1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
__udf_clear_extent_cache(struct inode * inode)71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79 }
80
81 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94 {
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111 }
112
113 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116 {
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
udf_evict_inode(struct inode * inode)137 void udf_evict_inode(struct inode *inode)
138 {
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166 }
167
udf_write_failed(struct address_space * mapping,loff_t to)168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183 }
184
udf_writepage(struct page * page,struct writeback_control * wbc)185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 return block_write_full_page(page, udf_get_block, wbc);
188 }
189
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)190 static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192 {
193 return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
udf_read_folio(struct file * file,struct folio * folio)196 static int udf_read_folio(struct file *file, struct folio *folio)
197 {
198 return mpage_read_folio(folio, udf_get_block);
199 }
200
udf_readahead(struct readahead_control * rac)201 static void udf_readahead(struct readahead_control *rac)
202 {
203 mpage_readahead(rac, udf_get_block);
204 }
205
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len,
208 struct page **pagep, void **fsdata)
209 {
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216 }
217
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230 }
231
udf_bmap(struct address_space * mapping,sector_t block)232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238 .dirty_folio = block_dirty_folio,
239 .invalidate_folio = block_invalidate_folio,
240 .read_folio = udf_read_folio,
241 .readahead = udf_readahead,
242 .writepage = udf_writepage,
243 .writepages = udf_writepages,
244 .write_begin = udf_write_begin,
245 .write_end = generic_write_end,
246 .direct_IO = udf_direct_IO,
247 .bmap = udf_bmap,
248 };
249
250 /*
251 * Expand file stored in ICB to a normal one-block-file
252 *
253 * This function requires i_data_sem for writing and releases it.
254 * This function requires i_mutex held
255 */
udf_expand_file_adinicb(struct inode * inode)256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258 struct page *page;
259 char *kaddr;
260 struct udf_inode_info *iinfo = UDF_I(inode);
261 int err;
262
263 WARN_ON_ONCE(!inode_is_locked(inode));
264 if (!iinfo->i_lenAlloc) {
265 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267 else
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269 /* from now on we have normal address_space methods */
270 inode->i_data.a_ops = &udf_aops;
271 up_write(&iinfo->i_data_sem);
272 mark_inode_dirty(inode);
273 return 0;
274 }
275 /*
276 * Release i_data_sem so that we can lock a page - page lock ranks
277 * above i_data_sem. i_mutex still protects us against file changes.
278 */
279 up_write(&iinfo->i_data_sem);
280
281 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282 if (!page)
283 return -ENOMEM;
284
285 if (!PageUptodate(page)) {
286 kaddr = kmap_atomic(page);
287 memset(kaddr + iinfo->i_lenAlloc, 0x00,
288 PAGE_SIZE - iinfo->i_lenAlloc);
289 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
290 iinfo->i_lenAlloc);
291 flush_dcache_page(page);
292 SetPageUptodate(page);
293 kunmap_atomic(kaddr);
294 }
295 down_write(&iinfo->i_data_sem);
296 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
297 iinfo->i_lenAlloc);
298 iinfo->i_lenAlloc = 0;
299 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301 else
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303 /* from now on we have normal address_space methods */
304 inode->i_data.a_ops = &udf_aops;
305 set_page_dirty(page);
306 unlock_page(page);
307 up_write(&iinfo->i_data_sem);
308 err = filemap_fdatawrite(inode->i_mapping);
309 if (err) {
310 /* Restore everything back so that we don't lose data... */
311 lock_page(page);
312 down_write(&iinfo->i_data_sem);
313 kaddr = kmap_atomic(page);
314 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
315 kunmap_atomic(kaddr);
316 unlock_page(page);
317 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
318 inode->i_data.a_ops = &udf_adinicb_aops;
319 iinfo->i_lenAlloc = inode->i_size;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326 }
327
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 udf_pblk_t *block, int *err)
330 {
331 udf_pblk_t newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 udf_get_fi_ident(sfi))) {
394 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395 brelse(dbh);
396 return NULL;
397 }
398 }
399 mark_buffer_dirty_inode(dbh, inode);
400
401 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402 iinfo->i_lenAlloc = 0;
403 eloc.logicalBlockNum = *block;
404 eloc.partitionReferenceNum =
405 iinfo->i_location.partitionReferenceNum;
406 iinfo->i_lenExtents = inode->i_size;
407 epos.bh = NULL;
408 epos.block = iinfo->i_location;
409 epos.offset = udf_file_entry_alloc_offset(inode);
410 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 /* UniqueID stuff */
412
413 brelse(epos.bh);
414 mark_inode_dirty(inode);
415 return dbh;
416 }
417
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)418 static int udf_get_block(struct inode *inode, sector_t block,
419 struct buffer_head *bh_result, int create)
420 {
421 int err, new;
422 sector_t phys = 0;
423 struct udf_inode_info *iinfo;
424
425 if (!create) {
426 phys = udf_block_map(inode, block);
427 if (phys)
428 map_bh(bh_result, inode->i_sb, phys);
429 return 0;
430 }
431
432 err = -EIO;
433 new = 0;
434 iinfo = UDF_I(inode);
435
436 down_write(&iinfo->i_data_sem);
437 if (block == iinfo->i_next_alloc_block + 1) {
438 iinfo->i_next_alloc_block++;
439 iinfo->i_next_alloc_goal++;
440 }
441
442 /*
443 * Block beyond EOF and prealloc extents? Just discard preallocation
444 * as it is not useful and complicates things.
445 */
446 if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
447 udf_discard_prealloc(inode);
448 udf_clear_extent_cache(inode);
449 phys = inode_getblk(inode, block, &err, &new);
450 if (!phys)
451 goto abort;
452
453 if (new)
454 set_buffer_new(bh_result);
455 map_bh(bh_result, inode->i_sb, phys);
456
457 abort:
458 up_write(&iinfo->i_data_sem);
459 return err;
460 }
461
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)462 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
463 int create, int *err)
464 {
465 struct buffer_head *bh;
466 struct buffer_head dummy;
467
468 dummy.b_state = 0;
469 dummy.b_blocknr = -1000;
470 *err = udf_get_block(inode, block, &dummy, create);
471 if (!*err && buffer_mapped(&dummy)) {
472 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
473 if (buffer_new(&dummy)) {
474 lock_buffer(bh);
475 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
476 set_buffer_uptodate(bh);
477 unlock_buffer(bh);
478 mark_buffer_dirty_inode(bh, inode);
479 }
480 return bh;
481 }
482
483 return NULL;
484 }
485
486 /* Extend the file with new blocks totaling 'new_block_bytes',
487 * return the number of extents added
488 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)489 static int udf_do_extend_file(struct inode *inode,
490 struct extent_position *last_pos,
491 struct kernel_long_ad *last_ext,
492 loff_t new_block_bytes)
493 {
494 uint32_t add;
495 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
496 struct super_block *sb = inode->i_sb;
497 struct udf_inode_info *iinfo;
498 int err;
499
500 /* The previous extent is fake and we should not extend by anything
501 * - there's nothing to do... */
502 if (!new_block_bytes && fake)
503 return 0;
504
505 iinfo = UDF_I(inode);
506 /* Round the last extent up to a multiple of block size */
507 if (last_ext->extLength & (sb->s_blocksize - 1)) {
508 last_ext->extLength =
509 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
510 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
511 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
512 iinfo->i_lenExtents =
513 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
514 ~(sb->s_blocksize - 1);
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = (1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 if (add > new_block_bytes)
523 add = new_block_bytes;
524 new_block_bytes -= add;
525 last_ext->extLength += add;
526 }
527
528 if (fake) {
529 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
530 last_ext->extLength, 1);
531 if (err < 0)
532 goto out_err;
533 count++;
534 } else {
535 struct kernel_lb_addr tmploc;
536 uint32_t tmplen;
537
538 udf_write_aext(inode, last_pos, &last_ext->extLocation,
539 last_ext->extLength, 1);
540
541 /*
542 * We've rewritten the last extent. If we are going to add
543 * more extents, we may need to enter possible following
544 * empty indirect extent.
545 */
546 if (new_block_bytes)
547 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
548 }
549
550 /* Managed to do everything necessary? */
551 if (!new_block_bytes)
552 goto out;
553
554 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
555 last_ext->extLocation.logicalBlockNum = 0;
556 last_ext->extLocation.partitionReferenceNum = 0;
557 add = (1 << 30) - sb->s_blocksize;
558 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
559
560 /* Create enough extents to cover the whole hole */
561 while (new_block_bytes > add) {
562 new_block_bytes -= add;
563 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
564 last_ext->extLength, 1);
565 if (err)
566 goto out_err;
567 count++;
568 }
569 if (new_block_bytes) {
570 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
571 new_block_bytes;
572 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
573 last_ext->extLength, 1);
574 if (err)
575 goto out_err;
576 count++;
577 }
578
579 out:
580 /* last_pos should point to the last written extent... */
581 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
582 last_pos->offset -= sizeof(struct short_ad);
583 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
584 last_pos->offset -= sizeof(struct long_ad);
585 else
586 return -EIO;
587
588 return count;
589 out_err:
590 /* Remove extents we've created so far */
591 udf_clear_extent_cache(inode);
592 udf_truncate_extents(inode);
593 return err;
594 }
595
596 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)597 static void udf_do_extend_final_block(struct inode *inode,
598 struct extent_position *last_pos,
599 struct kernel_long_ad *last_ext,
600 uint32_t new_elen)
601 {
602 uint32_t added_bytes;
603
604 /*
605 * Extent already large enough? It may be already rounded up to block
606 * size...
607 */
608 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
609 return;
610 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
611 last_ext->extLength += added_bytes;
612 UDF_I(inode)->i_lenExtents += added_bytes;
613
614 udf_write_aext(inode, last_pos, &last_ext->extLocation,
615 last_ext->extLength, 1);
616 }
617
udf_extend_file(struct inode * inode,loff_t newsize)618 static int udf_extend_file(struct inode *inode, loff_t newsize)
619 {
620
621 struct extent_position epos;
622 struct kernel_lb_addr eloc;
623 uint32_t elen;
624 int8_t etype;
625 struct super_block *sb = inode->i_sb;
626 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
627 loff_t new_elen;
628 int adsize;
629 struct udf_inode_info *iinfo = UDF_I(inode);
630 struct kernel_long_ad extent;
631 int err = 0;
632 bool within_last_ext;
633
634 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
635 adsize = sizeof(struct short_ad);
636 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
637 adsize = sizeof(struct long_ad);
638 else
639 BUG();
640
641 /*
642 * When creating hole in file, just don't bother with preserving
643 * preallocation. It likely won't be very useful anyway.
644 */
645 udf_discard_prealloc(inode);
646
647 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648 within_last_ext = (etype != -1);
649 /* We don't expect extents past EOF... */
650 WARN_ON_ONCE(within_last_ext &&
651 elen > ((loff_t)offset + 1) << inode->i_blkbits);
652
653 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655 /* File has no extents at all or has empty last
656 * indirect extent! Create a fake extent... */
657 extent.extLocation.logicalBlockNum = 0;
658 extent.extLocation.partitionReferenceNum = 0;
659 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660 } else {
661 epos.offset -= adsize;
662 etype = udf_next_aext(inode, &epos, &extent.extLocation,
663 &extent.extLength, 0);
664 extent.extLength |= etype << 30;
665 }
666
667 new_elen = ((loff_t)offset << inode->i_blkbits) |
668 (newsize & (sb->s_blocksize - 1));
669
670 /* File has extent covering the new size (could happen when extending
671 * inside a block)?
672 */
673 if (within_last_ext) {
674 /* Extending file within the last file block */
675 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
676 } else {
677 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
678 }
679
680 if (err < 0)
681 goto out;
682 err = 0;
683 iinfo->i_lenExtents = newsize;
684 out:
685 brelse(epos.bh);
686 return err;
687 }
688
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)689 static sector_t inode_getblk(struct inode *inode, sector_t block,
690 int *err, int *new)
691 {
692 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
693 struct extent_position prev_epos, cur_epos, next_epos;
694 int count = 0, startnum = 0, endnum = 0;
695 uint32_t elen = 0, tmpelen;
696 struct kernel_lb_addr eloc, tmpeloc;
697 int c = 1;
698 loff_t lbcount = 0, b_off = 0;
699 udf_pblk_t newblocknum, newblock = 0;
700 sector_t offset = 0;
701 int8_t etype;
702 struct udf_inode_info *iinfo = UDF_I(inode);
703 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
704 int lastblock = 0;
705 bool isBeyondEOF;
706
707 *err = 0;
708 *new = 0;
709 prev_epos.offset = udf_file_entry_alloc_offset(inode);
710 prev_epos.block = iinfo->i_location;
711 prev_epos.bh = NULL;
712 cur_epos = next_epos = prev_epos;
713 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
714
715 /* find the extent which contains the block we are looking for.
716 alternate between laarr[0] and laarr[1] for locations of the
717 current extent, and the previous extent */
718 do {
719 if (prev_epos.bh != cur_epos.bh) {
720 brelse(prev_epos.bh);
721 get_bh(cur_epos.bh);
722 prev_epos.bh = cur_epos.bh;
723 }
724 if (cur_epos.bh != next_epos.bh) {
725 brelse(cur_epos.bh);
726 get_bh(next_epos.bh);
727 cur_epos.bh = next_epos.bh;
728 }
729
730 lbcount += elen;
731
732 prev_epos.block = cur_epos.block;
733 cur_epos.block = next_epos.block;
734
735 prev_epos.offset = cur_epos.offset;
736 cur_epos.offset = next_epos.offset;
737
738 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
739 if (etype == -1)
740 break;
741
742 c = !c;
743
744 laarr[c].extLength = (etype << 30) | elen;
745 laarr[c].extLocation = eloc;
746
747 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
748 pgoal = eloc.logicalBlockNum +
749 ((elen + inode->i_sb->s_blocksize - 1) >>
750 inode->i_sb->s_blocksize_bits);
751
752 count++;
753 } while (lbcount + elen <= b_off);
754
755 b_off -= lbcount;
756 offset = b_off >> inode->i_sb->s_blocksize_bits;
757 /*
758 * Move prev_epos and cur_epos into indirect extent if we are at
759 * the pointer to it
760 */
761 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
762 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
763
764 /* if the extent is allocated and recorded, return the block
765 if the extent is not a multiple of the blocksize, round up */
766
767 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
768 if (elen & (inode->i_sb->s_blocksize - 1)) {
769 elen = EXT_RECORDED_ALLOCATED |
770 ((elen + inode->i_sb->s_blocksize - 1) &
771 ~(inode->i_sb->s_blocksize - 1));
772 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
773 }
774 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
775 goto out_free;
776 }
777
778 /* Are we beyond EOF and preallocated extent? */
779 if (etype == -1) {
780 int ret;
781 loff_t hole_len;
782
783 isBeyondEOF = true;
784 if (count) {
785 if (c)
786 laarr[0] = laarr[1];
787 startnum = 1;
788 } else {
789 /* Create a fake extent when there's not one */
790 memset(&laarr[0].extLocation, 0x00,
791 sizeof(struct kernel_lb_addr));
792 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
793 /* Will udf_do_extend_file() create real extent from
794 a fake one? */
795 startnum = (offset > 0);
796 }
797 /* Create extents for the hole between EOF and offset */
798 hole_len = (loff_t)offset << inode->i_blkbits;
799 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
800 if (ret < 0) {
801 *err = ret;
802 goto out_free;
803 }
804 c = 0;
805 offset = 0;
806 count += ret;
807 /*
808 * Is there any real extent? - otherwise we overwrite the fake
809 * one...
810 */
811 if (count)
812 c = !c;
813 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814 inode->i_sb->s_blocksize;
815 memset(&laarr[c].extLocation, 0x00,
816 sizeof(struct kernel_lb_addr));
817 count++;
818 endnum = c + 1;
819 lastblock = 1;
820 } else {
821 isBeyondEOF = false;
822 endnum = startnum = ((count > 2) ? 2 : count);
823
824 /* if the current extent is in position 0,
825 swap it with the previous */
826 if (!c && count != 1) {
827 laarr[2] = laarr[0];
828 laarr[0] = laarr[1];
829 laarr[1] = laarr[2];
830 c = 1;
831 }
832
833 /* if the current block is located in an extent,
834 read the next extent */
835 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836 if (etype != -1) {
837 laarr[c + 1].extLength = (etype << 30) | elen;
838 laarr[c + 1].extLocation = eloc;
839 count++;
840 startnum++;
841 endnum++;
842 } else
843 lastblock = 1;
844 }
845
846 /* if the current extent is not recorded but allocated, get the
847 * block in the extent corresponding to the requested block */
848 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850 else { /* otherwise, allocate a new block */
851 if (iinfo->i_next_alloc_block == block)
852 goal = iinfo->i_next_alloc_goal;
853
854 if (!goal) {
855 if (!(goal = pgoal)) /* XXX: what was intended here? */
856 goal = iinfo->i_location.logicalBlockNum + 1;
857 }
858
859 newblocknum = udf_new_block(inode->i_sb, inode,
860 iinfo->i_location.partitionReferenceNum,
861 goal, err);
862 if (!newblocknum) {
863 *err = -ENOSPC;
864 goto out_free;
865 }
866 if (isBeyondEOF)
867 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
868 }
869
870 /* if the extent the requsted block is located in contains multiple
871 * blocks, split the extent into at most three extents. blocks prior
872 * to requested block, requested block, and blocks after requested
873 * block */
874 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
875
876 /* We preallocate blocks only for regular files. It also makes sense
877 * for directories but there's a problem when to drop the
878 * preallocation. We might use some delayed work for that but I feel
879 * it's overengineering for a filesystem like UDF. */
880 if (S_ISREG(inode->i_mode))
881 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
882
883 /* merge any continuous blocks in laarr */
884 udf_merge_extents(inode, laarr, &endnum);
885
886 /* write back the new extents, inserting new extents if the new number
887 * of extents is greater than the old number, and deleting extents if
888 * the new number of extents is less than the old number */
889 *err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
890 if (*err < 0)
891 goto out_free;
892
893 newblock = udf_get_pblock(inode->i_sb, newblocknum,
894 iinfo->i_location.partitionReferenceNum, 0);
895 if (!newblock) {
896 *err = -EIO;
897 goto out_free;
898 }
899 *new = 1;
900 iinfo->i_next_alloc_block = block;
901 iinfo->i_next_alloc_goal = newblocknum;
902 inode->i_ctime = current_time(inode);
903
904 if (IS_SYNC(inode))
905 udf_sync_inode(inode);
906 else
907 mark_inode_dirty(inode);
908 out_free:
909 brelse(prev_epos.bh);
910 brelse(cur_epos.bh);
911 brelse(next_epos.bh);
912 return newblock;
913 }
914
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)915 static void udf_split_extents(struct inode *inode, int *c, int offset,
916 udf_pblk_t newblocknum,
917 struct kernel_long_ad *laarr, int *endnum)
918 {
919 unsigned long blocksize = inode->i_sb->s_blocksize;
920 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921
922 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923 (laarr[*c].extLength >> 30) ==
924 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925 int curr = *c;
926 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927 blocksize - 1) >> blocksize_bits;
928 int8_t etype = (laarr[curr].extLength >> 30);
929
930 if (blen == 1)
931 ;
932 else if (!offset || blen == offset + 1) {
933 laarr[curr + 2] = laarr[curr + 1];
934 laarr[curr + 1] = laarr[curr];
935 } else {
936 laarr[curr + 3] = laarr[curr + 1];
937 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938 }
939
940 if (offset) {
941 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942 udf_free_blocks(inode->i_sb, inode,
943 &laarr[curr].extLocation,
944 0, offset);
945 laarr[curr].extLength =
946 EXT_NOT_RECORDED_NOT_ALLOCATED |
947 (offset << blocksize_bits);
948 laarr[curr].extLocation.logicalBlockNum = 0;
949 laarr[curr].extLocation.
950 partitionReferenceNum = 0;
951 } else
952 laarr[curr].extLength = (etype << 30) |
953 (offset << blocksize_bits);
954 curr++;
955 (*c)++;
956 (*endnum)++;
957 }
958
959 laarr[curr].extLocation.logicalBlockNum = newblocknum;
960 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961 laarr[curr].extLocation.partitionReferenceNum =
962 UDF_I(inode)->i_location.partitionReferenceNum;
963 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964 blocksize;
965 curr++;
966
967 if (blen != offset + 1) {
968 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969 laarr[curr].extLocation.logicalBlockNum +=
970 offset + 1;
971 laarr[curr].extLength = (etype << 30) |
972 ((blen - (offset + 1)) << blocksize_bits);
973 curr++;
974 (*endnum)++;
975 }
976 }
977 }
978
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980 struct kernel_long_ad *laarr,
981 int *endnum)
982 {
983 int start, length = 0, currlength = 0, i;
984
985 if (*endnum >= (c + 1)) {
986 if (!lastblock)
987 return;
988 else
989 start = c;
990 } else {
991 if ((laarr[c + 1].extLength >> 30) ==
992 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993 start = c + 1;
994 length = currlength =
995 (((laarr[c + 1].extLength &
996 UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 } else
1000 start = c;
1001 }
1002
1003 for (i = start + 1; i <= *endnum; i++) {
1004 if (i == *endnum) {
1005 if (lastblock)
1006 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007 } else if ((laarr[i].extLength >> 30) ==
1008 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009 length += (((laarr[i].extLength &
1010 UDF_EXTENT_LENGTH_MASK) +
1011 inode->i_sb->s_blocksize - 1) >>
1012 inode->i_sb->s_blocksize_bits);
1013 } else
1014 break;
1015 }
1016
1017 if (length) {
1018 int next = laarr[start].extLocation.logicalBlockNum +
1019 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020 inode->i_sb->s_blocksize - 1) >>
1021 inode->i_sb->s_blocksize_bits);
1022 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023 laarr[start].extLocation.partitionReferenceNum,
1024 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026 currlength);
1027 if (numalloc) {
1028 if (start == (c + 1))
1029 laarr[start].extLength +=
1030 (numalloc <<
1031 inode->i_sb->s_blocksize_bits);
1032 else {
1033 memmove(&laarr[c + 2], &laarr[c + 1],
1034 sizeof(struct long_ad) * (*endnum - (c + 1)));
1035 (*endnum)++;
1036 laarr[c + 1].extLocation.logicalBlockNum = next;
1037 laarr[c + 1].extLocation.partitionReferenceNum =
1038 laarr[c].extLocation.
1039 partitionReferenceNum;
1040 laarr[c + 1].extLength =
1041 EXT_NOT_RECORDED_ALLOCATED |
1042 (numalloc <<
1043 inode->i_sb->s_blocksize_bits);
1044 start = c + 1;
1045 }
1046
1047 for (i = start + 1; numalloc && i < *endnum; i++) {
1048 int elen = ((laarr[i].extLength &
1049 UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits;
1052
1053 if (elen > numalloc) {
1054 laarr[i].extLength -=
1055 (numalloc <<
1056 inode->i_sb->s_blocksize_bits);
1057 numalloc = 0;
1058 } else {
1059 numalloc -= elen;
1060 if (*endnum > (i + 1))
1061 memmove(&laarr[i],
1062 &laarr[i + 1],
1063 sizeof(struct long_ad) *
1064 (*endnum - (i + 1)));
1065 i--;
1066 (*endnum)--;
1067 }
1068 }
1069 UDF_I(inode)->i_lenExtents +=
1070 numalloc << inode->i_sb->s_blocksize_bits;
1071 }
1072 }
1073 }
1074
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076 int *endnum)
1077 {
1078 int i;
1079 unsigned long blocksize = inode->i_sb->s_blocksize;
1080 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081
1082 for (i = 0; i < (*endnum - 1); i++) {
1083 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085
1086 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087 (((li->extLength >> 30) ==
1088 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089 ((lip1->extLocation.logicalBlockNum -
1090 li->extLocation.logicalBlockNum) ==
1091 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092 blocksize - 1) >> blocksize_bits)))) {
1093
1094 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1097 li->extLength = lip1->extLength +
1098 (((li->extLength &
1099 UDF_EXTENT_LENGTH_MASK) +
1100 blocksize - 1) & ~(blocksize - 1));
1101 if (*endnum > (i + 2))
1102 memmove(&laarr[i + 1], &laarr[i + 2],
1103 sizeof(struct long_ad) *
1104 (*endnum - (i + 2)));
1105 i--;
1106 (*endnum)--;
1107 }
1108 } else if (((li->extLength >> 30) ==
1109 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1110 ((lip1->extLength >> 30) ==
1111 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1112 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1113 ((li->extLength &
1114 UDF_EXTENT_LENGTH_MASK) +
1115 blocksize - 1) >> blocksize_bits);
1116 li->extLocation.logicalBlockNum = 0;
1117 li->extLocation.partitionReferenceNum = 0;
1118
1119 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1120 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1121 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1122 lip1->extLength = (lip1->extLength -
1123 (li->extLength &
1124 UDF_EXTENT_LENGTH_MASK) +
1125 UDF_EXTENT_LENGTH_MASK) &
1126 ~(blocksize - 1);
1127 li->extLength = (li->extLength &
1128 UDF_EXTENT_FLAG_MASK) +
1129 (UDF_EXTENT_LENGTH_MASK + 1) -
1130 blocksize;
1131 } else {
1132 li->extLength = lip1->extLength +
1133 (((li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) +
1135 blocksize - 1) & ~(blocksize - 1));
1136 if (*endnum > (i + 2))
1137 memmove(&laarr[i + 1], &laarr[i + 2],
1138 sizeof(struct long_ad) *
1139 (*endnum - (i + 2)));
1140 i--;
1141 (*endnum)--;
1142 }
1143 } else if ((li->extLength >> 30) ==
1144 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1145 udf_free_blocks(inode->i_sb, inode,
1146 &li->extLocation, 0,
1147 ((li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) +
1149 blocksize - 1) >> blocksize_bits);
1150 li->extLocation.logicalBlockNum = 0;
1151 li->extLocation.partitionReferenceNum = 0;
1152 li->extLength = (li->extLength &
1153 UDF_EXTENT_LENGTH_MASK) |
1154 EXT_NOT_RECORDED_NOT_ALLOCATED;
1155 }
1156 }
1157 }
1158
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1159 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1160 int startnum, int endnum,
1161 struct extent_position *epos)
1162 {
1163 int start = 0, i;
1164 struct kernel_lb_addr tmploc;
1165 uint32_t tmplen;
1166 int err;
1167
1168 if (startnum > endnum) {
1169 for (i = 0; i < (startnum - endnum); i++)
1170 udf_delete_aext(inode, *epos);
1171 } else if (startnum < endnum) {
1172 for (i = 0; i < (endnum - startnum); i++) {
1173 err = udf_insert_aext(inode, *epos,
1174 laarr[i].extLocation,
1175 laarr[i].extLength);
1176 /*
1177 * If we fail here, we are likely corrupting the extent
1178 * list and leaking blocks. At least stop early to
1179 * limit the damage.
1180 */
1181 if (err < 0)
1182 return err;
1183 udf_next_aext(inode, epos, &laarr[i].extLocation,
1184 &laarr[i].extLength, 1);
1185 start++;
1186 }
1187 }
1188
1189 for (i = start; i < endnum; i++) {
1190 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1191 udf_write_aext(inode, epos, &laarr[i].extLocation,
1192 laarr[i].extLength, 1);
1193 }
1194 return 0;
1195 }
1196
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1197 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1198 int create, int *err)
1199 {
1200 struct buffer_head *bh = NULL;
1201
1202 bh = udf_getblk(inode, block, create, err);
1203 if (!bh)
1204 return NULL;
1205
1206 if (bh_read(bh, 0) >= 0)
1207 return bh;
1208
1209 brelse(bh);
1210 *err = -EIO;
1211 return NULL;
1212 }
1213
udf_setsize(struct inode * inode,loff_t newsize)1214 int udf_setsize(struct inode *inode, loff_t newsize)
1215 {
1216 int err;
1217 struct udf_inode_info *iinfo;
1218 unsigned int bsize = i_blocksize(inode);
1219
1220 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221 S_ISLNK(inode->i_mode)))
1222 return -EINVAL;
1223 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224 return -EPERM;
1225
1226 iinfo = UDF_I(inode);
1227 if (newsize > inode->i_size) {
1228 down_write(&iinfo->i_data_sem);
1229 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230 if (bsize <
1231 (udf_file_entry_alloc_offset(inode) + newsize)) {
1232 err = udf_expand_file_adinicb(inode);
1233 if (err)
1234 return err;
1235 down_write(&iinfo->i_data_sem);
1236 } else {
1237 iinfo->i_lenAlloc = newsize;
1238 goto set_size;
1239 }
1240 }
1241 err = udf_extend_file(inode, newsize);
1242 if (err) {
1243 up_write(&iinfo->i_data_sem);
1244 return err;
1245 }
1246 set_size:
1247 up_write(&iinfo->i_data_sem);
1248 truncate_setsize(inode, newsize);
1249 } else {
1250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251 down_write(&iinfo->i_data_sem);
1252 udf_clear_extent_cache(inode);
1253 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1254 0x00, bsize - newsize -
1255 udf_file_entry_alloc_offset(inode));
1256 iinfo->i_lenAlloc = newsize;
1257 truncate_setsize(inode, newsize);
1258 up_write(&iinfo->i_data_sem);
1259 goto update_time;
1260 }
1261 err = block_truncate_page(inode->i_mapping, newsize,
1262 udf_get_block);
1263 if (err)
1264 return err;
1265 truncate_setsize(inode, newsize);
1266 down_write(&iinfo->i_data_sem);
1267 udf_clear_extent_cache(inode);
1268 err = udf_truncate_extents(inode);
1269 up_write(&iinfo->i_data_sem);
1270 if (err)
1271 return err;
1272 }
1273 update_time:
1274 inode->i_mtime = inode->i_ctime = current_time(inode);
1275 if (IS_SYNC(inode))
1276 udf_sync_inode(inode);
1277 else
1278 mark_inode_dirty(inode);
1279 return 0;
1280 }
1281
1282 /*
1283 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1284 * arbitrary - just that we hopefully don't limit any real use of rewritten
1285 * inode on write-once media but avoid looping for too long on corrupted media.
1286 */
1287 #define UDF_MAX_ICB_NESTING 1024
1288
udf_read_inode(struct inode * inode,bool hidden_inode)1289 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1290 {
1291 struct buffer_head *bh = NULL;
1292 struct fileEntry *fe;
1293 struct extendedFileEntry *efe;
1294 uint16_t ident;
1295 struct udf_inode_info *iinfo = UDF_I(inode);
1296 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1297 struct kernel_lb_addr *iloc = &iinfo->i_location;
1298 unsigned int link_count;
1299 unsigned int indirections = 0;
1300 int bs = inode->i_sb->s_blocksize;
1301 int ret = -EIO;
1302 uint32_t uid, gid;
1303
1304 reread:
1305 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1306 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1307 iloc->partitionReferenceNum, sbi->s_partitions);
1308 return -EIO;
1309 }
1310
1311 if (iloc->logicalBlockNum >=
1312 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1313 udf_debug("block=%u, partition=%u out of range\n",
1314 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1315 return -EIO;
1316 }
1317
1318 /*
1319 * Set defaults, but the inode is still incomplete!
1320 * Note: get_new_inode() sets the following on a new inode:
1321 * i_sb = sb
1322 * i_no = ino
1323 * i_flags = sb->s_flags
1324 * i_state = 0
1325 * clean_inode(): zero fills and sets
1326 * i_count = 1
1327 * i_nlink = 1
1328 * i_op = NULL;
1329 */
1330 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1331 if (!bh) {
1332 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1333 return -EIO;
1334 }
1335
1336 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1337 ident != TAG_IDENT_USE) {
1338 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1339 inode->i_ino, ident);
1340 goto out;
1341 }
1342
1343 fe = (struct fileEntry *)bh->b_data;
1344 efe = (struct extendedFileEntry *)bh->b_data;
1345
1346 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1347 struct buffer_head *ibh;
1348
1349 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1350 if (ident == TAG_IDENT_IE && ibh) {
1351 struct kernel_lb_addr loc;
1352 struct indirectEntry *ie;
1353
1354 ie = (struct indirectEntry *)ibh->b_data;
1355 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1356
1357 if (ie->indirectICB.extLength) {
1358 brelse(ibh);
1359 memcpy(&iinfo->i_location, &loc,
1360 sizeof(struct kernel_lb_addr));
1361 if (++indirections > UDF_MAX_ICB_NESTING) {
1362 udf_err(inode->i_sb,
1363 "too many ICBs in ICB hierarchy"
1364 " (max %d supported)\n",
1365 UDF_MAX_ICB_NESTING);
1366 goto out;
1367 }
1368 brelse(bh);
1369 goto reread;
1370 }
1371 }
1372 brelse(ibh);
1373 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1374 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1375 le16_to_cpu(fe->icbTag.strategyType));
1376 goto out;
1377 }
1378 if (fe->icbTag.strategyType == cpu_to_le16(4))
1379 iinfo->i_strat4096 = 0;
1380 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1381 iinfo->i_strat4096 = 1;
1382
1383 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1384 ICBTAG_FLAG_AD_MASK;
1385 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1386 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1387 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1388 ret = -EIO;
1389 goto out;
1390 }
1391 iinfo->i_hidden = hidden_inode;
1392 iinfo->i_unique = 0;
1393 iinfo->i_lenEAttr = 0;
1394 iinfo->i_lenExtents = 0;
1395 iinfo->i_lenAlloc = 0;
1396 iinfo->i_next_alloc_block = 0;
1397 iinfo->i_next_alloc_goal = 0;
1398 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1399 iinfo->i_efe = 1;
1400 iinfo->i_use = 0;
1401 ret = udf_alloc_i_data(inode, bs -
1402 sizeof(struct extendedFileEntry));
1403 if (ret)
1404 goto out;
1405 memcpy(iinfo->i_data,
1406 bh->b_data + sizeof(struct extendedFileEntry),
1407 bs - sizeof(struct extendedFileEntry));
1408 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1409 iinfo->i_efe = 0;
1410 iinfo->i_use = 0;
1411 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1412 if (ret)
1413 goto out;
1414 memcpy(iinfo->i_data,
1415 bh->b_data + sizeof(struct fileEntry),
1416 bs - sizeof(struct fileEntry));
1417 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1418 iinfo->i_efe = 0;
1419 iinfo->i_use = 1;
1420 iinfo->i_lenAlloc = le32_to_cpu(
1421 ((struct unallocSpaceEntry *)bh->b_data)->
1422 lengthAllocDescs);
1423 ret = udf_alloc_i_data(inode, bs -
1424 sizeof(struct unallocSpaceEntry));
1425 if (ret)
1426 goto out;
1427 memcpy(iinfo->i_data,
1428 bh->b_data + sizeof(struct unallocSpaceEntry),
1429 bs - sizeof(struct unallocSpaceEntry));
1430 return 0;
1431 }
1432
1433 ret = -EIO;
1434 read_lock(&sbi->s_cred_lock);
1435 uid = le32_to_cpu(fe->uid);
1436 if (uid == UDF_INVALID_ID ||
1437 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1438 inode->i_uid = sbi->s_uid;
1439 else
1440 i_uid_write(inode, uid);
1441
1442 gid = le32_to_cpu(fe->gid);
1443 if (gid == UDF_INVALID_ID ||
1444 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1445 inode->i_gid = sbi->s_gid;
1446 else
1447 i_gid_write(inode, gid);
1448
1449 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1450 sbi->s_fmode != UDF_INVALID_MODE)
1451 inode->i_mode = sbi->s_fmode;
1452 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1453 sbi->s_dmode != UDF_INVALID_MODE)
1454 inode->i_mode = sbi->s_dmode;
1455 else
1456 inode->i_mode = udf_convert_permissions(fe);
1457 inode->i_mode &= ~sbi->s_umask;
1458 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1459
1460 read_unlock(&sbi->s_cred_lock);
1461
1462 link_count = le16_to_cpu(fe->fileLinkCount);
1463 if (!link_count) {
1464 if (!hidden_inode) {
1465 ret = -ESTALE;
1466 goto out;
1467 }
1468 link_count = 1;
1469 }
1470 set_nlink(inode, link_count);
1471
1472 inode->i_size = le64_to_cpu(fe->informationLength);
1473 iinfo->i_lenExtents = inode->i_size;
1474
1475 if (iinfo->i_efe == 0) {
1476 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1477 (inode->i_sb->s_blocksize_bits - 9);
1478
1479 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1480 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1481 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1482
1483 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1484 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1485 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1486 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1487 iinfo->i_streamdir = 0;
1488 iinfo->i_lenStreams = 0;
1489 } else {
1490 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1491 (inode->i_sb->s_blocksize_bits - 9);
1492
1493 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1494 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1495 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1496 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1497
1498 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1499 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1500 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1501 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1502
1503 /* Named streams */
1504 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1505 iinfo->i_locStreamdir =
1506 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1507 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1508 if (iinfo->i_lenStreams >= inode->i_size)
1509 iinfo->i_lenStreams -= inode->i_size;
1510 else
1511 iinfo->i_lenStreams = 0;
1512 }
1513 inode->i_generation = iinfo->i_unique;
1514
1515 /*
1516 * Sanity check length of allocation descriptors and extended attrs to
1517 * avoid integer overflows
1518 */
1519 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1520 goto out;
1521 /* Now do exact checks */
1522 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1523 goto out;
1524 /* Sanity checks for files in ICB so that we don't get confused later */
1525 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1526 /*
1527 * For file in ICB data is stored in allocation descriptor
1528 * so sizes should match
1529 */
1530 if (iinfo->i_lenAlloc != inode->i_size)
1531 goto out;
1532 /* File in ICB has to fit in there... */
1533 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1534 goto out;
1535 }
1536
1537 switch (fe->icbTag.fileType) {
1538 case ICBTAG_FILE_TYPE_DIRECTORY:
1539 inode->i_op = &udf_dir_inode_operations;
1540 inode->i_fop = &udf_dir_operations;
1541 inode->i_mode |= S_IFDIR;
1542 inc_nlink(inode);
1543 break;
1544 case ICBTAG_FILE_TYPE_REALTIME:
1545 case ICBTAG_FILE_TYPE_REGULAR:
1546 case ICBTAG_FILE_TYPE_UNDEF:
1547 case ICBTAG_FILE_TYPE_VAT20:
1548 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1549 inode->i_data.a_ops = &udf_adinicb_aops;
1550 else
1551 inode->i_data.a_ops = &udf_aops;
1552 inode->i_op = &udf_file_inode_operations;
1553 inode->i_fop = &udf_file_operations;
1554 inode->i_mode |= S_IFREG;
1555 break;
1556 case ICBTAG_FILE_TYPE_BLOCK:
1557 inode->i_mode |= S_IFBLK;
1558 break;
1559 case ICBTAG_FILE_TYPE_CHAR:
1560 inode->i_mode |= S_IFCHR;
1561 break;
1562 case ICBTAG_FILE_TYPE_FIFO:
1563 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1564 break;
1565 case ICBTAG_FILE_TYPE_SOCKET:
1566 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1567 break;
1568 case ICBTAG_FILE_TYPE_SYMLINK:
1569 inode->i_data.a_ops = &udf_symlink_aops;
1570 inode->i_op = &udf_symlink_inode_operations;
1571 inode_nohighmem(inode);
1572 inode->i_mode = S_IFLNK | 0777;
1573 break;
1574 case ICBTAG_FILE_TYPE_MAIN:
1575 udf_debug("METADATA FILE-----\n");
1576 break;
1577 case ICBTAG_FILE_TYPE_MIRROR:
1578 udf_debug("METADATA MIRROR FILE-----\n");
1579 break;
1580 case ICBTAG_FILE_TYPE_BITMAP:
1581 udf_debug("METADATA BITMAP FILE-----\n");
1582 break;
1583 default:
1584 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1585 inode->i_ino, fe->icbTag.fileType);
1586 goto out;
1587 }
1588 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1589 struct deviceSpec *dsea =
1590 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1591 if (dsea) {
1592 init_special_inode(inode, inode->i_mode,
1593 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1594 le32_to_cpu(dsea->minorDeviceIdent)));
1595 /* Developer ID ??? */
1596 } else
1597 goto out;
1598 }
1599 ret = 0;
1600 out:
1601 brelse(bh);
1602 return ret;
1603 }
1604
udf_alloc_i_data(struct inode * inode,size_t size)1605 static int udf_alloc_i_data(struct inode *inode, size_t size)
1606 {
1607 struct udf_inode_info *iinfo = UDF_I(inode);
1608 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1609 if (!iinfo->i_data)
1610 return -ENOMEM;
1611 return 0;
1612 }
1613
udf_convert_permissions(struct fileEntry * fe)1614 static umode_t udf_convert_permissions(struct fileEntry *fe)
1615 {
1616 umode_t mode;
1617 uint32_t permissions;
1618 uint32_t flags;
1619
1620 permissions = le32_to_cpu(fe->permissions);
1621 flags = le16_to_cpu(fe->icbTag.flags);
1622
1623 mode = ((permissions) & 0007) |
1624 ((permissions >> 2) & 0070) |
1625 ((permissions >> 4) & 0700) |
1626 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1627 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1628 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1629
1630 return mode;
1631 }
1632
udf_update_extra_perms(struct inode * inode,umode_t mode)1633 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1634 {
1635 struct udf_inode_info *iinfo = UDF_I(inode);
1636
1637 /*
1638 * UDF 2.01 sec. 3.3.3.3 Note 2:
1639 * In Unix, delete permission tracks write
1640 */
1641 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1642 if (mode & 0200)
1643 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1644 if (mode & 0020)
1645 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1646 if (mode & 0002)
1647 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1648 }
1649
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1650 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1651 {
1652 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1653 }
1654
udf_sync_inode(struct inode * inode)1655 static int udf_sync_inode(struct inode *inode)
1656 {
1657 return udf_update_inode(inode, 1);
1658 }
1659
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1660 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1661 {
1662 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1663 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1664 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1665 iinfo->i_crtime = time;
1666 }
1667
udf_update_inode(struct inode * inode,int do_sync)1668 static int udf_update_inode(struct inode *inode, int do_sync)
1669 {
1670 struct buffer_head *bh = NULL;
1671 struct fileEntry *fe;
1672 struct extendedFileEntry *efe;
1673 uint64_t lb_recorded;
1674 uint32_t udfperms;
1675 uint16_t icbflags;
1676 uint16_t crclen;
1677 int err = 0;
1678 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1679 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1680 struct udf_inode_info *iinfo = UDF_I(inode);
1681
1682 bh = udf_tgetblk(inode->i_sb,
1683 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1684 if (!bh) {
1685 udf_debug("getblk failure\n");
1686 return -EIO;
1687 }
1688
1689 lock_buffer(bh);
1690 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1691 fe = (struct fileEntry *)bh->b_data;
1692 efe = (struct extendedFileEntry *)bh->b_data;
1693
1694 if (iinfo->i_use) {
1695 struct unallocSpaceEntry *use =
1696 (struct unallocSpaceEntry *)bh->b_data;
1697
1698 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1699 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1700 iinfo->i_data, inode->i_sb->s_blocksize -
1701 sizeof(struct unallocSpaceEntry));
1702 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1703 crclen = sizeof(struct unallocSpaceEntry);
1704
1705 goto finish;
1706 }
1707
1708 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1709 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1710 else
1711 fe->uid = cpu_to_le32(i_uid_read(inode));
1712
1713 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1714 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1715 else
1716 fe->gid = cpu_to_le32(i_gid_read(inode));
1717
1718 udfperms = ((inode->i_mode & 0007)) |
1719 ((inode->i_mode & 0070) << 2) |
1720 ((inode->i_mode & 0700) << 4);
1721
1722 udfperms |= iinfo->i_extraPerms;
1723 fe->permissions = cpu_to_le32(udfperms);
1724
1725 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1726 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1727 else {
1728 if (iinfo->i_hidden)
1729 fe->fileLinkCount = cpu_to_le16(0);
1730 else
1731 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1732 }
1733
1734 fe->informationLength = cpu_to_le64(inode->i_size);
1735
1736 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1737 struct regid *eid;
1738 struct deviceSpec *dsea =
1739 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1740 if (!dsea) {
1741 dsea = (struct deviceSpec *)
1742 udf_add_extendedattr(inode,
1743 sizeof(struct deviceSpec) +
1744 sizeof(struct regid), 12, 0x3);
1745 dsea->attrType = cpu_to_le32(12);
1746 dsea->attrSubtype = 1;
1747 dsea->attrLength = cpu_to_le32(
1748 sizeof(struct deviceSpec) +
1749 sizeof(struct regid));
1750 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1751 }
1752 eid = (struct regid *)dsea->impUse;
1753 memset(eid, 0, sizeof(*eid));
1754 strcpy(eid->ident, UDF_ID_DEVELOPER);
1755 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1757 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1758 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1759 }
1760
1761 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1762 lb_recorded = 0; /* No extents => no blocks! */
1763 else
1764 lb_recorded =
1765 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1766 (blocksize_bits - 9);
1767
1768 if (iinfo->i_efe == 0) {
1769 memcpy(bh->b_data + sizeof(struct fileEntry),
1770 iinfo->i_data,
1771 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1772 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1773
1774 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1775 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1776 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1777 memset(&(fe->impIdent), 0, sizeof(struct regid));
1778 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1779 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1780 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1781 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1782 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1783 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1784 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1785 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1786 crclen = sizeof(struct fileEntry);
1787 } else {
1788 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1789 iinfo->i_data,
1790 inode->i_sb->s_blocksize -
1791 sizeof(struct extendedFileEntry));
1792 efe->objectSize =
1793 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1794 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1795
1796 if (iinfo->i_streamdir) {
1797 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1798
1799 icb_lad->extLocation =
1800 cpu_to_lelb(iinfo->i_locStreamdir);
1801 icb_lad->extLength =
1802 cpu_to_le32(inode->i_sb->s_blocksize);
1803 }
1804
1805 udf_adjust_time(iinfo, inode->i_atime);
1806 udf_adjust_time(iinfo, inode->i_mtime);
1807 udf_adjust_time(iinfo, inode->i_ctime);
1808
1809 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1810 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1811 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1812 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1813
1814 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1815 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1816 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1817 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1818 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1819 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1820 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1821 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1822 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1823 crclen = sizeof(struct extendedFileEntry);
1824 }
1825
1826 finish:
1827 if (iinfo->i_strat4096) {
1828 fe->icbTag.strategyType = cpu_to_le16(4096);
1829 fe->icbTag.strategyParameter = cpu_to_le16(1);
1830 fe->icbTag.numEntries = cpu_to_le16(2);
1831 } else {
1832 fe->icbTag.strategyType = cpu_to_le16(4);
1833 fe->icbTag.numEntries = cpu_to_le16(1);
1834 }
1835
1836 if (iinfo->i_use)
1837 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1838 else if (S_ISDIR(inode->i_mode))
1839 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1840 else if (S_ISREG(inode->i_mode))
1841 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1842 else if (S_ISLNK(inode->i_mode))
1843 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1844 else if (S_ISBLK(inode->i_mode))
1845 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1846 else if (S_ISCHR(inode->i_mode))
1847 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1848 else if (S_ISFIFO(inode->i_mode))
1849 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1850 else if (S_ISSOCK(inode->i_mode))
1851 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1852
1853 icbflags = iinfo->i_alloc_type |
1854 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1855 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1856 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1857 (le16_to_cpu(fe->icbTag.flags) &
1858 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1859 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1860
1861 fe->icbTag.flags = cpu_to_le16(icbflags);
1862 if (sbi->s_udfrev >= 0x0200)
1863 fe->descTag.descVersion = cpu_to_le16(3);
1864 else
1865 fe->descTag.descVersion = cpu_to_le16(2);
1866 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1867 fe->descTag.tagLocation = cpu_to_le32(
1868 iinfo->i_location.logicalBlockNum);
1869 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1870 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1871 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1872 crclen));
1873 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1874
1875 set_buffer_uptodate(bh);
1876 unlock_buffer(bh);
1877
1878 /* write the data blocks */
1879 mark_buffer_dirty(bh);
1880 if (do_sync) {
1881 sync_dirty_buffer(bh);
1882 if (buffer_write_io_error(bh)) {
1883 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1884 inode->i_ino);
1885 err = -EIO;
1886 }
1887 }
1888 brelse(bh);
1889
1890 return err;
1891 }
1892
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1893 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1894 bool hidden_inode)
1895 {
1896 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1897 struct inode *inode = iget_locked(sb, block);
1898 int err;
1899
1900 if (!inode)
1901 return ERR_PTR(-ENOMEM);
1902
1903 if (!(inode->i_state & I_NEW)) {
1904 if (UDF_I(inode)->i_hidden != hidden_inode) {
1905 iput(inode);
1906 return ERR_PTR(-EFSCORRUPTED);
1907 }
1908 return inode;
1909 }
1910
1911 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912 err = udf_read_inode(inode, hidden_inode);
1913 if (err < 0) {
1914 iget_failed(inode);
1915 return ERR_PTR(err);
1916 }
1917 unlock_new_inode(inode);
1918
1919 return inode;
1920 }
1921
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1922 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923 struct extent_position *epos)
1924 {
1925 struct super_block *sb = inode->i_sb;
1926 struct buffer_head *bh;
1927 struct allocExtDesc *aed;
1928 struct extent_position nepos;
1929 struct kernel_lb_addr neloc;
1930 int ver, adsize;
1931
1932 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933 adsize = sizeof(struct short_ad);
1934 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935 adsize = sizeof(struct long_ad);
1936 else
1937 return -EIO;
1938
1939 neloc.logicalBlockNum = block;
1940 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943 if (!bh)
1944 return -EIO;
1945 lock_buffer(bh);
1946 memset(bh->b_data, 0x00, sb->s_blocksize);
1947 set_buffer_uptodate(bh);
1948 unlock_buffer(bh);
1949 mark_buffer_dirty_inode(bh, inode);
1950
1951 aed = (struct allocExtDesc *)(bh->b_data);
1952 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953 aed->previousAllocExtLocation =
1954 cpu_to_le32(epos->block.logicalBlockNum);
1955 }
1956 aed->lengthAllocDescs = cpu_to_le32(0);
1957 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958 ver = 3;
1959 else
1960 ver = 2;
1961 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962 sizeof(struct tag));
1963
1964 nepos.block = neloc;
1965 nepos.offset = sizeof(struct allocExtDesc);
1966 nepos.bh = bh;
1967
1968 /*
1969 * Do we have to copy current last extent to make space for indirect
1970 * one?
1971 */
1972 if (epos->offset + adsize > sb->s_blocksize) {
1973 struct kernel_lb_addr cp_loc;
1974 uint32_t cp_len;
1975 int cp_type;
1976
1977 epos->offset -= adsize;
1978 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979 cp_len |= ((uint32_t)cp_type) << 30;
1980
1981 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982 udf_write_aext(inode, epos, &nepos.block,
1983 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984 } else {
1985 __udf_add_aext(inode, epos, &nepos.block,
1986 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987 }
1988
1989 brelse(epos->bh);
1990 *epos = nepos;
1991
1992 return 0;
1993 }
1994
1995 /*
1996 * Append extent at the given position - should be the first free one in inode
1997 * / indirect extent. This function assumes there is enough space in the inode
1998 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2000 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002 {
2003 struct udf_inode_info *iinfo = UDF_I(inode);
2004 struct allocExtDesc *aed;
2005 int adsize;
2006
2007 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008 adsize = sizeof(struct short_ad);
2009 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010 adsize = sizeof(struct long_ad);
2011 else
2012 return -EIO;
2013
2014 if (!epos->bh) {
2015 WARN_ON(iinfo->i_lenAlloc !=
2016 epos->offset - udf_file_entry_alloc_offset(inode));
2017 } else {
2018 aed = (struct allocExtDesc *)epos->bh->b_data;
2019 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020 epos->offset - sizeof(struct allocExtDesc));
2021 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022 }
2023
2024 udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026 if (!epos->bh) {
2027 iinfo->i_lenAlloc += adsize;
2028 mark_inode_dirty(inode);
2029 } else {
2030 aed = (struct allocExtDesc *)epos->bh->b_data;
2031 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034 udf_update_tag(epos->bh->b_data,
2035 epos->offset + (inc ? 0 : adsize));
2036 else
2037 udf_update_tag(epos->bh->b_data,
2038 sizeof(struct allocExtDesc));
2039 mark_buffer_dirty_inode(epos->bh, inode);
2040 }
2041
2042 return 0;
2043 }
2044
2045 /*
2046 * Append extent at given position - should be the first free one in inode
2047 * / indirect extent. Takes care of allocating and linking indirect blocks.
2048 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2049 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051 {
2052 int adsize;
2053 struct super_block *sb = inode->i_sb;
2054
2055 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056 adsize = sizeof(struct short_ad);
2057 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058 adsize = sizeof(struct long_ad);
2059 else
2060 return -EIO;
2061
2062 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063 int err;
2064 udf_pblk_t new_block;
2065
2066 new_block = udf_new_block(sb, NULL,
2067 epos->block.partitionReferenceNum,
2068 epos->block.logicalBlockNum, &err);
2069 if (!new_block)
2070 return -ENOSPC;
2071
2072 err = udf_setup_indirect_aext(inode, new_block, epos);
2073 if (err)
2074 return err;
2075 }
2076
2077 return __udf_add_aext(inode, epos, eloc, elen, inc);
2078 }
2079
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2080 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082 {
2083 int adsize;
2084 uint8_t *ptr;
2085 struct short_ad *sad;
2086 struct long_ad *lad;
2087 struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089 if (!epos->bh)
2090 ptr = iinfo->i_data + epos->offset -
2091 udf_file_entry_alloc_offset(inode) +
2092 iinfo->i_lenEAttr;
2093 else
2094 ptr = epos->bh->b_data + epos->offset;
2095
2096 switch (iinfo->i_alloc_type) {
2097 case ICBTAG_FLAG_AD_SHORT:
2098 sad = (struct short_ad *)ptr;
2099 sad->extLength = cpu_to_le32(elen);
2100 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101 adsize = sizeof(struct short_ad);
2102 break;
2103 case ICBTAG_FLAG_AD_LONG:
2104 lad = (struct long_ad *)ptr;
2105 lad->extLength = cpu_to_le32(elen);
2106 lad->extLocation = cpu_to_lelb(*eloc);
2107 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108 adsize = sizeof(struct long_ad);
2109 break;
2110 default:
2111 return;
2112 }
2113
2114 if (epos->bh) {
2115 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117 struct allocExtDesc *aed =
2118 (struct allocExtDesc *)epos->bh->b_data;
2119 udf_update_tag(epos->bh->b_data,
2120 le32_to_cpu(aed->lengthAllocDescs) +
2121 sizeof(struct allocExtDesc));
2122 }
2123 mark_buffer_dirty_inode(epos->bh, inode);
2124 } else {
2125 mark_inode_dirty(inode);
2126 }
2127
2128 if (inc)
2129 epos->offset += adsize;
2130 }
2131
2132 /*
2133 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134 * someone does some weird stuff.
2135 */
2136 #define UDF_MAX_INDIR_EXTS 16
2137
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2138 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140 {
2141 int8_t etype;
2142 unsigned int indirections = 0;
2143
2144 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146 udf_pblk_t block;
2147
2148 if (++indirections > UDF_MAX_INDIR_EXTS) {
2149 udf_err(inode->i_sb,
2150 "too many indirect extents in inode %lu\n",
2151 inode->i_ino);
2152 return -1;
2153 }
2154
2155 epos->block = *eloc;
2156 epos->offset = sizeof(struct allocExtDesc);
2157 brelse(epos->bh);
2158 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159 epos->bh = udf_tread(inode->i_sb, block);
2160 if (!epos->bh) {
2161 udf_debug("reading block %u failed!\n", block);
2162 return -1;
2163 }
2164 }
2165
2166 return etype;
2167 }
2168
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2169 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171 {
2172 int alen;
2173 int8_t etype;
2174 uint8_t *ptr;
2175 struct short_ad *sad;
2176 struct long_ad *lad;
2177 struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179 if (!epos->bh) {
2180 if (!epos->offset)
2181 epos->offset = udf_file_entry_alloc_offset(inode);
2182 ptr = iinfo->i_data + epos->offset -
2183 udf_file_entry_alloc_offset(inode) +
2184 iinfo->i_lenEAttr;
2185 alen = udf_file_entry_alloc_offset(inode) +
2186 iinfo->i_lenAlloc;
2187 } else {
2188 if (!epos->offset)
2189 epos->offset = sizeof(struct allocExtDesc);
2190 ptr = epos->bh->b_data + epos->offset;
2191 alen = sizeof(struct allocExtDesc) +
2192 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193 lengthAllocDescs);
2194 }
2195
2196 switch (iinfo->i_alloc_type) {
2197 case ICBTAG_FLAG_AD_SHORT:
2198 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199 if (!sad)
2200 return -1;
2201 etype = le32_to_cpu(sad->extLength) >> 30;
2202 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203 eloc->partitionReferenceNum =
2204 iinfo->i_location.partitionReferenceNum;
2205 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206 break;
2207 case ICBTAG_FLAG_AD_LONG:
2208 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209 if (!lad)
2210 return -1;
2211 etype = le32_to_cpu(lad->extLength) >> 30;
2212 *eloc = lelb_to_cpu(lad->extLocation);
2213 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214 break;
2215 default:
2216 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217 return -1;
2218 }
2219
2220 return etype;
2221 }
2222
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2223 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2224 struct kernel_lb_addr neloc, uint32_t nelen)
2225 {
2226 struct kernel_lb_addr oeloc;
2227 uint32_t oelen;
2228 int8_t etype;
2229 int err;
2230
2231 if (epos.bh)
2232 get_bh(epos.bh);
2233
2234 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236 neloc = oeloc;
2237 nelen = (etype << 30) | oelen;
2238 }
2239 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240 brelse(epos.bh);
2241
2242 return err;
2243 }
2244
udf_delete_aext(struct inode * inode,struct extent_position epos)2245 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246 {
2247 struct extent_position oepos;
2248 int adsize;
2249 int8_t etype;
2250 struct allocExtDesc *aed;
2251 struct udf_inode_info *iinfo;
2252 struct kernel_lb_addr eloc;
2253 uint32_t elen;
2254
2255 if (epos.bh) {
2256 get_bh(epos.bh);
2257 get_bh(epos.bh);
2258 }
2259
2260 iinfo = UDF_I(inode);
2261 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262 adsize = sizeof(struct short_ad);
2263 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264 adsize = sizeof(struct long_ad);
2265 else
2266 adsize = 0;
2267
2268 oepos = epos;
2269 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270 return -1;
2271
2272 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274 if (oepos.bh != epos.bh) {
2275 oepos.block = epos.block;
2276 brelse(oepos.bh);
2277 get_bh(epos.bh);
2278 oepos.bh = epos.bh;
2279 oepos.offset = epos.offset - adsize;
2280 }
2281 }
2282 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283 elen = 0;
2284
2285 if (epos.bh != oepos.bh) {
2286 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289 if (!oepos.bh) {
2290 iinfo->i_lenAlloc -= (adsize * 2);
2291 mark_inode_dirty(inode);
2292 } else {
2293 aed = (struct allocExtDesc *)oepos.bh->b_data;
2294 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297 udf_update_tag(oepos.bh->b_data,
2298 oepos.offset - (2 * adsize));
2299 else
2300 udf_update_tag(oepos.bh->b_data,
2301 sizeof(struct allocExtDesc));
2302 mark_buffer_dirty_inode(oepos.bh, inode);
2303 }
2304 } else {
2305 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306 if (!oepos.bh) {
2307 iinfo->i_lenAlloc -= adsize;
2308 mark_inode_dirty(inode);
2309 } else {
2310 aed = (struct allocExtDesc *)oepos.bh->b_data;
2311 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314 udf_update_tag(oepos.bh->b_data,
2315 epos.offset - adsize);
2316 else
2317 udf_update_tag(oepos.bh->b_data,
2318 sizeof(struct allocExtDesc));
2319 mark_buffer_dirty_inode(oepos.bh, inode);
2320 }
2321 }
2322
2323 brelse(epos.bh);
2324 brelse(oepos.bh);
2325
2326 return (elen >> 30);
2327 }
2328
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2329 int8_t inode_bmap(struct inode *inode, sector_t block,
2330 struct extent_position *pos, struct kernel_lb_addr *eloc,
2331 uint32_t *elen, sector_t *offset)
2332 {
2333 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335 int8_t etype;
2336 struct udf_inode_info *iinfo;
2337
2338 iinfo = UDF_I(inode);
2339 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340 pos->offset = 0;
2341 pos->block = iinfo->i_location;
2342 pos->bh = NULL;
2343 }
2344 *elen = 0;
2345 do {
2346 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347 if (etype == -1) {
2348 *offset = (bcount - lbcount) >> blocksize_bits;
2349 iinfo->i_lenExtents = lbcount;
2350 return -1;
2351 }
2352 lbcount += *elen;
2353 } while (lbcount <= bcount);
2354 /* update extent cache */
2355 udf_update_extent_cache(inode, lbcount - *elen, pos);
2356 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357
2358 return etype;
2359 }
2360
udf_block_map(struct inode * inode,sector_t block)2361 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362 {
2363 struct kernel_lb_addr eloc;
2364 uint32_t elen;
2365 sector_t offset;
2366 struct extent_position epos = {};
2367 udf_pblk_t ret;
2368
2369 down_read(&UDF_I(inode)->i_data_sem);
2370
2371 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372 (EXT_RECORDED_ALLOCATED >> 30))
2373 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374 else
2375 ret = 0;
2376
2377 up_read(&UDF_I(inode)->i_data_sem);
2378 brelse(epos.bh);
2379
2380 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381 return udf_fixed_to_variable(ret);
2382 else
2383 return ret;
2384 }
2385