group *cache;
2562 
2563 	cache = btrfs_lookup_block_group(fs_info, start);
2564 	if (!cache) {
2565 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2566 		return;
2567 	}
2568 
2569 	spin_lock(&cache->space_info->lock);
2570 	spin_lock(&cache->lock);
2571 	cache->reserved -= fs_info->nodesize;
2572 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2573 	spin_unlock(&cache->lock);
2574 	spin_unlock(&cache->space_info->lock);
2575 
2576 	btrfs_put_block_group(cache);
2577 }
2578 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2579 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2580 				   struct btrfs_root *root,
2581 				   struct btrfs_path *path, int *level,
2582 				   struct walk_control *wc)
2583 {
2584 	struct btrfs_fs_info *fs_info = root->fs_info;
2585 	u64 bytenr;
2586 	u64 ptr_gen;
2587 	struct extent_buffer *next;
2588 	struct extent_buffer *cur;
2589 	u32 blocksize;
2590 	int ret = 0;
2591 
2592 	while (*level > 0) {
2593 		struct btrfs_key first_key;
2594 
2595 		cur = path->nodes[*level];
2596 
2597 		WARN_ON(btrfs_header_level(cur) != *level);
2598 
2599 		if (path->slots[*level] >=
2600 		    btrfs_header_nritems(cur))
2601 			break;
2602 
2603 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2604 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2605 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2606 		blocksize = fs_info->nodesize;
2607 
2608 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2609 						    btrfs_header_owner(cur),
2610 						    *level - 1);
2611 		if (IS_ERR(next))
2612 			return PTR_ERR(next);
2613 
2614 		if (*level == 1) {
2615 			ret = wc->process_func(root, next, wc, ptr_gen,
2616 					       *level - 1);
2617 			if (ret) {
2618 				free_extent_buffer(next);
2619 				return ret;
2620 			}
2621 
2622 			path->slots[*level]++;
2623 			if (wc->free) {
2624 				ret = btrfs_read_extent_buffer(next, ptr_gen,
2625 							*level - 1, &first_key);
2626 				if (ret) {
2627 					free_extent_buffer(next);
2628 					return ret;
2629 				}
2630 
2631 				if (trans) {
2632 					btrfs_tree_lock(next);
2633 					btrfs_clean_tree_block(next);
2634 					btrfs_wait_tree_block_writeback(next);
2635 					btrfs_tree_unlock(next);
2636 					ret = btrfs_pin_reserved_extent(trans,
2637 							bytenr, blocksize);
2638 					if (ret) {
2639 						free_extent_buffer(next);
2640 						return ret;
2641 					}
2642 					btrfs_redirty_list_add(
2643 						trans->transaction, next);
2644 				} else {
2645 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2646 						clear_extent_buffer_dirty(next);
2647 					unaccount_log_buffer(fs_info, bytenr);
2648 				}
2649 			}
2650 			free_extent_buffer(next);
2651 			continue;
2652 		}
2653 		ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2654 		if (ret) {
2655 			free_extent_buffer(next);
2656 			return ret;
2657 		}
2658 
2659 		if (path->nodes[*level-1])
2660 			free_extent_buffer(path->nodes[*level-1]);
2661 		path->nodes[*level-1] = next;
2662 		*level = btrfs_header_level(next);
2663 		path->slots[*level] = 0;
2664 		cond_resched();
2665 	}
2666 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2667 
2668 	cond_resched();
2669 	return 0;
2670 }
2671 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2672 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2673 				 struct btrfs_root *root,
2674 				 struct btrfs_path *path, int *level,
2675 				 struct walk_control *wc)
2676 {
2677 	struct btrfs_fs_info *fs_info = root->fs_info;
2678 	int i;
2679 	int slot;
2680 	int ret;
2681 
2682 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2683 		slot = path->slots[i];
2684 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2685 			path->slots[i]++;
2686 			*level = i;
2687 			WARN_ON(*level == 0);
2688 			return 0;
2689 		} else {
2690 			ret = wc->process_func(root, path->nodes[*level], wc,
2691 				 btrfs_header_generation(path->nodes[*level]),
2692 				 *level);
2693 			if (ret)
2694 				return ret;
2695 
2696 			if (wc->free) {
2697 				struct extent_buffer *next;
2698 
2699 				next = path->nodes[*level];
2700 
2701 				if (trans) {
2702 					btrfs_tree_lock(next);
2703 					btrfs_clean_tree_block(next);
2704 					btrfs_wait_tree_block_writeback(next);
2705 					btrfs_tree_unlock(next);
2706 					ret = btrfs_pin_reserved_extent(trans,
2707 						     path->nodes[*level]->start,
2708 						     path->nodes[*level]->len);
2709 					if (ret)
2710 						return ret;
2711 					btrfs_redirty_list_add(trans->transaction,
2712 							       next);
2713 				} else {
2714 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2715 						clear_extent_buffer_dirty(next);
2716 
2717 					unaccount_log_buffer(fs_info,
2718 						path->nodes[*level]->start);
2719 				}
2720 			}
2721 			free_extent_buffer(path->nodes[*level]);
2722 			path->nodes[*level] = NULL;
2723 			*level = i + 1;
2724 		}
2725 	}
2726 	return 1;
2727 }
2728 
2729 /*
2730  * drop the reference count on the tree rooted at 'snap'.  This traverses
2731  * the tree freeing any blocks that have a ref count of zero after being
2732  * decremented.
2733  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2734 static int walk_log_tree(struct btrfs_trans_handle *trans,
2735 			 struct btrfs_root *log, struct walk_control *wc)
2736 {
2737 	struct btrfs_fs_info *fs_info = log->fs_info;
2738 	int ret = 0;
2739 	int wret;
2740 	int level;
2741 	struct btrfs_path *path;
2742 	int orig_level;
2743 
2744 	path = btrfs_alloc_path();
2745 	if (!path)
2746 		return -ENOMEM;
2747 
2748 	level = btrfs_header_level(log->node);
2749 	orig_level = level;
2750 	path->nodes[level] = log->node;
2751 	atomic_inc(&log->node->refs);
2752 	path->slots[level] = 0;
2753 
2754 	while (1) {
2755 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2756 		if (wret > 0)
2757 			break;
2758 		if (wret < 0) {
2759 			ret = wret;
2760 			goto out;
2761 		}
2762 
2763 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2764 		if (wret > 0)
2765 			break;
2766 		if (wret < 0) {
2767 			ret = wret;
2768 			goto out;
2769 		}
2770 	}
2771 
2772 	/* was the root node processed? if not, catch it here */
2773 	if (path->nodes[orig_level]) {
2774 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2775 			 btrfs_header_generation(path->nodes[orig_level]),
2776 			 orig_level);
2777 		if (ret)
2778 			goto out;
2779 		if (wc->free) {
2780 			struct extent_buffer *next;
2781 
2782 			next = path->nodes[orig_level];
2783 
2784 			if (trans) {
2785 				btrfs_tree_lock(next);
2786 				btrfs_clean_tree_block(next);
2787 				btrfs_wait_tree_block_writeback(next);
2788 				btrfs_tree_unlock(next);
2789 				ret = btrfs_pin_reserved_extent(trans,
2790 						next->start, next->len);
2791 				if (ret)
2792 					goto out;
2793 				btrfs_redirty_list_add(trans->transaction, next);
2794 			} else {
2795 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2796 					clear_extent_buffer_dirty(next);
2797 				unaccount_log_buffer(fs_info, next->start);
2798 			}
2799 		}
2800 	}
2801 
2802 out:
2803 	btrfs_free_path(path);
2804 	return ret;
2805 }
2806 
2807 /*
2808  * helper function to update the item for a given subvolumes log root
2809  * in the tree of log roots
2810  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2811 static int update_log_root(struct btrfs_trans_handle *trans,
2812 			   struct btrfs_root *log,
2813 			   struct btrfs_root_item *root_item)
2814 {
2815 	struct btrfs_fs_info *fs_info = log->fs_info;
2816 	int ret;
2817 
2818 	if (log->log_transid == 1) {
2819 		/* insert root item on the first sync */
2820 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2821 				&log->root_key, root_item);
2822 	} else {
2823 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2824 				&log->root_key, root_item);
2825 	}
2826 	return ret;
2827 }
2828 
wait_log_commit(struct btrfs_root * root,int transid)2829 static void wait_log_commit(struct btrfs_root *root, int transid)
2830 {
2831 	DEFINE_WAIT(wait);
2832 	int index = transid % 2;
2833 
2834 	/*
2835 	 * we only allow two pending log transactions at a time,
2836 	 * so we know that if ours is more than 2 older than the
2837 	 * current transaction, we're done
2838 	 */
2839 	for (;;) {
2840 		prepare_to_wait(&root->log_commit_wait[index],
2841 				&wait, TASK_UNINTERRUPTIBLE);
2842 
2843 		if (!(root->log_transid_committed < transid &&
2844 		      atomic_read(&root->log_commit[index])))
2845 			break;
2846 
2847 		mutex_unlock(&root->log_mutex);
2848 		schedule();
2849 		mutex_lock(&root->log_mutex);
2850 	}
2851 	finish_wait(&root->log_commit_wait[index], &wait);
2852 }
2853 
wait_for_writer(struct btrfs_root * root)2854 static void wait_for_writer(struct btrfs_root *root)
2855 {
2856 	DEFINE_WAIT(wait);
2857 
2858 	for (;;) {
2859 		prepare_to_wait(&root->log_writer_wait, &wait,
2860 				TASK_UNINTERRUPTIBLE);
2861 		if (!atomic_read(&root->log_writers))
2862 			break;
2863 
2864 		mutex_unlock(&root->log_mutex);
2865 		schedule();
2866 		mutex_lock(&root->log_mutex);
2867 	}
2868 	finish_wait(&root->log_writer_wait, &wait);
2869 }
2870 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2871 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2872 					struct btrfs_log_ctx *ctx)
2873 {
2874 	mutex_lock(&root->log_mutex);
2875 	list_del_init(&ctx->list);
2876 	mutex_unlock(&root->log_mutex);
2877 }
2878 
2879 /*
2880  * Invoked in log mutex context, or be sure there is no other task which
2881  * can access the list.
2882  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2883 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2884 					     int index, int error)
2885 {
2886 	struct btrfs_log_ctx *ctx;
2887 	struct btrfs_log_ctx *safe;
2888 
2889 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2890 		list_del_init(&ctx->list);
2891 		ctx->log_ret = error;
2892 	}
2893 }
2894 
2895 /*
2896  * btrfs_sync_log does sends a given tree log down to the disk and
2897  * updates the super blocks to record it.  When this call is done,
2898  * you know that any inodes previously logged are safely on disk only
2899  * if it returns 0.
2900  *
2901  * Any other return value means you need to call btrfs_commit_transaction.
2902  * Some of the edge cases for fsyncing directories that have had unlinks
2903  * or renames done in the past mean that sometimes the only safe
2904  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2905  * that has happened.
2906  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2907 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2908 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2909 {
2910 	int index1;
2911 	int index2;
2912 	int mark;
2913 	int ret;
2914 	struct btrfs_fs_info *fs_info = root->fs_info;
2915 	struct btrfs_root *log = root->log_root;
2916 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2917 	struct btrfs_root_item new_root_item;
2918 	int log_transid = 0;
2919 	struct btrfs_log_ctx root_log_ctx;
2920 	struct blk_plug plug;
2921 	u64 log_root_start;
2922 	u64 log_root_level;
2923 
2924 	mutex_lock(&root->log_mutex);
2925 	log_transid = ctx->log_transid;
2926 	if (root->log_transid_committed >= log_transid) {
2927 		mutex_unlock(&root->log_mutex);
2928 		return ctx->log_ret;
2929 	}
2930 
2931 	index1 = log_transid % 2;
2932 	if (atomic_read(&root->log_commit[index1])) {
2933 		wait_log_commit(root, log_transid);
2934 		mutex_unlock(&root->log_mutex);
2935 		return ctx->log_ret;
2936 	}
2937 	ASSERT(log_transid == root->log_transid);
2938 	atomic_set(&root->log_commit[index1], 1);
2939 
2940 	/* wait for previous tree log sync to complete */
2941 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2942 		wait_log_commit(root, log_transid - 1);
2943 
2944 	while (1) {
2945 		int batch = atomic_read(&root->log_batch);
2946 		/* when we're on an ssd, just kick the log commit out */
2947 		if (!btrfs_test_opt(fs_info, SSD) &&
2948 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2949 			mutex_unlock(&root->log_mutex);
2950 			schedule_timeout_uninterruptible(1);
2951 			mutex_lock(&root->log_mutex);
2952 		}
2953 		wait_for_writer(root);
2954 		if (batch == atomic_read(&root->log_batch))
2955 			break;
2956 	}
2957 
2958 	/* bail out if we need to do a full commit */
2959 	if (btrfs_need_log_full_commit(trans)) {
2960 		ret = BTRFS_LOG_FORCE_COMMIT;
2961 		mutex_unlock(&root->log_mutex);
2962 		goto out;
2963 	}
2964 
2965 	if (log_transid % 2 == 0)
2966 		mark = EXTENT_DIRTY;
2967 	else
2968 		mark = EXTENT_NEW;
2969 
2970 	/* we start IO on  all the marked extents here, but we don't actually
2971 	 * wait for them until later.
2972 	 */
2973 	blk_start_plug(&plug);
2974 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2975 	/*
2976 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2977 	 *  commit, writes a dirty extent in this tree-log commit. This
2978 	 *  concurrent write will create a hole writing out the extents,
2979 	 *  and we cannot proceed on a zoned filesystem, requiring
2980 	 *  sequential writing. While we can bail out to a full commit
2981 	 *  here, but we can continue hoping the concurrent writing fills
2982 	 *  the hole.
2983 	 */
2984 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2985 		ret = 0;
2986 	if (ret) {
2987 		blk_finish_plug(&plug);
2988 		btrfs_set_log_full_commit(trans);
2989 		mutex_unlock(&root->log_mutex);
2990 		goto out;
2991 	}
2992 
2993 	/*
2994 	 * We _must_ update under the root->log_mutex in order to make sure we
2995 	 * have a consistent view of the log root we are trying to commit at
2996 	 * this moment.
2997 	 *
2998 	 * We _must_ copy this into a local copy, because we are not holding the
2999 	 * log_root_tree->log_mutex yet.  This is important because when we
3000 	 * commit the log_root_tree we must have a consistent view of the
3001 	 * log_root_tree when we update the super block to point at the
3002 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3003 	 * with the commit and possibly point at the new block which we may not
3004 	 * have written out.
3005 	 */
3006 	btrfs_set_root_node(&log->root_item, log->node);
3007 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3008 
3009 	root->log_transid++;
3010 	log->log_transid = root->log_transid;
3011 	root->log_start_pid = 0;
3012 	/*
3013 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3014 	 * in their headers. new modifications of the log will be written to
3015 	 * new positions. so it's safe to allow log writers to go in.
3016 	 */
3017 	mutex_unlock(&root->log_mutex);
3018 
3019 	if (btrfs_is_zoned(fs_info)) {
3020 		mutex_lock(&fs_info->tree_root->log_mutex);
3021 		if (!log_root_tree->node) {
3022 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3023 			if (ret) {
3024 				mutex_unlock(&fs_info->tree_root->log_mutex);
3025 				blk_finish_plug(&plug);
3026 				goto out;
3027 			}
3028 		}
3029 		mutex_unlock(&fs_info->tree_root->log_mutex);
3030 	}
3031 
3032 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3033 
3034 	mutex_lock(&log_root_tree->log_mutex);
3035 
3036 	index2 = log_root_tree->log_transid % 2;
3037 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3038 	root_log_ctx.log_transid = log_root_tree->log_transid;
3039 
3040 	/*
3041 	 * Now we are safe to update the log_root_tree because we're under the
3042 	 * log_mutex, and we're a current writer so we're holding the commit
3043 	 * open until we drop the log_mutex.
3044 	 */
3045 	ret = update_log_root(trans, log, &new_root_item);
3046 	if (ret) {
3047 		if (!list_empty(&root_log_ctx.list))
3048 			list_del_init(&root_log_ctx.list);
3049 
3050 		blk_finish_plug(&plug);
3051 		btrfs_set_log_full_commit(trans);
3052 		if (ret != -ENOSPC)
3053 			btrfs_err(fs_info,
3054 				  "failed to update log for root %llu ret %d",
3055 				  root->root_key.objectid, ret);
3056 		btrfs_wait_tree_log_extents(log, mark);
3057 		mutex_unlock(&log_root_tree->log_mutex);
3058 		goto out;
3059 	}
3060 
3061 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3062 		blk_finish_plug(&plug);
3063 		list_del_init(&root_log_ctx.list);
3064 		mutex_unlock(&log_root_tree->log_mutex);
3065 		ret = root_log_ctx.log_ret;
3066 		goto out;
3067 	}
3068 
3069 	index2 = root_log_ctx.log_transid % 2;
3070 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3071 		blk_finish_plug(&plug);
3072 		ret = btrfs_wait_tree_log_extents(log, mark);
3073 		wait_log_commit(log_root_tree,
3074 				root_log_ctx.log_transid);
3075 		mutex_unlock(&log_root_tree->log_mutex);
3076 		if (!ret)
3077 			ret = root_log_ctx.log_ret;
3078 		goto out;
3079 	}
3080 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3081 	atomic_set(&log_root_tree->log_commit[index2], 1);
3082 
3083 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3084 		wait_log_commit(log_root_tree,
3085 				root_log_ctx.log_transid - 1);
3086 	}
3087 
3088 	/*
3089 	 * now that we've moved on to the tree of log tree roots,
3090 	 * check the full commit flag again
3091 	 */
3092 	if (btrfs_need_log_full_commit(trans)) {
3093 		blk_finish_plug(&plug);
3094 		btrfs_wait_tree_log_extents(log, mark);
3095 		mutex_unlock(&log_root_tree->log_mutex);
3096 		ret = BTRFS_LOG_FORCE_COMMIT;
3097 		goto out_wake_log_root;
3098 	}
3099 
3100 	ret = btrfs_write_marked_extents(fs_info,
3101 					 &log_root_tree->dirty_log_pages,
3102 					 EXTENT_DIRTY | EXTENT_NEW);
3103 	blk_finish_plug(&plug);
3104 	/*
3105 	 * As described above, -EAGAIN indicates a hole in the extents. We
3106 	 * cannot wait for these write outs since the waiting cause a
3107 	 * deadlock. Bail out to the full commit instead.
3108 	 */
3109 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3110 		btrfs_set_log_full_commit(trans);
3111 		btrfs_wait_tree_log_extents(log, mark);
3112 		mutex_unlock(&log_root_tree->log_mutex);
3113 		goto out_wake_log_root;
3114 	} else if (ret) {
3115 		btrfs_set_log_full_commit(trans);
3116 		mutex_unlock(&log_root_tree->log_mutex);
3117 		goto out_wake_log_root;
3118 	}
3119 	ret = btrfs_wait_tree_log_extents(log, mark);
3120 	if (!ret)
3121 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3122 						  EXTENT_NEW | EXTENT_DIRTY);
3123 	if (ret) {
3124 		btrfs_set_log_full_commit(trans);
3125 		mutex_unlock(&log_root_tree->log_mutex);
3126 		goto out_wake_log_root;
3127 	}
3128 
3129 	log_root_start = log_root_tree->node->start;
3130 	log_root_level = btrfs_header_level(log_root_tree->node);
3131 	log_root_tree->log_transid++;
3132 	mutex_unlock(&log_root_tree->log_mutex);
3133 
3134 	/*
3135 	 * Here we are guaranteed that nobody is going to write the superblock
3136 	 * for the current transaction before us and that neither we do write
3137 	 * our superblock before the previous transaction finishes its commit
3138 	 * and writes its superblock, because:
3139 	 *
3140 	 * 1) We are holding a handle on the current transaction, so no body
3141 	 *    can commit it until we release the handle;
3142 	 *
3143 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3144 	 *    if the previous transaction is still committing, and hasn't yet
3145 	 *    written its superblock, we wait for it to do it, because a
3146 	 *    transaction commit acquires the tree_log_mutex when the commit
3147 	 *    begins and releases it only after writing its superblock.
3148 	 */
3149 	mutex_lock(&fs_info->tree_log_mutex);
3150 
3151 	/*
3152 	 * The previous transaction writeout phase could have failed, and thus
3153 	 * marked the fs in an error state.  We must not commit here, as we
3154 	 * could have updated our generation in the super_for_commit and
3155 	 * writing the super here would result in transid mismatches.  If there
3156 	 * is an error here just bail.
3157 	 */
3158 	if (BTRFS_FS_ERROR(fs_info)) {
3159 		ret = -EIO;
3160 		btrfs_set_log_full_commit(trans);
3161 		btrfs_abort_transaction(trans, ret);
3162 		mutex_unlock(&fs_info->tree_log_mutex);
3163 		goto out_wake_log_root;
3164 	}
3165 
3166 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3167 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3168 	ret = write_all_supers(fs_info, 1);
3169 	mutex_unlock(&fs_info->tree_log_mutex);
3170 	if (ret) {
3171 		btrfs_set_log_full_commit(trans);
3172 		btrfs_abort_transaction(trans, ret);
3173 		goto out_wake_log_root;
3174 	}
3175 
3176 	/*
3177 	 * We know there can only be one task here, since we have not yet set
3178 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3179 	 * log must wait for the previous log transaction to commit if it's
3180 	 * still in progress or wait for the current log transaction commit if
3181 	 * someone else already started it. We use <= and not < because the
3182 	 * first log transaction has an ID of 0.
3183 	 */
3184 	ASSERT(root->last_log_commit <= log_transid);
3185 	root->last_log_commit = log_transid;
3186 
3187 out_wake_log_root:
3188 	mutex_lock(&log_root_tree->log_mutex);
3189 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3190 
3191 	log_root_tree->log_transid_committed++;
3192 	atomic_set(&log_root_tree->log_commit[index2], 0);
3193 	mutex_unlock(&log_root_tree->log_mutex);
3194 
3195 	/*
3196 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3197 	 * all the updates above are seen by the woken threads. It might not be
3198 	 * necessary, but proving that seems to be hard.
3199 	 */
3200 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3201 out:
3202 	mutex_lock(&root->log_mutex);
3203 	btrfs_remove_all_log_ctxs(root, index1, ret);
3204 	root->log_transid_committed++;
3205 	atomic_set(&root->log_commit[index1], 0);
3206 	mutex_unlock(&root->log_mutex);
3207 
3208 	/*
3209 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3210 	 * all the updates above are seen by the woken threads. It might not be
3211 	 * necessary, but proving that seems to be hard.
3212 	 */
3213 	cond_wake_up(&root->log_commit_wait[index1]);
3214 	return ret;
3215 }
3216 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3217 static void free_log_tree(struct btrfs_trans_handle *trans,
3218 			  struct btrfs_root *log)
3219 {
3220 	int ret;
3221 	struct walk_control wc = {
3222 		.free = 1,
3223 		.process_func = process_one_buffer
3224 	};
3225 
3226 	if (log->node) {
3227 		ret = walk_log_tree(trans, log, &wc);
3228 		if (ret) {
3229 			/*
3230 			 * We weren't able to traverse the entire log tree, the
3231 			 * typical scenario is getting an -EIO when reading an
3232 			 * extent buffer of the tree, due to a previous writeback
3233 			 * failure of it.
3234 			 */
3235 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3236 				&log->fs_info->fs_state);
3237 
3238 			/*
3239 			 * Some extent buffers of the log tree may still be dirty
3240 			 * and not yet written back to storage, because we may
3241 			 * have updates to a log tree without syncing a log tree,
3242 			 * such as during rename and link operations. So flush
3243 			 * them out and wait for their writeback to complete, so
3244 			 * that we properly cleanup their state and pages.
3245 			 */
3246 			btrfs_write_marked_extents(log->fs_info,
3247 						   &log->dirty_log_pages,
3248 						   EXTENT_DIRTY | EXTENT_NEW);
3249 			btrfs_wait_tree_log_extents(log,
3250 						    EXTENT_DIRTY | EXTENT_NEW);
3251 
3252 			if (trans)
3253 				btrfs_abort_transaction(trans, ret);
3254 			else
3255 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3256 		}
3257 	}
3258 
3259 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3260 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3261 	extent_io_tree_release(&log->log_csum_range);
3262 
3263 	btrfs_put_root(log);
3264 }
3265 
3266 /*
3267  * free all the extents used by the tree log.  This should be called
3268  * at commit time of the full transaction
3269  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3270 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3271 {
3272 	if (root->log_root) {
3273 		free_log_tree(trans, root->log_root);
3274 		root->log_root = NULL;
3275 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3276 	}
3277 	return 0;
3278 }
3279 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3280 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3281 			     struct btrfs_fs_info *fs_info)
3282 {
3283 	if (fs_info->log_root_tree) {
3284 		free_log_tree(trans, fs_info->log_root_tree);
3285 		fs_info->log_root_tree = NULL;
3286 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3287 	}
3288 	return 0;
3289 }
3290 
3291 /*
3292  * Check if an inode was logged in the current transaction. This correctly deals
3293  * with the case where the inode was logged but has a logged_trans of 0, which
3294  * happens if the inode is evicted and loaded again, as logged_trans is an in
3295  * memory only field (not persisted).
3296  *
3297  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3298  * and < 0 on error.
3299  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3300 static int inode_logged(struct btrfs_trans_handle *trans,
3301 			struct btrfs_inode *inode,
3302 			struct btrfs_path *path_in)
3303 {
3304 	struct btrfs_path *path = path_in;
3305 	struct btrfs_key key;
3306 	int ret;
3307 
3308 	if (inode->logged_trans == trans->transid)
3309 		return 1;
3310 
3311 	/*
3312 	 * If logged_trans is not 0, then we know the inode logged was not logged
3313 	 * in this transaction, so we can return false right away.
3314 	 */
3315 	if (inode->logged_trans > 0)
3316 		return 0;
3317 
3318 	/*
3319 	 * If no log tree was created for this root in this transaction, then
3320 	 * the inode can not have been logged in this transaction. In that case
3321 	 * set logged_trans to anything greater than 0 and less than the current
3322 	 * transaction's ID, to avoid the search below in a future call in case
3323 	 * a log tree gets created after this.
3324 	 */
3325 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3326 		inode->logged_trans = trans->transid - 1;
3327 		return 0;
3328 	}
3329 
3330 	/*
3331 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3332 	 * for sure if the inode was logged before in this transaction by looking
3333 	 * only at logged_trans. We could be pessimistic and assume it was, but
3334 	 * that can lead to unnecessarily logging an inode during rename and link
3335 	 * operations, and then further updating the log in followup rename and
3336 	 * link operations, specially if it's a directory, which adds latency
3337 	 * visible to applications doing a series of rename or link operations.
3338 	 *
3339 	 * A logged_trans of 0 here can mean several things:
3340 	 *
3341 	 * 1) The inode was never logged since the filesystem was mounted, and may
3342 	 *    or may have not been evicted and loaded again;
3343 	 *
3344 	 * 2) The inode was logged in a previous transaction, then evicted and
3345 	 *    then loaded again;
3346 	 *
3347 	 * 3) The inode was logged in the current transaction, then evicted and
3348 	 *    then loaded again.
3349 	 *
3350 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3351 	 * case 3) and return true. So we do a search in the log root for the inode
3352 	 * item.
3353 	 */
3354 	key.objectid = btrfs_ino(inode);
3355 	key.type = BTRFS_INODE_ITEM_KEY;
3356 	key.offset = 0;
3357 
3358 	if (!path) {
3359 		path = btrfs_alloc_path();
3360 		if (!path)
3361 			return -ENOMEM;
3362 	}
3363 
3364 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3365 
3366 	if (path_in)
3367 		btrfs_release_path(path);
3368 	else
3369 		btrfs_free_path(path);
3370 
3371 	/*
3372 	 * Logging an inode always results in logging its inode item. So if we
3373 	 * did not find the item we know the inode was not logged for sure.
3374 	 */
3375 	if (ret < 0) {
3376 		return ret;
3377 	} else if (ret > 0) {
3378 		/*
3379 		 * Set logged_trans to a value greater than 0 and less then the
3380 		 * current transaction to avoid doing the search in future calls.
3381 		 */
3382 		inode->logged_trans = trans->transid - 1;
3383 		return 0;
3384 	}
3385 
3386 	/*
3387 	 * The inode was previously logged and then evicted, set logged_trans to
3388 	 * the current transacion's ID, to avoid future tree searches as long as
3389 	 * the inode is not evicted again.
3390 	 */
3391 	inode->logged_trans = trans->transid;
3392 
3393 	/*
3394 	 * If it's a directory, then we must set last_dir_index_offset to the
3395 	 * maximum possible value, so that the next attempt to log the inode does
3396 	 * not skip checking if dir index keys found in modified subvolume tree
3397 	 * leaves have been logged before, otherwise it would result in attempts
3398 	 * to insert duplicate dir index keys in the log tree. This must be done
3399 	 * because last_dir_index_offset is an in-memory only field, not persisted
3400 	 * in the inode item or any other on-disk structure, so its value is lost
3401 	 * once the inode is evicted.
3402 	 */
3403 	if (S_ISDIR(inode->vfs_inode.i_mode))
3404 		inode->last_dir_index_offset = (u64)-1;
3405 
3406 	return 1;
3407 }
3408 
3409 /*
3410  * Delete a directory entry from the log if it exists.
3411  *
3412  * Returns < 0 on error
3413  *           1 if the entry does not exists
3414  *           0 if the entry existed and was successfully deleted
3415  */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3416 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3417 			     struct btrfs_root *log,
3418 			     struct btrfs_path *path,
3419 			     u64 dir_ino,
3420 			     const struct fscrypt_str *name,
3421 			     u64 index)
3422 {
3423 	struct btrfs_dir_item *di;
3424 
3425 	/*
3426 	 * We only log dir index items of a directory, so we don't need to look
3427 	 * for dir item keys.
3428 	 */
3429 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3430 					 index, name, -1);
3431 	if (IS_ERR(di))
3432 		return PTR_ERR(di);
3433 	else if (!di)
3434 		return 1;
3435 
3436 	/*
3437 	 * We do not need to update the size field of the directory's
3438 	 * inode item because on log replay we update the field to reflect
3439 	 * all existing entries in the directory (see overwrite_item()).
3440 	 */
3441 	return btrfs_delete_one_dir_name(trans, log, path, di);
3442 }
3443 
3444 /*
3445  * If both a file and directory are logged, and unlinks or renames are
3446  * mixed in, we have a few interesting corners:
3447  *
3448  * create file X in dir Y
3449  * link file X to X.link in dir Y
3450  * fsync file X
3451  * unlink file X but leave X.link
3452  * fsync dir Y
3453  *
3454  * After a crash we would expect only X.link to exist.  But file X
3455  * didn't get fsync'd again so the log has back refs for X and X.link.
3456  *
3457  * We solve this by removing directory entries and inode backrefs from the
3458  * log when a file that was logged in the current transaction is
3459  * unlinked.  Any later fsync will include the updated log entries, and
3460  * we'll be able to reconstruct the proper directory items from backrefs.
3461  *
3462  * This optimizations allows us to avoid relogging the entire inode
3463  * or the entire directory.
3464  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3465 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3466 				  struct btrfs_root *root,
3467 				  const struct fscrypt_str *name,
3468 				  struct btrfs_inode *dir, u64 index)
3469 {
3470 	struct btrfs_path *path;
3471 	int ret;
3472 
3473 	ret = inode_logged(trans, dir, NULL);
3474 	if (ret == 0)
3475 		return;
3476 	else if (ret < 0) {
3477 		btrfs_set_log_full_commit(trans);
3478 		return;
3479 	}
3480 
3481 	ret = join_running_log_trans(root);
3482 	if (ret)
3483 		return;
3484 
3485 	mutex_lock(&dir->log_mutex);
3486 
3487 	path = btrfs_alloc_path();
3488 	if (!path) {
3489 		ret = -ENOMEM;
3490 		goto out_unlock;
3491 	}
3492 
3493 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3494 				name, index);
3495 	btrfs_free_path(path);
3496 out_unlock:
3497 	mutex_unlock(&dir->log_mutex);
3498 	if (ret < 0)
3499 		btrfs_set_log_full_commit(trans);
3500 	btrfs_end_log_trans(root);
3501 }
3502 
3503 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3504 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3505 				struct btrfs_root *root,
3506 				const struct fscrypt_str *name,
3507 				struct btrfs_inode *inode, u64 dirid)
3508 {
3509 	struct btrfs_root *log;
3510 	u64 index;
3511 	int ret;
3512 
3513 	ret = inode_logged(trans, inode, NULL);
3514 	if (ret == 0)
3515 		return;
3516 	else if (ret < 0) {
3517 		btrfs_set_log_full_commit(trans);
3518 		return;
3519 	}
3520 
3521 	ret = join_running_log_trans(root);
3522 	if (ret)
3523 		return;
3524 	log = root->log_root;
3525 	mutex_lock(&inode->log_mutex);
3526 
3527 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3528 				  dirid, &index);
3529 	mutex_unlock(&inode->log_mutex);
3530 	if (ret < 0 && ret != -ENOENT)
3531 		btrfs_set_log_full_commit(trans);
3532 	btrfs_end_log_trans(root);
3533 }
3534 
3535 /*
3536  * creates a range item in the log for 'dirid'.  first_offset and
3537  * last_offset tell us which parts of the key space the log should
3538  * be considered authoritative for.
3539  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3540 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3541 				       struct btrfs_root *log,
3542 				       struct btrfs_path *path,
3543 				       u64 dirid,
3544 				       u64 first_offset, u64 last_offset)
3545 {
3546 	int ret;
3547 	struct btrfs_key key;
3548 	struct btrfs_dir_log_item *item;
3549 
3550 	key.objectid = dirid;
3551 	key.offset = first_offset;
3552 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3553 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3554 	/*
3555 	 * -EEXIST is fine and can happen sporadically when we are logging a
3556 	 * directory and have concurrent insertions in the subvolume's tree for
3557 	 * items from other inodes and that result in pushing off some dir items
3558 	 * from one leaf to another in order to accommodate for the new items.
3559 	 * This results in logging the same dir index range key.
3560 	 */
3561 	if (ret && ret != -EEXIST)
3562 		return ret;
3563 
3564 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3565 			      struct btrfs_dir_log_item);
3566 	if (ret == -EEXIST) {
3567 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3568 
3569 		/*
3570 		 * btrfs_del_dir_entries_in_log() might have been called during
3571 		 * an unlink between the initial insertion of this key and the
3572 		 * current update, or we might be logging a single entry deletion
3573 		 * during a rename, so set the new last_offset to the max value.
3574 		 */
3575 		last_offset = max(last_offset, curr_end);
3576 	}
3577 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3578 	btrfs_mark_buffer_dirty(path->nodes[0]);
3579 	btrfs_release_path(path);
3580 	return 0;
3581 }
3582 
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3583 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3584 				 struct btrfs_inode *inode,
3585 				 struct extent_buffer *src,
3586 				 struct btrfs_path *dst_path,
3587 				 int start_slot,
3588 				 int count)
3589 {
3590 	struct btrfs_root *log = inode->root->log_root;
3591 	char *ins_data = NULL;
3592 	struct btrfs_item_batch batch;
3593 	struct extent_buffer *dst;
3594 	unsigned long src_offset;
3595 	unsigned long dst_offset;
3596 	u64 last_index;
3597 	struct btrfs_key key;
3598 	u32 item_size;
3599 	int ret;
3600 	int i;
3601 
3602 	ASSERT(count > 0);
3603 	batch.nr = count;
3604 
3605 	if (count == 1) {
3606 		btrfs_item_key_to_cpu(src, &key, start_slot);
3607 		item_size = btrfs_item_size(src, start_slot);
3608 		batch.keys = &key;
3609 		batch.data_sizes = &item_size;
3610 		batch.total_data_size = item_size;
3611 	} else {
3612 		struct btrfs_key *ins_keys;
3613 		u32 *ins_sizes;
3614 
3615 		ins_data = kmalloc(count * sizeof(u32) +
3616 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3617 		if (!ins_data)
3618 			return -ENOMEM;
3619 
3620 		ins_sizes = (u32 *)ins_data;
3621 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3622 		batch.keys = ins_keys;
3623 		batch.data_sizes = ins_sizes;
3624 		batch.total_data_size = 0;
3625 
3626 		for (i = 0; i < count; i++) {
3627 			const int slot = start_slot + i;
3628 
3629 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3630 			ins_sizes[i] = btrfs_item_size(src, slot);
3631 			batch.total_data_size += ins_sizes[i];
3632 		}
3633 	}
3634 
3635 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3636 	if (ret)
3637 		goto out;
3638 
3639 	dst = dst_path->nodes[0];
3640 	/*
3641 	 * Copy all the items in bulk, in a single copy operation. Item data is
3642 	 * organized such that it's placed at the end of a leaf and from right
3643 	 * to left. For example, the data for the second item ends at an offset
3644 	 * that matches the offset where the data for the first item starts, the
3645 	 * data for the third item ends at an offset that matches the offset
3646 	 * where the data of the second items starts, and so on.
3647 	 * Therefore our source and destination start offsets for copy match the
3648 	 * offsets of the last items (highest slots).
3649 	 */
3650 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3651 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3652 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3653 	btrfs_release_path(dst_path);
3654 
3655 	last_index = batch.keys[count - 1].offset;
3656 	ASSERT(last_index > inode->last_dir_index_offset);
3657 
3658 	/*
3659 	 * If for some unexpected reason the last item's index is not greater
3660 	 * than the last index we logged, warn and return an error to fallback
3661 	 * to a transaction commit.
3662 	 */
3663 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3664 		ret = -EUCLEAN;
3665 	else
3666 		inode->last_dir_index_offset = last_index;
3667 out:
3668 	kfree(ins_data);
3669 
3670 	return ret;
3671 }
3672 
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3673 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3674 				  struct btrfs_inode *inode,
3675 				  struct btrfs_path *path,
3676 				  struct btrfs_path *dst_path,
3677 				  struct btrfs_log_ctx *ctx,
3678 				  u64 *last_old_dentry_offset)
3679 {
3680 	struct btrfs_root *log = inode->root->log_root;
3681 	struct extent_buffer *src;
3682 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3683 	const u64 ino = btrfs_ino(inode);
3684 	bool last_found = false;
3685 	int batch_start = 0;
3686 	int batch_size = 0;
3687 	int i;
3688 
3689 	/*
3690 	 * We need to clone the leaf, release the read lock on it, and use the
3691 	 * clone before modifying the log tree. See the comment at copy_items()
3692 	 * about why we need to do this.
3693 	 */
3694 	src = btrfs_clone_extent_buffer(path->nodes[0]);
3695 	if (!src)
3696 		return -ENOMEM;
3697 
3698 	i = path->slots[0];
3699 	btrfs_release_path(path);
3700 	path->nodes[0] = src;
3701 	path->slots[0] = i;
3702 
3703 	for (; i < nritems; i++) {
3704 		struct btrfs_dir_item *di;
3705 		struct btrfs_key key;
3706 		int ret;
3707 
3708 		btrfs_item_key_to_cpu(src, &key, i);
3709 
3710 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3711 			last_found = true;
3712 			break;
3713 		}
3714 
3715 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3716 
3717 		/*
3718 		 * Skip ranges of items that consist only of dir item keys created
3719 		 * in past transactions. However if we find a gap, we must log a
3720 		 * dir index range item for that gap, so that index keys in that
3721 		 * gap are deleted during log replay.
3722 		 */
3723 		if (btrfs_dir_transid(src, di) < trans->transid) {
3724 			if (key.offset > *last_old_dentry_offset + 1) {
3725 				ret = insert_dir_log_key(trans, log, dst_path,
3726 						 ino, *last_old_dentry_offset + 1,
3727 						 key.offset - 1);
3728 				if (ret < 0)
3729 					return ret;
3730 			}
3731 
3732 			*last_old_dentry_offset = key.offset;
3733 			continue;
3734 		}
3735 
3736 		/* If we logged this dir index item before, we can skip it. */
3737 		if (key.offset <= inode->last_dir_index_offset)
3738 			continue;
3739 
3740 		/*
3741 		 * We must make sure that when we log a directory entry, the
3742 		 * corresponding inode, after log replay, has a matching link
3743 		 * count. For example:
3744 		 *
3745 		 * touch foo
3746 		 * mkdir mydir
3747 		 * sync
3748 		 * ln foo mydir/bar
3749 		 * xfs_io -c "fsync" mydir
3750 		 * <crash>
3751 		 * <mount fs and log replay>
3752 		 *
3753 		 * Would result in a fsync log that when replayed, our file inode
3754 		 * would have a link count of 1, but we get two directory entries
3755 		 * pointing to the same inode. After removing one of the names,
3756 		 * it would not be possible to remove the other name, which
3757 		 * resulted always in stale file handle errors, and would not be
3758 		 * possible to rmdir the parent directory, since its i_size could
3759 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3760 		 * resulting in -ENOTEMPTY errors.
3761 		 */
3762 		if (!ctx->log_new_dentries) {
3763 			struct btrfs_key di_key;
3764 
3765 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3766 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3767 				ctx->log_new_dentries = true;
3768 		}
3769 
3770 		if (batch_size == 0)
3771 			batch_start = i;
3772 		batch_size++;
3773 	}
3774 
3775 	if (batch_size > 0) {
3776 		int ret;
3777 
3778 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3779 					    batch_start, batch_size);
3780 		if (ret < 0)
3781 			return ret;
3782 	}
3783 
3784 	return last_found ? 1 : 0;
3785 }
3786 
3787 /*
3788  * log all the items included in the current transaction for a given
3789  * directory.  This also creates the range items in the log tree required
3790  * to replay anything deleted before the fsync
3791  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3792 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3793 			  struct btrfs_inode *inode,
3794 			  struct btrfs_path *path,
3795 			  struct btrfs_path *dst_path,
3796 			  struct btrfs_log_ctx *ctx,
3797 			  u64 min_offset, u64 *last_offset_ret)
3798 {
3799 	struct btrfs_key min_key;
3800 	struct btrfs_root *root = inode->root;
3801 	struct btrfs_root *log = root->log_root;
3802 	int err = 0;
3803 	int ret;
3804 	u64 last_old_dentry_offset = min_offset - 1;
3805 	u64 last_offset = (u64)-1;
3806 	u64 ino = btrfs_ino(inode);
3807 
3808 	min_key.objectid = ino;
3809 	min_key.type = BTRFS_DIR_INDEX_KEY;
3810 	min_key.offset = min_offset;
3811 
3812 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3813 
3814 	/*
3815 	 * we didn't find anything from this transaction, see if there
3816 	 * is anything at all
3817 	 */
3818 	if (ret != 0 || min_key.objectid != ino ||
3819 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3820 		min_key.objectid = ino;
3821 		min_key.type = BTRFS_DIR_INDEX_KEY;
3822 		min_key.offset = (u64)-1;
3823 		btrfs_release_path(path);
3824 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3825 		if (ret < 0) {
3826 			btrfs_release_path(path);
3827 			return ret;
3828 		}
3829 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3830 
3831 		/* if ret == 0 there are items for this type,
3832 		 * create a range to tell us the last key of this type.
3833 		 * otherwise, there are no items in this directory after
3834 		 * *min_offset, and we create a range to indicate that.
3835 		 */
3836 		if (ret == 0) {
3837 			struct btrfs_key tmp;
3838 
3839 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3840 					      path->slots[0]);
3841 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3842 				last_old_dentry_offset = tmp.offset;
3843 		} else if (ret < 0) {
3844 			err = ret;
3845 		}
3846 
3847 		goto done;
3848 	}
3849 
3850 	/* go backward to find any previous key */
3851 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3852 	if (ret == 0) {
3853 		struct btrfs_key tmp;
3854 
3855 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3856 		/*
3857 		 * The dir index key before the first one we found that needs to
3858 		 * be logged might be in a previous leaf, and there might be a
3859 		 * gap between these keys, meaning that we had deletions that
3860 		 * happened. So the key range item we log (key type
3861 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3862 		 * previous key's offset plus 1, so that those deletes are replayed.
3863 		 */
3864 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3865 			last_old_dentry_offset = tmp.offset;
3866 	} else if (ret < 0) {
3867 		err = ret;
3868 		goto done;
3869 	}
3870 
3871 	btrfs_release_path(path);
3872 
3873 	/*
3874 	 * Find the first key from this transaction again or the one we were at
3875 	 * in the loop below in case we had to reschedule. We may be logging the
3876 	 * directory without holding its VFS lock, which happen when logging new
3877 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3878 	 * need to log the parent directory of an inode. This means a dir index
3879 	 * key might be deleted from the inode's root, and therefore we may not
3880 	 * find it anymore. If we can't find it, just move to the next key. We
3881 	 * can not bail out and ignore, because if we do that we will simply
3882 	 * not log dir index keys that come after the one that was just deleted
3883 	 * and we can end up logging a dir index range that ends at (u64)-1
3884 	 * (@last_offset is initialized to that), resulting in removing dir
3885 	 * entries we should not remove at log replay time.
3886 	 */
3887 search:
3888 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3889 	if (ret > 0)
3890 		ret = btrfs_next_item(root, path);
3891 	if (ret < 0)
3892 		err = ret;
3893 	/* If ret is 1, there are no more keys in the inode's root. */
3894 	if (ret != 0)
3895 		goto done;
3896 
3897 	/*
3898 	 * we have a block from this transaction, log every item in it
3899 	 * from our directory
3900 	 */
3901 	while (1) {
3902 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3903 					     &last_old_dentry_offset);
3904 		if (ret != 0) {
3905 			if (ret < 0)
3906 				err = ret;
3907 			goto done;
3908 		}
3909 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3910 
3911 		/*
3912 		 * look ahead to the next item and see if it is also
3913 		 * from this directory and from this transaction
3914 		 */
3915 		ret = btrfs_next_leaf(root, path);
3916 		if (ret) {
3917 			if (ret == 1)
3918 				last_offset = (u64)-1;
3919 			else
3920 				err = ret;
3921 			goto done;
3922 		}
3923 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3924 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3925 			last_offset = (u64)-1;
3926 			goto done;
3927 		}
3928 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3929 			/*
3930 			 * The next leaf was not changed in the current transaction
3931 			 * and has at least one dir index key.
3932 			 * We check for the next key because there might have been
3933 			 * one or more deletions between the last key we logged and
3934 			 * that next key. So the key range item we log (key type
3935 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3936 			 * offset minus 1, so that those deletes are replayed.
3937 			 */
3938 			last_offset = min_key.offset - 1;
3939 			goto done;
3940 		}
3941 		if (need_resched()) {
3942 			btrfs_release_path(path);
3943 			cond_resched();
3944 			goto search;
3945 		}
3946 	}
3947 done:
3948 	btrfs_release_path(path);
3949 	btrfs_release_path(dst_path);
3950 
3951 	if (err == 0) {
3952 		*last_offset_ret = last_offset;
3953 		/*
3954 		 * In case the leaf was changed in the current transaction but
3955 		 * all its dir items are from a past transaction, the last item
3956 		 * in the leaf is a dir item and there's no gap between that last
3957 		 * dir item and the first one on the next leaf (which did not
3958 		 * change in the current transaction), then we don't need to log
3959 		 * a range, last_old_dentry_offset is == to last_offset.
3960 		 */
3961 		ASSERT(last_old_dentry_offset <= last_offset);
3962 		if (last_old_dentry_offset < last_offset) {
3963 			ret = insert_dir_log_key(trans, log, path, ino,
3964 						 last_old_dentry_offset + 1,
3965 						 last_offset);
3966 			if (ret)
3967 				err = ret;
3968 		}
3969 	}
3970 	return err;
3971 }
3972 
3973 /*
3974  * If the inode was logged before and it was evicted, then its
3975  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3976  * key offset. If that's the case, search for it and update the inode. This
3977  * is to avoid lookups in the log tree every time we try to insert a dir index
3978  * key from a leaf changed in the current transaction, and to allow us to always
3979  * do batch insertions of dir index keys.
3980  */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)3981 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3982 					struct btrfs_path *path,
3983 					const struct btrfs_log_ctx *ctx)
3984 {
3985 	const u64 ino = btrfs_ino(inode);
3986 	struct btrfs_key key;
3987 	int ret;
3988 
3989 	lockdep_assert_held(&inode->log_mutex);
3990 
3991 	if (inode->last_dir_index_offset != (u64)-1)
3992 		return 0;
3993 
3994 	if (!ctx->logged_before) {
3995 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3996 		return 0;
3997 	}
3998 
3999 	key.objectid = ino;
4000 	key.type = BTRFS_DIR_INDEX_KEY;
4001 	key.offset = (u64)-1;
4002 
4003 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4004 	/*
4005 	 * An error happened or we actually have an index key with an offset
4006 	 * value of (u64)-1. Bail out, we're done.
4007 	 */
4008 	if (ret <= 0)
4009 		goto out;
4010 
4011 	ret = 0;
4012 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4013 
4014 	/*
4015 	 * No dir index items, bail out and leave last_dir_index_offset with
4016 	 * the value right before the first valid index value.
4017 	 */
4018 	if (path->slots[0] == 0)
4019 		goto out;
4020 
4021 	/*
4022 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4023 	 * index key, or beyond the last key of the directory that is not an
4024 	 * index key. If we have an index key before, set last_dir_index_offset
4025 	 * to its offset value, otherwise leave it with a value right before the
4026 	 * first valid index value, as it means we have an empty directory.
4027 	 */
4028 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4029 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4030 		inode->last_dir_index_offset = key.offset;
4031 
4032 out:
4033 	btrfs_release_path(path);
4034 
4035 	return ret;
4036 }
4037 
4038 /*
4039  * logging directories is very similar to logging inodes, We find all the items
4040  * from the current transaction and write them to the log.
4041  *
4042  * The recovery code scans the directory in the subvolume, and if it finds a
4043  * key in the range logged that is not present in the log tree, then it means
4044  * that dir entry was unlinked during the transaction.
4045  *
4046  * In order for that scan to work, we must include one key smaller than
4047  * the smallest logged by this transaction and one key larger than the largest
4048  * key logged by this transaction.
4049  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4050 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4051 			  struct btrfs_inode *inode,
4052 			  struct btrfs_path *path,
4053 			  struct btrfs_path *dst_path,
4054 			  struct btrfs_log_ctx *ctx)
4055 {
4056 	u64 min_key;
4057 	u64 max_key;
4058 	int ret;
4059 
4060 	ret = update_last_dir_index_offset(inode, path, ctx);
4061 	if (ret)
4062 		return ret;
4063 
4064 	min_key = BTRFS_DIR_START_INDEX;
4065 	max_key = 0;
4066 
4067 	while (1) {
4068 		ret = log_dir_items(trans, inode, path, dst_path,
4069 				ctx, min_key, &max_key);
4070 		if (ret)
4071 			return ret;
4072 		if (max_key == (u64)-1)
4073 			break;
4074 		min_key = max_key + 1;
4075 	}
4076 
4077 	return 0;
4078 }
4079 
4080 /*
4081  * a helper function to drop items from the log before we relog an
4082  * inode.  max_key_type indicates the highest item type to remove.
4083  * This cannot be run for file data extents because it does not
4084  * free the extents they point to.
4085  */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4086 static int drop_inode_items(struct btrfs_trans_handle *trans,
4087 				  struct btrfs_root *log,
4088 				  struct btrfs_path *path,
4089 				  struct btrfs_inode *inode,
4090 				  int max_key_type)
4091 {
4092 	int ret;
4093 	struct btrfs_key key;
4094 	struct btrfs_key found_key;
4095 	int start_slot;
4096 
4097 	key.objectid = btrfs_ino(inode);
4098 	key.type = max_key_type;
4099 	key.offset = (u64)-1;
4100 
4101 	while (1) {
4102 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4103 		BUG_ON(ret == 0); /* Logic error */
4104 		if (ret < 0)
4105 			break;
4106 
4107 		if (path->slots[0] == 0)
4108 			break;
4109 
4110 		path->slots[0]--;
4111 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4112 				      path->slots[0]);
4113 
4114 		if (found_key.objectid != key.objectid)
4115 			break;
4116 
4117 		found_key.offset = 0;
4118 		found_key.type = 0;
4119 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4120 		if (ret < 0)
4121 			break;
4122 
4123 		ret = btrfs_del_items(trans, log, path, start_slot,
4124 				      path->slots[0] - start_slot + 1);
4125 		/*
4126 		 * If start slot isn't 0 then we don't need to re-search, we've
4127 		 * found the last guy with the objectid in this tree.
4128 		 */
4129 		if (ret || start_slot != 0)
4130 			break;
4131 		btrfs_release_path(path);
4132 	}
4133 	btrfs_release_path(path);
4134 	if (ret > 0)
4135 		ret = 0;
4136 	return ret;
4137 }
4138 
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4139 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4140 				struct btrfs_root *log_root,
4141 				struct btrfs_inode *inode,
4142 				u64 new_size, u32 min_type)
4143 {
4144 	struct btrfs_truncate_control control = {
4145 		.new_size = new_size,
4146 		.ino = btrfs_ino(inode),
4147 		.min_type = min_type,
4148 		.skip_ref_updates = true,
4149 	};
4150 
4151 	return btrfs_truncate_inode_items(trans, log_root, &control);
4152 }
4153 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4154 static void fill_inode_item(struct btrfs_trans_handle *trans,
4155 			    struct extent_buffer *leaf,
4156 			    struct btrfs_inode_item *item,
4157 			    struct inode *inode, int log_inode_only,
4158 			    u64 logged_isize)
4159 {
4160 	struct btrfs_map_token token;
4161 	u64 flags;
4162 
4163 	btrfs_init_map_token(&token, leaf);
4164 
4165 	if (log_inode_only) {
4166 		/* set the generation to zero so the recover code
4167 		 * can tell the difference between an logging
4168 		 * just to say 'this inode exists' and a logging
4169 		 * to say 'update this inode with these values'
4170 		 */
4171 		btrfs_set_token_inode_generation(&token, item, 0);
4172 		btrfs_set_token_inode_size(&token, item, logged_isize);
4173 	} else {
4174 		btrfs_set_token_inode_generation(&token, item,
4175 						 BTRFS_I(inode)->generation);
4176 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4177 	}
4178 
4179 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4180 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4181 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4182 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4183 
4184 	btrfs_set_token_timespec_sec(&token, &item->atime,
4185 				     inode->i_atime.tv_sec);
4186 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4187 				      inode->i_atime.tv_nsec);
4188 
4189 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4190 				     inode->i_mtime.tv_sec);
4191 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4192 				      inode->i_mtime.tv_nsec);
4193 
4194 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4195 				     inode->i_ctime.tv_sec);
4196 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4197 				      inode->i_ctime.tv_nsec);
4198 
4199 	/*
4200 	 * We do not need to set the nbytes field, in fact during a fast fsync
4201 	 * its value may not even be correct, since a fast fsync does not wait
4202 	 * for ordered extent completion, which is where we update nbytes, it
4203 	 * only waits for writeback to complete. During log replay as we find
4204 	 * file extent items and replay them, we adjust the nbytes field of the
4205 	 * inode item in subvolume tree as needed (see overwrite_item()).
4206 	 */
4207 
4208 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4209 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4210 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4211 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4212 					  BTRFS_I(inode)->ro_flags);
4213 	btrfs_set_token_inode_flags(&token, item, flags);
4214 	btrfs_set_token_inode_block_group(&token, item, 0);
4215 }
4216 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4217 static int log_inode_item(struct btrfs_trans_handle *trans,
4218 			  struct btrfs_root *log, struct btrfs_path *path,
4219 			  struct btrfs_inode *inode, bool inode_item_dropped)
4220 {
4221 	struct btrfs_inode_item *inode_item;
4222 	int ret;
4223 
4224 	/*
4225 	 * If we are doing a fast fsync and the inode was logged before in the
4226 	 * current transaction, then we know the inode was previously logged and
4227 	 * it exists in the log tree. For performance reasons, in this case use
4228 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4229 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4230 	 * contention in case there are concurrent fsyncs for other inodes of the
4231 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4232 	 * already exists can also result in unnecessarily splitting a leaf.
4233 	 */
4234 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4235 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4236 		ASSERT(ret <= 0);
4237 		if (ret > 0)
4238 			ret = -ENOENT;
4239 	} else {
4240 		/*
4241 		 * This means it is the first fsync in the current transaction,
4242 		 * so the inode item is not in the log and we need to insert it.
4243 		 * We can never get -EEXIST because we are only called for a fast
4244 		 * fsync and in case an inode eviction happens after the inode was
4245 		 * logged before in the current transaction, when we load again
4246 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4247 		 * flags and set ->logged_trans to 0.
4248 		 */
4249 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4250 					      sizeof(*inode_item));
4251 		ASSERT(ret != -EEXIST);
4252 	}
4253 	if (ret)
4254 		return ret;
4255 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4256 				    struct btrfs_inode_item);
4257 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4258 			0, 0);
4259 	btrfs_release_path(path);
4260 	return 0;
4261 }
4262 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4263 static int log_csums(struct btrfs_trans_handle *trans,
4264 		     struct btrfs_inode *inode,
4265 		     struct btrfs_root *log_root,
4266 		     struct btrfs_ordered_sum *sums)
4267 {
4268 	const u64 lock_end = sums->bytenr + sums->len - 1;
4269 	struct extent_state *cached_state = NULL;
4270 	int ret;
4271 
4272 	/*
4273 	 * If this inode was not used for reflink operations in the current
4274 	 * transaction with new extents, then do the fast path, no need to
4275 	 * worry about logging checksum items with overlapping ranges.
4276 	 */
4277 	if (inode->last_reflink_trans < trans->transid)
4278 		return btrfs_csum_file_blocks(trans, log_root, sums);
4279 
4280 	/*
4281 	 * Serialize logging for checksums. This is to avoid racing with the
4282 	 * same checksum being logged by another task that is logging another
4283 	 * file which happens to refer to the same extent as well. Such races
4284 	 * can leave checksum items in the log with overlapping ranges.
4285 	 */
4286 	ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4287 			  &cached_state);
4288 	if (ret)
4289 		return ret;
4290 	/*
4291 	 * Due to extent cloning, we might have logged a csum item that covers a
4292 	 * subrange of a cloned extent, and later we can end up logging a csum
4293 	 * item for a larger subrange of the same extent or the entire range.
4294 	 * This would leave csum items in the log tree that cover the same range
4295 	 * and break the searches for checksums in the log tree, resulting in
4296 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4297 	 * trim and adjust) any existing csum items in the log for this range.
4298 	 */
4299 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4300 	if (!ret)
4301 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4302 
4303 	unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4304 		      &cached_state);
4305 
4306 	return ret;
4307 }
4308 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)4309 static noinline int copy_items(struct btrfs_trans_handle *trans,
4310 			       struct btrfs_inode *inode,
4311 			       struct btrfs_path *dst_path,
4312 			       struct btrfs_path *src_path,
4313 			       int start_slot, int nr, int inode_only,
4314 			       u64 logged_isize)
4315 {
4316 	struct btrfs_root *log = inode->root->log_root;
4317 	struct btrfs_file_extent_item *extent;
4318 	struct extent_buffer *src;
4319 	int ret = 0;
4320 	struct btrfs_key *ins_keys;
4321 	u32 *ins_sizes;
4322 	struct btrfs_item_batch batch;
4323 	char *ins_data;
4324 	int i;
4325 	int dst_index;
4326 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4327 	const u64 i_size = i_size_read(&inode->vfs_inode);
4328 
4329 	/*
4330 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4331 	 * use the clone. This is because otherwise we would be changing the log
4332 	 * tree, to insert items from the subvolume tree or insert csum items,
4333 	 * while holding a read lock on a leaf from the subvolume tree, which
4334 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4335 	 *
4336 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4337 	 *    holding a write lock on a parent extent buffer from the log tree.
4338 	 *    Allocating the pages for an extent buffer, or the extent buffer
4339 	 *    struct, can trigger inode eviction and finally the inode eviction
4340 	 *    will trigger a release/remove of a delayed node, which requires
4341 	 *    taking the delayed node's mutex;
4342 	 *
4343 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4344 	 *    reclaim thread and make us wait for it to release enough space and
4345 	 *    unblock our reservation ticket. The reclaim thread can start
4346 	 *    flushing delayed items, and that in turn results in the need to
4347 	 *    lock delayed node mutexes and in the need to write lock extent
4348 	 *    buffers of a subvolume tree - all this while holding a write lock
4349 	 *    on the parent extent buffer in the log tree.
4350 	 *
4351 	 * So one task in scenario 1) running in parallel with another task in
4352 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4353 	 * node mutex while having a read lock on a leaf from the subvolume,
4354 	 * while the other is holding the delayed node's mutex and wants to
4355 	 * write lock the same subvolume leaf for flushing delayed items.
4356 	 */
4357 	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4358 	if (!src)
4359 		return -ENOMEM;
4360 
4361 	i = src_path->slots[0];
4362 	btrfs_release_path(src_path);
4363 	src_path->nodes[0] = src;
4364 	src_path->slots[0] = i;
4365 
4366 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4367 			   nr * sizeof(u32), GFP_NOFS);
4368 	if (!ins_data)
4369 		return -ENOMEM;
4370 
4371 	ins_sizes = (u32 *)ins_data;
4372 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4373 	batch.keys = ins_keys;
4374 	batch.data_sizes = ins_sizes;
4375 	batch.total_data_size = 0;
4376 	batch.nr = 0;
4377 
4378 	dst_index = 0;
4379 	for (i = 0; i < nr; i++) {
4380 		const int src_slot = start_slot + i;
4381 		struct btrfs_root *csum_root;
4382 		struct btrfs_ordered_sum *sums;
4383 		struct btrfs_ordered_sum *sums_next;
4384 		LIST_HEAD(ordered_sums);
4385 		u64 disk_bytenr;
4386 		u64 disk_num_bytes;
4387 		u64 extent_offset;
4388 		u64 extent_num_bytes;
4389 		bool is_old_extent;
4390 
4391 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4392 
4393 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4394 			goto add_to_batch;
4395 
4396 		extent = btrfs_item_ptr(src, src_slot,
4397 					struct btrfs_file_extent_item);
4398 
4399 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4400 				 trans->transid);
4401 
4402 		/*
4403 		 * Don't copy extents from past generations. That would make us
4404 		 * log a lot more metadata for common cases like doing only a
4405 		 * few random writes into a file and then fsync it for the first
4406 		 * time or after the full sync flag is set on the inode. We can
4407 		 * get leaves full of extent items, most of which are from past
4408 		 * generations, so we can skip them - as long as the inode has
4409 		 * not been the target of a reflink operation in this transaction,
4410 		 * as in that case it might have had file extent items with old
4411 		 * generations copied into it. We also must always log prealloc
4412 		 * extents that start at or beyond eof, otherwise we would lose
4413 		 * them on log replay.
4414 		 */
4415 		if (is_old_extent &&
4416 		    ins_keys[dst_index].offset < i_size &&
4417 		    inode->last_reflink_trans < trans->transid)
4418 			continue;
4419 
4420 		if (skip_csum)
4421 			goto add_to_batch;
4422 
4423 		/* Only regular extents have checksums. */
4424 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4425 			goto add_to_batch;
4426 
4427 		/*
4428 		 * If it's an extent created in a past transaction, then its
4429 		 * checksums are already accessible from the committed csum tree,
4430 		 * no need to log them.
4431 		 */
4432 		if (is_old_extent)
4433 			goto add_to_batch;
4434 
4435 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4436 		/* If it's an explicit hole, there are no checksums. */
4437 		if (disk_bytenr == 0)
4438 			goto add_to_batch;
4439 
4440 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4441 
4442 		if (btrfs_file_extent_compression(src, extent)) {
4443 			extent_offset = 0;
4444 			extent_num_bytes = disk_num_bytes;
4445 		} else {
4446 			extent_offset = btrfs_file_extent_offset(src, extent);
4447 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4448 		}
4449 
4450 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4451 		disk_bytenr += extent_offset;
4452 		ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4453 					       disk_bytenr + extent_num_bytes - 1,
4454 					       &ordered_sums, 0, false);
4455 		if (ret)
4456 			goto out;
4457 
4458 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4459 			if (!ret)
4460 				ret = log_csums(trans, inode, log, sums);
4461 			list_del(&sums->list);
4462 			kfree(sums);
4463 		}
4464 		if (ret)
4465 			goto out;
4466 
4467 add_to_batch:
4468 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4469 		batch.total_data_size += ins_sizes[dst_index];
4470 		batch.nr++;
4471 		dst_index++;
4472 	}
4473 
4474 	/*
4475 	 * We have a leaf full of old extent items that don't need to be logged,
4476 	 * so we don't need to do anything.
4477 	 */
4478 	if (batch.nr == 0)
4479 		goto out;
4480 
4481 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4482 	if (ret)
4483 		goto out;
4484 
4485 	dst_index = 0;
4486 	for (i = 0; i < nr; i++) {
4487 		const int src_slot = start_slot + i;
4488 		const int dst_slot = dst_path->slots[0] + dst_index;
4489 		struct btrfs_key key;
4490 		unsigned long src_offset;
4491 		unsigned long dst_offset;
4492 
4493 		/*
4494 		 * We're done, all the remaining items in the source leaf
4495 		 * correspond to old file extent items.
4496 		 */
4497 		if (dst_index >= batch.nr)
4498 			break;
4499 
4500 		btrfs_item_key_to_cpu(src, &key, src_slot);
4501 
4502 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4503 			goto copy_item;
4504 
4505 		extent = btrfs_item_ptr(src, src_slot,
4506 					struct btrfs_file_extent_item);
4507 
4508 		/* See the comment in the previous loop, same logic. */
4509 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4510 		    key.offset < i_size &&
4511 		    inode->last_reflink_trans < trans->transid)
4512 			continue;
4513 
4514 copy_item:
4515 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4516 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4517 
4518 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4519 			struct btrfs_inode_item *inode_item;
4520 
4521 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4522 						    struct btrfs_inode_item);
4523 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4524 					&inode->vfs_inode,
4525 					inode_only == LOG_INODE_EXISTS,
4526 					logged_isize);
4527 		} else {
4528 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4529 					   src_offset, ins_sizes[dst_index]);
4530 		}
4531 
4532 		dst_index++;
4533 	}
4534 
4535 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4536 	btrfs_release_path(dst_path);
4537 out:
4538 	kfree(ins_data);
4539 
4540 	return ret;
4541 }
4542 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4543 static int extent_cmp(void *priv, const struct list_head *a,
4544 		      const struct list_head *b)
4545 {
4546 	const struct extent_map *em1, *em2;
4547 
4548 	em1 = list_entry(a, struct extent_map, list);
4549 	em2 = list_entry(b, struct extent_map, list);
4550 
4551 	if (em1->start < em2->start)
4552 		return -1;
4553 	else if (em1->start > em2->start)
4554 		return 1;
4555 	return 0;
4556 }
4557 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4558 static int log_extent_csums(struct btrfs_trans_handle *trans,
4559 			    struct btrfs_inode *inode,
4560 			    struct btrfs_root *log_root,
4561 			    const struct extent_map *em,
4562 			    struct btrfs_log_ctx *ctx)
4563 {
4564 	struct btrfs_ordered_extent *ordered;
4565 	struct btrfs_root *csum_root;
4566 	u64 csum_offset;
4567 	u64 csum_len;
4568 	u64 mod_start = em->mod_start;
4569 	u64 mod_len = em->mod_len;
4570 	LIST_HEAD(ordered_sums);
4571 	int ret = 0;
4572 
4573 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4574 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4575 	    em->block_start == EXTENT_MAP_HOLE)
4576 		return 0;
4577 
4578 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4579 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4580 		const u64 mod_end = mod_start + mod_len;
4581 		struct btrfs_ordered_sum *sums;
4582 
4583 		if (mod_len == 0)
4584 			break;
4585 
4586 		if (ordered_end <= mod_start)
4587 			continue;
4588 		if (mod_end <= ordered->file_offset)
4589 			break;
4590 
4591 		/*
4592 		 * We are going to copy all the csums on this ordered extent, so
4593 		 * go ahead and adjust mod_start and mod_len in case this ordered
4594 		 * extent has already been logged.
4595 		 */
4596 		if (ordered->file_offset > mod_start) {
4597 			if (ordered_end >= mod_end)
4598 				mod_len = ordered->file_offset - mod_start;
4599 			/*
4600 			 * If we have this case
4601 			 *
4602 			 * |--------- logged extent ---------|
4603 			 *       |----- ordered extent ----|
4604 			 *
4605 			 * Just don't mess with mod_start and mod_len, we'll
4606 			 * just end up logging more csums than we need and it
4607 			 * will be ok.
4608 			 */
4609 		} else {
4610 			if (ordered_end < mod_end) {
4611 				mod_len = mod_end - ordered_end;
4612 				mod_start = ordered_end;
4613 			} else {
4614 				mod_len = 0;
4615 			}
4616 		}
4617 
4618 		/*
4619 		 * To keep us from looping for the above case of an ordered
4620 		 * extent that falls inside of the logged extent.
4621 		 */
4622 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4623 			continue;
4624 
4625 		list_for_each_entry(sums, &ordered->list, list) {
4626 			ret = log_csums(trans, inode, log_root, sums);
4627 			if (ret)
4628 				return ret;
4629 		}
4630 	}
4631 
4632 	/* We're done, found all csums in the ordered extents. */
4633 	if (mod_len == 0)
4634 		return 0;
4635 
4636 	/* If we're compressed we have to save the entire range of csums. */
4637 	if (em->compress_type) {
4638 		csum_offset = 0;
4639 		csum_len = max(em->block_len, em->orig_block_len);
4640 	} else {
4641 		csum_offset = mod_start - em->start;
4642 		csum_len = mod_len;
4643 	}
4644 
4645 	/* block start is already adjusted for the file extent offset. */
4646 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4647 	ret = btrfs_lookup_csums_range(csum_root,
4648 				       em->block_start + csum_offset,
4649 				       em->block_start + csum_offset +
4650 				       csum_len - 1, &ordered_sums, 0, false);
4651 	if (ret)
4652 		return ret;
4653 
4654 	while (!list_empty(&ordered_sums)) {
4655 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4656 						   struct btrfs_ordered_sum,
4657 						   list);
4658 		if (!ret)
4659 			ret = log_csums(trans, inode, log_root, sums);
4660 		list_del(&sums->list);
4661 		kfree(sums);
4662 	}
4663 
4664 	return ret;
4665 }
4666 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4667 static int log_one_extent(struct btrfs_trans_handle *trans,
4668 			  struct btrfs_inode *inode,
4669 			  const struct extent_map *em,
4670 			  struct btrfs_path *path,
4671 			  struct btrfs_log_ctx *ctx)
4672 {
4673 	struct btrfs_drop_extents_args drop_args = { 0 };
4674 	struct btrfs_root *log = inode->root->log_root;
4675 	struct btrfs_file_extent_item fi = { 0 };
4676 	struct extent_buffer *leaf;
4677 	struct btrfs_key key;
4678 	u64 extent_offset = em->start - em->orig_start;
4679 	u64 block_len;
4680 	int ret;
4681 
4682 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4683 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4684 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4685 	else
4686 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4687 
4688 	block_len = max(em->block_len, em->orig_block_len);
4689 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4690 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4691 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4692 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4693 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4694 							extent_offset);
4695 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4696 	}
4697 
4698 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4699 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4700 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4701 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4702 
4703 	ret = log_extent_csums(trans, inode, log, em, ctx);
4704 	if (ret)
4705 		return ret;
4706 
4707 	/*
4708 	 * If this is the first time we are logging the inode in the current
4709 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4710 	 * because it does a deletion search, which always acquires write locks
4711 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4712 	 * but also adds significant contention in a log tree, since log trees
4713 	 * are small, with a root at level 2 or 3 at most, due to their short
4714 	 * life span.
4715 	 */
4716 	if (ctx->logged_before) {
4717 		drop_args.path = path;
4718 		drop_args.start = em->start;
4719 		drop_args.end = em->start + em->len;
4720 		drop_args.replace_extent = true;
4721 		drop_args.extent_item_size = sizeof(fi);
4722 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4723 		if (ret)
4724 			return ret;
4725 	}
4726 
4727 	if (!drop_args.extent_inserted) {
4728 		key.objectid = btrfs_ino(inode);
4729 		key.type = BTRFS_EXTENT_DATA_KEY;
4730 		key.offset = em->start;
4731 
4732 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4733 					      sizeof(fi));
4734 		if (ret)
4735 			return ret;
4736 	}
4737 	leaf = path->nodes[0];
4738 	write_extent_buffer(leaf, &fi,
4739 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4740 			    sizeof(fi));
4741 	btrfs_mark_buffer_dirty(leaf);
4742 
4743 	btrfs_release_path(path);
4744 
4745 	return ret;
4746 }
4747 
4748 /*
4749  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4750  * lose them after doing a full/fast fsync and replaying the log. We scan the
4751  * subvolume's root instead of iterating the inode's extent map tree because
4752  * otherwise we can log incorrect extent items based on extent map conversion.
4753  * That can happen due to the fact that extent maps are merged when they
4754  * are not in the extent map tree's list of modified extents.
4755  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4756 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4757 				      struct btrfs_inode *inode,
4758 				      struct btrfs_path *path)
4759 {
4760 	struct btrfs_root *root = inode->root;
4761 	struct btrfs_key key;
4762 	const u64 i_size = i_size_read(&inode->vfs_inode);
4763 	const u64 ino = btrfs_ino(inode);
4764 	struct btrfs_path *dst_path = NULL;
4765 	bool dropped_extents = false;
4766 	u64 truncate_offset = i_size;
4767 	struct extent_buffer *leaf;
4768 	int slot;
4769 	int ins_nr = 0;
4770 	int start_slot = 0;
4771 	int ret;
4772 
4773 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4774 		return 0;
4775 
4776 	key.objectid = ino;
4777 	key.type = BTRFS_EXTENT_DATA_KEY;
4778 	key.offset = i_size;
4779 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4780 	if (ret < 0)
4781 		goto out;
4782 
4783 	/*
4784 	 * We must check if there is a prealloc extent that starts before the
4785 	 * i_size and crosses the i_size boundary. This is to ensure later we
4786 	 * truncate down to the end of that extent and not to the i_size, as
4787 	 * otherwise we end up losing part of the prealloc extent after a log
4788 	 * replay and with an implicit hole if there is another prealloc extent
4789 	 * that starts at an offset beyond i_size.
4790 	 */
4791 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4792 	if (ret < 0)
4793 		goto out;
4794 
4795 	if (ret == 0) {
4796 		struct btrfs_file_extent_item *ei;
4797 
4798 		leaf = path->nodes[0];
4799 		slot = path->slots[0];
4800 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4801 
4802 		if (btrfs_file_extent_type(leaf, ei) ==
4803 		    BTRFS_FILE_EXTENT_PREALLOC) {
4804 			u64 extent_end;
4805 
4806 			btrfs_item_key_to_cpu(leaf, &key, slot);
4807 			extent_end = key.offset +
4808 				btrfs_file_extent_num_bytes(leaf, ei);
4809 
4810 			if (extent_end > i_size)
4811 				truncate_offset = extent_end;
4812 		}
4813 	} else {
4814 		ret = 0;
4815 	}
4816 
4817 	while (true) {
4818 		leaf = path->nodes[0];
4819 		slot = path->slots[0];
4820 
4821 		if (slot >= btrfs_header_nritems(leaf)) {
4822 			if (ins_nr > 0) {
4823 				ret = copy_items(trans, inode, dst_path, path,
4824 						 start_slot, ins_nr, 1, 0);
4825 				if (ret < 0)
4826 					goto out;
4827 				ins_nr = 0;
4828 			}
4829 			ret = btrfs_next_leaf(root, path);
4830 			if (ret < 0)
4831 				goto out;
4832 			if (ret > 0) {
4833 				ret = 0;
4834 				break;
4835 			}
4836 			continue;
4837 		}
4838 
4839 		btrfs_item_key_to_cpu(leaf, &key, slot);
4840 		if (key.objectid > ino)
4841 			break;
4842 		if (WARN_ON_ONCE(key.objectid < ino) ||
4843 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4844 		    key.offset < i_size) {
4845 			path->slots[0]++;
4846 			continue;
4847 		}
4848 		if (!dropped_extents) {
4849 			/*
4850 			 * Avoid logging extent items logged in past fsync calls
4851 			 * and leading to duplicate keys in the log tree.
4852 			 */
4853 			ret = truncate_inode_items(trans, root->log_root, inode,
4854 						   truncate_offset,
4855 						   BTRFS_EXTENT_DATA_KEY);
4856 			if (ret)
4857 				goto out;
4858 			dropped_extents = true;
4859 		}
4860 		if (ins_nr == 0)
4861 			start_slot = slot;
4862 		ins_nr++;
4863 		path->slots[0]++;
4864 		if (!dst_path) {
4865 			dst_path = btrfs_alloc_path();
4866 			if (!dst_path) {
4867 				ret = -ENOMEM;
4868 				goto out;
4869 			}
4870 		}
4871 	}
4872 	if (ins_nr > 0)
4873 		ret = copy_items(trans, inode, dst_path, path,
4874 				 start_slot, ins_nr, 1, 0);
4875 out:
4876 	btrfs_release_path(path);
4877 	btrfs_free_path(dst_path);
4878 	return ret;
4879 }
4880 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4881 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4882 				     struct btrfs_inode *inode,
4883 				     struct btrfs_path *path,
4884 				     struct btrfs_log_ctx *ctx)
4885 {
4886 	struct btrfs_ordered_extent *ordered;
4887 	struct btrfs_ordered_extent *tmp;
4888 	struct extent_map *em, *n;
4889 	struct list_head extents;
4890 	struct extent_map_tree *tree = &inode->extent_tree;
4891 	int ret = 0;
4892 	int num = 0;
4893 
4894 	INIT_LIST_HEAD(&extents);
4895 
4896 	write_lock(&tree->lock);
4897 
4898 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4899 		list_del_init(&em->list);
4900 		/*
4901 		 * Just an arbitrary number, this can be really CPU intensive
4902 		 * once we start getting a lot of extents, and really once we
4903 		 * have a bunch of extents we just want to commit since it will
4904 		 * be faster.
4905 		 */
4906 		if (++num > 32768) {
4907 			list_del_init(&tree->modified_extents);
4908 			ret = -EFBIG;
4909 			goto process;
4910 		}
4911 
4912 		if (em->generation < trans->transid)
4913 			continue;
4914 
4915 		/* We log prealloc extents beyond eof later. */
4916 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4917 		    em->start >= i_size_read(&inode->vfs_inode))
4918 			continue;
4919 
4920 		/* Need a ref to keep it from getting evicted from cache */
4921 		refcount_inc(&em->refs);
4922 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4923 		list_add_tail(&em->list, &extents);
4924 		num++;
4925 	}
4926 
4927 	list_sort(NULL, &extents, extent_cmp);
4928 process:
4929 	while (!list_empty(&extents)) {
4930 		em = list_entry(extents.next, struct extent_map, list);
4931 
4932 		list_del_init(&em->list);
4933 
4934 		/*
4935 		 * If we had an error we just need to delete everybody from our
4936 		 * private list.
4937 		 */
4938 		if (ret) {
4939 			clear_em_logging(tree, em);
4940 			free_extent_map(em);
4941 			continue;
4942 		}
4943 
4944 		write_unlock(&tree->lock);
4945 
4946 		ret = log_one_extent(trans, inode, em, path, ctx);
4947 		write_lock(&tree->lock);
4948 		clear_em_logging(tree, em);
4949 		free_extent_map(em);
4950 	}
4951 	WARN_ON(!list_empty(&extents));
4952 	write_unlock(&tree->lock);
4953 
4954 	if (!ret)
4955 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4956 	if (ret)
4957 		return ret;
4958 
4959 	/*
4960 	 * We have logged all extents successfully, now make sure the commit of
4961 	 * the current transaction waits for the ordered extents to complete
4962 	 * before it commits and wipes out the log trees, otherwise we would
4963 	 * lose data if an ordered extents completes after the transaction
4964 	 * commits and a power failure happens after the transaction commit.
4965 	 */
4966 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4967 		list_del_init(&ordered->log_list);
4968 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4969 
4970 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4971 			spin_lock_irq(&inode->ordered_tree.lock);
4972 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4973 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4974 				atomic_inc(&trans->transaction->pending_ordered);
4975 			}
4976 			spin_unlock_irq(&inode->ordered_tree.lock);
4977 		}
4978 		btrfs_put_ordered_extent(ordered);
4979 	}
4980 
4981 	return 0;
4982 }
4983 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4984 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4985 			     struct btrfs_path *path, u64 *size_ret)
4986 {
4987 	struct btrfs_key key;
4988 	int ret;
4989 
4990 	key.objectid = btrfs_ino(inode);
4991 	key.type = BTRFS_INODE_ITEM_KEY;
4992 	key.offset = 0;
4993 
4994 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4995 	if (ret < 0) {
4996 		return ret;
4997 	} else if (ret > 0) {
4998 		*size_ret = 0;
4999 	} else {
5000 		struct btrfs_inode_item *item;
5001 
5002 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5003 				      struct btrfs_inode_item);
5004 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5005 		/*
5006 		 * If the in-memory inode's i_size is smaller then the inode
5007 		 * size stored in the btree, return the inode's i_size, so
5008 		 * that we get a correct inode size after replaying the log
5009 		 * when before a power failure we had a shrinking truncate
5010 		 * followed by addition of a new name (rename / new hard link).
5011 		 * Otherwise return the inode size from the btree, to avoid
5012 		 * data loss when replaying a log due to previously doing a
5013 		 * write that expands the inode's size and logging a new name
5014 		 * immediately after.
5015 		 */
5016 		if (*size_ret > inode->vfs_inode.i_size)
5017 			*size_ret = inode->vfs_inode.i_size;
5018 	}
5019 
5020 	btrfs_release_path(path);
5021 	return 0;
5022 }
5023 
5024 /*
5025  * At the moment we always log all xattrs. This is to figure out at log replay
5026  * time which xattrs must have their deletion replayed. If a xattr is missing
5027  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5028  * because if a xattr is deleted, the inode is fsynced and a power failure
5029  * happens, causing the log to be replayed the next time the fs is mounted,
5030  * we want the xattr to not exist anymore (same behaviour as other filesystems
5031  * with a journal, ext3/4, xfs, f2fs, etc).
5032  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)5033 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5034 				struct btrfs_inode *inode,
5035 				struct btrfs_path *path,
5036 				struct btrfs_path *dst_path)
5037 {
5038 	struct btrfs_root *root = inode->root;
5039 	int ret;
5040 	struct btrfs_key key;
5041 	const u64 ino = btrfs_ino(inode);
5042 	int ins_nr = 0;
5043 	int start_slot = 0;
5044 	bool found_xattrs = false;
5045 
5046 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5047 		return 0;
5048 
5049 	key.objectid = ino;
5050 	key.type = BTRFS_XATTR_ITEM_KEY;
5051 	key.offset = 0;
5052 
5053 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5054 	if (ret < 0)
5055 		return ret;
5056 
5057 	while (true) {
5058 		int slot = path->slots[0];
5059 		struct extent_buffer *leaf = path->nodes[0];
5060 		int nritems = btrfs_header_nritems(leaf);
5061 
5062 		if (slot >= nritems) {
5063 			if (ins_nr > 0) {
5064 				ret = copy_items(trans, inode, dst_path, path,
5065 						 start_slot, ins_nr, 1, 0);
5066 				if (ret < 0)
5067 					return ret;
5068 				ins_nr = 0;
5069 			}
5070 			ret = btrfs_next_leaf(root, path);
5071 			if (ret < 0)
5072 				return ret;
5073 			else if (ret > 0)
5074 				break;
5075 			continue;
5076 		}
5077 
5078 		btrfs_item_key_to_cpu(leaf, &key, slot);
5079 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5080 			break;
5081 
5082 		if (ins_nr == 0)
5083 			start_slot = slot;
5084 		ins_nr++;
5085 		path->slots[0]++;
5086 		found_xattrs = true;
5087 		cond_resched();
5088 	}
5089 	if (ins_nr > 0) {
5090 		ret = copy_items(trans, inode, dst_path, path,
5091 				 start_slot, ins_nr, 1, 0);
5092 		if (ret < 0)
5093 			return ret;
5094 	}
5095 
5096 	if (!found_xattrs)
5097 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5098 
5099 	return 0;
5100 }
5101 
5102 /*
5103  * When using the NO_HOLES feature if we punched a hole that causes the
5104  * deletion of entire leafs or all the extent items of the first leaf (the one
5105  * that contains the inode item and references) we may end up not processing
5106  * any extents, because there are no leafs with a generation matching the
5107  * current transaction that have extent items for our inode. So we need to find
5108  * if any holes exist and then log them. We also need to log holes after any
5109  * truncate operation that changes the inode's size.
5110  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5111 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5112 			   struct btrfs_inode *inode,
5113 			   struct btrfs_path *path)
5114 {
5115 	struct btrfs_root *root = inode->root;
5116 	struct btrfs_fs_info *fs_info = root->fs_info;
5117 	struct btrfs_key key;
5118 	const u64 ino = btrfs_ino(inode);
5119 	const u64 i_size = i_size_read(&inode->vfs_inode);
5120 	u64 prev_extent_end = 0;
5121 	int ret;
5122 
5123 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5124 		return 0;
5125 
5126 	key.objectid = ino;
5127 	key.type = BTRFS_EXTENT_DATA_KEY;
5128 	key.offset = 0;
5129 
5130 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5131 	if (ret < 0)
5132 		return ret;
5133 
5134 	while (true) {
5135 		struct extent_buffer *leaf = path->nodes[0];
5136 
5137 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5138 			ret = btrfs_next_leaf(root, path);
5139 			if (ret < 0)
5140 				return ret;
5141 			if (ret > 0) {
5142 				ret = 0;
5143 				break;
5144 			}
5145 			leaf = path->nodes[0];
5146 		}
5147 
5148 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5149 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5150 			break;
5151 
5152 		/* We have a hole, log it. */
5153 		if (prev_extent_end < key.offset) {
5154 			const u64 hole_len = key.offset - prev_extent_end;
5155 
5156 			/*
5157 			 * Release the path to avoid deadlocks with other code
5158 			 * paths that search the root while holding locks on
5159 			 * leafs from the log root.
5160 			 */
5161 			btrfs_release_path(path);
5162 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5163 						       ino, prev_extent_end,
5164 						       hole_len);
5165 			if (ret < 0)
5166 				return ret;
5167 
5168 			/*
5169 			 * Search for the same key again in the root. Since it's
5170 			 * an extent item and we are holding the inode lock, the
5171 			 * key must still exist. If it doesn't just emit warning
5172 			 * and return an error to fall back to a transaction
5173 			 * commit.
5174 			 */
5175 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5176 			if (ret < 0)
5177 				return ret;
5178 			if (WARN_ON(ret > 0))
5179 				return -ENOENT;
5180 			leaf = path->nodes[0];
5181 		}
5182 
5183 		prev_extent_end = btrfs_file_extent_end(path);
5184 		path->slots[0]++;
5185 		cond_resched();
5186 	}
5187 
5188 	if (prev_extent_end < i_size) {
5189 		u64 hole_len;
5190 
5191 		btrfs_release_path(path);
5192 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5193 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5194 					       prev_extent_end, hole_len);
5195 		if (ret < 0)
5196 			return ret;
5197 	}
5198 
5199 	return 0;
5200 }
5201 
5202 /*
5203  * When we are logging a new inode X, check if it doesn't have a reference that
5204  * matches the reference from some other inode Y created in a past transaction
5205  * and that was renamed in the current transaction. If we don't do this, then at
5206  * log replay time we can lose inode Y (and all its files if it's a directory):
5207  *
5208  * mkdir /mnt/x
5209  * echo "hello world" > /mnt/x/foobar
5210  * sync
5211  * mv /mnt/x /mnt/y
5212  * mkdir /mnt/x                 # or touch /mnt/x
5213  * xfs_io -c fsync /mnt/x
5214  * <power fail>
5215  * mount fs, trigger log replay
5216  *
5217  * After the log replay procedure, we would lose the first directory and all its
5218  * files (file foobar).
5219  * For the case where inode Y is not a directory we simply end up losing it:
5220  *
5221  * echo "123" > /mnt/foo
5222  * sync
5223  * mv /mnt/foo /mnt/bar
5224  * echo "abc" > /mnt/foo
5225  * xfs_io -c fsync /mnt/foo
5226  * <power fail>
5227  *
5228  * We also need this for cases where a snapshot entry is replaced by some other
5229  * entry (file or directory) otherwise we end up with an unreplayable log due to
5230  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5231  * if it were a regular entry:
5232  *
5233  * mkdir /mnt/x
5234  * btrfs subvolume snapshot /mnt /mnt/x/snap
5235  * btrfs subvolume delete /mnt/x/snap
5236  * rmdir /mnt/x
5237  * mkdir /mnt/x
5238  * fsync /mnt/x or fsync some new file inside it
5239  * <power fail>
5240  *
5241  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5242  * the same transaction.
5243  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5244 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5245 					 const int slot,
5246 					 const struct btrfs_key *key,
5247 					 struct btrfs_inode *inode,
5248 					 u64 *other_ino, u64 *other_parent)
5249 {
5250 	int ret;
5251 	struct btrfs_path *search_path;
5252 	char *name = NULL;
5253 	u32 name_len = 0;
5254 	u32 item_size = btrfs_item_size(eb, slot);
5255 	u32 cur_offset = 0;
5256 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5257 
5258 	search_path = btrfs_alloc_path();
5259 	if (!search_path)
5260 		return -ENOMEM;
5261 	search_path->search_commit_root = 1;
5262 	search_path->skip_locking = 1;
5263 
5264 	while (cur_offset < item_size) {
5265 		u64 parent;
5266 		u32 this_name_len;
5267 		u32 this_len;
5268 		unsigned long name_ptr;
5269 		struct btrfs_dir_item *di;
5270 		struct fscrypt_str name_str;
5271 
5272 		if (key->type == BTRFS_INODE_REF_KEY) {
5273 			struct btrfs_inode_ref *iref;
5274 
5275 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5276 			parent = key->offset;
5277 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5278 			name_ptr = (unsigned long)(iref + 1);
5279 			this_len = sizeof(*iref) + this_name_len;
5280 		} else {
5281 			struct btrfs_inode_extref *extref;
5282 
5283 			extref = (struct btrfs_inode_extref *)(ptr +
5284 							       cur_offset);
5285 			parent = btrfs_inode_extref_parent(eb, extref);
5286 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5287 			name_ptr = (unsigned long)&extref->name;
5288 			this_len = sizeof(*extref) + this_name_len;
5289 		}
5290 
5291 		if (this_name_len > name_len) {
5292 			char *new_name;
5293 
5294 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5295 			if (!new_name) {
5296 				ret = -ENOMEM;
5297 				goto out;
5298 			}
5299 			name_len = this_name_len;
5300 			name = new_name;
5301 		}
5302 
5303 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5304 
5305 		name_str.name = name;
5306 		name_str.len = this_name_len;
5307 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5308 				parent, &name_str, 0);
5309 		if (di && !IS_ERR(di)) {
5310 			struct btrfs_key di_key;
5311 
5312 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5313 						  di, &di_key);
5314 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5315 				if (di_key.objectid != key->objectid) {
5316 					ret = 1;
5317 					*other_ino = di_key.objectid;
5318 					*other_parent = parent;
5319 				} else {
5320 					ret = 0;
5321 				}
5322 			} else {
5323 				ret = -EAGAIN;
5324 			}
5325 			goto out;
5326 		} else if (IS_ERR(di)) {
5327 			ret = PTR_ERR(di);
5328 			goto out;
5329 		}
5330 		btrfs_release_path(search_path);
5331 
5332 		cur_offset += this_len;
5333 	}
5334 	ret = 0;
5335 out:
5336 	btrfs_free_path(search_path);
5337 	kfree(name);
5338 	return ret;
5339 }
5340 
5341 /*
5342  * Check if we need to log an inode. This is used in contexts where while
5343  * logging an inode we need to log another inode (either that it exists or in
5344  * full mode). This is used instead of btrfs_inode_in_log() because the later
5345  * requires the inode to be in the log and have the log transaction committed,
5346  * while here we do not care if the log transaction was already committed - our
5347  * caller will commit the log later - and we want to avoid logging an inode
5348  * multiple times when multiple tasks have joined the same log transaction.
5349  */
need_log_inode(const struct btrfs_trans_handle * trans,const struct btrfs_inode * inode)5350 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5351 			   const struct btrfs_inode *inode)
5352 {
5353 	/*
5354 	 * If a directory was not modified, no dentries added or removed, we can
5355 	 * and should avoid logging it.
5356 	 */
5357 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5358 		return false;
5359 
5360 	/*
5361 	 * If this inode does not have new/updated/deleted xattrs since the last
5362 	 * time it was logged and is flagged as logged in the current transaction,
5363 	 * we can skip logging it. As for new/deleted names, those are updated in
5364 	 * the log by link/unlink/rename operations.
5365 	 * In case the inode was logged and then evicted and reloaded, its
5366 	 * logged_trans will be 0, in which case we have to fully log it since
5367 	 * logged_trans is a transient field, not persisted.
5368 	 */
5369 	if (inode->logged_trans == trans->transid &&
5370 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5371 		return false;
5372 
5373 	return true;
5374 }
5375 
5376 struct btrfs_dir_list {
5377 	u64 ino;
5378 	struct list_head list;
5379 };
5380 
5381 /*
5382  * Log the inodes of the new dentries of a directory.
5383  * See process_dir_items_leaf() for details about why it is needed.
5384  * This is a recursive operation - if an existing dentry corresponds to a
5385  * directory, that directory's new entries are logged too (same behaviour as
5386  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5387  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5388  * complains about the following circular lock dependency / possible deadlock:
5389  *
5390  *        CPU0                                        CPU1
5391  *        ----                                        ----
5392  * lock(&type->i_mutex_dir_key#3/2);
5393  *                                            lock(sb_internal#2);
5394  *                                            lock(&type->i_mutex_dir_key#3/2);
5395  * lock(&sb->s_type->i_mutex_key#14);
5396  *
5397  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5398  * sb_start_intwrite() in btrfs_start_transaction().
5399  * Not acquiring the VFS lock of the inodes is still safe because:
5400  *
5401  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5402  *    that while logging the inode new references (names) are added or removed
5403  *    from the inode, leaving the logged inode item with a link count that does
5404  *    not match the number of logged inode reference items. This is fine because
5405  *    at log replay time we compute the real number of links and correct the
5406  *    link count in the inode item (see replay_one_buffer() and
5407  *    link_to_fixup_dir());
5408  *
5409  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5410  *    while logging the inode's items new index items (key type
5411  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5412  *    has a size that doesn't match the sum of the lengths of all the logged
5413  *    names - this is ok, not a problem, because at log replay time we set the
5414  *    directory's i_size to the correct value (see replay_one_name() and
5415  *    do_overwrite_item()).
5416  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5417 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5418 				struct btrfs_inode *start_inode,
5419 				struct btrfs_log_ctx *ctx)
5420 {
5421 	struct btrfs_root *root = start_inode->root;
5422 	struct btrfs_fs_info *fs_info = root->fs_info;
5423 	struct btrfs_path *path;
5424 	LIST_HEAD(dir_list);
5425 	struct btrfs_dir_list *dir_elem;
5426 	u64 ino = btrfs_ino(start_inode);
5427 	int ret = 0;
5428 
5429 	/*
5430 	 * If we are logging a new name, as part of a link or rename operation,
5431 	 * don't bother logging new dentries, as we just want to log the names
5432 	 * of an inode and that any new parents exist.
5433 	 */
5434 	if (ctx->logging_new_name)
5435 		return 0;
5436 
5437 	path = btrfs_alloc_path();
5438 	if (!path)
5439 		return -ENOMEM;
5440 
5441 	while (true) {
5442 		struct extent_buffer *leaf;
5443 		struct btrfs_key min_key;
5444 		bool continue_curr_inode = true;
5445 		int nritems;
5446 		int i;
5447 
5448 		min_key.objectid = ino;
5449 		min_key.type = BTRFS_DIR_INDEX_KEY;
5450 		min_key.offset = 0;
5451 again:
5452 		btrfs_release_path(path);
5453 		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5454 		if (ret < 0) {
5455 			break;
5456 		} else if (ret > 0) {
5457 			ret = 0;
5458 			goto next;
5459 		}
5460 
5461 		leaf = path->nodes[0];
5462 		nritems = btrfs_header_nritems(leaf);
5463 		for (i = path->slots[0]; i < nritems; i++) {
5464 			struct btrfs_dir_item *di;
5465 			struct btrfs_key di_key;
5466 			struct inode *di_inode;
5467 			int log_mode = LOG_INODE_EXISTS;
5468 			int type;
5469 
5470 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5471 			if (min_key.objectid != ino ||
5472 			    min_key.type != BTRFS_DIR_INDEX_KEY) {
5473 				continue_curr_inode = false;
5474 				break;
5475 			}
5476 
5477 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5478 			type = btrfs_dir_type(leaf, di);
5479 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5480 				continue;
5481 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5482 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5483 				continue;
5484 
5485 			btrfs_release_path(path);
5486 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5487 			if (IS_ERR(di_inode)) {
5488 				ret = PTR_ERR(di_inode);
5489 				goto out;
5490 			}
5491 
5492 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5493 				btrfs_add_delayed_iput(di_inode);
5494 				break;
5495 			}
5496 
5497 			ctx->log_new_dentries = false;
5498 			if (type == BTRFS_FT_DIR)
5499 				log_mode = LOG_INODE_ALL;
5500 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5501 					      log_mode, ctx);
5502 			btrfs_add_delayed_iput(di_inode);
5503 			if (ret)
5504 				goto out;
5505 			if (ctx->log_new_dentries) {
5506 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5507 				if (!dir_elem) {
5508 					ret = -ENOMEM;
5509 					goto out;
5510 				}
5511 				dir_elem->ino = di_key.objectid;
5512 				list_add_tail(&dir_elem->list, &dir_list);
5513 			}
5514 			break;
5515 		}
5516 
5517 		if (continue_curr_inode && min_key.offset < (u64)-1) {
5518 			min_key.offset++;
5519 			goto again;
5520 		}
5521 
5522 next:
5523 		if (list_empty(&dir_list))
5524 			break;
5525 
5526 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5527 		ino = dir_elem->ino;
5528 		list_del(&dir_elem->list);
5529 		kfree(dir_elem);
5530 	}
5531 out:
5532 	btrfs_free_path(path);
5533 	if (ret) {
5534 		struct btrfs_dir_list *next;
5535 
5536 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5537 			kfree(dir_elem);
5538 	}
5539 
5540 	return ret;
5541 }
5542 
5543 struct btrfs_ino_list {
5544 	u64 ino;
5545 	u64 parent;
5546 	struct list_head list;
5547 };
5548 
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5549 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5550 {
5551 	struct btrfs_ino_list *curr;
5552 	struct btrfs_ino_list *next;
5553 
5554 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5555 		list_del(&curr->list);
5556 		kfree(curr);
5557 	}
5558 }
5559 
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5560 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5561 				    struct btrfs_path *path)
5562 {
5563 	struct btrfs_key key;
5564 	int ret;
5565 
5566 	key.objectid = ino;
5567 	key.type = BTRFS_INODE_ITEM_KEY;
5568 	key.offset = 0;
5569 
5570 	path->search_commit_root = 1;
5571 	path->skip_locking = 1;
5572 
5573 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5574 	if (WARN_ON_ONCE(ret > 0)) {
5575 		/*
5576 		 * We have previously found the inode through the commit root
5577 		 * so this should not happen. If it does, just error out and
5578 		 * fallback to a transaction commit.
5579 		 */
5580 		ret = -ENOENT;
5581 	} else if (ret == 0) {
5582 		struct btrfs_inode_item *item;
5583 
5584 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5585 				      struct btrfs_inode_item);
5586 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5587 			ret = 1;
5588 	}
5589 
5590 	btrfs_release_path(path);
5591 	path->search_commit_root = 0;
5592 	path->skip_locking = 0;
5593 
5594 	return ret;
5595 }
5596 
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5597 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5598 				 struct btrfs_root *root,
5599 				 struct btrfs_path *path,
5600 				 u64 ino, u64 parent,
5601 				 struct btrfs_log_ctx *ctx)
5602 {
5603 	struct btrfs_ino_list *ino_elem;
5604 	struct inode *inode;
5605 
5606 	/*
5607 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5608 	 * common to have more than 1 or 2. We don't want to collect too many,
5609 	 * as we could end up logging too many inodes (even if only in
5610 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5611 	 * commits.
5612 	 */
5613 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) {
5614 		btrfs_set_log_full_commit(trans);
5615 		return BTRFS_LOG_FORCE_COMMIT;
5616 	}
5617 
5618 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5619 	/*
5620 	 * If the other inode that had a conflicting dir entry was deleted in
5621 	 * the current transaction then we either:
5622 	 *
5623 	 * 1) Log the parent directory (later after adding it to the list) if
5624 	 *    the inode is a directory. This is because it may be a deleted
5625 	 *    subvolume/snapshot or it may be a regular directory that had
5626 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5627 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5628 	 *    during log replay. So we just log the parent, which will result in
5629 	 *    a fallback to a transaction commit if we are dealing with those
5630 	 *    cases (last_unlink_trans will match the current transaction);
5631 	 *
5632 	 * 2) Do nothing if it's not a directory. During log replay we simply
5633 	 *    unlink the conflicting dentry from the parent directory and then
5634 	 *    add the dentry for our inode. Like this we can avoid logging the
5635 	 *    parent directory (and maybe fallback to a transaction commit in
5636 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5637 	 *    some inode from it to some other directory).
5638 	 */
5639 	if (IS_ERR(inode)) {
5640 		int ret = PTR_ERR(inode);
5641 
5642 		if (ret != -ENOENT)
5643 			return ret;
5644 
5645 		ret = conflicting_inode_is_dir(root, ino, path);
5646 		/* Not a directory or we got an error. */
5647 		if (ret <= 0)
5648 			return ret;
5649 
5650 		/* Conflicting inode is a directory, so we'll log its parent. */
5651 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5652 		if (!ino_elem)
5653 			return -ENOMEM;
5654 		ino_elem->ino = ino;
5655 		ino_elem->parent = parent;
5656 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5657 		ctx->num_conflict_inodes++;
5658 
5659 		return 0;
5660 	}
5661 
5662 	/*
5663 	 * If the inode was already logged skip it - otherwise we can hit an
5664 	 * infinite loop. Example:
5665 	 *
5666 	 * From the commit root (previous transaction) we have the following
5667 	 * inodes:
5668 	 *
5669 	 * inode 257 a directory
5670 	 * inode 258 with references "zz" and "zz_link" on inode 257
5671 	 * inode 259 with reference "a" on inode 257
5672 	 *
5673 	 * And in the current (uncommitted) transaction we have:
5674 	 *
5675 	 * inode 257 a directory, unchanged
5676 	 * inode 258 with references "a" and "a2" on inode 257
5677 	 * inode 259 with reference "zz_link" on inode 257
5678 	 * inode 261 with reference "zz" on inode 257
5679 	 *
5680 	 * When logging inode 261 the following infinite loop could
5681 	 * happen if we don't skip already logged inodes:
5682 	 *
5683 	 * - we detect inode 258 as a conflicting inode, with inode 261
5684 	 *   on reference "zz", and log it;
5685 	 *
5686 	 * - we detect inode 259 as a conflicting inode, with inode 258
5687 	 *   on reference "a", and log it;
5688 	 *
5689 	 * - we detect inode 258 as a conflicting inode, with inode 259
5690 	 *   on reference "zz_link", and log it - again! After this we
5691 	 *   repeat the above steps forever.
5692 	 *
5693 	 * Here we can use need_log_inode() because we only need to log the
5694 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5695 	 * so that the log ends up with the new name and without the old name.
5696 	 */
5697 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5698 		btrfs_add_delayed_iput(inode);
5699 		return 0;
5700 	}
5701 
5702 	btrfs_add_delayed_iput(inode);
5703 
5704 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5705 	if (!ino_elem)
5706 		return -ENOMEM;
5707 	ino_elem->ino = ino;
5708 	ino_elem->parent = parent;
5709 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5710 	ctx->num_conflict_inodes++;
5711 
5712 	return 0;
5713 }
5714 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5715 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5716 				  struct btrfs_root *root,
5717 				  struct btrfs_log_ctx *ctx)
5718 {
5719 	struct btrfs_fs_info *fs_info = root->fs_info;
5720 	int ret = 0;
5721 
5722 	/*
5723 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5724 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5725 	 * calls. This check guarantees we can have only 1 level of recursion.
5726 	 */
5727 	if (ctx->logging_conflict_inodes)
5728 		return 0;
5729 
5730 	ctx->logging_conflict_inodes = true;
5731 
5732 	/*
5733 	 * New conflicting inodes may be found and added to the list while we
5734 	 * are logging a conflicting inode, so keep iterating while the list is
5735 	 * not empty.
5736 	 */
5737 	while (!list_empty(&ctx->conflict_inodes)) {
5738 		struct btrfs_ino_list *curr;
5739 		struct inode *inode;
5740 		u64 ino;
5741 		u64 parent;
5742 
5743 		curr = list_first_entry(&ctx->conflict_inodes,
5744 					struct btrfs_ino_list, list);
5745 		ino = curr->ino;
5746 		parent = curr->parent;
5747 		list_del(&curr->list);
5748 		kfree(curr);
5749 
5750 		inode = btrfs_iget(fs_info->sb, ino, root);
5751 		/*
5752 		 * If the other inode that had a conflicting dir entry was
5753 		 * deleted in the current transaction, we need to log its parent
5754 		 * directory. See the comment at add_conflicting_inode().
5755 		 */
5756 		if (IS_ERR(inode)) {
5757 			ret = PTR_ERR(inode);
5758 			if (ret != -ENOENT)
5759 				break;
5760 
5761 			inode = btrfs_iget(fs_info->sb, parent, root);
5762 			if (IS_ERR(inode)) {
5763 				ret = PTR_ERR(inode);
5764 				break;
5765 			}
5766 
5767 			/*
5768 			 * Always log the directory, we cannot make this
5769 			 * conditional on need_log_inode() because the directory
5770 			 * might have been logged in LOG_INODE_EXISTS mode or
5771 			 * the dir index of the conflicting inode is not in a
5772 			 * dir index key range logged for the directory. So we
5773 			 * must make sure the deletion is recorded.
5774 			 */
5775 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5776 					      LOG_INODE_ALL, ctx);
5777 			btrfs_add_delayed_iput(inode);
5778 			if (ret)
5779 				break;
5780 			continue;
5781 		}
5782 
5783 		/*
5784 		 * Here we can use need_log_inode() because we only need to log
5785 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5786 		 * update the log, so that the log ends up with the new name and
5787 		 * without the old name.
5788 		 *
5789 		 * We did this check at add_conflicting_inode(), but here we do
5790 		 * it again because if some other task logged the inode after
5791 		 * that, we can avoid doing it again.
5792 		 */
5793 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5794 			btrfs_add_delayed_iput(inode);
5795 			continue;
5796 		}
5797 
5798 		/*
5799 		 * We are safe logging the other inode without acquiring its
5800 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5801 		 * are safe against concurrent renames of the other inode as
5802 		 * well because during a rename we pin the log and update the
5803 		 * log with the new name before we unpin it.
5804 		 */
5805 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5806 		btrfs_add_delayed_iput(inode);
5807 		if (ret)
5808 			break;
5809 	}
5810 
5811 	ctx->logging_conflict_inodes = false;
5812 	if (ret)
5813 		free_conflicting_inodes(ctx);
5814 
5815 	return ret;
5816 }
5817 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5818 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5819 				   struct btrfs_inode *inode,
5820 				   struct btrfs_key *min_key,
5821 				   const struct btrfs_key *max_key,
5822 				   struct btrfs_path *path,
5823 				   struct btrfs_path *dst_path,
5824 				   const u64 logged_isize,
5825 				   const int inode_only,
5826 				   struct btrfs_log_ctx *ctx,
5827 				   bool *need_log_inode_item)
5828 {
5829 	const u64 i_size = i_size_read(&inode->vfs_inode);
5830 	struct btrfs_root *root = inode->root;
5831 	int ins_start_slot = 0;
5832 	int ins_nr = 0;
5833 	int ret;
5834 
5835 	while (1) {
5836 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5837 		if (ret < 0)
5838 			return ret;
5839 		if (ret > 0) {
5840 			ret = 0;
5841 			break;
5842 		}
5843 again:
5844 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5845 		if (min_key->objectid != max_key->objectid)
5846 			break;
5847 		if (min_key->type > max_key->type)
5848 			break;
5849 
5850 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5851 			*need_log_inode_item = false;
5852 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5853 			   min_key->offset >= i_size) {
5854 			/*
5855 			 * Extents at and beyond eof are logged with
5856 			 * btrfs_log_prealloc_extents().
5857 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5858 			 * and no keys greater than that, so bail out.
5859 			 */
5860 			break;
5861 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5862 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5863 			   (inode->generation == trans->transid ||
5864 			    ctx->logging_conflict_inodes)) {
5865 			u64 other_ino = 0;
5866 			u64 other_parent = 0;
5867 
5868 			ret = btrfs_check_ref_name_override(path->nodes[0],
5869 					path->slots[0], min_key, inode,
5870 					&other_ino, &other_parent);
5871 			if (ret < 0) {
5872 				return ret;
5873 			} else if (ret > 0 &&
5874 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5875 				if (ins_nr > 0) {
5876 					ins_nr++;
5877 				} else {
5878 					ins_nr = 1;
5879 					ins_start_slot = path->slots[0];
5880 				}
5881 				ret = copy_items(trans, inode, dst_path, path,
5882 						 ins_start_slot, ins_nr,
5883 						 inode_only, logged_isize);
5884 				if (ret < 0)
5885 					return ret;
5886 				ins_nr = 0;
5887 
5888 				btrfs_release_path(path);
5889 				ret = add_conflicting_inode(trans, root, path,
5890 							    other_ino,
5891 							    other_parent, ctx);
5892 				if (ret)
5893 					return ret;
5894 				goto next_key;
5895 			}
5896 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5897 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5898 			if (ins_nr == 0)
5899 				goto next_slot;
5900 			ret = copy_items(trans, inode, dst_path, path,
5901 					 ins_start_slot,
5902 					 ins_nr, inode_only, logged_isize);
5903 			if (ret < 0)
5904 				return ret;
5905 			ins_nr = 0;
5906 			goto next_slot;
5907 		}
5908 
5909 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5910 			ins_nr++;
5911 			goto next_slot;
5912 		} else if (!ins_nr) {
5913 			ins_start_slot = path->slots[0];
5914 			ins_nr = 1;
5915 			goto next_slot;
5916 		}
5917 
5918 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5919 				 ins_nr, inode_only, logged_isize);
5920 		if (ret < 0)
5921 			return ret;
5922 		ins_nr = 1;
5923 		ins_start_slot = path->slots[0];
5924 next_slot:
5925 		path->slots[0]++;
5926 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5927 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5928 					      path->slots[0]);
5929 			goto again;
5930 		}
5931 		if (ins_nr) {
5932 			ret = copy_items(trans, inode, dst_path, path,
5933 					 ins_start_slot, ins_nr, inode_only,
5934 					 logged_isize);
5935 			if (ret < 0)
5936 				return ret;
5937 			ins_nr = 0;
5938 		}
5939 		btrfs_release_path(path);
5940 next_key:
5941 		if (min_key->offset < (u64)-1) {
5942 			min_key->offset++;
5943 		} else if (min_key->type < max_key->type) {
5944 			min_key->type++;
5945 			min_key->offset = 0;
5946 		} else {
5947 			break;
5948 		}
5949 
5950 		/*
5951 		 * We may process many leaves full of items for our inode, so
5952 		 * avoid monopolizing a cpu for too long by rescheduling while
5953 		 * not holding locks on any tree.
5954 		 */
5955 		cond_resched();
5956 	}
5957 	if (ins_nr) {
5958 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5959 				 ins_nr, inode_only, logged_isize);
5960 		if (ret)
5961 			return ret;
5962 	}
5963 
5964 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5965 		/*
5966 		 * Release the path because otherwise we might attempt to double
5967 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5968 		 */
5969 		btrfs_release_path(path);
5970 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5971 	}
5972 
5973 	return ret;
5974 }
5975 
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)5976 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5977 				      struct btrfs_root *log,
5978 				      struct btrfs_path *path,
5979 				      const struct btrfs_item_batch *batch,
5980 				      const struct btrfs_delayed_item *first_item)
5981 {
5982 	const struct btrfs_delayed_item *curr = first_item;
5983 	int ret;
5984 
5985 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5986 	if (ret)
5987 		return ret;
5988 
5989 	for (int i = 0; i < batch->nr; i++) {
5990 		char *data_ptr;
5991 
5992 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5993 		write_extent_buffer(path->nodes[0], &curr->data,
5994 				    (unsigned long)data_ptr, curr->data_len);
5995 		curr = list_next_entry(curr, log_list);
5996 		path->slots[0]++;
5997 	}
5998 
5999 	btrfs_release_path(path);
6000 
6001 	return 0;
6002 }
6003 
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6004 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6005 				       struct btrfs_inode *inode,
6006 				       struct btrfs_path *path,
6007 				       const struct list_head *delayed_ins_list,
6008 				       struct btrfs_log_ctx *ctx)
6009 {
6010 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6011 	const int max_batch_size = 195;
6012 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6013 	const u64 ino = btrfs_ino(inode);
6014 	struct btrfs_root *log = inode->root->log_root;
6015 	struct btrfs_item_batch batch = {
6016 		.nr = 0,
6017 		.total_data_size = 0,
6018 	};
6019 	const struct btrfs_delayed_item *first = NULL;
6020 	const struct btrfs_delayed_item *curr;
6021 	char *ins_data;
6022 	struct btrfs_key *ins_keys;
6023 	u32 *ins_sizes;
6024 	u64 curr_batch_size = 0;
6025 	int batch_idx = 0;
6026 	int ret;
6027 
6028 	/* We are adding dir index items to the log tree. */
6029 	lockdep_assert_held(&inode->log_mutex);
6030 
6031 	/*
6032 	 * We collect delayed items before copying index keys from the subvolume
6033 	 * to the log tree. However just after we collected them, they may have
6034 	 * been flushed (all of them or just some of them), and therefore we
6035 	 * could have copied them from the subvolume tree to the log tree.
6036 	 * So find the first delayed item that was not yet logged (they are
6037 	 * sorted by index number).
6038 	 */
6039 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6040 		if (curr->index > inode->last_dir_index_offset) {
6041 			first = curr;
6042 			break;
6043 		}
6044 	}
6045 
6046 	/* Empty list or all delayed items were already logged. */
6047 	if (!first)
6048 		return 0;
6049 
6050 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6051 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6052 	if (!ins_data)
6053 		return -ENOMEM;
6054 	ins_sizes = (u32 *)ins_data;
6055 	batch.data_sizes = ins_sizes;
6056 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6057 	batch.keys = ins_keys;
6058 
6059 	curr = first;
6060 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6061 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6062 
6063 		if (curr_batch_size + curr_size > leaf_data_size ||
6064 		    batch.nr == max_batch_size) {
6065 			ret = insert_delayed_items_batch(trans, log, path,
6066 							 &batch, first);
6067 			if (ret)
6068 				goto out;
6069 			batch_idx = 0;
6070 			batch.nr = 0;
6071 			batch.total_data_size = 0;
6072 			curr_batch_size = 0;
6073 			first = curr;
6074 		}
6075 
6076 		ins_sizes[batch_idx] = curr->data_len;
6077 		ins_keys[batch_idx].objectid = ino;
6078 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6079 		ins_keys[batch_idx].offset = curr->index;
6080 		curr_batch_size += curr_size;
6081 		batch.total_data_size += curr->data_len;
6082 		batch.nr++;
6083 		batch_idx++;
6084 		curr = list_next_entry(curr, log_list);
6085 	}
6086 
6087 	ASSERT(batch.nr >= 1);
6088 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6089 
6090 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6091 			       log_list);
6092 	inode->last_dir_index_offset = curr->index;
6093 out:
6094 	kfree(ins_data);
6095 
6096 	return ret;
6097 }
6098 
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6099 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6100 				      struct btrfs_inode *inode,
6101 				      struct btrfs_path *path,
6102 				      const struct list_head *delayed_del_list,
6103 				      struct btrfs_log_ctx *ctx)
6104 {
6105 	const u64 ino = btrfs_ino(inode);
6106 	const struct btrfs_delayed_item *curr;
6107 
6108 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6109 				log_list);
6110 
6111 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6112 		u64 first_dir_index = curr->index;
6113 		u64 last_dir_index;
6114 		const struct btrfs_delayed_item *next;
6115 		int ret;
6116 
6117 		/*
6118 		 * Find a range of consecutive dir index items to delete. Like
6119 		 * this we log a single dir range item spanning several contiguous
6120 		 * dir items instead of logging one range item per dir index item.
6121 		 */
6122 		next = list_next_entry(curr, log_list);
6123 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6124 			if (next->index != curr->index + 1)
6125 				break;
6126 			curr = next;
6127 			next = list_next_entry(next, log_list);
6128 		}
6129 
6130 		last_dir_index = curr->index;
6131 		ASSERT(last_dir_index >= first_dir_index);
6132 
6133 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6134 					 ino, first_dir_index, last_dir_index);
6135 		if (ret)
6136 			return ret;
6137 		curr = list_next_entry(curr, log_list);
6138 	}
6139 
6140 	return 0;
6141 }
6142 
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6143 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6144 					struct btrfs_inode *inode,
6145 					struct btrfs_path *path,
6146 					struct btrfs_log_ctx *ctx,
6147 					const struct list_head *delayed_del_list,
6148 					const struct btrfs_delayed_item *first,
6149 					const struct btrfs_delayed_item **last_ret)
6150 {
6151 	const struct btrfs_delayed_item *next;
6152 	struct extent_buffer *leaf = path->nodes[0];
6153 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6154 	int slot = path->slots[0] + 1;
6155 	const u64 ino = btrfs_ino(inode);
6156 
6157 	next = list_next_entry(first, log_list);
6158 
6159 	while (slot < last_slot &&
6160 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6161 		struct btrfs_key key;
6162 
6163 		btrfs_item_key_to_cpu(leaf, &key, slot);
6164 		if (key.objectid != ino ||
6165 		    key.type != BTRFS_DIR_INDEX_KEY ||
6166 		    key.offset != next->index)
6167 			break;
6168 
6169 		slot++;
6170 		*last_ret = next;
6171 		next = list_next_entry(next, log_list);
6172 	}
6173 
6174 	return btrfs_del_items(trans, inode->root->log_root, path,
6175 			       path->slots[0], slot - path->slots[0]);
6176 }
6177 
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6178 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6179 					     struct btrfs_inode *inode,
6180 					     struct btrfs_path *path,
6181 					     const struct list_head *delayed_del_list,
6182 					     struct btrfs_log_ctx *ctx)
6183 {
6184 	struct btrfs_root *log = inode->root->log_root;
6185 	const struct btrfs_delayed_item *curr;
6186 	u64 last_range_start = 0;
6187 	u64 last_range_end = 0;
6188 	struct btrfs_key key;
6189 
6190 	key.objectid = btrfs_ino(inode);
6191 	key.type = BTRFS_DIR_INDEX_KEY;
6192 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6193 				log_list);
6194 
6195 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6196 		const struct btrfs_delayed_item *last = curr;
6197 		u64 first_dir_index = curr->index;
6198 		u64 last_dir_index;
6199 		bool deleted_items = false;
6200 		int ret;
6201 
6202 		key.offset = curr->index;
6203 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6204 		if (ret < 0) {
6205 			return ret;
6206 		} else if (ret == 0) {
6207 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6208 							   delayed_del_list, curr,
6209 							   &last);
6210 			if (ret)
6211 				return ret;
6212 			deleted_items = true;
6213 		}
6214 
6215 		btrfs_release_path(path);
6216 
6217 		/*
6218 		 * If we deleted items from the leaf, it means we have a range
6219 		 * item logging their range, so no need to add one or update an
6220 		 * existing one. Otherwise we have to log a dir range item.
6221 		 */
6222 		if (deleted_items)
6223 			goto next_batch;
6224 
6225 		last_dir_index = last->index;
6226 		ASSERT(last_dir_index >= first_dir_index);
6227 		/*
6228 		 * If this range starts right after where the previous one ends,
6229 		 * then we want to reuse the previous range item and change its
6230 		 * end offset to the end of this range. This is just to minimize
6231 		 * leaf space usage, by avoiding adding a new range item.
6232 		 */
6233 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6234 			first_dir_index = last_range_start;
6235 
6236 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6237 					 first_dir_index, last_dir_index);
6238 		if (ret)
6239 			return ret;
6240 
6241 		last_range_start = first_dir_index;
6242 		last_range_end = last_dir_index;
6243 next_batch:
6244 		curr = list_next_entry(last, log_list);
6245 	}
6246 
6247 	return 0;
6248 }
6249 
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6250 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6251 				      struct btrfs_inode *inode,
6252 				      struct btrfs_path *path,
6253 				      const struct list_head *delayed_del_list,
6254 				      struct btrfs_log_ctx *ctx)
6255 {
6256 	/*
6257 	 * We are deleting dir index items from the log tree or adding range
6258 	 * items to it.
6259 	 */
6260 	lockdep_assert_held(&inode->log_mutex);
6261 
6262 	if (list_empty(delayed_del_list))
6263 		return 0;
6264 
6265 	if (ctx->logged_before)
6266 		return log_delayed_deletions_incremental(trans, inode, path,
6267 							 delayed_del_list, ctx);
6268 
6269 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6270 					  ctx);
6271 }
6272 
6273 /*
6274  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6275  * items instead of the subvolume tree.
6276  */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6277 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6278 				    struct btrfs_inode *inode,
6279 				    const struct list_head *delayed_ins_list,
6280 				    struct btrfs_log_ctx *ctx)
6281 {
6282 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6283 	struct btrfs_fs_info *fs_info = trans->fs_info;
6284 	struct btrfs_delayed_item *item;
6285 	int ret = 0;
6286 
6287 	/*
6288 	 * No need for the log mutex, plus to avoid potential deadlocks or
6289 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6290 	 * mutexes.
6291 	 */
6292 	lockdep_assert_not_held(&inode->log_mutex);
6293 
6294 	ASSERT(!ctx->logging_new_delayed_dentries);
6295 	ctx->logging_new_delayed_dentries = true;
6296 
6297 	list_for_each_entry(item, delayed_ins_list, log_list) {
6298 		struct btrfs_dir_item *dir_item;
6299 		struct inode *di_inode;
6300 		struct btrfs_key key;
6301 		int log_mode = LOG_INODE_EXISTS;
6302 
6303 		dir_item = (struct btrfs_dir_item *)item->data;
6304 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6305 
6306 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6307 			continue;
6308 
6309 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6310 		if (IS_ERR(di_inode)) {
6311 			ret = PTR_ERR(di_inode);
6312 			break;
6313 		}
6314 
6315 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6316 			btrfs_add_delayed_iput(di_inode);
6317 			continue;
6318 		}
6319 
6320 		if (btrfs_stack_dir_type(dir_item) == BTRFS_FT_DIR)
6321 			log_mode = LOG_INODE_ALL;
6322 
6323 		ctx->log_new_dentries = false;
6324 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6325 
6326 		if (!ret && ctx->log_new_dentries)
6327 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6328 
6329 		btrfs_add_delayed_iput(di_inode);
6330 
6331 		if (ret)
6332 			break;
6333 	}
6334 
6335 	ctx->log_new_dentries = orig_log_new_dentries;
6336 	ctx->logging_new_delayed_dentries = false;
6337 
6338 	return ret;
6339 }
6340 
6341 /* log a single inode in the tree log.
6342  * At least one parent directory for this inode must exist in the tree
6343  * or be logged already.
6344  *
6345  * Any items from this inode changed by the current transaction are copied
6346  * to the log tree.  An extra reference is taken on any extents in this
6347  * file, allowing us to avoid a whole pile of corner cases around logging
6348  * blocks that have been removed from the tree.
6349  *
6350  * See LOG_INODE_ALL and related defines for a description of what inode_only
6351  * does.
6352  *
6353  * This handles both files and directories.
6354  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6355 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6356 			   struct btrfs_inode *inode,
6357 			   int inode_only,
6358 			   struct btrfs_log_ctx *ctx)
6359 {
6360 	struct btrfs_path *path;
6361 	struct btrfs_path *dst_path;
6362 	struct btrfs_key min_key;
6363 	struct btrfs_key max_key;
6364 	struct btrfs_root *log = inode->root->log_root;
6365 	int ret;
6366 	bool fast_search = false;
6367 	u64 ino = btrfs_ino(inode);
6368 	struct extent_map_tree *em_tree = &inode->extent_tree;
6369 	u64 logged_isize = 0;
6370 	bool need_log_inode_item = true;
6371 	bool xattrs_logged = false;
6372 	bool inode_item_dropped = true;
6373 	bool full_dir_logging = false;
6374 	LIST_HEAD(delayed_ins_list);
6375 	LIST_HEAD(delayed_del_list);
6376 
6377 	path = btrfs_alloc_path();
6378 	if (!path)
6379 		return -ENOMEM;
6380 	dst_path = btrfs_alloc_path();
6381 	if (!dst_path) {
6382 		btrfs_free_path(path);
6383 		return -ENOMEM;
6384 	}
6385 
6386 	min_key.objectid = ino;
6387 	min_key.type = BTRFS_INODE_ITEM_KEY;
6388 	min_key.offset = 0;
6389 
6390 	max_key.objectid = ino;
6391 
6392 
6393 	/* today the code can only do partial logging of directories */
6394 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6395 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6396 		       &inode->runtime_flags) &&
6397 	     inode_only >= LOG_INODE_EXISTS))
6398 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6399 	else
6400 		max_key.type = (u8)-1;
6401 	max_key.offset = (u64)-1;
6402 
6403 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6404 		full_dir_logging = true;
6405 
6406 	/*
6407 	 * If we are logging a directory while we are logging dentries of the
6408 	 * delayed items of some other inode, then we need to flush the delayed
6409 	 * items of this directory and not log the delayed items directly. This
6410 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6411 	 * by having something like this:
6412 	 *
6413 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6414 	 *     $ xfs_io -c "fsync" a
6415 	 *
6416 	 * Where all directories in the path did not exist before and are
6417 	 * created in the current transaction.
6418 	 * So in such a case we directly log the delayed items of the main
6419 	 * directory ("a") without flushing them first, while for each of its
6420 	 * subdirectories we flush their delayed items before logging them.
6421 	 * This prevents a potential unbounded recursion like this:
6422 	 *
6423 	 * btrfs_log_inode()
6424 	 *   log_new_delayed_dentries()
6425 	 *      btrfs_log_inode()
6426 	 *        log_new_delayed_dentries()
6427 	 *          btrfs_log_inode()
6428 	 *            log_new_delayed_dentries()
6429 	 *              (...)
6430 	 *
6431 	 * We have thresholds for the maximum number of delayed items to have in
6432 	 * memory, and once they are hit, the items are flushed asynchronously.
6433 	 * However the limit is quite high, so lets prevent deep levels of
6434 	 * recursion to happen by limiting the maximum depth to be 1.
6435 	 */
6436 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6437 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6438 		if (ret)
6439 			goto out;
6440 	}
6441 
6442 	mutex_lock(&inode->log_mutex);
6443 
6444 	/*
6445 	 * For symlinks, we must always log their content, which is stored in an
6446 	 * inline extent, otherwise we could end up with an empty symlink after
6447 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6448 	 * one attempts to create an empty symlink).
6449 	 * We don't need to worry about flushing delalloc, because when we create
6450 	 * the inline extent when the symlink is created (we never have delalloc
6451 	 * for symlinks).
6452 	 */
6453 	if (S_ISLNK(inode->vfs_inode.i_mode))
6454 		inode_only = LOG_INODE_ALL;
6455 
6456 	/*
6457 	 * Before logging the inode item, cache the value returned by
6458 	 * inode_logged(), because after that we have the need to figure out if
6459 	 * the inode was previously logged in this transaction.
6460 	 */
6461 	ret = inode_logged(trans, inode, path);
6462 	if (ret < 0)
6463 		goto out_unlock;
6464 	ctx->logged_before = (ret == 1);
6465 	ret = 0;
6466 
6467 	/*
6468 	 * This is for cases where logging a directory could result in losing a
6469 	 * a file after replaying the log. For example, if we move a file from a
6470 	 * directory A to a directory B, then fsync directory A, we have no way
6471 	 * to known the file was moved from A to B, so logging just A would
6472 	 * result in losing the file after a log replay.
6473 	 */
6474 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6475 		btrfs_set_log_full_commit(trans);
6476 		ret = BTRFS_LOG_FORCE_COMMIT;
6477 		goto out_unlock;
6478 	}
6479 
6480 	/*
6481 	 * a brute force approach to making sure we get the most uptodate
6482 	 * copies of everything.
6483 	 */
6484 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6485 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6486 		if (ctx->logged_before)
6487 			ret = drop_inode_items(trans, log, path, inode,
6488 					       BTRFS_XATTR_ITEM_KEY);
6489 	} else {
6490 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6491 			/*
6492 			 * Make sure the new inode item we write to the log has
6493 			 * the same isize as the current one (if it exists).
6494 			 * This is necessary to prevent data loss after log
6495 			 * replay, and also to prevent doing a wrong expanding
6496 			 * truncate - for e.g. create file, write 4K into offset
6497 			 * 0, fsync, write 4K into offset 4096, add hard link,
6498 			 * fsync some other file (to sync log), power fail - if
6499 			 * we use the inode's current i_size, after log replay
6500 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6501 			 * (zeroes), as if an expanding truncate happened,
6502 			 * instead of getting a file of 4Kb only.
6503 			 */
6504 			ret = logged_inode_size(log, inode, path, &logged_isize);
6505 			if (ret)
6506 				goto out_unlock;
6507 		}
6508 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6509 			     &inode->runtime_flags)) {
6510 			if (inode_only == LOG_INODE_EXISTS) {
6511 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6512 				if (ctx->logged_before)
6513 					ret = drop_inode_items(trans, log, path,
6514 							       inode, max_key.type);
6515 			} else {
6516 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6517 					  &inode->runtime_flags);
6518 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6519 					  &inode->runtime_flags);
6520 				if (ctx->logged_before)
6521 					ret = truncate_inode_items(trans, log,
6522 								   inode, 0, 0);
6523 			}
6524 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6525 					      &inode->runtime_flags) ||
6526 			   inode_only == LOG_INODE_EXISTS) {
6527 			if (inode_only == LOG_INODE_ALL)
6528 				fast_search = true;
6529 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6530 			if (ctx->logged_before)
6531 				ret = drop_inode_items(trans, log, path, inode,
6532 						       max_key.type);
6533 		} else {
6534 			if (inode_only == LOG_INODE_ALL)
6535 				fast_search = true;
6536 			inode_item_dropped = false;
6537 			goto log_extents;
6538 		}
6539 
6540 	}
6541 	if (ret)
6542 		goto out_unlock;
6543 
6544 	/*
6545 	 * If we are logging a directory in full mode, collect the delayed items
6546 	 * before iterating the subvolume tree, so that we don't miss any new
6547 	 * dir index items in case they get flushed while or right after we are
6548 	 * iterating the subvolume tree.
6549 	 */
6550 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6551 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6552 					    &delayed_del_list);
6553 
6554 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6555 				      path, dst_path, logged_isize,
6556 				      inode_only, ctx,
6557 				      &need_log_inode_item);
6558 	if (ret)
6559 		goto out_unlock;
6560 
6561 	btrfs_release_path(path);
6562 	btrfs_release_path(dst_path);
6563 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6564 	if (ret)
6565 		goto out_unlock;
6566 	xattrs_logged = true;
6567 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6568 		btrfs_release_path(path);
6569 		btrfs_release_path(dst_path);
6570 		ret = btrfs_log_holes(trans, inode, path);
6571 		if (ret)
6572 			goto out_unlock;
6573 	}
6574 log_extents:
6575 	btrfs_release_path(path);
6576 	btrfs_release_path(dst_path);
6577 	if (need_log_inode_item) {
6578 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6579 		if (ret)
6580 			goto out_unlock;
6581 		/*
6582 		 * If we are doing a fast fsync and the inode was logged before
6583 		 * in this transaction, we don't need to log the xattrs because
6584 		 * they were logged before. If xattrs were added, changed or
6585 		 * deleted since the last time we logged the inode, then we have
6586 		 * already logged them because the inode had the runtime flag
6587 		 * BTRFS_INODE_COPY_EVERYTHING set.
6588 		 */
6589 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6590 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6591 			if (ret)
6592 				goto out_unlock;
6593 			btrfs_release_path(path);
6594 		}
6595 	}
6596 	if (fast_search) {
6597 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6598 		if (ret)
6599 			goto out_unlock;
6600 	} else if (inode_only == LOG_INODE_ALL) {
6601 		struct extent_map *em, *n;
6602 
6603 		write_lock(&em_tree->lock);
6604 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6605 			list_del_init(&em->list);
6606 		write_unlock(&em_tree->lock);
6607 	}
6608 
6609 	if (full_dir_logging) {
6610 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6611 		if (ret)
6612 			goto out_unlock;
6613 		ret = log_delayed_insertion_items(trans, inode, path,
6614 						  &delayed_ins_list, ctx);
6615 		if (ret)
6616 			goto out_unlock;
6617 		ret = log_delayed_deletion_items(trans, inode, path,
6618 						 &delayed_del_list, ctx);
6619 		if (ret)
6620 			goto out_unlock;
6621 	}
6622 
6623 	spin_lock(&inode->lock);
6624 	inode->logged_trans = trans->transid;
6625 	/*
6626 	 * Don't update last_log_commit if we logged that an inode exists.
6627 	 * We do this for three reasons:
6628 	 *
6629 	 * 1) We might have had buffered writes to this inode that were
6630 	 *    flushed and had their ordered extents completed in this
6631 	 *    transaction, but we did not previously log the inode with
6632 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6633 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6634 	 *    happened. We must make sure that if an explicit fsync against
6635 	 *    the inode is performed later, it logs the new extents, an
6636 	 *    updated inode item, etc, and syncs the log. The same logic
6637 	 *    applies to direct IO writes instead of buffered writes.
6638 	 *
6639 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6640 	 *    is logged with an i_size of 0 or whatever value was logged
6641 	 *    before. If later the i_size of the inode is increased by a
6642 	 *    truncate operation, the log is synced through an fsync of
6643 	 *    some other inode and then finally an explicit fsync against
6644 	 *    this inode is made, we must make sure this fsync logs the
6645 	 *    inode with the new i_size, the hole between old i_size and
6646 	 *    the new i_size, and syncs the log.
6647 	 *
6648 	 * 3) If we are logging that an ancestor inode exists as part of
6649 	 *    logging a new name from a link or rename operation, don't update
6650 	 *    its last_log_commit - otherwise if an explicit fsync is made
6651 	 *    against an ancestor, the fsync considers the inode in the log
6652 	 *    and doesn't sync the log, resulting in the ancestor missing after
6653 	 *    a power failure unless the log was synced as part of an fsync
6654 	 *    against any other unrelated inode.
6655 	 */
6656 	if (inode_only != LOG_INODE_EXISTS)
6657 		inode->last_log_commit = inode->last_sub_trans;
6658 	spin_unlock(&inode->lock);
6659 
6660 	/*
6661 	 * Reset the last_reflink_trans so that the next fsync does not need to
6662 	 * go through the slower path when logging extents and their checksums.
6663 	 */
6664 	if (inode_only == LOG_INODE_ALL)
6665 		inode->last_reflink_trans = 0;
6666 
6667 out_unlock:
6668 	mutex_unlock(&inode->log_mutex);
6669 out:
6670 	btrfs_free_path(path);
6671 	btrfs_free_path(dst_path);
6672 
6673 	if (ret)
6674 		free_conflicting_inodes(ctx);
6675 	else
6676 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6677 
6678 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6679 		if (!ret)
6680 			ret = log_new_delayed_dentries(trans, inode,
6681 						       &delayed_ins_list, ctx);
6682 
6683 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6684 					    &delayed_del_list);
6685 	}
6686 
6687 	return ret;
6688 }
6689 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6690 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6691 				 struct btrfs_inode *inode,
6692 				 struct btrfs_log_ctx *ctx)
6693 {
6694 	struct btrfs_fs_info *fs_info = trans->fs_info;
6695 	int ret;
6696 	struct btrfs_path *path;
6697 	struct btrfs_key key;
6698 	struct btrfs_root *root = inode->root;
6699 	const u64 ino = btrfs_ino(inode);
6700 
6701 	path = btrfs_alloc_path();
6702 	if (!path)
6703 		return -ENOMEM;
6704 	path->skip_locking = 1;
6705 	path->search_commit_root = 1;
6706 
6707 	key.objectid = ino;
6708 	key.type = BTRFS_INODE_REF_KEY;
6709 	key.offset = 0;
6710 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6711 	if (ret < 0)
6712 		goto out;
6713 
6714 	while (true) {
6715 		struct extent_buffer *leaf = path->nodes[0];
6716 		int slot = path->slots[0];
6717 		u32 cur_offset = 0;
6718 		u32 item_size;
6719 		unsigned long ptr;
6720 
6721 		if (slot >= btrfs_header_nritems(leaf)) {
6722 			ret = btrfs_next_leaf(root, path);
6723 			if (ret < 0)
6724 				goto out;
6725 			else if (ret > 0)
6726 				break;
6727 			continue;
6728 		}
6729 
6730 		btrfs_item_key_to_cpu(leaf, &key, slot);
6731 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6732 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6733 			break;
6734 
6735 		item_size = btrfs_item_size(leaf, slot);
6736 		ptr = btrfs_item_ptr_offset(leaf, slot);
6737 		while (cur_offset < item_size) {
6738 			struct btrfs_key inode_key;
6739 			struct inode *dir_inode;
6740 
6741 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6742 			inode_key.offset = 0;
6743 
6744 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6745 				struct btrfs_inode_extref *extref;
6746 
6747 				extref = (struct btrfs_inode_extref *)
6748 					(ptr + cur_offset);
6749 				inode_key.objectid = btrfs_inode_extref_parent(
6750 					leaf, extref);
6751 				cur_offset += sizeof(*extref);
6752 				cur_offset += btrfs_inode_extref_name_len(leaf,
6753 					extref);
6754 			} else {
6755 				inode_key.objectid = key.offset;
6756 				cur_offset = item_size;
6757 			}
6758 
6759 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6760 					       root);
6761 			/*
6762 			 * If the parent inode was deleted, return an error to
6763 			 * fallback to a transaction commit. This is to prevent
6764 			 * getting an inode that was moved from one parent A to
6765 			 * a parent B, got its former parent A deleted and then
6766 			 * it got fsync'ed, from existing at both parents after
6767 			 * a log replay (and the old parent still existing).
6768 			 * Example:
6769 			 *
6770 			 * mkdir /mnt/A
6771 			 * mkdir /mnt/B
6772 			 * touch /mnt/B/bar
6773 			 * sync
6774 			 * mv /mnt/B/bar /mnt/A/bar
6775 			 * mv -T /mnt/A /mnt/B
6776 			 * fsync /mnt/B/bar
6777 			 * <power fail>
6778 			 *
6779 			 * If we ignore the old parent B which got deleted,
6780 			 * after a log replay we would have file bar linked
6781 			 * at both parents and the old parent B would still
6782 			 * exist.
6783 			 */
6784 			if (IS_ERR(dir_inode)) {
6785 				ret = PTR_ERR(dir_inode);
6786 				goto out;
6787 			}
6788 
6789 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6790 				btrfs_add_delayed_iput(dir_inode);
6791 				continue;
6792 			}
6793 
6794 			ctx->log_new_dentries = false;
6795 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6796 					      LOG_INODE_ALL, ctx);
6797 			if (!ret && ctx->log_new_dentries)
6798 				ret = log_new_dir_dentries(trans,
6799 						   BTRFS_I(dir_inode), ctx);
6800 			btrfs_add_delayed_iput(dir_inode);
6801 			if (ret)
6802 				goto out;
6803 		}
6804 		path->slots[0]++;
6805 	}
6806 	ret = 0;
6807 out:
6808 	btrfs_free_path(path);
6809 	return ret;
6810 }
6811 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6812 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6813 			     struct btrfs_root *root,
6814 			     struct btrfs_path *path,
6815 			     struct btrfs_log_ctx *ctx)
6816 {
6817 	struct btrfs_key found_key;
6818 
6819 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6820 
6821 	while (true) {
6822 		struct btrfs_fs_info *fs_info = root->fs_info;
6823 		struct extent_buffer *leaf = path->nodes[0];
6824 		int slot = path->slots[0];
6825 		struct btrfs_key search_key;
6826 		struct inode *inode;
6827 		u64 ino;
6828 		int ret = 0;
6829 
6830 		btrfs_release_path(path);
6831 
6832 		ino = found_key.offset;
6833 
6834 		search_key.objectid = found_key.offset;
6835 		search_key.type = BTRFS_INODE_ITEM_KEY;
6836 		search_key.offset = 0;
6837 		inode = btrfs_iget(fs_info->sb, ino, root);
6838 		if (IS_ERR(inode))
6839 			return PTR_ERR(inode);
6840 
6841 		if (BTRFS_I(inode)->generation >= trans->transid &&
6842 		    need_log_inode(trans, BTRFS_I(inode)))
6843 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6844 					      LOG_INODE_EXISTS, ctx);
6845 		btrfs_add_delayed_iput(inode);
6846 		if (ret)
6847 			return ret;
6848 
6849 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6850 			break;
6851 
6852 		search_key.type = BTRFS_INODE_REF_KEY;
6853 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6854 		if (ret < 0)
6855 			return ret;
6856 
6857 		leaf = path->nodes[0];
6858 		slot = path->slots[0];
6859 		if (slot >= btrfs_header_nritems(leaf)) {
6860 			ret = btrfs_next_leaf(root, path);
6861 			if (ret < 0)
6862 				return ret;
6863 			else if (ret > 0)
6864 				return -ENOENT;
6865 			leaf = path->nodes[0];
6866 			slot = path->slots[0];
6867 		}
6868 
6869 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6870 		if (found_key.objectid != search_key.objectid ||
6871 		    found_key.type != BTRFS_INODE_REF_KEY)
6872 			return -ENOENT;
6873 	}
6874 	return 0;
6875 }
6876 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6877 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6878 				  struct btrfs_inode *inode,
6879 				  struct dentry *parent,
6880 				  struct btrfs_log_ctx *ctx)
6881 {
6882 	struct btrfs_root *root = inode->root;
6883 	struct dentry *old_parent = NULL;
6884 	struct super_block *sb = inode->vfs_inode.i_sb;
6885 	int ret = 0;
6886 
6887 	while (true) {
6888 		if (!parent || d_really_is_negative(parent) ||
6889 		    sb != parent->d_sb)
6890 			break;
6891 
6892 		inode = BTRFS_I(d_inode(parent));
6893 		if (root != inode->root)
6894 			break;
6895 
6896 		if (inode->generation >= trans->transid &&
6897 		    need_log_inode(trans, inode)) {
6898 			ret = btrfs_log_inode(trans, inode,
6899 					      LOG_INODE_EXISTS, ctx);
6900 			if (ret)
6901 				break;
6902 		}
6903 		if (IS_ROOT(parent))
6904 			break;
6905 
6906 		parent = dget_parent(parent);
6907 		dput(old_parent);
6908 		old_parent = parent;
6909 	}
6910 	dput(old_parent);
6911 
6912 	return ret;
6913 }
6914 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6915 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6916 				 struct btrfs_inode *inode,
6917 				 struct dentry *parent,
6918 				 struct btrfs_log_ctx *ctx)
6919 {
6920 	struct btrfs_root *root = inode->root;
6921 	const u64 ino = btrfs_ino(inode);
6922 	struct btrfs_path *path;
6923 	struct btrfs_key search_key;
6924 	int ret;
6925 
6926 	/*
6927 	 * For a single hard link case, go through a fast path that does not
6928 	 * need to iterate the fs/subvolume tree.
6929 	 */
6930 	if (inode->vfs_inode.i_nlink < 2)
6931 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6932 
6933 	path = btrfs_alloc_path();
6934 	if (!path)
6935 		return -ENOMEM;
6936 
6937 	search_key.objectid = ino;
6938 	search_key.type = BTRFS_INODE_REF_KEY;
6939 	search_key.offset = 0;
6940 again:
6941 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6942 	if (ret < 0)
6943 		goto out;
6944 	if (ret == 0)
6945 		path->slots[0]++;
6946 
6947 	while (true) {
6948 		struct extent_buffer *leaf = path->nodes[0];
6949 		int slot = path->slots[0];
6950 		struct btrfs_key found_key;
6951 
6952 		if (slot >= btrfs_header_nritems(leaf)) {
6953 			ret = btrfs_next_leaf(root, path);
6954 			if (ret < 0)
6955 				goto out;
6956 			else if (ret > 0)
6957 				break;
6958 			continue;
6959 		}
6960 
6961 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6962 		if (found_key.objectid != ino ||
6963 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6964 			break;
6965 
6966 		/*
6967 		 * Don't deal with extended references because they are rare
6968 		 * cases and too complex to deal with (we would need to keep
6969 		 * track of which subitem we are processing for each item in
6970 		 * this loop, etc). So just return some error to fallback to
6971 		 * a transaction commit.
6972 		 */
6973 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6974 			ret = -EMLINK;
6975 			goto out;
6976 		}
6977 
6978 		/*
6979 		 * Logging ancestors needs to do more searches on the fs/subvol
6980 		 * tree, so it releases the path as needed to avoid deadlocks.
6981 		 * Keep track of the last inode ref key and resume from that key
6982 		 * after logging all new ancestors for the current hard link.
6983 		 */
6984 		memcpy(&search_key, &found_key, sizeof(search_key));
6985 
6986 		ret = log_new_ancestors(trans, root, path, ctx);
6987 		if (ret)
6988 			goto out;
6989 		btrfs_release_path(path);
6990 		goto again;
6991 	}
6992 	ret = 0;
6993 out:
6994 	btrfs_free_path(path);
6995 	return ret;
6996 }
6997 
6998 /*
6999  * helper function around btrfs_log_inode to make sure newly created
7000  * parent directories also end up in the log.  A minimal inode and backref
7001  * only logging is done of any parent directories that are older than
7002  * the last committed transaction
7003  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7004 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7005 				  struct btrfs_inode *inode,
7006 				  struct dentry *parent,
7007 				  int inode_only,
7008 				  struct btrfs_log_ctx *ctx)
7009 {
7010 	struct btrfs_root *root = inode->root;
7011 	struct btrfs_fs_info *fs_info = root->fs_info;
7012 	int ret = 0;
7013 	bool log_dentries = false;
7014 
7015 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7016 		ret = BTRFS_LOG_FORCE_COMMIT;
7017 		goto end_no_trans;
7018 	}
7019 
7020 	if (btrfs_root_refs(&root->root_item) == 0) {
7021 		ret = BTRFS_LOG_FORCE_COMMIT;
7022 		goto end_no_trans;
7023 	}
7024 
7025 	/*
7026 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7027 	 * (since logging them is pointless, a link count of 0 means they
7028 	 * will never be accessible).
7029 	 */
7030 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7031 	     list_empty(&ctx->ordered_extents)) ||
7032 	    inode->vfs_inode.i_nlink == 0) {
7033 		ret = BTRFS_NO_LOG_SYNC;
7034 		goto end_no_trans;
7035 	}
7036 
7037 	ret = start_log_trans(trans, root, ctx);
7038 	if (ret)
7039 		goto end_no_trans;
7040 
7041 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7042 	if (ret)
7043 		goto end_trans;
7044 
7045 	/*
7046 	 * for regular files, if its inode is already on disk, we don't
7047 	 * have to worry about the parents at all.  This is because
7048 	 * we can use the last_unlink_trans field to record renames
7049 	 * and other fun in this file.
7050 	 */
7051 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7052 	    inode->generation < trans->transid &&
7053 	    inode->last_unlink_trans < trans->transid) {
7054 		ret = 0;
7055 		goto end_trans;
7056 	}
7057 
7058 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7059 		log_dentries = true;
7060 
7061 	/*
7062 	 * On unlink we must make sure all our current and old parent directory
7063 	 * inodes are fully logged. This is to prevent leaving dangling
7064 	 * directory index entries in directories that were our parents but are
7065 	 * not anymore. Not doing this results in old parent directory being
7066 	 * impossible to delete after log replay (rmdir will always fail with
7067 	 * error -ENOTEMPTY).
7068 	 *
7069 	 * Example 1:
7070 	 *
7071 	 * mkdir testdir
7072 	 * touch testdir/foo
7073 	 * ln testdir/foo testdir/bar
7074 	 * sync
7075 	 * unlink testdir/bar
7076 	 * xfs_io -c fsync testdir/foo
7077 	 * <power failure>
7078 	 * mount fs, triggers log replay
7079 	 *
7080 	 * If we don't log the parent directory (testdir), after log replay the
7081 	 * directory still has an entry pointing to the file inode using the bar
7082 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7083 	 * the file inode has a link count of 1.
7084 	 *
7085 	 * Example 2:
7086 	 *
7087 	 * mkdir testdir
7088 	 * touch foo
7089 	 * ln foo testdir/foo2
7090 	 * ln foo testdir/foo3
7091 	 * sync
7092 	 * unlink testdir/foo3
7093 	 * xfs_io -c fsync foo
7094 	 * <power failure>
7095 	 * mount fs, triggers log replay
7096 	 *
7097 	 * Similar as the first example, after log replay the parent directory
7098 	 * testdir still has an entry pointing to the inode file with name foo3
7099 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7100 	 * and has a link count of 2.
7101 	 */
7102 	if (inode->last_unlink_trans >= trans->transid) {
7103 		ret = btrfs_log_all_parents(trans, inode, ctx);
7104 		if (ret)
7105 			goto end_trans;
7106 	}
7107 
7108 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7109 	if (ret)
7110 		goto end_trans;
7111 
7112 	if (log_dentries)
7113 		ret = log_new_dir_dentries(trans, inode, ctx);
7114 	else
7115 		ret = 0;
7116 end_trans:
7117 	if (ret < 0) {
7118 		btrfs_set_log_full_commit(trans);
7119 		ret = BTRFS_LOG_FORCE_COMMIT;
7120 	}
7121 
7122 	if (ret)
7123 		btrfs_remove_log_ctx(root, ctx);
7124 	btrfs_end_log_trans(root);
7125 end_no_trans:
7126 	return ret;
7127 }
7128 
7129 /*
7130  * it is not safe to log dentry if the chunk root has added new
7131  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7132  * If this returns 1, you must commit the transaction to safely get your
7133  * data on disk.
7134  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7135 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7136 			  struct dentry *dentry,
7137 			  struct btrfs_log_ctx *ctx)
7138 {
7139 	struct dentry *parent = dget_parent(dentry);
7140 	int ret;
7141 
7142 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7143 				     LOG_INODE_ALL, ctx);
7144 	dput(parent);
7145 
7146 	return ret;
7147 }
7148 
7149 /*
7150  * should be called during mount to recover any replay any log trees
7151  * from the FS
7152  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7153 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7154 {
7155 	int ret;
7156 	struct btrfs_path *path;
7157 	struct btrfs_trans_handle *trans;
7158 	struct btrfs_key key;
7159 	struct btrfs_key found_key;
7160 	struct btrfs_root *log;
7161 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7162 	struct walk_control wc = {
7163 		.process_func = process_one_buffer,
7164 		.stage = LOG_WALK_PIN_ONLY,
7165 	};
7166 
7167 	path = btrfs_alloc_path();
7168 	if (!path)
7169 		return -ENOMEM;
7170 
7171 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7172 
7173 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7174 	if (IS_ERR(trans)) {
7175 		ret = PTR_ERR(trans);
7176 		goto error;
7177 	}
7178 
7179 	wc.trans = trans;
7180 	wc.pin = 1;
7181 
7182 	ret = walk_log_tree(trans, log_root_tree, &wc);
7183 	if (ret) {
7184 		btrfs_abort_transaction(trans, ret);
7185 		goto error;
7186 	}
7187 
7188 again:
7189 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7190 	key.offset = (u64)-1;
7191 	key.type = BTRFS_ROOT_ITEM_KEY;
7192 
7193 	while (1) {
7194 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7195 
7196 		if (ret < 0) {
7197 			btrfs_abort_transaction(trans, ret);
7198 			goto error;
7199 		}
7200 		if (ret > 0) {
7201 			if (path->slots[0] == 0)
7202 				break;
7203 			path->slots[0]--;
7204 		}
7205 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7206 				      path->slots[0]);
7207 		btrfs_release_path(path);
7208 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7209 			break;
7210 
7211 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7212 		if (IS_ERR(log)) {
7213 			ret = PTR_ERR(log);
7214 			btrfs_abort_transaction(trans, ret);
7215 			goto error;
7216 		}
7217 
7218 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7219 						   true);
7220 		if (IS_ERR(wc.replay_dest)) {
7221 			ret = PTR_ERR(wc.replay_dest);
7222 
7223 			/*
7224 			 * We didn't find the subvol, likely because it was
7225 			 * deleted.  This is ok, simply skip this log and go to
7226 			 * the next one.
7227 			 *
7228 			 * We need to exclude the root because we can't have
7229 			 * other log replays overwriting this log as we'll read
7230 			 * it back in a few more times.  This will keep our
7231 			 * block from being modified, and we'll just bail for
7232 			 * each subsequent pass.
7233 			 */
7234 			if (ret == -ENOENT)
7235 				ret = btrfs_pin_extent_for_log_replay(trans,
7236 							log->node->start,
7237 							log->node->len);
7238 			btrfs_put_root(log);
7239 
7240 			if (!ret)
7241 				goto next;
7242 			btrfs_abort_transaction(trans, ret);
7243 			goto error;
7244 		}
7245 
7246 		wc.replay_dest->log_root = log;
7247 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7248 		if (ret)
7249 			/* The loop needs to continue due to the root refs */
7250 			btrfs_abort_transaction(trans, ret);
7251 		else
7252 			ret = walk_log_tree(trans, log, &wc);
7253 
7254 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7255 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7256 						      path);
7257 			if (ret)
7258 				btrfs_abort_transaction(trans, ret);
7259 		}
7260 
7261 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7262 			struct btrfs_root *root = wc.replay_dest;
7263 
7264 			btrfs_release_path(path);
7265 
7266 			/*
7267 			 * We have just replayed everything, and the highest
7268 			 * objectid of fs roots probably has changed in case
7269 			 * some inode_item's got replayed.
7270 			 *
7271 			 * root->objectid_mutex is not acquired as log replay
7272 			 * could only happen during mount.
7273 			 */
7274 			ret = btrfs_init_root_free_objectid(root);
7275 			if (ret)
7276 				btrfs_abort_transaction(trans, ret);
7277 		}
7278 
7279 		wc.replay_dest->log_root = NULL;
7280 		btrfs_put_root(wc.replay_dest);
7281 		btrfs_put_root(log);
7282 
7283 		if (ret)
7284 			goto error;
7285 next:
7286 		if (found_key.offset == 0)
7287 			break;
7288 		key.offset = found_key.offset - 1;
7289 	}
7290 	btrfs_release_path(path);
7291 
7292 	/* step one is to pin it all, step two is to replay just inodes */
7293 	if (wc.pin) {
7294 		wc.pin = 0;
7295 		wc.process_func = replay_one_buffer;
7296 		wc.stage = LOG_WALK_REPLAY_INODES;
7297 		goto again;
7298 	}
7299 	/* step three is to replay everything */
7300 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7301 		wc.stage++;
7302 		goto again;
7303 	}
7304 
7305 	btrfs_free_path(path);
7306 
7307 	/* step 4: commit the transaction, which also unpins the blocks */
7308 	ret = btrfs_commit_transaction(trans);
7309 	if (ret)
7310 		return ret;
7311 
7312 	log_root_tree->log_root = NULL;
7313 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7314 	btrfs_put_root(log_root_tree);
7315 
7316 	return 0;
7317 error:
7318 	if (wc.trans)
7319 		btrfs_end_transaction(wc.trans);
7320 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7321 	btrfs_free_path(path);
7322 	return ret;
7323 }
7324 
7325 /*
7326  * there are some corner cases where we want to force a full
7327  * commit instead of allowing a directory to be logged.
7328  *
7329  * They revolve around files there were unlinked from the directory, and
7330  * this function updates the parent directory so that a full commit is
7331  * properly done if it is fsync'd later after the unlinks are done.
7332  *
7333  * Must be called before the unlink operations (updates to the subvolume tree,
7334  * inodes, etc) are done.
7335  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)7336 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7337 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7338 			     int for_rename)
7339 {
7340 	/*
7341 	 * when we're logging a file, if it hasn't been renamed
7342 	 * or unlinked, and its inode is fully committed on disk,
7343 	 * we don't have to worry about walking up the directory chain
7344 	 * to log its parents.
7345 	 *
7346 	 * So, we use the last_unlink_trans field to put this transid
7347 	 * into the file.  When the file is logged we check it and
7348 	 * don't log the parents if the file is fully on disk.
7349 	 */
7350 	mutex_lock(&inode->log_mutex);
7351 	inode->last_unlink_trans = trans->transid;
7352 	mutex_unlock(&inode->log_mutex);
7353 
7354 	/*
7355 	 * if this directory was already logged any new
7356 	 * names for this file/dir will get recorded
7357 	 */
7358 	if (dir->logged_trans == trans->transid)
7359 		return;
7360 
7361 	/*
7362 	 * if the inode we're about to unlink was logged,
7363 	 * the log will be properly updated for any new names
7364 	 */
7365 	if (inode->logged_trans == trans->transid)
7366 		return;
7367 
7368 	/*
7369 	 * when renaming files across directories, if the directory
7370 	 * there we're unlinking from gets fsync'd later on, there's
7371 	 * no way to find the destination directory later and fsync it
7372 	 * properly.  So, we have to be conservative and force commits
7373 	 * so the new name gets discovered.
7374 	 */
7375 	if (for_rename)
7376 		goto record;
7377 
7378 	/* we can safely do the unlink without any special recording */
7379 	return;
7380 
7381 record:
7382 	mutex_lock(&dir->log_mutex);
7383 	dir->last_unlink_trans = trans->transid;
7384 	mutex_unlock(&dir->log_mutex);
7385 }
7386 
7387 /*
7388  * Make sure that if someone attempts to fsync the parent directory of a deleted
7389  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7390  * that after replaying the log tree of the parent directory's root we will not
7391  * see the snapshot anymore and at log replay time we will not see any log tree
7392  * corresponding to the deleted snapshot's root, which could lead to replaying
7393  * it after replaying the log tree of the parent directory (which would replay
7394  * the snapshot delete operation).
7395  *
7396  * Must be called before the actual snapshot destroy operation (updates to the
7397  * parent root and tree of tree roots trees, etc) are done.
7398  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7399 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7400 				   struct btrfs_inode *dir)
7401 {
7402 	mutex_lock(&dir->log_mutex);
7403 	dir->last_unlink_trans = trans->transid;
7404 	mutex_unlock(&dir->log_mutex);
7405 }
7406 
7407 /**
7408  * Update the log after adding a new name for an inode.
7409  *
7410  * @trans:              Transaction handle.
7411  * @old_dentry:         The dentry associated with the old name and the old
7412  *                      parent directory.
7413  * @old_dir:            The inode of the previous parent directory for the case
7414  *                      of a rename. For a link operation, it must be NULL.
7415  * @old_dir_index:      The index number associated with the old name, meaningful
7416  *                      only for rename operations (when @old_dir is not NULL).
7417  *                      Ignored for link operations.
7418  * @parent:             The dentry associated with the directory under which the
7419  *                      new name is located.
7420  *
7421  * Call this after adding a new name for an inode, as a result of a link or
7422  * rename operation, and it will properly update the log to reflect the new name.
7423  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7424 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7425 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7426 			u64 old_dir_index, struct dentry *parent)
7427 {
7428 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7429 	struct btrfs_root *root = inode->root;
7430 	struct btrfs_log_ctx ctx;
7431 	bool log_pinned = false;
7432 	int ret;
7433 
7434 	/*
7435 	 * this will force the logging code to walk the dentry chain
7436 	 * up for the file
7437 	 */
7438 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7439 		inode->last_unlink_trans = trans->transid;
7440 
7441 	/*
7442 	 * if this inode hasn't been logged and directory we're renaming it
7443 	 * from hasn't been logged, we don't need to log it
7444 	 */
7445 	ret = inode_logged(trans, inode, NULL);
7446 	if (ret < 0) {
7447 		goto out;
7448 	} else if (ret == 0) {
7449 		if (!old_dir)
7450 			return;
7451 		/*
7452 		 * If the inode was not logged and we are doing a rename (old_dir is not
7453 		 * NULL), check if old_dir was logged - if it was not we can return and
7454 		 * do nothing.
7455 		 */
7456 		ret = inode_logged(trans, old_dir, NULL);
7457 		if (ret < 0)
7458 			goto out;
7459 		else if (ret == 0)
7460 			return;
7461 	}
7462 	ret = 0;
7463 
7464 	/*
7465 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7466 	 * was previously logged, make sure that on log replay we get the old
7467 	 * dir entry deleted. This is needed because we will also log the new
7468 	 * name of the renamed inode, so we need to make sure that after log
7469 	 * replay we don't end up with both the new and old dir entries existing.
7470 	 */
7471 	if (old_dir && old_dir->logged_trans == trans->transid) {
7472 		struct btrfs_root *log = old_dir->root->log_root;
7473 		struct btrfs_path *path;
7474 		struct fscrypt_name fname;
7475 
7476 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7477 
7478 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7479 					     &old_dentry->d_name, 0, &fname);
7480 		if (ret)
7481 			goto out;
7482 		/*
7483 		 * We have two inodes to update in the log, the old directory and
7484 		 * the inode that got renamed, so we must pin the log to prevent
7485 		 * anyone from syncing the log until we have updated both inodes
7486 		 * in the log.
7487 		 */
7488 		ret = join_running_log_trans(root);
7489 		/*
7490 		 * At least one of the inodes was logged before, so this should
7491 		 * not fail, but if it does, it's not serious, just bail out and
7492 		 * mark the log for a full commit.
7493 		 */
7494 		if (WARN_ON_ONCE(ret < 0)) {
7495 			fscrypt_free_filename(&fname);
7496 			goto out;
7497 		}
7498 
7499 		log_pinned = true;
7500 
7501 		path = btrfs_alloc_path();
7502 		if (!path) {
7503 			ret = -ENOMEM;
7504 			fscrypt_free_filename(&fname);
7505 			goto out;
7506 		}
7507 
7508 		/*
7509 		 * Other concurrent task might be logging the old directory,
7510 		 * as it can be triggered when logging other inode that had or
7511 		 * still has a dentry in the old directory. We lock the old
7512 		 * directory's log_mutex to ensure the deletion of the old
7513 		 * name is persisted, because during directory logging we
7514 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7515 		 * the old name's dir index item is in the delayed items, so
7516 		 * it could be missed by an in progress directory logging.
7517 		 */
7518 		mutex_lock(&old_dir->log_mutex);
7519 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7520 					&fname.disk_name, old_dir_index);
7521 		if (ret > 0) {
7522 			/*
7523 			 * The dentry does not exist in the log, so record its
7524 			 * deletion.
7525 			 */
7526 			btrfs_release_path(path);
7527 			ret = insert_dir_log_key(trans, log, path,
7528 						 btrfs_ino(old_dir),
7529 						 old_dir_index, old_dir_index);
7530 		}
7531 		mutex_unlock(&old_dir->log_mutex);
7532 
7533 		btrfs_free_path(path);
7534 		fscrypt_free_filename(&fname);
7535 		if (ret < 0)
7536 			goto out;
7537 	}
7538 
7539 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7540 	ctx.logging_new_name = true;
7541 	/*
7542 	 * We don't care about the return value. If we fail to log the new name
7543 	 * then we know the next attempt to sync the log will fallback to a full
7544 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7545 	 * we don't need to worry about getting a log committed that has an
7546 	 * inconsistent state after a rename operation.
7547 	 */
7548 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7549 	ASSERT(list_empty(&ctx.conflict_inodes));
7550 out:
7551 	/*
7552 	 * If an error happened mark the log for a full commit because it's not
7553 	 * consistent and up to date or we couldn't find out if one of the
7554 	 * inodes was logged before in this transaction. Do it before unpinning
7555 	 * the log, to avoid any races with someone else trying to commit it.
7556 	 */
7557 	if (ret < 0)
7558 		btrfs_set_log_full_commit(trans);
7559 	if (log_pinned)
7560 		btrfs_end_log_trans(root);
7561 }
7562 
7563