• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct svc_cacherep *
nfsd_reply_cache_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
89 			struct nfsd_net *nn)
90 {
91 	struct svc_cacherep	*rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
113 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct svc_cacherep * rp,struct nfsd_net * nn)114 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
115 				struct nfsd_net *nn)
116 {
117 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
118 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
119 		kfree(rp->c_replvec.iov_base);
120 	}
121 	if (rp->c_state != RC_UNUSED) {
122 		rb_erase(&rp->c_node, &b->rb_head);
123 		list_del(&rp->c_lru);
124 		atomic_dec(&nn->num_drc_entries);
125 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
126 	}
127 	kmem_cache_free(drc_slab, rp);
128 }
129 
130 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct svc_cacherep * rp,struct nfsd_net * nn)131 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
132 			struct nfsd_net *nn)
133 {
134 	spin_lock(&b->cache_lock);
135 	nfsd_reply_cache_free_locked(b, rp, nn);
136 	spin_unlock(&b->cache_lock);
137 }
138 
nfsd_drc_slab_create(void)139 int nfsd_drc_slab_create(void)
140 {
141 	drc_slab = kmem_cache_create("nfsd_drc",
142 				sizeof(struct svc_cacherep), 0, 0, NULL);
143 	return drc_slab ? 0: -ENOMEM;
144 }
145 
nfsd_drc_slab_free(void)146 void nfsd_drc_slab_free(void)
147 {
148 	kmem_cache_destroy(drc_slab);
149 }
150 
nfsd_reply_cache_stats_init(struct nfsd_net * nn)151 static int nfsd_reply_cache_stats_init(struct nfsd_net *nn)
152 {
153 	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
154 }
155 
nfsd_reply_cache_stats_destroy(struct nfsd_net * nn)156 static void nfsd_reply_cache_stats_destroy(struct nfsd_net *nn)
157 {
158 	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
159 }
160 
nfsd_reply_cache_init(struct nfsd_net * nn)161 int nfsd_reply_cache_init(struct nfsd_net *nn)
162 {
163 	unsigned int hashsize;
164 	unsigned int i;
165 	int status = 0;
166 
167 	nn->max_drc_entries = nfsd_cache_size_limit();
168 	atomic_set(&nn->num_drc_entries, 0);
169 	hashsize = nfsd_hashsize(nn->max_drc_entries);
170 	nn->maskbits = ilog2(hashsize);
171 
172 	status = nfsd_reply_cache_stats_init(nn);
173 	if (status)
174 		goto out_nomem;
175 
176 	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
177 	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
178 	nn->nfsd_reply_cache_shrinker.seeks = 1;
179 	status = register_shrinker(&nn->nfsd_reply_cache_shrinker,
180 				   "nfsd-reply:%s", nn->nfsd_name);
181 	if (status)
182 		goto out_stats_destroy;
183 
184 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
185 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
186 	if (!nn->drc_hashtbl)
187 		goto out_shrinker;
188 
189 	for (i = 0; i < hashsize; i++) {
190 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
191 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
192 	}
193 	nn->drc_hashsize = hashsize;
194 
195 	return 0;
196 out_shrinker:
197 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
198 out_stats_destroy:
199 	nfsd_reply_cache_stats_destroy(nn);
200 out_nomem:
201 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
202 	return -ENOMEM;
203 }
204 
nfsd_reply_cache_shutdown(struct nfsd_net * nn)205 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
206 {
207 	struct svc_cacherep	*rp;
208 	unsigned int i;
209 
210 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
211 
212 	for (i = 0; i < nn->drc_hashsize; i++) {
213 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
214 		while (!list_empty(head)) {
215 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
216 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
217 									rp, nn);
218 		}
219 	}
220 	nfsd_reply_cache_stats_destroy(nn);
221 
222 	kvfree(nn->drc_hashtbl);
223 	nn->drc_hashtbl = NULL;
224 	nn->drc_hashsize = 0;
225 
226 }
227 
228 /*
229  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
230  * not already scheduled.
231  */
232 static void
lru_put_end(struct nfsd_drc_bucket * b,struct svc_cacherep * rp)233 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
234 {
235 	rp->c_timestamp = jiffies;
236 	list_move_tail(&rp->c_lru, &b->lru_head);
237 }
238 
239 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)240 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
241 {
242 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
243 
244 	return &nn->drc_hashtbl[hash];
245 }
246 
prune_bucket(struct nfsd_drc_bucket * b,struct nfsd_net * nn,unsigned int max)247 static long prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn,
248 			 unsigned int max)
249 {
250 	struct svc_cacherep *rp, *tmp;
251 	long freed = 0;
252 
253 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
254 		/*
255 		 * Don't free entries attached to calls that are still
256 		 * in-progress, but do keep scanning the list.
257 		 */
258 		if (rp->c_state == RC_INPROG)
259 			continue;
260 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
261 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
262 			break;
263 		nfsd_reply_cache_free_locked(b, rp, nn);
264 		if (max && freed++ > max)
265 			break;
266 	}
267 	return freed;
268 }
269 
nfsd_prune_bucket(struct nfsd_drc_bucket * b,struct nfsd_net * nn)270 static long nfsd_prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
271 {
272 	return prune_bucket(b, nn, 3);
273 }
274 
275 /*
276  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
277  * Also prune the oldest ones when the total exceeds the max number of entries.
278  */
279 static long
prune_cache_entries(struct nfsd_net * nn)280 prune_cache_entries(struct nfsd_net *nn)
281 {
282 	unsigned int i;
283 	long freed = 0;
284 
285 	for (i = 0; i < nn->drc_hashsize; i++) {
286 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
287 
288 		if (list_empty(&b->lru_head))
289 			continue;
290 		spin_lock(&b->cache_lock);
291 		freed += prune_bucket(b, nn, 0);
292 		spin_unlock(&b->cache_lock);
293 	}
294 	return freed;
295 }
296 
297 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)298 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
299 {
300 	struct nfsd_net *nn = container_of(shrink,
301 				struct nfsd_net, nfsd_reply_cache_shrinker);
302 
303 	return atomic_read(&nn->num_drc_entries);
304 }
305 
306 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)307 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
308 {
309 	struct nfsd_net *nn = container_of(shrink,
310 				struct nfsd_net, nfsd_reply_cache_shrinker);
311 
312 	return prune_cache_entries(nn);
313 }
314 
315 /**
316  * nfsd_cache_csum - Checksum incoming NFS Call arguments
317  * @buf: buffer containing a whole RPC Call message
318  * @start: starting byte of the NFS Call header
319  * @remaining: size of the NFS Call header, in bytes
320  *
321  * Compute a weak checksum of the leading bytes of an NFS procedure
322  * call header to help verify that a retransmitted Call matches an
323  * entry in the duplicate reply cache.
324  *
325  * To avoid assumptions about how the RPC message is laid out in
326  * @buf and what else it might contain (eg, a GSS MIC suffix), the
327  * caller passes us the exact location and length of the NFS Call
328  * header.
329  *
330  * Returns a 32-bit checksum value, as defined in RFC 793.
331  */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)332 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
333 			      unsigned int remaining)
334 {
335 	unsigned int base, len;
336 	struct xdr_buf subbuf;
337 	__wsum csum = 0;
338 	void *p;
339 	int idx;
340 
341 	if (remaining > RC_CSUMLEN)
342 		remaining = RC_CSUMLEN;
343 	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
344 		return csum;
345 
346 	/* rq_arg.head first */
347 	if (subbuf.head[0].iov_len) {
348 		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
349 		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
350 		remaining -= len;
351 	}
352 
353 	/* Continue into page array */
354 	idx = subbuf.page_base / PAGE_SIZE;
355 	base = subbuf.page_base & ~PAGE_MASK;
356 	while (remaining) {
357 		p = page_address(subbuf.pages[idx]) + base;
358 		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
359 		csum = csum_partial(p, len, csum);
360 		remaining -= len;
361 		base = 0;
362 		++idx;
363 	}
364 	return csum;
365 }
366 
367 static int
nfsd_cache_key_cmp(const struct svc_cacherep * key,const struct svc_cacherep * rp,struct nfsd_net * nn)368 nfsd_cache_key_cmp(const struct svc_cacherep *key,
369 			const struct svc_cacherep *rp, struct nfsd_net *nn)
370 {
371 	if (key->c_key.k_xid == rp->c_key.k_xid &&
372 	    key->c_key.k_csum != rp->c_key.k_csum) {
373 		nfsd_stats_payload_misses_inc(nn);
374 		trace_nfsd_drc_mismatch(nn, key, rp);
375 	}
376 
377 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
378 }
379 
380 /*
381  * Search the request hash for an entry that matches the given rqstp.
382  * Must be called with cache_lock held. Returns the found entry or
383  * inserts an empty key on failure.
384  */
385 static struct svc_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct svc_cacherep * key,struct nfsd_net * nn)386 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
387 			struct nfsd_net *nn)
388 {
389 	struct svc_cacherep	*rp, *ret = key;
390 	struct rb_node		**p = &b->rb_head.rb_node,
391 				*parent = NULL;
392 	unsigned int		entries = 0;
393 	int cmp;
394 
395 	while (*p != NULL) {
396 		++entries;
397 		parent = *p;
398 		rp = rb_entry(parent, struct svc_cacherep, c_node);
399 
400 		cmp = nfsd_cache_key_cmp(key, rp, nn);
401 		if (cmp < 0)
402 			p = &parent->rb_left;
403 		else if (cmp > 0)
404 			p = &parent->rb_right;
405 		else {
406 			ret = rp;
407 			goto out;
408 		}
409 	}
410 	rb_link_node(&key->c_node, parent, p);
411 	rb_insert_color(&key->c_node, &b->rb_head);
412 out:
413 	/* tally hash chain length stats */
414 	if (entries > nn->longest_chain) {
415 		nn->longest_chain = entries;
416 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
417 	} else if (entries == nn->longest_chain) {
418 		/* prefer to keep the smallest cachesize possible here */
419 		nn->longest_chain_cachesize = min_t(unsigned int,
420 				nn->longest_chain_cachesize,
421 				atomic_read(&nn->num_drc_entries));
422 	}
423 
424 	lru_put_end(b, ret);
425 	return ret;
426 }
427 
428 /**
429  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
430  * @rqstp: Incoming Call to find
431  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
432  * @len: size of the NFS Call header, in bytes
433  *
434  * Try to find an entry matching the current call in the cache. When none
435  * is found, we try to grab the oldest expired entry off the LRU list. If
436  * a suitable one isn't there, then drop the cache_lock and allocate a
437  * new one, then search again in case one got inserted while this thread
438  * didn't hold the lock.
439  *
440  * Return values:
441  *   %RC_DOIT: Process the request normally
442  *   %RC_REPLY: Reply from cache
443  *   %RC_DROPIT: Do not process the request further
444  */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len)445 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
446 		      unsigned int len)
447 {
448 	struct nfsd_net		*nn;
449 	struct svc_cacherep	*rp, *found;
450 	__wsum			csum;
451 	struct nfsd_drc_bucket	*b;
452 	int type = rqstp->rq_cachetype;
453 	int rtn = RC_DOIT;
454 
455 	rqstp->rq_cacherep = NULL;
456 	if (type == RC_NOCACHE) {
457 		nfsd_stats_rc_nocache_inc();
458 		goto out;
459 	}
460 
461 	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
462 
463 	/*
464 	 * Since the common case is a cache miss followed by an insert,
465 	 * preallocate an entry.
466 	 */
467 	nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
468 	rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
469 	if (!rp)
470 		goto out;
471 
472 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
473 	spin_lock(&b->cache_lock);
474 	found = nfsd_cache_insert(b, rp, nn);
475 	if (found != rp)
476 		goto found_entry;
477 
478 	nfsd_stats_rc_misses_inc();
479 	rqstp->rq_cacherep = rp;
480 	rp->c_state = RC_INPROG;
481 
482 	atomic_inc(&nn->num_drc_entries);
483 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
484 
485 	nfsd_prune_bucket(b, nn);
486 
487 out_unlock:
488 	spin_unlock(&b->cache_lock);
489 out:
490 	return rtn;
491 
492 found_entry:
493 	/* We found a matching entry which is either in progress or done. */
494 	nfsd_reply_cache_free_locked(NULL, rp, nn);
495 	nfsd_stats_rc_hits_inc();
496 	rtn = RC_DROPIT;
497 	rp = found;
498 
499 	/* Request being processed */
500 	if (rp->c_state == RC_INPROG)
501 		goto out_trace;
502 
503 	/* From the hall of fame of impractical attacks:
504 	 * Is this a user who tries to snoop on the cache? */
505 	rtn = RC_DOIT;
506 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
507 		goto out_trace;
508 
509 	/* Compose RPC reply header */
510 	switch (rp->c_type) {
511 	case RC_NOCACHE:
512 		break;
513 	case RC_REPLSTAT:
514 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
515 		rtn = RC_REPLY;
516 		break;
517 	case RC_REPLBUFF:
518 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
519 			goto out_unlock; /* should not happen */
520 		rtn = RC_REPLY;
521 		break;
522 	default:
523 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
524 	}
525 
526 out_trace:
527 	trace_nfsd_drc_found(nn, rqstp, rtn);
528 	goto out_unlock;
529 }
530 
531 /**
532  * nfsd_cache_update - Update an entry in the duplicate reply cache.
533  * @rqstp: svc_rqst with a finished Reply
534  * @cachetype: which cache to update
535  * @statp: Reply's status code
536  *
537  * This is called from nfsd_dispatch when the procedure has been
538  * executed and the complete reply is in rqstp->rq_res.
539  *
540  * We're copying around data here rather than swapping buffers because
541  * the toplevel loop requires max-sized buffers, which would be a waste
542  * of memory for a cache with a max reply size of 100 bytes (diropokres).
543  *
544  * If we should start to use different types of cache entries tailored
545  * specifically for attrstat and fh's, we may save even more space.
546  *
547  * Also note that a cachetype of RC_NOCACHE can legally be passed when
548  * nfsd failed to encode a reply that otherwise would have been cached.
549  * In this case, nfsd_cache_update is called with statp == NULL.
550  */
nfsd_cache_update(struct svc_rqst * rqstp,int cachetype,__be32 * statp)551 void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
552 {
553 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
554 	struct svc_cacherep *rp = rqstp->rq_cacherep;
555 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
556 	struct nfsd_drc_bucket *b;
557 	int		len;
558 	size_t		bufsize = 0;
559 
560 	if (!rp)
561 		return;
562 
563 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
564 
565 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
566 	len >>= 2;
567 
568 	/* Don't cache excessive amounts of data and XDR failures */
569 	if (!statp || len > (256 >> 2)) {
570 		nfsd_reply_cache_free(b, rp, nn);
571 		return;
572 	}
573 
574 	switch (cachetype) {
575 	case RC_REPLSTAT:
576 		if (len != 1)
577 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
578 		rp->c_replstat = *statp;
579 		break;
580 	case RC_REPLBUFF:
581 		cachv = &rp->c_replvec;
582 		bufsize = len << 2;
583 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
584 		if (!cachv->iov_base) {
585 			nfsd_reply_cache_free(b, rp, nn);
586 			return;
587 		}
588 		cachv->iov_len = bufsize;
589 		memcpy(cachv->iov_base, statp, bufsize);
590 		break;
591 	case RC_NOCACHE:
592 		nfsd_reply_cache_free(b, rp, nn);
593 		return;
594 	}
595 	spin_lock(&b->cache_lock);
596 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
597 	lru_put_end(b, rp);
598 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
599 	rp->c_type = cachetype;
600 	rp->c_state = RC_DONE;
601 	spin_unlock(&b->cache_lock);
602 	return;
603 }
604 
605 /*
606  * Copy cached reply to current reply buffer. Should always fit.
607  * FIXME as reply is in a page, we should just attach the page, and
608  * keep a refcount....
609  */
610 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)611 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
612 {
613 	struct kvec	*vec = &rqstp->rq_res.head[0];
614 
615 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
616 		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
617 				data->iov_len);
618 		return 0;
619 	}
620 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
621 	vec->iov_len += data->iov_len;
622 	return 1;
623 }
624 
625 /*
626  * Note that fields may be added, removed or reordered in the future. Programs
627  * scraping this file for info should test the labels to ensure they're
628  * getting the correct field.
629  */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)630 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
631 {
632 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
633 					  nfsd_net_id);
634 
635 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
636 	seq_printf(m, "num entries:           %u\n",
637 		   atomic_read(&nn->num_drc_entries));
638 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
639 	seq_printf(m, "mem usage:             %lld\n",
640 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
641 	seq_printf(m, "cache hits:            %lld\n",
642 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
643 	seq_printf(m, "cache misses:          %lld\n",
644 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
645 	seq_printf(m, "not cached:            %lld\n",
646 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
647 	seq_printf(m, "payload misses:        %lld\n",
648 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
649 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
650 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
651 	return 0;
652 }
653