• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31 
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42 
43 #include "udf_i.h"
44 #include "udf_sb.h"
45 
46 #define EXTENT_MERGE_SIZE 5
47 
48 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51 
52 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 			 FE_PERM_O_DELETE)
54 
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int udf_insert_aext(struct inode *, struct extent_position,
61 			   struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 			      struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 				 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 			      int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70 
__udf_clear_extent_cache(struct inode * inode)71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 	struct udf_inode_info *iinfo = UDF_I(inode);
74 
75 	if (iinfo->cached_extent.lstart != -1) {
76 		brelse(iinfo->cached_extent.epos.bh);
77 		iinfo->cached_extent.lstart = -1;
78 	}
79 }
80 
81 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 	struct udf_inode_info *iinfo = UDF_I(inode);
85 
86 	spin_lock(&iinfo->i_extent_cache_lock);
87 	__udf_clear_extent_cache(inode);
88 	spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90 
91 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 				 loff_t *lbcount, struct extent_position *pos)
94 {
95 	struct udf_inode_info *iinfo = UDF_I(inode);
96 	int ret = 0;
97 
98 	spin_lock(&iinfo->i_extent_cache_lock);
99 	if ((iinfo->cached_extent.lstart <= bcount) &&
100 	    (iinfo->cached_extent.lstart != -1)) {
101 		/* Cache hit */
102 		*lbcount = iinfo->cached_extent.lstart;
103 		memcpy(pos, &iinfo->cached_extent.epos,
104 		       sizeof(struct extent_position));
105 		if (pos->bh)
106 			get_bh(pos->bh);
107 		ret = 1;
108 	}
109 	spin_unlock(&iinfo->i_extent_cache_lock);
110 	return ret;
111 }
112 
113 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 				    struct extent_position *pos)
116 {
117 	struct udf_inode_info *iinfo = UDF_I(inode);
118 
119 	spin_lock(&iinfo->i_extent_cache_lock);
120 	/* Invalidate previously cached extent */
121 	__udf_clear_extent_cache(inode);
122 	if (pos->bh)
123 		get_bh(pos->bh);
124 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 	iinfo->cached_extent.lstart = estart;
126 	switch (iinfo->i_alloc_type) {
127 	case ICBTAG_FLAG_AD_SHORT:
128 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 		break;
130 	case ICBTAG_FLAG_AD_LONG:
131 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 		break;
133 	}
134 	spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136 
udf_evict_inode(struct inode * inode)137 void udf_evict_inode(struct inode *inode)
138 {
139 	struct udf_inode_info *iinfo = UDF_I(inode);
140 	int want_delete = 0;
141 
142 	if (!is_bad_inode(inode)) {
143 		if (!inode->i_nlink) {
144 			want_delete = 1;
145 			udf_setsize(inode, 0);
146 			udf_update_inode(inode, IS_SYNC(inode));
147 		}
148 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 		    inode->i_size != iinfo->i_lenExtents) {
150 			udf_warn(inode->i_sb,
151 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 				 inode->i_ino, inode->i_mode,
153 				 (unsigned long long)inode->i_size,
154 				 (unsigned long long)iinfo->i_lenExtents);
155 		}
156 	}
157 	truncate_inode_pages_final(&inode->i_data);
158 	invalidate_inode_buffers(inode);
159 	clear_inode(inode);
160 	kfree(iinfo->i_data);
161 	iinfo->i_data = NULL;
162 	udf_clear_extent_cache(inode);
163 	if (want_delete) {
164 		udf_free_inode(inode);
165 	}
166 }
167 
udf_write_failed(struct address_space * mapping,loff_t to)168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 	struct inode *inode = mapping->host;
171 	struct udf_inode_info *iinfo = UDF_I(inode);
172 	loff_t isize = inode->i_size;
173 
174 	if (to > isize) {
175 		truncate_pagecache(inode, isize);
176 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 			down_write(&iinfo->i_data_sem);
178 			udf_clear_extent_cache(inode);
179 			udf_truncate_extents(inode);
180 			up_write(&iinfo->i_data_sem);
181 		}
182 	}
183 }
184 
udf_writepage(struct page * page,struct writeback_control * wbc)185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 	return block_write_full_page(page, udf_get_block, wbc);
188 }
189 
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)190 static int udf_writepages(struct address_space *mapping,
191 			struct writeback_control *wbc)
192 {
193 	return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195 
udf_read_folio(struct file * file,struct folio * folio)196 static int udf_read_folio(struct file *file, struct folio *folio)
197 {
198 	return mpage_read_folio(folio, udf_get_block);
199 }
200 
udf_readahead(struct readahead_control * rac)201 static void udf_readahead(struct readahead_control *rac)
202 {
203 	mpage_readahead(rac, udf_get_block);
204 }
205 
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 			loff_t pos, unsigned len,
208 			struct page **pagep, void **fsdata)
209 {
210 	int ret;
211 
212 	ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
213 	if (unlikely(ret))
214 		udf_write_failed(mapping, pos + len);
215 	return ret;
216 }
217 
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 	struct file *file = iocb->ki_filp;
221 	struct address_space *mapping = file->f_mapping;
222 	struct inode *inode = mapping->host;
223 	size_t count = iov_iter_count(iter);
224 	ssize_t ret;
225 
226 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 		udf_write_failed(mapping, iocb->ki_pos + count);
229 	return ret;
230 }
231 
udf_bmap(struct address_space * mapping,sector_t block)232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 	return generic_block_bmap(mapping, block, udf_get_block);
235 }
236 
237 const struct address_space_operations udf_aops = {
238 	.dirty_folio	= block_dirty_folio,
239 	.invalidate_folio = block_invalidate_folio,
240 	.read_folio	= udf_read_folio,
241 	.readahead	= udf_readahead,
242 	.writepage	= udf_writepage,
243 	.writepages	= udf_writepages,
244 	.write_begin	= udf_write_begin,
245 	.write_end	= generic_write_end,
246 	.direct_IO	= udf_direct_IO,
247 	.bmap		= udf_bmap,
248 };
249 
250 /*
251  * Expand file stored in ICB to a normal one-block-file
252  *
253  * This function requires i_data_sem for writing and releases it.
254  * This function requires i_mutex held
255  */
udf_expand_file_adinicb(struct inode * inode)256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258 	struct page *page;
259 	char *kaddr;
260 	struct udf_inode_info *iinfo = UDF_I(inode);
261 	int err;
262 
263 	WARN_ON_ONCE(!inode_is_locked(inode));
264 	if (!iinfo->i_lenAlloc) {
265 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267 		else
268 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269 		/* from now on we have normal address_space methods */
270 		inode->i_data.a_ops = &udf_aops;
271 		up_write(&iinfo->i_data_sem);
272 		mark_inode_dirty(inode);
273 		return 0;
274 	}
275 	/*
276 	 * Release i_data_sem so that we can lock a page - page lock ranks
277 	 * above i_data_sem. i_mutex still protects us against file changes.
278 	 */
279 	up_write(&iinfo->i_data_sem);
280 
281 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282 	if (!page)
283 		return -ENOMEM;
284 
285 	if (!PageUptodate(page)) {
286 		kaddr = kmap_atomic(page);
287 		memset(kaddr + iinfo->i_lenAlloc, 0x00,
288 		       PAGE_SIZE - iinfo->i_lenAlloc);
289 		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
290 			iinfo->i_lenAlloc);
291 		flush_dcache_page(page);
292 		SetPageUptodate(page);
293 		kunmap_atomic(kaddr);
294 	}
295 	down_write(&iinfo->i_data_sem);
296 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
297 	       iinfo->i_lenAlloc);
298 	iinfo->i_lenAlloc = 0;
299 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301 	else
302 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303 	/* from now on we have normal address_space methods */
304 	inode->i_data.a_ops = &udf_aops;
305 	set_page_dirty(page);
306 	unlock_page(page);
307 	up_write(&iinfo->i_data_sem);
308 	err = filemap_fdatawrite(inode->i_mapping);
309 	if (err) {
310 		/* Restore everything back so that we don't lose data... */
311 		lock_page(page);
312 		down_write(&iinfo->i_data_sem);
313 		kaddr = kmap_atomic(page);
314 		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
315 		kunmap_atomic(kaddr);
316 		unlock_page(page);
317 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
318 		inode->i_data.a_ops = &udf_adinicb_aops;
319 		iinfo->i_lenAlloc = inode->i_size;
320 		up_write(&iinfo->i_data_sem);
321 	}
322 	put_page(page);
323 	mark_inode_dirty(inode);
324 
325 	return err;
326 }
327 
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329 					    udf_pblk_t *block, int *err)
330 {
331 	udf_pblk_t newblock;
332 	struct buffer_head *dbh = NULL;
333 	struct kernel_lb_addr eloc;
334 	uint8_t alloctype;
335 	struct extent_position epos;
336 
337 	struct udf_fileident_bh sfibh, dfibh;
338 	loff_t f_pos = udf_ext0_offset(inode);
339 	int size = udf_ext0_offset(inode) + inode->i_size;
340 	struct fileIdentDesc cfi, *sfi, *dfi;
341 	struct udf_inode_info *iinfo = UDF_I(inode);
342 
343 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 		alloctype = ICBTAG_FLAG_AD_SHORT;
345 	else
346 		alloctype = ICBTAG_FLAG_AD_LONG;
347 
348 	if (!inode->i_size) {
349 		iinfo->i_alloc_type = alloctype;
350 		mark_inode_dirty(inode);
351 		return NULL;
352 	}
353 
354 	/* alloc block, and copy data to it */
355 	*block = udf_new_block(inode->i_sb, inode,
356 			       iinfo->i_location.partitionReferenceNum,
357 			       iinfo->i_location.logicalBlockNum, err);
358 	if (!(*block))
359 		return NULL;
360 	newblock = udf_get_pblock(inode->i_sb, *block,
361 				  iinfo->i_location.partitionReferenceNum,
362 				0);
363 	if (!newblock)
364 		return NULL;
365 	dbh = udf_tgetblk(inode->i_sb, newblock);
366 	if (!dbh)
367 		return NULL;
368 	lock_buffer(dbh);
369 	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 	set_buffer_uptodate(dbh);
371 	unlock_buffer(dbh);
372 	mark_buffer_dirty_inode(dbh, inode);
373 
374 	sfibh.soffset = sfibh.eoffset =
375 			f_pos & (inode->i_sb->s_blocksize - 1);
376 	sfibh.sbh = sfibh.ebh = NULL;
377 	dfibh.soffset = dfibh.eoffset = 0;
378 	dfibh.sbh = dfibh.ebh = dbh;
379 	while (f_pos < size) {
380 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 					 NULL, NULL, NULL);
383 		if (!sfi) {
384 			brelse(dbh);
385 			return NULL;
386 		}
387 		iinfo->i_alloc_type = alloctype;
388 		sfi->descTag.tagLocation = cpu_to_le32(*block);
389 		dfibh.soffset = dfibh.eoffset;
390 		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 				 udf_get_fi_ident(sfi))) {
394 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395 			brelse(dbh);
396 			return NULL;
397 		}
398 	}
399 	mark_buffer_dirty_inode(dbh, inode);
400 
401 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402 	iinfo->i_lenAlloc = 0;
403 	eloc.logicalBlockNum = *block;
404 	eloc.partitionReferenceNum =
405 				iinfo->i_location.partitionReferenceNum;
406 	iinfo->i_lenExtents = inode->i_size;
407 	epos.bh = NULL;
408 	epos.block = iinfo->i_location;
409 	epos.offset = udf_file_entry_alloc_offset(inode);
410 	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411 	/* UniqueID stuff */
412 
413 	brelse(epos.bh);
414 	mark_inode_dirty(inode);
415 	return dbh;
416 }
417 
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)418 static int udf_get_block(struct inode *inode, sector_t block,
419 			 struct buffer_head *bh_result, int create)
420 {
421 	int err, new;
422 	sector_t phys = 0;
423 	struct udf_inode_info *iinfo;
424 
425 	if (!create) {
426 		phys = udf_block_map(inode, block);
427 		if (phys)
428 			map_bh(bh_result, inode->i_sb, phys);
429 		return 0;
430 	}
431 
432 	err = -EIO;
433 	new = 0;
434 	iinfo = UDF_I(inode);
435 
436 	down_write(&iinfo->i_data_sem);
437 	if (block == iinfo->i_next_alloc_block + 1) {
438 		iinfo->i_next_alloc_block++;
439 		iinfo->i_next_alloc_goal++;
440 	}
441 
442 	/*
443 	 * Block beyond EOF and prealloc extents? Just discard preallocation
444 	 * as it is not useful and complicates things.
445 	 */
446 	if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
447 		udf_discard_prealloc(inode);
448 	udf_clear_extent_cache(inode);
449 	phys = inode_getblk(inode, block, &err, &new);
450 	if (!phys)
451 		goto abort;
452 
453 	if (new)
454 		set_buffer_new(bh_result);
455 	map_bh(bh_result, inode->i_sb, phys);
456 
457 abort:
458 	up_write(&iinfo->i_data_sem);
459 	return err;
460 }
461 
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)462 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
463 				      int create, int *err)
464 {
465 	struct buffer_head *bh;
466 	struct buffer_head dummy;
467 
468 	dummy.b_state = 0;
469 	dummy.b_blocknr = -1000;
470 	*err = udf_get_block(inode, block, &dummy, create);
471 	if (!*err && buffer_mapped(&dummy)) {
472 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
473 		if (buffer_new(&dummy)) {
474 			lock_buffer(bh);
475 			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
476 			set_buffer_uptodate(bh);
477 			unlock_buffer(bh);
478 			mark_buffer_dirty_inode(bh, inode);
479 		}
480 		return bh;
481 	}
482 
483 	return NULL;
484 }
485 
486 /* Extend the file with new blocks totaling 'new_block_bytes',
487  * return the number of extents added
488  */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)489 static int udf_do_extend_file(struct inode *inode,
490 			      struct extent_position *last_pos,
491 			      struct kernel_long_ad *last_ext,
492 			      loff_t new_block_bytes)
493 {
494 	uint32_t add;
495 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
496 	struct super_block *sb = inode->i_sb;
497 	struct udf_inode_info *iinfo;
498 	int err;
499 
500 	/* The previous extent is fake and we should not extend by anything
501 	 * - there's nothing to do... */
502 	if (!new_block_bytes && fake)
503 		return 0;
504 
505 	iinfo = UDF_I(inode);
506 	/* Round the last extent up to a multiple of block size */
507 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
508 		last_ext->extLength =
509 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
510 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
511 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
512 		iinfo->i_lenExtents =
513 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
514 			~(sb->s_blocksize - 1);
515 	}
516 
517 	/* Can we merge with the previous extent? */
518 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 		add = (1 << 30) - sb->s_blocksize -
521 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 		if (add > new_block_bytes)
523 			add = new_block_bytes;
524 		new_block_bytes -= add;
525 		last_ext->extLength += add;
526 	}
527 
528 	if (fake) {
529 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
530 				   last_ext->extLength, 1);
531 		if (err < 0)
532 			goto out_err;
533 		count++;
534 	} else {
535 		struct kernel_lb_addr tmploc;
536 		uint32_t tmplen;
537 
538 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
539 				last_ext->extLength, 1);
540 
541 		/*
542 		 * We've rewritten the last extent. If we are going to add
543 		 * more extents, we may need to enter possible following
544 		 * empty indirect extent.
545 		 */
546 		if (new_block_bytes)
547 			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
548 	}
549 
550 	/* Managed to do everything necessary? */
551 	if (!new_block_bytes)
552 		goto out;
553 
554 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
555 	last_ext->extLocation.logicalBlockNum = 0;
556 	last_ext->extLocation.partitionReferenceNum = 0;
557 	add = (1 << 30) - sb->s_blocksize;
558 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
559 
560 	/* Create enough extents to cover the whole hole */
561 	while (new_block_bytes > add) {
562 		new_block_bytes -= add;
563 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
564 				   last_ext->extLength, 1);
565 		if (err)
566 			goto out_err;
567 		count++;
568 	}
569 	if (new_block_bytes) {
570 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
571 			new_block_bytes;
572 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
573 				   last_ext->extLength, 1);
574 		if (err)
575 			goto out_err;
576 		count++;
577 	}
578 
579 out:
580 	/* last_pos should point to the last written extent... */
581 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
582 		last_pos->offset -= sizeof(struct short_ad);
583 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
584 		last_pos->offset -= sizeof(struct long_ad);
585 	else
586 		return -EIO;
587 
588 	return count;
589 out_err:
590 	/* Remove extents we've created so far */
591 	udf_clear_extent_cache(inode);
592 	udf_truncate_extents(inode);
593 	return err;
594 }
595 
596 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)597 static void udf_do_extend_final_block(struct inode *inode,
598 				      struct extent_position *last_pos,
599 				      struct kernel_long_ad *last_ext,
600 				      uint32_t new_elen)
601 {
602 	uint32_t added_bytes;
603 
604 	/*
605 	 * Extent already large enough? It may be already rounded up to block
606 	 * size...
607 	 */
608 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
609 		return;
610 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
611 	last_ext->extLength += added_bytes;
612 	UDF_I(inode)->i_lenExtents += added_bytes;
613 
614 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
615 			last_ext->extLength, 1);
616 }
617 
udf_extend_file(struct inode * inode,loff_t newsize)618 static int udf_extend_file(struct inode *inode, loff_t newsize)
619 {
620 
621 	struct extent_position epos;
622 	struct kernel_lb_addr eloc;
623 	uint32_t elen;
624 	int8_t etype;
625 	struct super_block *sb = inode->i_sb;
626 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
627 	loff_t new_elen;
628 	int adsize;
629 	struct udf_inode_info *iinfo = UDF_I(inode);
630 	struct kernel_long_ad extent;
631 	int err = 0;
632 	bool within_last_ext;
633 
634 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
635 		adsize = sizeof(struct short_ad);
636 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
637 		adsize = sizeof(struct long_ad);
638 	else
639 		BUG();
640 
641 	/*
642 	 * When creating hole in file, just don't bother with preserving
643 	 * preallocation. It likely won't be very useful anyway.
644 	 */
645 	udf_discard_prealloc(inode);
646 
647 	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648 	within_last_ext = (etype != -1);
649 	/* We don't expect extents past EOF... */
650 	WARN_ON_ONCE(within_last_ext &&
651 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
652 
653 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655 		/* File has no extents at all or has empty last
656 		 * indirect extent! Create a fake extent... */
657 		extent.extLocation.logicalBlockNum = 0;
658 		extent.extLocation.partitionReferenceNum = 0;
659 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660 	} else {
661 		epos.offset -= adsize;
662 		etype = udf_next_aext(inode, &epos, &extent.extLocation,
663 				      &extent.extLength, 0);
664 		extent.extLength |= etype << 30;
665 	}
666 
667 	new_elen = ((loff_t)offset << inode->i_blkbits) |
668 					(newsize & (sb->s_blocksize - 1));
669 
670 	/* File has extent covering the new size (could happen when extending
671 	 * inside a block)?
672 	 */
673 	if (within_last_ext) {
674 		/* Extending file within the last file block */
675 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
676 	} else {
677 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
678 	}
679 
680 	if (err < 0)
681 		goto out;
682 	err = 0;
683 	iinfo->i_lenExtents = newsize;
684 out:
685 	brelse(epos.bh);
686 	return err;
687 }
688 
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)689 static sector_t inode_getblk(struct inode *inode, sector_t block,
690 			     int *err, int *new)
691 {
692 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
693 	struct extent_position prev_epos, cur_epos, next_epos;
694 	int count = 0, startnum = 0, endnum = 0;
695 	uint32_t elen = 0, tmpelen;
696 	struct kernel_lb_addr eloc, tmpeloc;
697 	int c = 1;
698 	loff_t lbcount = 0, b_off = 0;
699 	udf_pblk_t newblocknum, newblock = 0;
700 	sector_t offset = 0;
701 	int8_t etype;
702 	struct udf_inode_info *iinfo = UDF_I(inode);
703 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
704 	int lastblock = 0;
705 	bool isBeyondEOF;
706 
707 	*err = 0;
708 	*new = 0;
709 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
710 	prev_epos.block = iinfo->i_location;
711 	prev_epos.bh = NULL;
712 	cur_epos = next_epos = prev_epos;
713 	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
714 
715 	/* find the extent which contains the block we are looking for.
716 	   alternate between laarr[0] and laarr[1] for locations of the
717 	   current extent, and the previous extent */
718 	do {
719 		if (prev_epos.bh != cur_epos.bh) {
720 			brelse(prev_epos.bh);
721 			get_bh(cur_epos.bh);
722 			prev_epos.bh = cur_epos.bh;
723 		}
724 		if (cur_epos.bh != next_epos.bh) {
725 			brelse(cur_epos.bh);
726 			get_bh(next_epos.bh);
727 			cur_epos.bh = next_epos.bh;
728 		}
729 
730 		lbcount += elen;
731 
732 		prev_epos.block = cur_epos.block;
733 		cur_epos.block = next_epos.block;
734 
735 		prev_epos.offset = cur_epos.offset;
736 		cur_epos.offset = next_epos.offset;
737 
738 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
739 		if (etype == -1)
740 			break;
741 
742 		c = !c;
743 
744 		laarr[c].extLength = (etype << 30) | elen;
745 		laarr[c].extLocation = eloc;
746 
747 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
748 			pgoal = eloc.logicalBlockNum +
749 				((elen + inode->i_sb->s_blocksize - 1) >>
750 				 inode->i_sb->s_blocksize_bits);
751 
752 		count++;
753 	} while (lbcount + elen <= b_off);
754 
755 	b_off -= lbcount;
756 	offset = b_off >> inode->i_sb->s_blocksize_bits;
757 	/*
758 	 * Move prev_epos and cur_epos into indirect extent if we are at
759 	 * the pointer to it
760 	 */
761 	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
762 	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
763 
764 	/* if the extent is allocated and recorded, return the block
765 	   if the extent is not a multiple of the blocksize, round up */
766 
767 	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
768 		if (elen & (inode->i_sb->s_blocksize - 1)) {
769 			elen = EXT_RECORDED_ALLOCATED |
770 				((elen + inode->i_sb->s_blocksize - 1) &
771 				 ~(inode->i_sb->s_blocksize - 1));
772 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
773 		}
774 		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
775 		goto out_free;
776 	}
777 
778 	/* Are we beyond EOF and preallocated extent? */
779 	if (etype == -1) {
780 		int ret;
781 		loff_t hole_len;
782 
783 		isBeyondEOF = true;
784 		if (count) {
785 			if (c)
786 				laarr[0] = laarr[1];
787 			startnum = 1;
788 		} else {
789 			/* Create a fake extent when there's not one */
790 			memset(&laarr[0].extLocation, 0x00,
791 				sizeof(struct kernel_lb_addr));
792 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
793 			/* Will udf_do_extend_file() create real extent from
794 			   a fake one? */
795 			startnum = (offset > 0);
796 		}
797 		/* Create extents for the hole between EOF and offset */
798 		hole_len = (loff_t)offset << inode->i_blkbits;
799 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
800 		if (ret < 0) {
801 			*err = ret;
802 			goto out_free;
803 		}
804 		c = 0;
805 		offset = 0;
806 		count += ret;
807 		/*
808 		 * Is there any real extent? - otherwise we overwrite the fake
809 		 * one...
810 		 */
811 		if (count)
812 			c = !c;
813 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814 			inode->i_sb->s_blocksize;
815 		memset(&laarr[c].extLocation, 0x00,
816 			sizeof(struct kernel_lb_addr));
817 		count++;
818 		endnum = c + 1;
819 		lastblock = 1;
820 	} else {
821 		isBeyondEOF = false;
822 		endnum = startnum = ((count > 2) ? 2 : count);
823 
824 		/* if the current extent is in position 0,
825 		   swap it with the previous */
826 		if (!c && count != 1) {
827 			laarr[2] = laarr[0];
828 			laarr[0] = laarr[1];
829 			laarr[1] = laarr[2];
830 			c = 1;
831 		}
832 
833 		/* if the current block is located in an extent,
834 		   read the next extent */
835 		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836 		if (etype != -1) {
837 			laarr[c + 1].extLength = (etype << 30) | elen;
838 			laarr[c + 1].extLocation = eloc;
839 			count++;
840 			startnum++;
841 			endnum++;
842 		} else
843 			lastblock = 1;
844 	}
845 
846 	/* if the current extent is not recorded but allocated, get the
847 	 * block in the extent corresponding to the requested block */
848 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850 	else { /* otherwise, allocate a new block */
851 		if (iinfo->i_next_alloc_block == block)
852 			goal = iinfo->i_next_alloc_goal;
853 
854 		if (!goal) {
855 			if (!(goal = pgoal)) /* XXX: what was intended here? */
856 				goal = iinfo->i_location.logicalBlockNum + 1;
857 		}
858 
859 		newblocknum = udf_new_block(inode->i_sb, inode,
860 				iinfo->i_location.partitionReferenceNum,
861 				goal, err);
862 		if (!newblocknum) {
863 			*err = -ENOSPC;
864 			goto out_free;
865 		}
866 		if (isBeyondEOF)
867 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
868 	}
869 
870 	/* if the extent the requsted block is located in contains multiple
871 	 * blocks, split the extent into at most three extents. blocks prior
872 	 * to requested block, requested block, and blocks after requested
873 	 * block */
874 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
875 
876 	/* We preallocate blocks only for regular files. It also makes sense
877 	 * for directories but there's a problem when to drop the
878 	 * preallocation. We might use some delayed work for that but I feel
879 	 * it's overengineering for a filesystem like UDF. */
880 	if (S_ISREG(inode->i_mode))
881 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
882 
883 	/* merge any continuous blocks in laarr */
884 	udf_merge_extents(inode, laarr, &endnum);
885 
886 	/* write back the new extents, inserting new extents if the new number
887 	 * of extents is greater than the old number, and deleting extents if
888 	 * the new number of extents is less than the old number */
889 	*err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
890 	if (*err < 0)
891 		goto out_free;
892 
893 	newblock = udf_get_pblock(inode->i_sb, newblocknum,
894 				iinfo->i_location.partitionReferenceNum, 0);
895 	if (!newblock) {
896 		*err = -EIO;
897 		goto out_free;
898 	}
899 	*new = 1;
900 	iinfo->i_next_alloc_block = block;
901 	iinfo->i_next_alloc_goal = newblocknum;
902 	inode->i_ctime = current_time(inode);
903 
904 	if (IS_SYNC(inode))
905 		udf_sync_inode(inode);
906 	else
907 		mark_inode_dirty(inode);
908 out_free:
909 	brelse(prev_epos.bh);
910 	brelse(cur_epos.bh);
911 	brelse(next_epos.bh);
912 	return newblock;
913 }
914 
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)915 static void udf_split_extents(struct inode *inode, int *c, int offset,
916 			       udf_pblk_t newblocknum,
917 			       struct kernel_long_ad *laarr, int *endnum)
918 {
919 	unsigned long blocksize = inode->i_sb->s_blocksize;
920 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921 
922 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923 	    (laarr[*c].extLength >> 30) ==
924 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925 		int curr = *c;
926 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927 			    blocksize - 1) >> blocksize_bits;
928 		int8_t etype = (laarr[curr].extLength >> 30);
929 
930 		if (blen == 1)
931 			;
932 		else if (!offset || blen == offset + 1) {
933 			laarr[curr + 2] = laarr[curr + 1];
934 			laarr[curr + 1] = laarr[curr];
935 		} else {
936 			laarr[curr + 3] = laarr[curr + 1];
937 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938 		}
939 
940 		if (offset) {
941 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942 				udf_free_blocks(inode->i_sb, inode,
943 						&laarr[curr].extLocation,
944 						0, offset);
945 				laarr[curr].extLength =
946 					EXT_NOT_RECORDED_NOT_ALLOCATED |
947 					(offset << blocksize_bits);
948 				laarr[curr].extLocation.logicalBlockNum = 0;
949 				laarr[curr].extLocation.
950 						partitionReferenceNum = 0;
951 			} else
952 				laarr[curr].extLength = (etype << 30) |
953 					(offset << blocksize_bits);
954 			curr++;
955 			(*c)++;
956 			(*endnum)++;
957 		}
958 
959 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
960 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961 			laarr[curr].extLocation.partitionReferenceNum =
962 				UDF_I(inode)->i_location.partitionReferenceNum;
963 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964 			blocksize;
965 		curr++;
966 
967 		if (blen != offset + 1) {
968 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969 				laarr[curr].extLocation.logicalBlockNum +=
970 								offset + 1;
971 			laarr[curr].extLength = (etype << 30) |
972 				((blen - (offset + 1)) << blocksize_bits);
973 			curr++;
974 			(*endnum)++;
975 		}
976 	}
977 }
978 
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980 				 struct kernel_long_ad *laarr,
981 				 int *endnum)
982 {
983 	int start, length = 0, currlength = 0, i;
984 
985 	if (*endnum >= (c + 1)) {
986 		if (!lastblock)
987 			return;
988 		else
989 			start = c;
990 	} else {
991 		if ((laarr[c + 1].extLength >> 30) ==
992 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993 			start = c + 1;
994 			length = currlength =
995 				(((laarr[c + 1].extLength &
996 					UDF_EXTENT_LENGTH_MASK) +
997 				inode->i_sb->s_blocksize - 1) >>
998 				inode->i_sb->s_blocksize_bits);
999 		} else
1000 			start = c;
1001 	}
1002 
1003 	for (i = start + 1; i <= *endnum; i++) {
1004 		if (i == *endnum) {
1005 			if (lastblock)
1006 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007 		} else if ((laarr[i].extLength >> 30) ==
1008 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009 			length += (((laarr[i].extLength &
1010 						UDF_EXTENT_LENGTH_MASK) +
1011 				    inode->i_sb->s_blocksize - 1) >>
1012 				    inode->i_sb->s_blocksize_bits);
1013 		} else
1014 			break;
1015 	}
1016 
1017 	if (length) {
1018 		int next = laarr[start].extLocation.logicalBlockNum +
1019 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020 			  inode->i_sb->s_blocksize - 1) >>
1021 			  inode->i_sb->s_blocksize_bits);
1022 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023 				laarr[start].extLocation.partitionReferenceNum,
1024 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026 				currlength);
1027 		if (numalloc) 	{
1028 			if (start == (c + 1))
1029 				laarr[start].extLength +=
1030 					(numalloc <<
1031 					 inode->i_sb->s_blocksize_bits);
1032 			else {
1033 				memmove(&laarr[c + 2], &laarr[c + 1],
1034 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1035 				(*endnum)++;
1036 				laarr[c + 1].extLocation.logicalBlockNum = next;
1037 				laarr[c + 1].extLocation.partitionReferenceNum =
1038 					laarr[c].extLocation.
1039 							partitionReferenceNum;
1040 				laarr[c + 1].extLength =
1041 					EXT_NOT_RECORDED_ALLOCATED |
1042 					(numalloc <<
1043 					 inode->i_sb->s_blocksize_bits);
1044 				start = c + 1;
1045 			}
1046 
1047 			for (i = start + 1; numalloc && i < *endnum; i++) {
1048 				int elen = ((laarr[i].extLength &
1049 						UDF_EXTENT_LENGTH_MASK) +
1050 					    inode->i_sb->s_blocksize - 1) >>
1051 					    inode->i_sb->s_blocksize_bits;
1052 
1053 				if (elen > numalloc) {
1054 					laarr[i].extLength -=
1055 						(numalloc <<
1056 						 inode->i_sb->s_blocksize_bits);
1057 					numalloc = 0;
1058 				} else {
1059 					numalloc -= elen;
1060 					if (*endnum > (i + 1))
1061 						memmove(&laarr[i],
1062 							&laarr[i + 1],
1063 							sizeof(struct long_ad) *
1064 							(*endnum - (i + 1)));
1065 					i--;
1066 					(*endnum)--;
1067 				}
1068 			}
1069 			UDF_I(inode)->i_lenExtents +=
1070 				numalloc << inode->i_sb->s_blocksize_bits;
1071 		}
1072 	}
1073 }
1074 
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076 			      int *endnum)
1077 {
1078 	int i;
1079 	unsigned long blocksize = inode->i_sb->s_blocksize;
1080 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081 
1082 	for (i = 0; i < (*endnum - 1); i++) {
1083 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085 
1086 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087 			(((li->extLength >> 30) ==
1088 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089 			((lip1->extLocation.logicalBlockNum -
1090 			  li->extLocation.logicalBlockNum) ==
1091 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092 			blocksize - 1) >> blocksize_bits)))) {
1093 
1094 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1097 				li->extLength = lip1->extLength +
1098 					(((li->extLength &
1099 						UDF_EXTENT_LENGTH_MASK) +
1100 					 blocksize - 1) & ~(blocksize - 1));
1101 				if (*endnum > (i + 2))
1102 					memmove(&laarr[i + 1], &laarr[i + 2],
1103 						sizeof(struct long_ad) *
1104 						(*endnum - (i + 2)));
1105 				i--;
1106 				(*endnum)--;
1107 			}
1108 		} else if (((li->extLength >> 30) ==
1109 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1110 			   ((lip1->extLength >> 30) ==
1111 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1112 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1113 					((li->extLength &
1114 					  UDF_EXTENT_LENGTH_MASK) +
1115 					 blocksize - 1) >> blocksize_bits);
1116 			li->extLocation.logicalBlockNum = 0;
1117 			li->extLocation.partitionReferenceNum = 0;
1118 
1119 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1120 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1121 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1122 				lip1->extLength = (lip1->extLength -
1123 						   (li->extLength &
1124 						   UDF_EXTENT_LENGTH_MASK) +
1125 						   UDF_EXTENT_LENGTH_MASK) &
1126 						   ~(blocksize - 1);
1127 				li->extLength = (li->extLength &
1128 						 UDF_EXTENT_FLAG_MASK) +
1129 						(UDF_EXTENT_LENGTH_MASK + 1) -
1130 						blocksize;
1131 			} else {
1132 				li->extLength = lip1->extLength +
1133 					(((li->extLength &
1134 						UDF_EXTENT_LENGTH_MASK) +
1135 					  blocksize - 1) & ~(blocksize - 1));
1136 				if (*endnum > (i + 2))
1137 					memmove(&laarr[i + 1], &laarr[i + 2],
1138 						sizeof(struct long_ad) *
1139 						(*endnum - (i + 2)));
1140 				i--;
1141 				(*endnum)--;
1142 			}
1143 		} else if ((li->extLength >> 30) ==
1144 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1145 			udf_free_blocks(inode->i_sb, inode,
1146 					&li->extLocation, 0,
1147 					((li->extLength &
1148 						UDF_EXTENT_LENGTH_MASK) +
1149 					 blocksize - 1) >> blocksize_bits);
1150 			li->extLocation.logicalBlockNum = 0;
1151 			li->extLocation.partitionReferenceNum = 0;
1152 			li->extLength = (li->extLength &
1153 						UDF_EXTENT_LENGTH_MASK) |
1154 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1155 		}
1156 	}
1157 }
1158 
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1159 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1160 			      int startnum, int endnum,
1161 			      struct extent_position *epos)
1162 {
1163 	int start = 0, i;
1164 	struct kernel_lb_addr tmploc;
1165 	uint32_t tmplen;
1166 	int err;
1167 
1168 	if (startnum > endnum) {
1169 		for (i = 0; i < (startnum - endnum); i++)
1170 			udf_delete_aext(inode, *epos);
1171 	} else if (startnum < endnum) {
1172 		for (i = 0; i < (endnum - startnum); i++) {
1173 			err = udf_insert_aext(inode, *epos,
1174 					      laarr[i].extLocation,
1175 					      laarr[i].extLength);
1176 			/*
1177 			 * If we fail here, we are likely corrupting the extent
1178 			 * list and leaking blocks. At least stop early to
1179 			 * limit the damage.
1180 			 */
1181 			if (err < 0)
1182 				return err;
1183 			udf_next_aext(inode, epos, &laarr[i].extLocation,
1184 				      &laarr[i].extLength, 1);
1185 			start++;
1186 		}
1187 	}
1188 
1189 	for (i = start; i < endnum; i++) {
1190 		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1191 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1192 			       laarr[i].extLength, 1);
1193 	}
1194 	return 0;
1195 }
1196 
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1197 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1198 			      int create, int *err)
1199 {
1200 	struct buffer_head *bh = NULL;
1201 
1202 	bh = udf_getblk(inode, block, create, err);
1203 	if (!bh)
1204 		return NULL;
1205 
1206 	if (bh_read(bh, 0) >= 0)
1207 		return bh;
1208 
1209 	brelse(bh);
1210 	*err = -EIO;
1211 	return NULL;
1212 }
1213 
udf_setsize(struct inode * inode,loff_t newsize)1214 int udf_setsize(struct inode *inode, loff_t newsize)
1215 {
1216 	int err;
1217 	struct udf_inode_info *iinfo;
1218 	unsigned int bsize = i_blocksize(inode);
1219 
1220 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221 	      S_ISLNK(inode->i_mode)))
1222 		return -EINVAL;
1223 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224 		return -EPERM;
1225 
1226 	iinfo = UDF_I(inode);
1227 	if (newsize > inode->i_size) {
1228 		down_write(&iinfo->i_data_sem);
1229 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230 			if (bsize <
1231 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1232 				err = udf_expand_file_adinicb(inode);
1233 				if (err)
1234 					return err;
1235 				down_write(&iinfo->i_data_sem);
1236 			} else {
1237 				iinfo->i_lenAlloc = newsize;
1238 				goto set_size;
1239 			}
1240 		}
1241 		err = udf_extend_file(inode, newsize);
1242 		if (err) {
1243 			up_write(&iinfo->i_data_sem);
1244 			return err;
1245 		}
1246 set_size:
1247 		up_write(&iinfo->i_data_sem);
1248 		truncate_setsize(inode, newsize);
1249 	} else {
1250 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251 			down_write(&iinfo->i_data_sem);
1252 			udf_clear_extent_cache(inode);
1253 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1254 			       0x00, bsize - newsize -
1255 			       udf_file_entry_alloc_offset(inode));
1256 			iinfo->i_lenAlloc = newsize;
1257 			truncate_setsize(inode, newsize);
1258 			up_write(&iinfo->i_data_sem);
1259 			goto update_time;
1260 		}
1261 		err = block_truncate_page(inode->i_mapping, newsize,
1262 					  udf_get_block);
1263 		if (err)
1264 			return err;
1265 		truncate_setsize(inode, newsize);
1266 		down_write(&iinfo->i_data_sem);
1267 		udf_clear_extent_cache(inode);
1268 		err = udf_truncate_extents(inode);
1269 		up_write(&iinfo->i_data_sem);
1270 		if (err)
1271 			return err;
1272 	}
1273 update_time:
1274 	inode->i_mtime = inode->i_ctime = current_time(inode);
1275 	if (IS_SYNC(inode))
1276 		udf_sync_inode(inode);
1277 	else
1278 		mark_inode_dirty(inode);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1284  * arbitrary - just that we hopefully don't limit any real use of rewritten
1285  * inode on write-once media but avoid looping for too long on corrupted media.
1286  */
1287 #define UDF_MAX_ICB_NESTING 1024
1288 
udf_read_inode(struct inode * inode,bool hidden_inode)1289 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1290 {
1291 	struct buffer_head *bh = NULL;
1292 	struct fileEntry *fe;
1293 	struct extendedFileEntry *efe;
1294 	uint16_t ident;
1295 	struct udf_inode_info *iinfo = UDF_I(inode);
1296 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1297 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1298 	unsigned int link_count;
1299 	unsigned int indirections = 0;
1300 	int bs = inode->i_sb->s_blocksize;
1301 	int ret = -EIO;
1302 	uint32_t uid, gid;
1303 
1304 reread:
1305 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1306 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1307 			  iloc->partitionReferenceNum, sbi->s_partitions);
1308 		return -EIO;
1309 	}
1310 
1311 	if (iloc->logicalBlockNum >=
1312 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1313 		udf_debug("block=%u, partition=%u out of range\n",
1314 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1315 		return -EIO;
1316 	}
1317 
1318 	/*
1319 	 * Set defaults, but the inode is still incomplete!
1320 	 * Note: get_new_inode() sets the following on a new inode:
1321 	 *      i_sb = sb
1322 	 *      i_no = ino
1323 	 *      i_flags = sb->s_flags
1324 	 *      i_state = 0
1325 	 * clean_inode(): zero fills and sets
1326 	 *      i_count = 1
1327 	 *      i_nlink = 1
1328 	 *      i_op = NULL;
1329 	 */
1330 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1331 	if (!bh) {
1332 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1333 		return -EIO;
1334 	}
1335 
1336 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1337 	    ident != TAG_IDENT_USE) {
1338 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1339 			inode->i_ino, ident);
1340 		goto out;
1341 	}
1342 
1343 	fe = (struct fileEntry *)bh->b_data;
1344 	efe = (struct extendedFileEntry *)bh->b_data;
1345 
1346 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1347 		struct buffer_head *ibh;
1348 
1349 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1350 		if (ident == TAG_IDENT_IE && ibh) {
1351 			struct kernel_lb_addr loc;
1352 			struct indirectEntry *ie;
1353 
1354 			ie = (struct indirectEntry *)ibh->b_data;
1355 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1356 
1357 			if (ie->indirectICB.extLength) {
1358 				brelse(ibh);
1359 				memcpy(&iinfo->i_location, &loc,
1360 				       sizeof(struct kernel_lb_addr));
1361 				if (++indirections > UDF_MAX_ICB_NESTING) {
1362 					udf_err(inode->i_sb,
1363 						"too many ICBs in ICB hierarchy"
1364 						" (max %d supported)\n",
1365 						UDF_MAX_ICB_NESTING);
1366 					goto out;
1367 				}
1368 				brelse(bh);
1369 				goto reread;
1370 			}
1371 		}
1372 		brelse(ibh);
1373 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1374 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1375 			le16_to_cpu(fe->icbTag.strategyType));
1376 		goto out;
1377 	}
1378 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1379 		iinfo->i_strat4096 = 0;
1380 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1381 		iinfo->i_strat4096 = 1;
1382 
1383 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1384 							ICBTAG_FLAG_AD_MASK;
1385 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1386 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1387 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1388 		ret = -EIO;
1389 		goto out;
1390 	}
1391 	iinfo->i_hidden = hidden_inode;
1392 	iinfo->i_unique = 0;
1393 	iinfo->i_lenEAttr = 0;
1394 	iinfo->i_lenExtents = 0;
1395 	iinfo->i_lenAlloc = 0;
1396 	iinfo->i_next_alloc_block = 0;
1397 	iinfo->i_next_alloc_goal = 0;
1398 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1399 		iinfo->i_efe = 1;
1400 		iinfo->i_use = 0;
1401 		ret = udf_alloc_i_data(inode, bs -
1402 					sizeof(struct extendedFileEntry));
1403 		if (ret)
1404 			goto out;
1405 		memcpy(iinfo->i_data,
1406 		       bh->b_data + sizeof(struct extendedFileEntry),
1407 		       bs - sizeof(struct extendedFileEntry));
1408 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1409 		iinfo->i_efe = 0;
1410 		iinfo->i_use = 0;
1411 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1412 		if (ret)
1413 			goto out;
1414 		memcpy(iinfo->i_data,
1415 		       bh->b_data + sizeof(struct fileEntry),
1416 		       bs - sizeof(struct fileEntry));
1417 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1418 		iinfo->i_efe = 0;
1419 		iinfo->i_use = 1;
1420 		iinfo->i_lenAlloc = le32_to_cpu(
1421 				((struct unallocSpaceEntry *)bh->b_data)->
1422 				 lengthAllocDescs);
1423 		ret = udf_alloc_i_data(inode, bs -
1424 					sizeof(struct unallocSpaceEntry));
1425 		if (ret)
1426 			goto out;
1427 		memcpy(iinfo->i_data,
1428 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1429 		       bs - sizeof(struct unallocSpaceEntry));
1430 		return 0;
1431 	}
1432 
1433 	ret = -EIO;
1434 	read_lock(&sbi->s_cred_lock);
1435 	uid = le32_to_cpu(fe->uid);
1436 	if (uid == UDF_INVALID_ID ||
1437 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1438 		inode->i_uid = sbi->s_uid;
1439 	else
1440 		i_uid_write(inode, uid);
1441 
1442 	gid = le32_to_cpu(fe->gid);
1443 	if (gid == UDF_INVALID_ID ||
1444 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1445 		inode->i_gid = sbi->s_gid;
1446 	else
1447 		i_gid_write(inode, gid);
1448 
1449 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1450 			sbi->s_fmode != UDF_INVALID_MODE)
1451 		inode->i_mode = sbi->s_fmode;
1452 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1453 			sbi->s_dmode != UDF_INVALID_MODE)
1454 		inode->i_mode = sbi->s_dmode;
1455 	else
1456 		inode->i_mode = udf_convert_permissions(fe);
1457 	inode->i_mode &= ~sbi->s_umask;
1458 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1459 
1460 	read_unlock(&sbi->s_cred_lock);
1461 
1462 	link_count = le16_to_cpu(fe->fileLinkCount);
1463 	if (!link_count) {
1464 		if (!hidden_inode) {
1465 			ret = -ESTALE;
1466 			goto out;
1467 		}
1468 		link_count = 1;
1469 	}
1470 	set_nlink(inode, link_count);
1471 
1472 	inode->i_size = le64_to_cpu(fe->informationLength);
1473 	iinfo->i_lenExtents = inode->i_size;
1474 
1475 	if (iinfo->i_efe == 0) {
1476 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1477 			(inode->i_sb->s_blocksize_bits - 9);
1478 
1479 		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1480 		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1481 		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1482 
1483 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1484 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1485 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1486 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1487 		iinfo->i_streamdir = 0;
1488 		iinfo->i_lenStreams = 0;
1489 	} else {
1490 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1491 		    (inode->i_sb->s_blocksize_bits - 9);
1492 
1493 		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1494 		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1495 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1496 		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1497 
1498 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1499 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1500 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1501 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1502 
1503 		/* Named streams */
1504 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1505 		iinfo->i_locStreamdir =
1506 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1507 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1508 		if (iinfo->i_lenStreams >= inode->i_size)
1509 			iinfo->i_lenStreams -= inode->i_size;
1510 		else
1511 			iinfo->i_lenStreams = 0;
1512 	}
1513 	inode->i_generation = iinfo->i_unique;
1514 
1515 	/*
1516 	 * Sanity check length of allocation descriptors and extended attrs to
1517 	 * avoid integer overflows
1518 	 */
1519 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1520 		goto out;
1521 	/* Now do exact checks */
1522 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1523 		goto out;
1524 	/* Sanity checks for files in ICB so that we don't get confused later */
1525 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1526 		/*
1527 		 * For file in ICB data is stored in allocation descriptor
1528 		 * so sizes should match
1529 		 */
1530 		if (iinfo->i_lenAlloc != inode->i_size)
1531 			goto out;
1532 		/* File in ICB has to fit in there... */
1533 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1534 			goto out;
1535 	}
1536 
1537 	switch (fe->icbTag.fileType) {
1538 	case ICBTAG_FILE_TYPE_DIRECTORY:
1539 		inode->i_op = &udf_dir_inode_operations;
1540 		inode->i_fop = &udf_dir_operations;
1541 		inode->i_mode |= S_IFDIR;
1542 		inc_nlink(inode);
1543 		break;
1544 	case ICBTAG_FILE_TYPE_REALTIME:
1545 	case ICBTAG_FILE_TYPE_REGULAR:
1546 	case ICBTAG_FILE_TYPE_UNDEF:
1547 	case ICBTAG_FILE_TYPE_VAT20:
1548 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1549 			inode->i_data.a_ops = &udf_adinicb_aops;
1550 		else
1551 			inode->i_data.a_ops = &udf_aops;
1552 		inode->i_op = &udf_file_inode_operations;
1553 		inode->i_fop = &udf_file_operations;
1554 		inode->i_mode |= S_IFREG;
1555 		break;
1556 	case ICBTAG_FILE_TYPE_BLOCK:
1557 		inode->i_mode |= S_IFBLK;
1558 		break;
1559 	case ICBTAG_FILE_TYPE_CHAR:
1560 		inode->i_mode |= S_IFCHR;
1561 		break;
1562 	case ICBTAG_FILE_TYPE_FIFO:
1563 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1564 		break;
1565 	case ICBTAG_FILE_TYPE_SOCKET:
1566 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1567 		break;
1568 	case ICBTAG_FILE_TYPE_SYMLINK:
1569 		inode->i_data.a_ops = &udf_symlink_aops;
1570 		inode->i_op = &udf_symlink_inode_operations;
1571 		inode_nohighmem(inode);
1572 		inode->i_mode = S_IFLNK | 0777;
1573 		break;
1574 	case ICBTAG_FILE_TYPE_MAIN:
1575 		udf_debug("METADATA FILE-----\n");
1576 		break;
1577 	case ICBTAG_FILE_TYPE_MIRROR:
1578 		udf_debug("METADATA MIRROR FILE-----\n");
1579 		break;
1580 	case ICBTAG_FILE_TYPE_BITMAP:
1581 		udf_debug("METADATA BITMAP FILE-----\n");
1582 		break;
1583 	default:
1584 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1585 			inode->i_ino, fe->icbTag.fileType);
1586 		goto out;
1587 	}
1588 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1589 		struct deviceSpec *dsea =
1590 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1591 		if (dsea) {
1592 			init_special_inode(inode, inode->i_mode,
1593 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1594 				      le32_to_cpu(dsea->minorDeviceIdent)));
1595 			/* Developer ID ??? */
1596 		} else
1597 			goto out;
1598 	}
1599 	ret = 0;
1600 out:
1601 	brelse(bh);
1602 	return ret;
1603 }
1604 
udf_alloc_i_data(struct inode * inode,size_t size)1605 static int udf_alloc_i_data(struct inode *inode, size_t size)
1606 {
1607 	struct udf_inode_info *iinfo = UDF_I(inode);
1608 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1609 	if (!iinfo->i_data)
1610 		return -ENOMEM;
1611 	return 0;
1612 }
1613 
udf_convert_permissions(struct fileEntry * fe)1614 static umode_t udf_convert_permissions(struct fileEntry *fe)
1615 {
1616 	umode_t mode;
1617 	uint32_t permissions;
1618 	uint32_t flags;
1619 
1620 	permissions = le32_to_cpu(fe->permissions);
1621 	flags = le16_to_cpu(fe->icbTag.flags);
1622 
1623 	mode =	((permissions) & 0007) |
1624 		((permissions >> 2) & 0070) |
1625 		((permissions >> 4) & 0700) |
1626 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1627 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1628 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1629 
1630 	return mode;
1631 }
1632 
udf_update_extra_perms(struct inode * inode,umode_t mode)1633 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1634 {
1635 	struct udf_inode_info *iinfo = UDF_I(inode);
1636 
1637 	/*
1638 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1639 	 * In Unix, delete permission tracks write
1640 	 */
1641 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1642 	if (mode & 0200)
1643 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1644 	if (mode & 0020)
1645 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1646 	if (mode & 0002)
1647 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1648 }
1649 
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1650 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1651 {
1652 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1653 }
1654 
udf_sync_inode(struct inode * inode)1655 static int udf_sync_inode(struct inode *inode)
1656 {
1657 	return udf_update_inode(inode, 1);
1658 }
1659 
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1660 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1661 {
1662 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1663 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1664 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1665 		iinfo->i_crtime = time;
1666 }
1667 
udf_update_inode(struct inode * inode,int do_sync)1668 static int udf_update_inode(struct inode *inode, int do_sync)
1669 {
1670 	struct buffer_head *bh = NULL;
1671 	struct fileEntry *fe;
1672 	struct extendedFileEntry *efe;
1673 	uint64_t lb_recorded;
1674 	uint32_t udfperms;
1675 	uint16_t icbflags;
1676 	uint16_t crclen;
1677 	int err = 0;
1678 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1679 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1680 	struct udf_inode_info *iinfo = UDF_I(inode);
1681 
1682 	bh = udf_tgetblk(inode->i_sb,
1683 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1684 	if (!bh) {
1685 		udf_debug("getblk failure\n");
1686 		return -EIO;
1687 	}
1688 
1689 	lock_buffer(bh);
1690 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1691 	fe = (struct fileEntry *)bh->b_data;
1692 	efe = (struct extendedFileEntry *)bh->b_data;
1693 
1694 	if (iinfo->i_use) {
1695 		struct unallocSpaceEntry *use =
1696 			(struct unallocSpaceEntry *)bh->b_data;
1697 
1698 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1699 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1700 		       iinfo->i_data, inode->i_sb->s_blocksize -
1701 					sizeof(struct unallocSpaceEntry));
1702 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1703 		crclen = sizeof(struct unallocSpaceEntry);
1704 
1705 		goto finish;
1706 	}
1707 
1708 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1709 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1710 	else
1711 		fe->uid = cpu_to_le32(i_uid_read(inode));
1712 
1713 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1714 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1715 	else
1716 		fe->gid = cpu_to_le32(i_gid_read(inode));
1717 
1718 	udfperms = ((inode->i_mode & 0007)) |
1719 		   ((inode->i_mode & 0070) << 2) |
1720 		   ((inode->i_mode & 0700) << 4);
1721 
1722 	udfperms |= iinfo->i_extraPerms;
1723 	fe->permissions = cpu_to_le32(udfperms);
1724 
1725 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1726 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1727 	else {
1728 		if (iinfo->i_hidden)
1729 			fe->fileLinkCount = cpu_to_le16(0);
1730 		else
1731 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1732 	}
1733 
1734 	fe->informationLength = cpu_to_le64(inode->i_size);
1735 
1736 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1737 		struct regid *eid;
1738 		struct deviceSpec *dsea =
1739 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1740 		if (!dsea) {
1741 			dsea = (struct deviceSpec *)
1742 				udf_add_extendedattr(inode,
1743 						     sizeof(struct deviceSpec) +
1744 						     sizeof(struct regid), 12, 0x3);
1745 			dsea->attrType = cpu_to_le32(12);
1746 			dsea->attrSubtype = 1;
1747 			dsea->attrLength = cpu_to_le32(
1748 						sizeof(struct deviceSpec) +
1749 						sizeof(struct regid));
1750 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1751 		}
1752 		eid = (struct regid *)dsea->impUse;
1753 		memset(eid, 0, sizeof(*eid));
1754 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1755 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1756 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1757 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1758 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1759 	}
1760 
1761 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1762 		lb_recorded = 0; /* No extents => no blocks! */
1763 	else
1764 		lb_recorded =
1765 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1766 			(blocksize_bits - 9);
1767 
1768 	if (iinfo->i_efe == 0) {
1769 		memcpy(bh->b_data + sizeof(struct fileEntry),
1770 		       iinfo->i_data,
1771 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1772 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1773 
1774 		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1775 		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1776 		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1777 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1778 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1779 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1780 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1781 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1782 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1783 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1784 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1785 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1786 		crclen = sizeof(struct fileEntry);
1787 	} else {
1788 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1789 		       iinfo->i_data,
1790 		       inode->i_sb->s_blocksize -
1791 					sizeof(struct extendedFileEntry));
1792 		efe->objectSize =
1793 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1794 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1795 
1796 		if (iinfo->i_streamdir) {
1797 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1798 
1799 			icb_lad->extLocation =
1800 				cpu_to_lelb(iinfo->i_locStreamdir);
1801 			icb_lad->extLength =
1802 				cpu_to_le32(inode->i_sb->s_blocksize);
1803 		}
1804 
1805 		udf_adjust_time(iinfo, inode->i_atime);
1806 		udf_adjust_time(iinfo, inode->i_mtime);
1807 		udf_adjust_time(iinfo, inode->i_ctime);
1808 
1809 		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1810 		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1811 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1812 		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1813 
1814 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1815 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1816 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1817 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1818 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1819 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1820 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1821 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1822 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1823 		crclen = sizeof(struct extendedFileEntry);
1824 	}
1825 
1826 finish:
1827 	if (iinfo->i_strat4096) {
1828 		fe->icbTag.strategyType = cpu_to_le16(4096);
1829 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1830 		fe->icbTag.numEntries = cpu_to_le16(2);
1831 	} else {
1832 		fe->icbTag.strategyType = cpu_to_le16(4);
1833 		fe->icbTag.numEntries = cpu_to_le16(1);
1834 	}
1835 
1836 	if (iinfo->i_use)
1837 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1838 	else if (S_ISDIR(inode->i_mode))
1839 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1840 	else if (S_ISREG(inode->i_mode))
1841 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1842 	else if (S_ISLNK(inode->i_mode))
1843 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1844 	else if (S_ISBLK(inode->i_mode))
1845 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1846 	else if (S_ISCHR(inode->i_mode))
1847 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1848 	else if (S_ISFIFO(inode->i_mode))
1849 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1850 	else if (S_ISSOCK(inode->i_mode))
1851 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1852 
1853 	icbflags =	iinfo->i_alloc_type |
1854 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1855 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1856 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1857 			(le16_to_cpu(fe->icbTag.flags) &
1858 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1859 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1860 
1861 	fe->icbTag.flags = cpu_to_le16(icbflags);
1862 	if (sbi->s_udfrev >= 0x0200)
1863 		fe->descTag.descVersion = cpu_to_le16(3);
1864 	else
1865 		fe->descTag.descVersion = cpu_to_le16(2);
1866 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1867 	fe->descTag.tagLocation = cpu_to_le32(
1868 					iinfo->i_location.logicalBlockNum);
1869 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1870 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1871 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1872 						  crclen));
1873 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1874 
1875 	set_buffer_uptodate(bh);
1876 	unlock_buffer(bh);
1877 
1878 	/* write the data blocks */
1879 	mark_buffer_dirty(bh);
1880 	if (do_sync) {
1881 		sync_dirty_buffer(bh);
1882 		if (buffer_write_io_error(bh)) {
1883 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1884 				 inode->i_ino);
1885 			err = -EIO;
1886 		}
1887 	}
1888 	brelse(bh);
1889 
1890 	return err;
1891 }
1892 
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1893 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1894 			 bool hidden_inode)
1895 {
1896 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1897 	struct inode *inode = iget_locked(sb, block);
1898 	int err;
1899 
1900 	if (!inode)
1901 		return ERR_PTR(-ENOMEM);
1902 
1903 	if (!(inode->i_state & I_NEW)) {
1904 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1905 			iput(inode);
1906 			return ERR_PTR(-EFSCORRUPTED);
1907 		}
1908 		return inode;
1909 	}
1910 
1911 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912 	err = udf_read_inode(inode, hidden_inode);
1913 	if (err < 0) {
1914 		iget_failed(inode);
1915 		return ERR_PTR(err);
1916 	}
1917 	unlock_new_inode(inode);
1918 
1919 	return inode;
1920 }
1921 
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1922 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923 			    struct extent_position *epos)
1924 {
1925 	struct super_block *sb = inode->i_sb;
1926 	struct buffer_head *bh;
1927 	struct allocExtDesc *aed;
1928 	struct extent_position nepos;
1929 	struct kernel_lb_addr neloc;
1930 	int ver, adsize;
1931 
1932 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933 		adsize = sizeof(struct short_ad);
1934 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935 		adsize = sizeof(struct long_ad);
1936 	else
1937 		return -EIO;
1938 
1939 	neloc.logicalBlockNum = block;
1940 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941 
1942 	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943 	if (!bh)
1944 		return -EIO;
1945 	lock_buffer(bh);
1946 	memset(bh->b_data, 0x00, sb->s_blocksize);
1947 	set_buffer_uptodate(bh);
1948 	unlock_buffer(bh);
1949 	mark_buffer_dirty_inode(bh, inode);
1950 
1951 	aed = (struct allocExtDesc *)(bh->b_data);
1952 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953 		aed->previousAllocExtLocation =
1954 				cpu_to_le32(epos->block.logicalBlockNum);
1955 	}
1956 	aed->lengthAllocDescs = cpu_to_le32(0);
1957 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958 		ver = 3;
1959 	else
1960 		ver = 2;
1961 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962 		    sizeof(struct tag));
1963 
1964 	nepos.block = neloc;
1965 	nepos.offset = sizeof(struct allocExtDesc);
1966 	nepos.bh = bh;
1967 
1968 	/*
1969 	 * Do we have to copy current last extent to make space for indirect
1970 	 * one?
1971 	 */
1972 	if (epos->offset + adsize > sb->s_blocksize) {
1973 		struct kernel_lb_addr cp_loc;
1974 		uint32_t cp_len;
1975 		int cp_type;
1976 
1977 		epos->offset -= adsize;
1978 		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979 		cp_len |= ((uint32_t)cp_type) << 30;
1980 
1981 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982 		udf_write_aext(inode, epos, &nepos.block,
1983 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984 	} else {
1985 		__udf_add_aext(inode, epos, &nepos.block,
1986 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987 	}
1988 
1989 	brelse(epos->bh);
1990 	*epos = nepos;
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * Append extent at the given position - should be the first free one in inode
1997  * / indirect extent. This function assumes there is enough space in the inode
1998  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999  */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2000 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002 {
2003 	struct udf_inode_info *iinfo = UDF_I(inode);
2004 	struct allocExtDesc *aed;
2005 	int adsize;
2006 
2007 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008 		adsize = sizeof(struct short_ad);
2009 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010 		adsize = sizeof(struct long_ad);
2011 	else
2012 		return -EIO;
2013 
2014 	if (!epos->bh) {
2015 		WARN_ON(iinfo->i_lenAlloc !=
2016 			epos->offset - udf_file_entry_alloc_offset(inode));
2017 	} else {
2018 		aed = (struct allocExtDesc *)epos->bh->b_data;
2019 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020 			epos->offset - sizeof(struct allocExtDesc));
2021 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022 	}
2023 
2024 	udf_write_aext(inode, epos, eloc, elen, inc);
2025 
2026 	if (!epos->bh) {
2027 		iinfo->i_lenAlloc += adsize;
2028 		mark_inode_dirty(inode);
2029 	} else {
2030 		aed = (struct allocExtDesc *)epos->bh->b_data;
2031 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034 			udf_update_tag(epos->bh->b_data,
2035 					epos->offset + (inc ? 0 : adsize));
2036 		else
2037 			udf_update_tag(epos->bh->b_data,
2038 					sizeof(struct allocExtDesc));
2039 		mark_buffer_dirty_inode(epos->bh, inode);
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * Append extent at given position - should be the first free one in inode
2047  * / indirect extent. Takes care of allocating and linking indirect blocks.
2048  */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2049 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051 {
2052 	int adsize;
2053 	struct super_block *sb = inode->i_sb;
2054 
2055 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056 		adsize = sizeof(struct short_ad);
2057 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058 		adsize = sizeof(struct long_ad);
2059 	else
2060 		return -EIO;
2061 
2062 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063 		int err;
2064 		udf_pblk_t new_block;
2065 
2066 		new_block = udf_new_block(sb, NULL,
2067 					  epos->block.partitionReferenceNum,
2068 					  epos->block.logicalBlockNum, &err);
2069 		if (!new_block)
2070 			return -ENOSPC;
2071 
2072 		err = udf_setup_indirect_aext(inode, new_block, epos);
2073 		if (err)
2074 			return err;
2075 	}
2076 
2077 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2078 }
2079 
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2080 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082 {
2083 	int adsize;
2084 	uint8_t *ptr;
2085 	struct short_ad *sad;
2086 	struct long_ad *lad;
2087 	struct udf_inode_info *iinfo = UDF_I(inode);
2088 
2089 	if (!epos->bh)
2090 		ptr = iinfo->i_data + epos->offset -
2091 			udf_file_entry_alloc_offset(inode) +
2092 			iinfo->i_lenEAttr;
2093 	else
2094 		ptr = epos->bh->b_data + epos->offset;
2095 
2096 	switch (iinfo->i_alloc_type) {
2097 	case ICBTAG_FLAG_AD_SHORT:
2098 		sad = (struct short_ad *)ptr;
2099 		sad->extLength = cpu_to_le32(elen);
2100 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101 		adsize = sizeof(struct short_ad);
2102 		break;
2103 	case ICBTAG_FLAG_AD_LONG:
2104 		lad = (struct long_ad *)ptr;
2105 		lad->extLength = cpu_to_le32(elen);
2106 		lad->extLocation = cpu_to_lelb(*eloc);
2107 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108 		adsize = sizeof(struct long_ad);
2109 		break;
2110 	default:
2111 		return;
2112 	}
2113 
2114 	if (epos->bh) {
2115 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117 			struct allocExtDesc *aed =
2118 				(struct allocExtDesc *)epos->bh->b_data;
2119 			udf_update_tag(epos->bh->b_data,
2120 				       le32_to_cpu(aed->lengthAllocDescs) +
2121 				       sizeof(struct allocExtDesc));
2122 		}
2123 		mark_buffer_dirty_inode(epos->bh, inode);
2124 	} else {
2125 		mark_inode_dirty(inode);
2126 	}
2127 
2128 	if (inc)
2129 		epos->offset += adsize;
2130 }
2131 
2132 /*
2133  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134  * someone does some weird stuff.
2135  */
2136 #define UDF_MAX_INDIR_EXTS 16
2137 
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2138 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139 		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140 {
2141 	int8_t etype;
2142 	unsigned int indirections = 0;
2143 
2144 	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145 	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146 		udf_pblk_t block;
2147 
2148 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2149 			udf_err(inode->i_sb,
2150 				"too many indirect extents in inode %lu\n",
2151 				inode->i_ino);
2152 			return -1;
2153 		}
2154 
2155 		epos->block = *eloc;
2156 		epos->offset = sizeof(struct allocExtDesc);
2157 		brelse(epos->bh);
2158 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159 		epos->bh = udf_tread(inode->i_sb, block);
2160 		if (!epos->bh) {
2161 			udf_debug("reading block %u failed!\n", block);
2162 			return -1;
2163 		}
2164 	}
2165 
2166 	return etype;
2167 }
2168 
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2169 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170 			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171 {
2172 	int alen;
2173 	int8_t etype;
2174 	uint8_t *ptr;
2175 	struct short_ad *sad;
2176 	struct long_ad *lad;
2177 	struct udf_inode_info *iinfo = UDF_I(inode);
2178 
2179 	if (!epos->bh) {
2180 		if (!epos->offset)
2181 			epos->offset = udf_file_entry_alloc_offset(inode);
2182 		ptr = iinfo->i_data + epos->offset -
2183 			udf_file_entry_alloc_offset(inode) +
2184 			iinfo->i_lenEAttr;
2185 		alen = udf_file_entry_alloc_offset(inode) +
2186 							iinfo->i_lenAlloc;
2187 	} else {
2188 		if (!epos->offset)
2189 			epos->offset = sizeof(struct allocExtDesc);
2190 		ptr = epos->bh->b_data + epos->offset;
2191 		alen = sizeof(struct allocExtDesc) +
2192 			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193 							lengthAllocDescs);
2194 	}
2195 
2196 	switch (iinfo->i_alloc_type) {
2197 	case ICBTAG_FLAG_AD_SHORT:
2198 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199 		if (!sad)
2200 			return -1;
2201 		etype = le32_to_cpu(sad->extLength) >> 30;
2202 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203 		eloc->partitionReferenceNum =
2204 				iinfo->i_location.partitionReferenceNum;
2205 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206 		break;
2207 	case ICBTAG_FLAG_AD_LONG:
2208 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209 		if (!lad)
2210 			return -1;
2211 		etype = le32_to_cpu(lad->extLength) >> 30;
2212 		*eloc = lelb_to_cpu(lad->extLocation);
2213 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214 		break;
2215 	default:
2216 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217 		return -1;
2218 	}
2219 
2220 	return etype;
2221 }
2222 
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2223 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2224 			   struct kernel_lb_addr neloc, uint32_t nelen)
2225 {
2226 	struct kernel_lb_addr oeloc;
2227 	uint32_t oelen;
2228 	int8_t etype;
2229 	int err;
2230 
2231 	if (epos.bh)
2232 		get_bh(epos.bh);
2233 
2234 	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236 		neloc = oeloc;
2237 		nelen = (etype << 30) | oelen;
2238 	}
2239 	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240 	brelse(epos.bh);
2241 
2242 	return err;
2243 }
2244 
udf_delete_aext(struct inode * inode,struct extent_position epos)2245 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246 {
2247 	struct extent_position oepos;
2248 	int adsize;
2249 	int8_t etype;
2250 	struct allocExtDesc *aed;
2251 	struct udf_inode_info *iinfo;
2252 	struct kernel_lb_addr eloc;
2253 	uint32_t elen;
2254 
2255 	if (epos.bh) {
2256 		get_bh(epos.bh);
2257 		get_bh(epos.bh);
2258 	}
2259 
2260 	iinfo = UDF_I(inode);
2261 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262 		adsize = sizeof(struct short_ad);
2263 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264 		adsize = sizeof(struct long_ad);
2265 	else
2266 		adsize = 0;
2267 
2268 	oepos = epos;
2269 	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270 		return -1;
2271 
2272 	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274 		if (oepos.bh != epos.bh) {
2275 			oepos.block = epos.block;
2276 			brelse(oepos.bh);
2277 			get_bh(epos.bh);
2278 			oepos.bh = epos.bh;
2279 			oepos.offset = epos.offset - adsize;
2280 		}
2281 	}
2282 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283 	elen = 0;
2284 
2285 	if (epos.bh != oepos.bh) {
2286 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289 		if (!oepos.bh) {
2290 			iinfo->i_lenAlloc -= (adsize * 2);
2291 			mark_inode_dirty(inode);
2292 		} else {
2293 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2294 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297 				udf_update_tag(oepos.bh->b_data,
2298 						oepos.offset - (2 * adsize));
2299 			else
2300 				udf_update_tag(oepos.bh->b_data,
2301 						sizeof(struct allocExtDesc));
2302 			mark_buffer_dirty_inode(oepos.bh, inode);
2303 		}
2304 	} else {
2305 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306 		if (!oepos.bh) {
2307 			iinfo->i_lenAlloc -= adsize;
2308 			mark_inode_dirty(inode);
2309 		} else {
2310 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2311 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314 				udf_update_tag(oepos.bh->b_data,
2315 						epos.offset - adsize);
2316 			else
2317 				udf_update_tag(oepos.bh->b_data,
2318 						sizeof(struct allocExtDesc));
2319 			mark_buffer_dirty_inode(oepos.bh, inode);
2320 		}
2321 	}
2322 
2323 	brelse(epos.bh);
2324 	brelse(oepos.bh);
2325 
2326 	return (elen >> 30);
2327 }
2328 
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2329 int8_t inode_bmap(struct inode *inode, sector_t block,
2330 		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2331 		  uint32_t *elen, sector_t *offset)
2332 {
2333 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335 	int8_t etype;
2336 	struct udf_inode_info *iinfo;
2337 
2338 	iinfo = UDF_I(inode);
2339 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340 		pos->offset = 0;
2341 		pos->block = iinfo->i_location;
2342 		pos->bh = NULL;
2343 	}
2344 	*elen = 0;
2345 	do {
2346 		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347 		if (etype == -1) {
2348 			*offset = (bcount - lbcount) >> blocksize_bits;
2349 			iinfo->i_lenExtents = lbcount;
2350 			return -1;
2351 		}
2352 		lbcount += *elen;
2353 	} while (lbcount <= bcount);
2354 	/* update extent cache */
2355 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2356 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357 
2358 	return etype;
2359 }
2360 
udf_block_map(struct inode * inode,sector_t block)2361 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362 {
2363 	struct kernel_lb_addr eloc;
2364 	uint32_t elen;
2365 	sector_t offset;
2366 	struct extent_position epos = {};
2367 	udf_pblk_t ret;
2368 
2369 	down_read(&UDF_I(inode)->i_data_sem);
2370 
2371 	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372 						(EXT_RECORDED_ALLOCATED >> 30))
2373 		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374 	else
2375 		ret = 0;
2376 
2377 	up_read(&UDF_I(inode)->i_data_sem);
2378 	brelse(epos.bh);
2379 
2380 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381 		return udf_fixed_to_variable(ret);
2382 	else
2383 		return ret;
2384 }
2385