• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 #include <trace/hooks/mm.h>
23 
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28 
29 #define SEQ_PUT_DEC(str, val) \
30 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33 	unsigned long text, lib, swap, anon, file, shmem;
34 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 
36 	anon = get_mm_counter(mm, MM_ANONPAGES);
37 	file = get_mm_counter(mm, MM_FILEPAGES);
38 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39 
40 	/*
41 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
42 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
43 	 * collector of these hiwater stats must therefore get total_vm
44 	 * and rss too, which will usually be the higher.  Barriers? not
45 	 * worth the effort, such snapshots can always be inconsistent.
46 	 */
47 	hiwater_vm = total_vm = mm->total_vm;
48 	if (hiwater_vm < mm->hiwater_vm)
49 		hiwater_vm = mm->hiwater_vm;
50 	hiwater_rss = total_rss = anon + file + shmem;
51 	if (hiwater_rss < mm->hiwater_rss)
52 		hiwater_rss = mm->hiwater_rss;
53 
54 	/* split executable areas between text and lib */
55 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56 	text = min(text, mm->exec_vm << PAGE_SHIFT);
57 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 
59 	swap = get_mm_counter(mm, MM_SWAPENTS);
60 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71 	seq_put_decimal_ull_width(m,
72 		    " kB\nVmExe:\t", text >> 10, 8);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmLib:\t", lib >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 	seq_puts(m, " kB\n");
79 	hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82 
task_vsize(struct mm_struct * mm)83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85 	return PAGE_SIZE * mm->total_vm;
86 }
87 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)88 unsigned long task_statm(struct mm_struct *mm,
89 			 unsigned long *shared, unsigned long *text,
90 			 unsigned long *data, unsigned long *resident)
91 {
92 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
93 			get_mm_counter(mm, MM_SHMEMPAGES);
94 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 								>> PAGE_SHIFT;
96 	*data = mm->data_vm + mm->stack_vm;
97 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98 	return mm->total_vm;
99 }
100 
101 #ifdef CONFIG_NUMA
102 /*
103  * Save get_task_policy() for show_numa_map().
104  */
hold_task_mempolicy(struct proc_maps_private * priv)105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107 	struct task_struct *task = priv->task;
108 
109 	task_lock(task);
110 	priv->task_mempolicy = get_task_policy(task);
111 	mpol_get(priv->task_mempolicy);
112 	task_unlock(task);
113 }
release_task_mempolicy(struct proc_maps_private * priv)114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 	mpol_put(priv->task_mempolicy);
117 }
118 #else
hold_task_mempolicy(struct proc_maps_private * priv)119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
release_task_mempolicy(struct proc_maps_private * priv)122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126 
proc_get_vma(struct proc_maps_private * priv,loff_t * ppos)127 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
128 						loff_t *ppos)
129 {
130 	struct vm_area_struct *vma = vma_next(&priv->iter);
131 
132 	if (vma) {
133 		*ppos = vma->vm_start;
134 	} else {
135 		*ppos = -2UL;
136 		vma = get_gate_vma(priv->mm);
137 	}
138 
139 	return vma;
140 }
141 
m_start(struct seq_file * m,loff_t * ppos)142 static void *m_start(struct seq_file *m, loff_t *ppos)
143 {
144 	struct proc_maps_private *priv = m->private;
145 	unsigned long last_addr = *ppos;
146 	struct mm_struct *mm;
147 
148 	/* See m_next(). Zero at the start or after lseek. */
149 	if (last_addr == -1UL)
150 		return NULL;
151 
152 	priv->task = get_proc_task(priv->inode);
153 	if (!priv->task)
154 		return ERR_PTR(-ESRCH);
155 
156 	mm = priv->mm;
157 	if (!mm || !mmget_not_zero(mm)) {
158 		put_task_struct(priv->task);
159 		priv->task = NULL;
160 		return NULL;
161 	}
162 
163 	if (mmap_read_lock_killable(mm)) {
164 		mmput(mm);
165 		put_task_struct(priv->task);
166 		priv->task = NULL;
167 		return ERR_PTR(-EINTR);
168 	}
169 
170 	vma_iter_init(&priv->iter, mm, last_addr);
171 	hold_task_mempolicy(priv);
172 	if (last_addr == -2UL)
173 		return get_gate_vma(mm);
174 
175 	return proc_get_vma(priv, ppos);
176 }
177 
m_next(struct seq_file * m,void * v,loff_t * ppos)178 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
179 {
180 	if (*ppos == -2UL) {
181 		*ppos = -1UL;
182 		return NULL;
183 	}
184 	return proc_get_vma(m->private, ppos);
185 }
186 
m_stop(struct seq_file * m,void * v)187 static void m_stop(struct seq_file *m, void *v)
188 {
189 	struct proc_maps_private *priv = m->private;
190 	struct mm_struct *mm = priv->mm;
191 
192 	if (!priv->task)
193 		return;
194 
195 	release_task_mempolicy(priv);
196 	mmap_read_unlock(mm);
197 	mmput(mm);
198 	put_task_struct(priv->task);
199 	priv->task = NULL;
200 }
201 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)202 static int proc_maps_open(struct inode *inode, struct file *file,
203 			const struct seq_operations *ops, int psize)
204 {
205 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
206 
207 	if (!priv)
208 		return -ENOMEM;
209 
210 	priv->inode = inode;
211 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
212 	if (IS_ERR(priv->mm)) {
213 		int err = PTR_ERR(priv->mm);
214 
215 		seq_release_private(inode, file);
216 		return err;
217 	}
218 
219 	return 0;
220 }
221 
proc_map_release(struct inode * inode,struct file * file)222 static int proc_map_release(struct inode *inode, struct file *file)
223 {
224 	struct seq_file *seq = file->private_data;
225 	struct proc_maps_private *priv = seq->private;
226 
227 	if (priv->mm)
228 		mmdrop(priv->mm);
229 
230 	return seq_release_private(inode, file);
231 }
232 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)233 static int do_maps_open(struct inode *inode, struct file *file,
234 			const struct seq_operations *ops)
235 {
236 	return proc_maps_open(inode, file, ops,
237 				sizeof(struct proc_maps_private));
238 }
239 
240 /*
241  * Indicate if the VMA is a stack for the given task; for
242  * /proc/PID/maps that is the stack of the main task.
243  */
is_stack(struct vm_area_struct * vma)244 static int is_stack(struct vm_area_struct *vma)
245 {
246 	/*
247 	 * We make no effort to guess what a given thread considers to be
248 	 * its "stack".  It's not even well-defined for programs written
249 	 * languages like Go.
250 	 */
251 	return vma->vm_start <= vma->vm_mm->start_stack &&
252 		vma->vm_end >= vma->vm_mm->start_stack;
253 }
254 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)255 static void show_vma_header_prefix(struct seq_file *m,
256 				   unsigned long start, unsigned long end,
257 				   vm_flags_t flags, unsigned long long pgoff,
258 				   dev_t dev, unsigned long ino)
259 {
260 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
261 	seq_put_hex_ll(m, NULL, start, 8);
262 	seq_put_hex_ll(m, "-", end, 8);
263 	seq_putc(m, ' ');
264 	seq_putc(m, flags & VM_READ ? 'r' : '-');
265 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
266 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
267 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
268 	seq_put_hex_ll(m, " ", pgoff, 8);
269 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
270 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
271 	seq_put_decimal_ull(m, " ", ino);
272 	seq_putc(m, ' ');
273 }
274 
275 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)276 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
277 {
278 	struct mm_struct *mm = vma->vm_mm;
279 	struct file *file = vma->vm_file;
280 	vm_flags_t flags = vma->vm_flags;
281 	unsigned long ino = 0;
282 	unsigned long long pgoff = 0;
283 	unsigned long start, end;
284 	dev_t dev = 0;
285 	const char *name = NULL;
286 
287 	if (file) {
288 		struct inode *inode = file_inode(vma->vm_file);
289 		dev = inode->i_sb->s_dev;
290 		ino = inode->i_ino;
291 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
292 	}
293 
294 	start = vma->vm_start;
295 	end = vma->vm_end;
296 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297 
298 	/*
299 	 * Print the dentry name for named mappings, and a
300 	 * special [heap] marker for the heap:
301 	 */
302 	if (file) {
303 		seq_pad(m, ' ');
304 		seq_file_path(m, file, "\n");
305 		goto done;
306 	}
307 
308 	if (vma->vm_ops && vma->vm_ops->name) {
309 		name = vma->vm_ops->name(vma);
310 		if (name)
311 			goto done;
312 	}
313 
314 	name = arch_vma_name(vma);
315 	if (!name) {
316 		struct anon_vma_name *anon_name;
317 
318 		if (!mm) {
319 			name = "[vdso]";
320 			goto done;
321 		}
322 
323 		if (vma->vm_start <= mm->brk &&
324 		    vma->vm_end >= mm->start_brk) {
325 			name = "[heap]";
326 			goto done;
327 		}
328 
329 		if (is_stack(vma)) {
330 			name = "[stack]";
331 			goto done;
332 		}
333 
334 		anon_name = anon_vma_name(vma);
335 		if (anon_name) {
336 			seq_pad(m, ' ');
337 			seq_printf(m, "[anon:%s]", anon_name->name);
338 		}
339 	}
340 
341 done:
342 	if (name) {
343 		seq_pad(m, ' ');
344 		seq_puts(m, name);
345 	}
346 	seq_putc(m, '\n');
347 }
348 
show_map(struct seq_file * m,void * v)349 static int show_map(struct seq_file *m, void *v)
350 {
351 	show_map_vma(m, v);
352 	return 0;
353 }
354 
355 static const struct seq_operations proc_pid_maps_op = {
356 	.start	= m_start,
357 	.next	= m_next,
358 	.stop	= m_stop,
359 	.show	= show_map
360 };
361 
pid_maps_open(struct inode * inode,struct file * file)362 static int pid_maps_open(struct inode *inode, struct file *file)
363 {
364 	return do_maps_open(inode, file, &proc_pid_maps_op);
365 }
366 
367 const struct file_operations proc_pid_maps_operations = {
368 	.open		= pid_maps_open,
369 	.read		= seq_read,
370 	.llseek		= seq_lseek,
371 	.release	= proc_map_release,
372 };
373 
374 /*
375  * Proportional Set Size(PSS): my share of RSS.
376  *
377  * PSS of a process is the count of pages it has in memory, where each
378  * page is divided by the number of processes sharing it.  So if a
379  * process has 1000 pages all to itself, and 1000 shared with one other
380  * process, its PSS will be 1500.
381  *
382  * To keep (accumulated) division errors low, we adopt a 64bit
383  * fixed-point pss counter to minimize division errors. So (pss >>
384  * PSS_SHIFT) would be the real byte count.
385  *
386  * A shift of 12 before division means (assuming 4K page size):
387  * 	- 1M 3-user-pages add up to 8KB errors;
388  * 	- supports mapcount up to 2^24, or 16M;
389  * 	- supports PSS up to 2^52 bytes, or 4PB.
390  */
391 #define PSS_SHIFT 12
392 
393 #ifdef CONFIG_PROC_PAGE_MONITOR
394 struct mem_size_stats {
395 	unsigned long resident;
396 	unsigned long shared_clean;
397 	unsigned long shared_dirty;
398 	unsigned long private_clean;
399 	unsigned long private_dirty;
400 	unsigned long referenced;
401 	unsigned long anonymous;
402 	unsigned long lazyfree;
403 	unsigned long anonymous_thp;
404 	unsigned long shmem_thp;
405 	unsigned long file_thp;
406 	unsigned long swap;
407 	unsigned long writeback;
408 	unsigned long same;
409 	unsigned long huge;
410 	unsigned long shared_hugetlb;
411 	unsigned long private_hugetlb;
412 	u64 pss;
413 	u64 pss_anon;
414 	u64 pss_file;
415 	u64 pss_shmem;
416 	u64 pss_dirty;
417 	u64 pss_locked;
418 	u64 swap_pss;
419 };
420 
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)421 static void smaps_page_accumulate(struct mem_size_stats *mss,
422 		struct page *page, unsigned long size, unsigned long pss,
423 		bool dirty, bool locked, bool private)
424 {
425 	mss->pss += pss;
426 
427 	if (PageAnon(page))
428 		mss->pss_anon += pss;
429 	else if (PageSwapBacked(page))
430 		mss->pss_shmem += pss;
431 	else
432 		mss->pss_file += pss;
433 
434 	if (locked)
435 		mss->pss_locked += pss;
436 
437 	if (dirty || PageDirty(page)) {
438 		mss->pss_dirty += pss;
439 		if (private)
440 			mss->private_dirty += size;
441 		else
442 			mss->shared_dirty += size;
443 	} else {
444 		if (private)
445 			mss->private_clean += size;
446 		else
447 			mss->shared_clean += size;
448 	}
449 }
450 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)451 static void smaps_account(struct mem_size_stats *mss, struct page *page,
452 		bool compound, bool young, bool dirty, bool locked,
453 		bool migration)
454 {
455 	int i, nr = compound ? compound_nr(page) : 1;
456 	unsigned long size = nr * PAGE_SIZE;
457 
458 	/*
459 	 * First accumulate quantities that depend only on |size| and the type
460 	 * of the compound page.
461 	 */
462 	if (PageAnon(page)) {
463 		mss->anonymous += size;
464 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
465 			mss->lazyfree += size;
466 	}
467 
468 	mss->resident += size;
469 	/* Accumulate the size in pages that have been accessed. */
470 	if (young || page_is_young(page) || PageReferenced(page))
471 		mss->referenced += size;
472 
473 	/*
474 	 * Then accumulate quantities that may depend on sharing, or that may
475 	 * differ page-by-page.
476 	 *
477 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
478 	 * If any subpage of the compound page mapped with PTE it would elevate
479 	 * page_count().
480 	 *
481 	 * The page_mapcount() is called to get a snapshot of the mapcount.
482 	 * Without holding the page lock this snapshot can be slightly wrong as
483 	 * we cannot always read the mapcount atomically.  It is not safe to
484 	 * call page_mapcount() even with PTL held if the page is not mapped,
485 	 * especially for migration entries.  Treat regular migration entries
486 	 * as mapcount == 1.
487 	 */
488 	if ((page_count(page) == 1) || migration) {
489 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
490 			locked, true);
491 		return;
492 	}
493 	for (i = 0; i < nr; i++, page++) {
494 		int mapcount = page_mapcount(page);
495 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
496 		if (mapcount >= 2)
497 			pss /= mapcount;
498 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
499 				      mapcount < 2);
500 	}
501 }
502 
503 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)504 static int smaps_pte_hole(unsigned long addr, unsigned long end,
505 			  __always_unused int depth, struct mm_walk *walk)
506 {
507 	struct mem_size_stats *mss = walk->private;
508 	struct vm_area_struct *vma = walk->vma;
509 
510 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
511 					      linear_page_index(vma, addr),
512 					      linear_page_index(vma, end));
513 
514 	return 0;
515 }
516 #else
517 #define smaps_pte_hole		NULL
518 #endif /* CONFIG_SHMEM */
519 
smaps_pte_hole_lookup(unsigned long addr,struct mm_walk * walk)520 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
521 {
522 #ifdef CONFIG_SHMEM
523 	if (walk->ops->pte_hole) {
524 		/* depth is not used */
525 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
526 	}
527 #endif
528 }
529 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)530 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
531 		struct mm_walk *walk)
532 {
533 	struct mem_size_stats *mss = walk->private;
534 	struct vm_area_struct *vma = walk->vma;
535 	bool locked = !!(vma->vm_flags & VM_LOCKED);
536 	struct page *page = NULL;
537 	bool migration = false, young = false, dirty = false;
538 
539 	if (pte_present(*pte)) {
540 		page = vm_normal_page(vma, addr, *pte);
541 		young = pte_young(*pte);
542 		dirty = pte_dirty(*pte);
543 	} else if (is_swap_pte(*pte)) {
544 		swp_entry_t swpent = pte_to_swp_entry(*pte);
545 
546 		if (!non_swap_entry(swpent)) {
547 			int mapcount;
548 
549 			mss->swap += PAGE_SIZE;
550 			mapcount = swp_swapcount(swpent);
551 			if (mapcount >= 2) {
552 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
553 
554 				do_div(pss_delta, mapcount);
555 				mss->swap_pss += pss_delta;
556 			} else {
557 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
558 			}
559 			trace_android_vh_smaps_pte_entry(swpent,
560 					&mss->writeback,
561 					&mss->same, &mss->huge);
562 		} else if (is_pfn_swap_entry(swpent)) {
563 			if (is_migration_entry(swpent))
564 				migration = true;
565 			page = pfn_swap_entry_to_page(swpent);
566 		}
567 	} else {
568 		smaps_pte_hole_lookup(addr, walk);
569 		return;
570 	}
571 
572 	if (!page)
573 		return;
574 
575 	smaps_account(mss, page, false, young, dirty, locked, migration);
576 }
577 
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)579 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
580 		struct mm_walk *walk)
581 {
582 	struct mem_size_stats *mss = walk->private;
583 	struct vm_area_struct *vma = walk->vma;
584 	bool locked = !!(vma->vm_flags & VM_LOCKED);
585 	struct page *page = NULL;
586 	bool migration = false;
587 
588 	if (pmd_present(*pmd)) {
589 		/* FOLL_DUMP will return -EFAULT on huge zero page */
590 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
591 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
592 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
593 
594 		if (is_migration_entry(entry)) {
595 			migration = true;
596 			page = pfn_swap_entry_to_page(entry);
597 		}
598 	}
599 	if (IS_ERR_OR_NULL(page))
600 		return;
601 	if (PageAnon(page))
602 		mss->anonymous_thp += HPAGE_PMD_SIZE;
603 	else if (PageSwapBacked(page))
604 		mss->shmem_thp += HPAGE_PMD_SIZE;
605 	else if (is_zone_device_page(page))
606 		/* pass */;
607 	else
608 		mss->file_thp += HPAGE_PMD_SIZE;
609 
610 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
611 		      locked, migration);
612 }
613 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)614 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
615 		struct mm_walk *walk)
616 {
617 }
618 #endif
619 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)620 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
621 			   struct mm_walk *walk)
622 {
623 	struct vm_area_struct *vma = walk->vma;
624 	pte_t *pte;
625 	spinlock_t *ptl;
626 
627 	ptl = pmd_trans_huge_lock(pmd, vma);
628 	if (ptl) {
629 		smaps_pmd_entry(pmd, addr, walk);
630 		spin_unlock(ptl);
631 		goto out;
632 	}
633 
634 	if (pmd_trans_unstable(pmd))
635 		goto out;
636 	/*
637 	 * The mmap_lock held all the way back in m_start() is what
638 	 * keeps khugepaged out of here and from collapsing things
639 	 * in here.
640 	 */
641 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
642 	for (; addr != end; pte++, addr += PAGE_SIZE)
643 		smaps_pte_entry(pte, addr, walk);
644 	pte_unmap_unlock(pte - 1, ptl);
645 out:
646 	cond_resched();
647 	return 0;
648 }
649 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)650 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651 {
652 	/*
653 	 * Don't forget to update Documentation/ on changes.
654 	 */
655 	static const char mnemonics[BITS_PER_LONG][2] = {
656 		/*
657 		 * In case if we meet a flag we don't know about.
658 		 */
659 		[0 ... (BITS_PER_LONG-1)] = "??",
660 
661 		[ilog2(VM_READ)]	= "rd",
662 		[ilog2(VM_WRITE)]	= "wr",
663 		[ilog2(VM_EXEC)]	= "ex",
664 		[ilog2(VM_SHARED)]	= "sh",
665 		[ilog2(VM_MAYREAD)]	= "mr",
666 		[ilog2(VM_MAYWRITE)]	= "mw",
667 		[ilog2(VM_MAYEXEC)]	= "me",
668 		[ilog2(VM_MAYSHARE)]	= "ms",
669 		[ilog2(VM_GROWSDOWN)]	= "gd",
670 		[ilog2(VM_PFNMAP)]	= "pf",
671 		[ilog2(VM_LOCKED)]	= "lo",
672 		[ilog2(VM_IO)]		= "io",
673 		[ilog2(VM_SEQ_READ)]	= "sr",
674 		[ilog2(VM_RAND_READ)]	= "rr",
675 		[ilog2(VM_DONTCOPY)]	= "dc",
676 		[ilog2(VM_DONTEXPAND)]	= "de",
677 		[ilog2(VM_ACCOUNT)]	= "ac",
678 		[ilog2(VM_NORESERVE)]	= "nr",
679 		[ilog2(VM_HUGETLB)]	= "ht",
680 		[ilog2(VM_SYNC)]	= "sf",
681 		[ilog2(VM_ARCH_1)]	= "ar",
682 		[ilog2(VM_WIPEONFORK)]	= "wf",
683 		[ilog2(VM_DONTDUMP)]	= "dd",
684 #ifdef CONFIG_ARM64_BTI
685 		[ilog2(VM_ARM64_BTI)]	= "bt",
686 #endif
687 #ifdef CONFIG_MEM_SOFT_DIRTY
688 		[ilog2(VM_SOFTDIRTY)]	= "sd",
689 #endif
690 		[ilog2(VM_MIXEDMAP)]	= "mm",
691 		[ilog2(VM_HUGEPAGE)]	= "hg",
692 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
693 		[ilog2(VM_MERGEABLE)]	= "mg",
694 		[ilog2(VM_UFFD_MISSING)]= "um",
695 		[ilog2(VM_UFFD_WP)]	= "uw",
696 #ifdef CONFIG_ARM64_MTE
697 		[ilog2(VM_MTE)]		= "mt",
698 		[ilog2(VM_MTE_ALLOWED)]	= "",
699 #endif
700 #ifdef CONFIG_ARCH_HAS_PKEYS
701 		/* These come out via ProtectionKey: */
702 		[ilog2(VM_PKEY_BIT0)]	= "",
703 		[ilog2(VM_PKEY_BIT1)]	= "",
704 		[ilog2(VM_PKEY_BIT2)]	= "",
705 		[ilog2(VM_PKEY_BIT3)]	= "",
706 #if VM_PKEY_BIT4
707 		[ilog2(VM_PKEY_BIT4)]	= "",
708 #endif
709 #endif /* CONFIG_ARCH_HAS_PKEYS */
710 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
711 		[ilog2(VM_UFFD_MINOR)]	= "ui",
712 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
713 	};
714 	size_t i;
715 
716 	seq_puts(m, "VmFlags: ");
717 	for (i = 0; i < BITS_PER_LONG; i++) {
718 		if (!mnemonics[i][0])
719 			continue;
720 		if (vma->vm_flags & (1UL << i)) {
721 			seq_putc(m, mnemonics[i][0]);
722 			seq_putc(m, mnemonics[i][1]);
723 			seq_putc(m, ' ');
724 		}
725 	}
726 	seq_putc(m, '\n');
727 }
728 
729 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)730 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
731 				 unsigned long addr, unsigned long end,
732 				 struct mm_walk *walk)
733 {
734 	struct mem_size_stats *mss = walk->private;
735 	struct vm_area_struct *vma = walk->vma;
736 	struct page *page = NULL;
737 
738 	if (pte_present(*pte)) {
739 		page = vm_normal_page(vma, addr, *pte);
740 	} else if (is_swap_pte(*pte)) {
741 		swp_entry_t swpent = pte_to_swp_entry(*pte);
742 
743 		if (is_pfn_swap_entry(swpent))
744 			page = pfn_swap_entry_to_page(swpent);
745 	}
746 	if (page) {
747 		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
748 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
749 		else
750 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
751 	}
752 	return 0;
753 }
754 #else
755 #define smaps_hugetlb_range	NULL
756 #endif /* HUGETLB_PAGE */
757 
758 static const struct mm_walk_ops smaps_walk_ops = {
759 	.pmd_entry		= smaps_pte_range,
760 	.hugetlb_entry		= smaps_hugetlb_range,
761 	.walk_lock		= PGWALK_RDLOCK,
762 };
763 
764 static const struct mm_walk_ops smaps_shmem_walk_ops = {
765 	.pmd_entry		= smaps_pte_range,
766 	.hugetlb_entry		= smaps_hugetlb_range,
767 	.pte_hole		= smaps_pte_hole,
768 	.walk_lock		= PGWALK_RDLOCK,
769 };
770 
771 /*
772  * Gather mem stats from @vma with the indicated beginning
773  * address @start, and keep them in @mss.
774  *
775  * Use vm_start of @vma as the beginning address if @start is 0.
776  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)777 static void smap_gather_stats(struct vm_area_struct *vma,
778 		struct mem_size_stats *mss, unsigned long start)
779 {
780 	const struct mm_walk_ops *ops = &smaps_walk_ops;
781 
782 	/* Invalid start */
783 	if (start >= vma->vm_end)
784 		return;
785 
786 #ifdef CONFIG_SHMEM
787 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
788 		/*
789 		 * For shared or readonly shmem mappings we know that all
790 		 * swapped out pages belong to the shmem object, and we can
791 		 * obtain the swap value much more efficiently. For private
792 		 * writable mappings, we might have COW pages that are
793 		 * not affected by the parent swapped out pages of the shmem
794 		 * object, so we have to distinguish them during the page walk.
795 		 * Unless we know that the shmem object (or the part mapped by
796 		 * our VMA) has no swapped out pages at all.
797 		 */
798 		unsigned long shmem_swapped = shmem_swap_usage(vma);
799 
800 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
801 					!(vma->vm_flags & VM_WRITE))) {
802 			mss->swap += shmem_swapped;
803 		} else {
804 			ops = &smaps_shmem_walk_ops;
805 		}
806 	}
807 #endif
808 	/* mmap_lock is held in m_start */
809 	if (!start)
810 		walk_page_vma(vma, ops, mss);
811 	else
812 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
813 }
814 
815 #define SEQ_PUT_DEC(str, val) \
816 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
817 
818 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)819 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
820 	bool rollup_mode)
821 {
822 	SEQ_PUT_DEC("Rss:            ", mss->resident);
823 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
824 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
825 	if (rollup_mode) {
826 		/*
827 		 * These are meaningful only for smaps_rollup, otherwise two of
828 		 * them are zero, and the other one is the same as Pss.
829 		 */
830 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
831 			mss->pss_anon >> PSS_SHIFT);
832 		SEQ_PUT_DEC(" kB\nPss_File:       ",
833 			mss->pss_file >> PSS_SHIFT);
834 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
835 			mss->pss_shmem >> PSS_SHIFT);
836 	}
837 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
838 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
839 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
840 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
841 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
842 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
843 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
844 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
845 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
846 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
847 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
848 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
849 				  mss->private_hugetlb >> 10, 7);
850 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
851 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
852 					mss->swap_pss >> PSS_SHIFT);
853 	SEQ_PUT_DEC(" kB\nLocked:         ",
854 					mss->pss_locked >> PSS_SHIFT);
855 	seq_puts(m, " kB\n");
856 	trace_android_vh_show_smap(m, mss->writeback, mss->same, mss->huge);
857 }
858 
show_smap(struct seq_file * m,void * v)859 static int show_smap(struct seq_file *m, void *v)
860 {
861 	struct vm_area_struct *vma = v;
862 	struct mem_size_stats mss;
863 
864 	memset(&mss, 0, sizeof(mss));
865 
866 	smap_gather_stats(vma, &mss, 0);
867 
868 	show_map_vma(m, vma);
869 
870 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
871 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
872 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
873 	seq_puts(m, " kB\n");
874 
875 	__show_smap(m, &mss, false);
876 
877 	seq_printf(m, "THPeligible:    %d\n",
878 		   hugepage_vma_check(vma, vma->vm_flags, true, false, true));
879 
880 	if (arch_pkeys_enabled())
881 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
882 	show_smap_vma_flags(m, vma);
883 
884 	return 0;
885 }
886 
show_smaps_rollup(struct seq_file * m,void * v)887 static int show_smaps_rollup(struct seq_file *m, void *v)
888 {
889 	struct proc_maps_private *priv = m->private;
890 	struct mem_size_stats mss;
891 	struct mm_struct *mm = priv->mm;
892 	struct vm_area_struct *vma;
893 	unsigned long vma_start = 0, last_vma_end = 0;
894 	int ret = 0;
895 	MA_STATE(mas, &mm->mm_mt, 0, 0);
896 
897 	priv->task = get_proc_task(priv->inode);
898 	if (!priv->task)
899 		return -ESRCH;
900 
901 	if (!mm || !mmget_not_zero(mm)) {
902 		ret = -ESRCH;
903 		goto out_put_task;
904 	}
905 
906 	memset(&mss, 0, sizeof(mss));
907 
908 	ret = mmap_read_lock_killable(mm);
909 	if (ret)
910 		goto out_put_mm;
911 
912 	hold_task_mempolicy(priv);
913 	vma = mas_find(&mas, ULONG_MAX);
914 
915 	if (unlikely(!vma))
916 		goto empty_set;
917 
918 	vma_start = vma->vm_start;
919 	do {
920 		smap_gather_stats(vma, &mss, 0);
921 		last_vma_end = vma->vm_end;
922 
923 		/*
924 		 * Release mmap_lock temporarily if someone wants to
925 		 * access it for write request.
926 		 */
927 		if (mmap_lock_is_contended(mm)) {
928 			mas_pause(&mas);
929 			mmap_read_unlock(mm);
930 			ret = mmap_read_lock_killable(mm);
931 			if (ret) {
932 				release_task_mempolicy(priv);
933 				goto out_put_mm;
934 			}
935 
936 			/*
937 			 * After dropping the lock, there are four cases to
938 			 * consider. See the following example for explanation.
939 			 *
940 			 *   +------+------+-----------+
941 			 *   | VMA1 | VMA2 | VMA3      |
942 			 *   +------+------+-----------+
943 			 *   |      |      |           |
944 			 *  4k     8k     16k         400k
945 			 *
946 			 * Suppose we drop the lock after reading VMA2 due to
947 			 * contention, then we get:
948 			 *
949 			 *	last_vma_end = 16k
950 			 *
951 			 * 1) VMA2 is freed, but VMA3 exists:
952 			 *
953 			 *    find_vma(mm, 16k - 1) will return VMA3.
954 			 *    In this case, just continue from VMA3.
955 			 *
956 			 * 2) VMA2 still exists:
957 			 *
958 			 *    find_vma(mm, 16k - 1) will return VMA2.
959 			 *    Iterate the loop like the original one.
960 			 *
961 			 * 3) No more VMAs can be found:
962 			 *
963 			 *    find_vma(mm, 16k - 1) will return NULL.
964 			 *    No more things to do, just break.
965 			 *
966 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
967 			 *
968 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
969 			 *    contains last_vma_end.
970 			 *    Iterate VMA' from last_vma_end.
971 			 */
972 			vma = mas_find(&mas, ULONG_MAX);
973 			/* Case 3 above */
974 			if (!vma)
975 				break;
976 
977 			/* Case 1 above */
978 			if (vma->vm_start >= last_vma_end)
979 				continue;
980 
981 			/* Case 4 above */
982 			if (vma->vm_end > last_vma_end)
983 				smap_gather_stats(vma, &mss, last_vma_end);
984 		}
985 		/* Case 2 above */
986 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
987 
988 empty_set:
989 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
990 	seq_pad(m, ' ');
991 	seq_puts(m, "[rollup]\n");
992 
993 	__show_smap(m, &mss, true);
994 
995 	release_task_mempolicy(priv);
996 	mmap_read_unlock(mm);
997 
998 out_put_mm:
999 	mmput(mm);
1000 out_put_task:
1001 	put_task_struct(priv->task);
1002 	priv->task = NULL;
1003 
1004 	return ret;
1005 }
1006 #undef SEQ_PUT_DEC
1007 
1008 static const struct seq_operations proc_pid_smaps_op = {
1009 	.start	= m_start,
1010 	.next	= m_next,
1011 	.stop	= m_stop,
1012 	.show	= show_smap
1013 };
1014 
pid_smaps_open(struct inode * inode,struct file * file)1015 static int pid_smaps_open(struct inode *inode, struct file *file)
1016 {
1017 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1018 }
1019 
smaps_rollup_open(struct inode * inode,struct file * file)1020 static int smaps_rollup_open(struct inode *inode, struct file *file)
1021 {
1022 	int ret;
1023 	struct proc_maps_private *priv;
1024 
1025 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1026 	if (!priv)
1027 		return -ENOMEM;
1028 
1029 	ret = single_open(file, show_smaps_rollup, priv);
1030 	if (ret)
1031 		goto out_free;
1032 
1033 	priv->inode = inode;
1034 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1035 	if (IS_ERR(priv->mm)) {
1036 		ret = PTR_ERR(priv->mm);
1037 
1038 		single_release(inode, file);
1039 		goto out_free;
1040 	}
1041 
1042 	return 0;
1043 
1044 out_free:
1045 	kfree(priv);
1046 	return ret;
1047 }
1048 
smaps_rollup_release(struct inode * inode,struct file * file)1049 static int smaps_rollup_release(struct inode *inode, struct file *file)
1050 {
1051 	struct seq_file *seq = file->private_data;
1052 	struct proc_maps_private *priv = seq->private;
1053 
1054 	if (priv->mm)
1055 		mmdrop(priv->mm);
1056 
1057 	kfree(priv);
1058 	return single_release(inode, file);
1059 }
1060 
1061 const struct file_operations proc_pid_smaps_operations = {
1062 	.open		= pid_smaps_open,
1063 	.read		= seq_read,
1064 	.llseek		= seq_lseek,
1065 	.release	= proc_map_release,
1066 };
1067 
1068 const struct file_operations proc_pid_smaps_rollup_operations = {
1069 	.open		= smaps_rollup_open,
1070 	.read		= seq_read,
1071 	.llseek		= seq_lseek,
1072 	.release	= smaps_rollup_release,
1073 };
1074 
1075 enum clear_refs_types {
1076 	CLEAR_REFS_ALL = 1,
1077 	CLEAR_REFS_ANON,
1078 	CLEAR_REFS_MAPPED,
1079 	CLEAR_REFS_SOFT_DIRTY,
1080 	CLEAR_REFS_MM_HIWATER_RSS,
1081 	CLEAR_REFS_LAST,
1082 };
1083 
1084 struct clear_refs_private {
1085 	enum clear_refs_types type;
1086 };
1087 
1088 #ifdef CONFIG_MEM_SOFT_DIRTY
1089 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1090 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1091 {
1092 	struct page *page;
1093 
1094 	if (!pte_write(pte))
1095 		return false;
1096 	if (!is_cow_mapping(vma->vm_flags))
1097 		return false;
1098 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1099 		return false;
1100 	page = vm_normal_page(vma, addr, pte);
1101 	if (!page)
1102 		return false;
1103 	return page_maybe_dma_pinned(page);
1104 }
1105 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1106 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1107 		unsigned long addr, pte_t *pte)
1108 {
1109 	/*
1110 	 * The soft-dirty tracker uses #PF-s to catch writes
1111 	 * to pages, so write-protect the pte as well. See the
1112 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1113 	 * of how soft-dirty works.
1114 	 */
1115 	pte_t ptent = *pte;
1116 
1117 	if (pte_present(ptent)) {
1118 		pte_t old_pte;
1119 
1120 		if (pte_is_pinned(vma, addr, ptent))
1121 			return;
1122 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1123 		ptent = pte_wrprotect(old_pte);
1124 		ptent = pte_clear_soft_dirty(ptent);
1125 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1126 	} else if (is_swap_pte(ptent)) {
1127 		ptent = pte_swp_clear_soft_dirty(ptent);
1128 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1129 	}
1130 }
1131 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1132 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1133 		unsigned long addr, pte_t *pte)
1134 {
1135 }
1136 #endif
1137 
1138 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1139 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1140 		unsigned long addr, pmd_t *pmdp)
1141 {
1142 	pmd_t old, pmd = *pmdp;
1143 
1144 	if (pmd_present(pmd)) {
1145 		/* See comment in change_huge_pmd() */
1146 		old = pmdp_invalidate(vma, addr, pmdp);
1147 		if (pmd_dirty(old))
1148 			pmd = pmd_mkdirty(pmd);
1149 		if (pmd_young(old))
1150 			pmd = pmd_mkyoung(pmd);
1151 
1152 		pmd = pmd_wrprotect(pmd);
1153 		pmd = pmd_clear_soft_dirty(pmd);
1154 
1155 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1156 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1157 		pmd = pmd_swp_clear_soft_dirty(pmd);
1158 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1159 	}
1160 }
1161 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1162 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1163 		unsigned long addr, pmd_t *pmdp)
1164 {
1165 }
1166 #endif
1167 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1168 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1169 				unsigned long end, struct mm_walk *walk)
1170 {
1171 	struct clear_refs_private *cp = walk->private;
1172 	struct vm_area_struct *vma = walk->vma;
1173 	pte_t *pte, ptent;
1174 	spinlock_t *ptl;
1175 	struct page *page;
1176 
1177 	ptl = pmd_trans_huge_lock(pmd, vma);
1178 	if (ptl) {
1179 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1180 			clear_soft_dirty_pmd(vma, addr, pmd);
1181 			goto out;
1182 		}
1183 
1184 		if (!pmd_present(*pmd))
1185 			goto out;
1186 
1187 		page = pmd_page(*pmd);
1188 
1189 		/* Clear accessed and referenced bits. */
1190 		pmdp_test_and_clear_young(vma, addr, pmd);
1191 		test_and_clear_page_young(page);
1192 		ClearPageReferenced(page);
1193 out:
1194 		spin_unlock(ptl);
1195 		return 0;
1196 	}
1197 
1198 	if (pmd_trans_unstable(pmd))
1199 		return 0;
1200 
1201 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1202 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1203 		ptent = *pte;
1204 
1205 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1206 			clear_soft_dirty(vma, addr, pte);
1207 			continue;
1208 		}
1209 
1210 		if (!pte_present(ptent))
1211 			continue;
1212 
1213 		page = vm_normal_page(vma, addr, ptent);
1214 		if (!page)
1215 			continue;
1216 
1217 		/* Clear accessed and referenced bits. */
1218 		ptep_test_and_clear_young(vma, addr, pte);
1219 		test_and_clear_page_young(page);
1220 		ClearPageReferenced(page);
1221 	}
1222 	pte_unmap_unlock(pte - 1, ptl);
1223 	cond_resched();
1224 	return 0;
1225 }
1226 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1227 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1228 				struct mm_walk *walk)
1229 {
1230 	struct clear_refs_private *cp = walk->private;
1231 	struct vm_area_struct *vma = walk->vma;
1232 
1233 	if (vma->vm_flags & VM_PFNMAP)
1234 		return 1;
1235 
1236 	/*
1237 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1238 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1239 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1240 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1241 	 */
1242 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1243 		return 1;
1244 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1245 		return 1;
1246 	return 0;
1247 }
1248 
1249 static const struct mm_walk_ops clear_refs_walk_ops = {
1250 	.pmd_entry		= clear_refs_pte_range,
1251 	.test_walk		= clear_refs_test_walk,
1252 	.walk_lock		= PGWALK_WRLOCK,
1253 };
1254 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1255 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1256 				size_t count, loff_t *ppos)
1257 {
1258 	struct task_struct *task;
1259 	char buffer[PROC_NUMBUF];
1260 	struct mm_struct *mm;
1261 	struct vm_area_struct *vma;
1262 	enum clear_refs_types type;
1263 	int itype;
1264 	int rv;
1265 
1266 	memset(buffer, 0, sizeof(buffer));
1267 	if (count > sizeof(buffer) - 1)
1268 		count = sizeof(buffer) - 1;
1269 	if (copy_from_user(buffer, buf, count))
1270 		return -EFAULT;
1271 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1272 	if (rv < 0)
1273 		return rv;
1274 	type = (enum clear_refs_types)itype;
1275 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1276 		return -EINVAL;
1277 
1278 	task = get_proc_task(file_inode(file));
1279 	if (!task)
1280 		return -ESRCH;
1281 	mm = get_task_mm(task);
1282 	if (mm) {
1283 		MA_STATE(mas, &mm->mm_mt, 0, 0);
1284 		struct mmu_notifier_range range;
1285 		struct clear_refs_private cp = {
1286 			.type = type,
1287 		};
1288 
1289 		if (mmap_write_lock_killable(mm)) {
1290 			count = -EINTR;
1291 			goto out_mm;
1292 		}
1293 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1294 			/*
1295 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1296 			 * resident set size to this mm's current rss value.
1297 			 */
1298 			reset_mm_hiwater_rss(mm);
1299 			goto out_unlock;
1300 		}
1301 
1302 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1303 			mas_for_each(&mas, vma, ULONG_MAX) {
1304 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1305 					continue;
1306 				vm_flags_clear(vma, VM_SOFTDIRTY);
1307 				vma_set_page_prot(vma);
1308 			}
1309 
1310 			inc_tlb_flush_pending(mm);
1311 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1312 						0, NULL, mm, 0, -1UL);
1313 			mmu_notifier_invalidate_range_start(&range);
1314 		}
1315 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1316 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1317 			mmu_notifier_invalidate_range_end(&range);
1318 			flush_tlb_mm(mm);
1319 			dec_tlb_flush_pending(mm);
1320 		}
1321 out_unlock:
1322 		mmap_write_unlock(mm);
1323 out_mm:
1324 		mmput(mm);
1325 	}
1326 	put_task_struct(task);
1327 
1328 	return count;
1329 }
1330 
1331 const struct file_operations proc_clear_refs_operations = {
1332 	.write		= clear_refs_write,
1333 	.llseek		= noop_llseek,
1334 };
1335 
1336 typedef struct {
1337 	u64 pme;
1338 } pagemap_entry_t;
1339 
1340 struct pagemapread {
1341 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1342 	pagemap_entry_t *buffer;
1343 	bool show_pfn;
1344 };
1345 
1346 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1347 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1348 
1349 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1350 #define PM_PFRAME_BITS		55
1351 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1352 #define PM_SOFT_DIRTY		BIT_ULL(55)
1353 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1354 #define PM_UFFD_WP		BIT_ULL(57)
1355 #define PM_FILE			BIT_ULL(61)
1356 #define PM_SWAP			BIT_ULL(62)
1357 #define PM_PRESENT		BIT_ULL(63)
1358 
1359 #define PM_END_OF_BUFFER    1
1360 
make_pme(u64 frame,u64 flags)1361 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1362 {
1363 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1364 }
1365 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1366 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1367 			  struct pagemapread *pm)
1368 {
1369 	pm->buffer[pm->pos++] = *pme;
1370 	if (pm->pos >= pm->len)
1371 		return PM_END_OF_BUFFER;
1372 	return 0;
1373 }
1374 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1375 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1376 			    __always_unused int depth, struct mm_walk *walk)
1377 {
1378 	struct pagemapread *pm = walk->private;
1379 	unsigned long addr = start;
1380 	int err = 0;
1381 
1382 	while (addr < end) {
1383 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1384 		pagemap_entry_t pme = make_pme(0, 0);
1385 		/* End of address space hole, which we mark as non-present. */
1386 		unsigned long hole_end;
1387 
1388 		if (vma)
1389 			hole_end = min(end, vma->vm_start);
1390 		else
1391 			hole_end = end;
1392 
1393 		for (; addr < hole_end; addr += PAGE_SIZE) {
1394 			err = add_to_pagemap(addr, &pme, pm);
1395 			if (err)
1396 				goto out;
1397 		}
1398 
1399 		if (!vma)
1400 			break;
1401 
1402 		/* Addresses in the VMA. */
1403 		if (vma->vm_flags & VM_SOFTDIRTY)
1404 			pme = make_pme(0, PM_SOFT_DIRTY);
1405 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1406 			err = add_to_pagemap(addr, &pme, pm);
1407 			if (err)
1408 				goto out;
1409 		}
1410 	}
1411 out:
1412 	return err;
1413 }
1414 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1415 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1416 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1417 {
1418 	u64 frame = 0, flags = 0;
1419 	struct page *page = NULL;
1420 	bool migration = false;
1421 
1422 	if (pte_present(pte)) {
1423 		if (pm->show_pfn)
1424 			frame = pte_pfn(pte);
1425 		flags |= PM_PRESENT;
1426 		page = vm_normal_page(vma, addr, pte);
1427 		if (pte_soft_dirty(pte))
1428 			flags |= PM_SOFT_DIRTY;
1429 		if (pte_uffd_wp(pte))
1430 			flags |= PM_UFFD_WP;
1431 	} else if (is_swap_pte(pte)) {
1432 		swp_entry_t entry;
1433 		if (pte_swp_soft_dirty(pte))
1434 			flags |= PM_SOFT_DIRTY;
1435 		if (pte_swp_uffd_wp(pte))
1436 			flags |= PM_UFFD_WP;
1437 		entry = pte_to_swp_entry(pte);
1438 		if (pm->show_pfn) {
1439 			pgoff_t offset;
1440 			/*
1441 			 * For PFN swap offsets, keeping the offset field
1442 			 * to be PFN only to be compatible with old smaps.
1443 			 */
1444 			if (is_pfn_swap_entry(entry))
1445 				offset = swp_offset_pfn(entry);
1446 			else
1447 				offset = swp_offset(entry);
1448 			frame = swp_type(entry) |
1449 			    (offset << MAX_SWAPFILES_SHIFT);
1450 		}
1451 		flags |= PM_SWAP;
1452 		migration = is_migration_entry(entry);
1453 		if (is_pfn_swap_entry(entry))
1454 			page = pfn_swap_entry_to_page(entry);
1455 		if (pte_marker_entry_uffd_wp(entry))
1456 			flags |= PM_UFFD_WP;
1457 	}
1458 
1459 	if (page && !PageAnon(page))
1460 		flags |= PM_FILE;
1461 	if (page && !migration && page_mapcount(page) == 1)
1462 		flags |= PM_MMAP_EXCLUSIVE;
1463 	if (vma->vm_flags & VM_SOFTDIRTY)
1464 		flags |= PM_SOFT_DIRTY;
1465 
1466 	return make_pme(frame, flags);
1467 }
1468 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1469 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1470 			     struct mm_walk *walk)
1471 {
1472 	struct vm_area_struct *vma = walk->vma;
1473 	struct pagemapread *pm = walk->private;
1474 	spinlock_t *ptl;
1475 	pte_t *pte, *orig_pte;
1476 	int err = 0;
1477 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1478 	bool migration = false;
1479 
1480 	ptl = pmd_trans_huge_lock(pmdp, vma);
1481 	if (ptl) {
1482 		u64 flags = 0, frame = 0;
1483 		pmd_t pmd = *pmdp;
1484 		struct page *page = NULL;
1485 
1486 		if (vma->vm_flags & VM_SOFTDIRTY)
1487 			flags |= PM_SOFT_DIRTY;
1488 
1489 		if (pmd_present(pmd)) {
1490 			page = pmd_page(pmd);
1491 
1492 			flags |= PM_PRESENT;
1493 			if (pmd_soft_dirty(pmd))
1494 				flags |= PM_SOFT_DIRTY;
1495 			if (pmd_uffd_wp(pmd))
1496 				flags |= PM_UFFD_WP;
1497 			if (pm->show_pfn)
1498 				frame = pmd_pfn(pmd) +
1499 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1500 		}
1501 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1502 		else if (is_swap_pmd(pmd)) {
1503 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1504 			unsigned long offset;
1505 
1506 			if (pm->show_pfn) {
1507 				if (is_pfn_swap_entry(entry))
1508 					offset = swp_offset_pfn(entry);
1509 				else
1510 					offset = swp_offset(entry);
1511 				offset = offset +
1512 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1513 				frame = swp_type(entry) |
1514 					(offset << MAX_SWAPFILES_SHIFT);
1515 			}
1516 			flags |= PM_SWAP;
1517 			if (pmd_swp_soft_dirty(pmd))
1518 				flags |= PM_SOFT_DIRTY;
1519 			if (pmd_swp_uffd_wp(pmd))
1520 				flags |= PM_UFFD_WP;
1521 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1522 			migration = is_migration_entry(entry);
1523 			page = pfn_swap_entry_to_page(entry);
1524 		}
1525 #endif
1526 
1527 		if (page && !migration && page_mapcount(page) == 1)
1528 			flags |= PM_MMAP_EXCLUSIVE;
1529 
1530 		for (; addr != end; addr += PAGE_SIZE) {
1531 			pagemap_entry_t pme = make_pme(frame, flags);
1532 
1533 			err = add_to_pagemap(addr, &pme, pm);
1534 			if (err)
1535 				break;
1536 			if (pm->show_pfn) {
1537 				if (flags & PM_PRESENT)
1538 					frame++;
1539 				else if (flags & PM_SWAP)
1540 					frame += (1 << MAX_SWAPFILES_SHIFT);
1541 			}
1542 		}
1543 		spin_unlock(ptl);
1544 		return err;
1545 	}
1546 
1547 	if (pmd_trans_unstable(pmdp))
1548 		return 0;
1549 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1550 
1551 	/*
1552 	 * We can assume that @vma always points to a valid one and @end never
1553 	 * goes beyond vma->vm_end.
1554 	 */
1555 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1556 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1557 		pagemap_entry_t pme;
1558 
1559 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1560 		err = add_to_pagemap(addr, &pme, pm);
1561 		if (err)
1562 			break;
1563 	}
1564 	pte_unmap_unlock(orig_pte, ptl);
1565 
1566 	cond_resched();
1567 
1568 	return err;
1569 }
1570 
1571 #ifdef CONFIG_HUGETLB_PAGE
1572 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1573 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1574 				 unsigned long addr, unsigned long end,
1575 				 struct mm_walk *walk)
1576 {
1577 	struct pagemapread *pm = walk->private;
1578 	struct vm_area_struct *vma = walk->vma;
1579 	u64 flags = 0, frame = 0;
1580 	int err = 0;
1581 	pte_t pte;
1582 
1583 	if (vma->vm_flags & VM_SOFTDIRTY)
1584 		flags |= PM_SOFT_DIRTY;
1585 
1586 	pte = huge_ptep_get(ptep);
1587 	if (pte_present(pte)) {
1588 		struct page *page = pte_page(pte);
1589 
1590 		if (!PageAnon(page))
1591 			flags |= PM_FILE;
1592 
1593 		if (page_mapcount(page) == 1)
1594 			flags |= PM_MMAP_EXCLUSIVE;
1595 
1596 		if (huge_pte_uffd_wp(pte))
1597 			flags |= PM_UFFD_WP;
1598 
1599 		flags |= PM_PRESENT;
1600 		if (pm->show_pfn)
1601 			frame = pte_pfn(pte) +
1602 				((addr & ~hmask) >> PAGE_SHIFT);
1603 	} else if (pte_swp_uffd_wp_any(pte)) {
1604 		flags |= PM_UFFD_WP;
1605 	}
1606 
1607 	for (; addr != end; addr += PAGE_SIZE) {
1608 		pagemap_entry_t pme = make_pme(frame, flags);
1609 
1610 		err = add_to_pagemap(addr, &pme, pm);
1611 		if (err)
1612 			return err;
1613 		if (pm->show_pfn && (flags & PM_PRESENT))
1614 			frame++;
1615 	}
1616 
1617 	cond_resched();
1618 
1619 	return err;
1620 }
1621 #else
1622 #define pagemap_hugetlb_range	NULL
1623 #endif /* HUGETLB_PAGE */
1624 
1625 static const struct mm_walk_ops pagemap_ops = {
1626 	.pmd_entry	= pagemap_pmd_range,
1627 	.pte_hole	= pagemap_pte_hole,
1628 	.hugetlb_entry	= pagemap_hugetlb_range,
1629 	.walk_lock	= PGWALK_RDLOCK,
1630 };
1631 
1632 /*
1633  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1634  *
1635  * For each page in the address space, this file contains one 64-bit entry
1636  * consisting of the following:
1637  *
1638  * Bits 0-54  page frame number (PFN) if present
1639  * Bits 0-4   swap type if swapped
1640  * Bits 5-54  swap offset if swapped
1641  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1642  * Bit  56    page exclusively mapped
1643  * Bit  57    pte is uffd-wp write-protected
1644  * Bits 58-60 zero
1645  * Bit  61    page is file-page or shared-anon
1646  * Bit  62    page swapped
1647  * Bit  63    page present
1648  *
1649  * If the page is not present but in swap, then the PFN contains an
1650  * encoding of the swap file number and the page's offset into the
1651  * swap. Unmapped pages return a null PFN. This allows determining
1652  * precisely which pages are mapped (or in swap) and comparing mapped
1653  * pages between processes.
1654  *
1655  * Efficient users of this interface will use /proc/pid/maps to
1656  * determine which areas of memory are actually mapped and llseek to
1657  * skip over unmapped regions.
1658  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1659 static ssize_t pagemap_read(struct file *file, char __user *buf,
1660 			    size_t count, loff_t *ppos)
1661 {
1662 	struct mm_struct *mm = file->private_data;
1663 	struct pagemapread pm;
1664 	unsigned long src;
1665 	unsigned long svpfn;
1666 	unsigned long start_vaddr;
1667 	unsigned long end_vaddr;
1668 	int ret = 0, copied = 0;
1669 
1670 	if (!mm || !mmget_not_zero(mm))
1671 		goto out;
1672 
1673 	ret = -EINVAL;
1674 	/* file position must be aligned */
1675 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1676 		goto out_mm;
1677 
1678 	ret = 0;
1679 	if (!count)
1680 		goto out_mm;
1681 
1682 	/* do not disclose physical addresses: attack vector */
1683 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1684 
1685 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1686 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1687 	ret = -ENOMEM;
1688 	if (!pm.buffer)
1689 		goto out_mm;
1690 
1691 	src = *ppos;
1692 	svpfn = src / PM_ENTRY_BYTES;
1693 	end_vaddr = mm->task_size;
1694 
1695 	/* watch out for wraparound */
1696 	start_vaddr = end_vaddr;
1697 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1698 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1699 
1700 	/* Ensure the address is inside the task */
1701 	if (start_vaddr > mm->task_size)
1702 		start_vaddr = end_vaddr;
1703 
1704 	/*
1705 	 * The odds are that this will stop walking way
1706 	 * before end_vaddr, because the length of the
1707 	 * user buffer is tracked in "pm", and the walk
1708 	 * will stop when we hit the end of the buffer.
1709 	 */
1710 	ret = 0;
1711 	while (count && (start_vaddr < end_vaddr)) {
1712 		int len;
1713 		unsigned long end;
1714 
1715 		pm.pos = 0;
1716 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1717 		/* overflow ? */
1718 		if (end < start_vaddr || end > end_vaddr)
1719 			end = end_vaddr;
1720 		ret = mmap_read_lock_killable(mm);
1721 		if (ret)
1722 			goto out_free;
1723 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1724 		mmap_read_unlock(mm);
1725 		start_vaddr = end;
1726 
1727 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1728 		if (copy_to_user(buf, pm.buffer, len)) {
1729 			ret = -EFAULT;
1730 			goto out_free;
1731 		}
1732 		copied += len;
1733 		buf += len;
1734 		count -= len;
1735 	}
1736 	*ppos += copied;
1737 	if (!ret || ret == PM_END_OF_BUFFER)
1738 		ret = copied;
1739 
1740 out_free:
1741 	kfree(pm.buffer);
1742 out_mm:
1743 	mmput(mm);
1744 out:
1745 	return ret;
1746 }
1747 
pagemap_open(struct inode * inode,struct file * file)1748 static int pagemap_open(struct inode *inode, struct file *file)
1749 {
1750 	struct mm_struct *mm;
1751 
1752 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1753 	if (IS_ERR(mm))
1754 		return PTR_ERR(mm);
1755 	file->private_data = mm;
1756 	return 0;
1757 }
1758 
pagemap_release(struct inode * inode,struct file * file)1759 static int pagemap_release(struct inode *inode, struct file *file)
1760 {
1761 	struct mm_struct *mm = file->private_data;
1762 
1763 	if (mm)
1764 		mmdrop(mm);
1765 	return 0;
1766 }
1767 
1768 const struct file_operations proc_pagemap_operations = {
1769 	.llseek		= mem_lseek, /* borrow this */
1770 	.read		= pagemap_read,
1771 	.open		= pagemap_open,
1772 	.release	= pagemap_release,
1773 };
1774 #endif /* CONFIG_PROC_PAGE_MONITOR */
1775 
1776 #ifdef CONFIG_NUMA
1777 
1778 struct numa_maps {
1779 	unsigned long pages;
1780 	unsigned long anon;
1781 	unsigned long active;
1782 	unsigned long writeback;
1783 	unsigned long mapcount_max;
1784 	unsigned long dirty;
1785 	unsigned long swapcache;
1786 	unsigned long node[MAX_NUMNODES];
1787 };
1788 
1789 struct numa_maps_private {
1790 	struct proc_maps_private proc_maps;
1791 	struct numa_maps md;
1792 };
1793 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1794 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1795 			unsigned long nr_pages)
1796 {
1797 	int count = page_mapcount(page);
1798 
1799 	md->pages += nr_pages;
1800 	if (pte_dirty || PageDirty(page))
1801 		md->dirty += nr_pages;
1802 
1803 	if (PageSwapCache(page))
1804 		md->swapcache += nr_pages;
1805 
1806 	if (PageActive(page) || PageUnevictable(page))
1807 		md->active += nr_pages;
1808 
1809 	if (PageWriteback(page))
1810 		md->writeback += nr_pages;
1811 
1812 	if (PageAnon(page))
1813 		md->anon += nr_pages;
1814 
1815 	if (count > md->mapcount_max)
1816 		md->mapcount_max = count;
1817 
1818 	md->node[page_to_nid(page)] += nr_pages;
1819 }
1820 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1821 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1822 		unsigned long addr)
1823 {
1824 	struct page *page;
1825 	int nid;
1826 
1827 	if (!pte_present(pte))
1828 		return NULL;
1829 
1830 	page = vm_normal_page(vma, addr, pte);
1831 	if (!page || is_zone_device_page(page))
1832 		return NULL;
1833 
1834 	if (PageReserved(page))
1835 		return NULL;
1836 
1837 	nid = page_to_nid(page);
1838 	if (!node_isset(nid, node_states[N_MEMORY]))
1839 		return NULL;
1840 
1841 	return page;
1842 }
1843 
1844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1845 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1846 					      struct vm_area_struct *vma,
1847 					      unsigned long addr)
1848 {
1849 	struct page *page;
1850 	int nid;
1851 
1852 	if (!pmd_present(pmd))
1853 		return NULL;
1854 
1855 	page = vm_normal_page_pmd(vma, addr, pmd);
1856 	if (!page)
1857 		return NULL;
1858 
1859 	if (PageReserved(page))
1860 		return NULL;
1861 
1862 	nid = page_to_nid(page);
1863 	if (!node_isset(nid, node_states[N_MEMORY]))
1864 		return NULL;
1865 
1866 	return page;
1867 }
1868 #endif
1869 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1870 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1871 		unsigned long end, struct mm_walk *walk)
1872 {
1873 	struct numa_maps *md = walk->private;
1874 	struct vm_area_struct *vma = walk->vma;
1875 	spinlock_t *ptl;
1876 	pte_t *orig_pte;
1877 	pte_t *pte;
1878 
1879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1880 	ptl = pmd_trans_huge_lock(pmd, vma);
1881 	if (ptl) {
1882 		struct page *page;
1883 
1884 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1885 		if (page)
1886 			gather_stats(page, md, pmd_dirty(*pmd),
1887 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1888 		spin_unlock(ptl);
1889 		return 0;
1890 	}
1891 
1892 	if (pmd_trans_unstable(pmd))
1893 		return 0;
1894 #endif
1895 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1896 	do {
1897 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1898 		if (!page)
1899 			continue;
1900 		gather_stats(page, md, pte_dirty(*pte), 1);
1901 
1902 	} while (pte++, addr += PAGE_SIZE, addr != end);
1903 	pte_unmap_unlock(orig_pte, ptl);
1904 	cond_resched();
1905 	return 0;
1906 }
1907 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1908 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1909 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1910 {
1911 	pte_t huge_pte = huge_ptep_get(pte);
1912 	struct numa_maps *md;
1913 	struct page *page;
1914 
1915 	if (!pte_present(huge_pte))
1916 		return 0;
1917 
1918 	page = pte_page(huge_pte);
1919 
1920 	md = walk->private;
1921 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1922 	return 0;
1923 }
1924 
1925 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1926 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1927 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1928 {
1929 	return 0;
1930 }
1931 #endif
1932 
1933 static const struct mm_walk_ops show_numa_ops = {
1934 	.hugetlb_entry = gather_hugetlb_stats,
1935 	.pmd_entry = gather_pte_stats,
1936 	.walk_lock = PGWALK_RDLOCK,
1937 };
1938 
1939 /*
1940  * Display pages allocated per node and memory policy via /proc.
1941  */
show_numa_map(struct seq_file * m,void * v)1942 static int show_numa_map(struct seq_file *m, void *v)
1943 {
1944 	struct numa_maps_private *numa_priv = m->private;
1945 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1946 	struct vm_area_struct *vma = v;
1947 	struct numa_maps *md = &numa_priv->md;
1948 	struct file *file = vma->vm_file;
1949 	struct mm_struct *mm = vma->vm_mm;
1950 	struct mempolicy *pol;
1951 	char buffer[64];
1952 	int nid;
1953 
1954 	if (!mm)
1955 		return 0;
1956 
1957 	/* Ensure we start with an empty set of numa_maps statistics. */
1958 	memset(md, 0, sizeof(*md));
1959 
1960 	pol = __get_vma_policy(vma, vma->vm_start);
1961 	if (pol) {
1962 		mpol_to_str(buffer, sizeof(buffer), pol);
1963 		mpol_cond_put(pol);
1964 	} else {
1965 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1966 	}
1967 
1968 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1969 
1970 	if (file) {
1971 		seq_puts(m, " file=");
1972 		seq_file_path(m, file, "\n\t= ");
1973 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1974 		seq_puts(m, " heap");
1975 	} else if (is_stack(vma)) {
1976 		seq_puts(m, " stack");
1977 	}
1978 
1979 	if (is_vm_hugetlb_page(vma))
1980 		seq_puts(m, " huge");
1981 
1982 	/* mmap_lock is held by m_start */
1983 	walk_page_vma(vma, &show_numa_ops, md);
1984 
1985 	if (!md->pages)
1986 		goto out;
1987 
1988 	if (md->anon)
1989 		seq_printf(m, " anon=%lu", md->anon);
1990 
1991 	if (md->dirty)
1992 		seq_printf(m, " dirty=%lu", md->dirty);
1993 
1994 	if (md->pages != md->anon && md->pages != md->dirty)
1995 		seq_printf(m, " mapped=%lu", md->pages);
1996 
1997 	if (md->mapcount_max > 1)
1998 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1999 
2000 	if (md->swapcache)
2001 		seq_printf(m, " swapcache=%lu", md->swapcache);
2002 
2003 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2004 		seq_printf(m, " active=%lu", md->active);
2005 
2006 	if (md->writeback)
2007 		seq_printf(m, " writeback=%lu", md->writeback);
2008 
2009 	for_each_node_state(nid, N_MEMORY)
2010 		if (md->node[nid])
2011 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2012 
2013 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2014 out:
2015 	seq_putc(m, '\n');
2016 	return 0;
2017 }
2018 
2019 static const struct seq_operations proc_pid_numa_maps_op = {
2020 	.start  = m_start,
2021 	.next   = m_next,
2022 	.stop   = m_stop,
2023 	.show   = show_numa_map,
2024 };
2025 
pid_numa_maps_open(struct inode * inode,struct file * file)2026 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2027 {
2028 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2029 				sizeof(struct numa_maps_private));
2030 }
2031 
2032 const struct file_operations proc_pid_numa_maps_operations = {
2033 	.open		= pid_numa_maps_open,
2034 	.read		= seq_read,
2035 	.llseek		= seq_lseek,
2036 	.release	= proc_map_release,
2037 };
2038 
2039 #endif /* CONFIG_NUMA */
2040