• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized = AUDIT_UNINITIALIZED;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113 
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115  * to that number per second.  This prevents DoS attacks, but results in
116  * audit records being dropped. */
117 static u32	audit_rate_limit;
118 
119 /* Number of outstanding audit_buffers allowed.
120  * When set to zero, this means unlimited. */
121 static u32	audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124 
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t		audit_sig_uid = INVALID_UID;
127 static pid_t		audit_sig_pid = -1;
128 static u32		audit_sig_sid;
129 
130 /* Records can be lost in several ways:
131    0) [suppressed in audit_alloc]
132    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133    2) out of memory in audit_log_move [alloc_skb]
134    3) suppressed due to audit_rate_limit
135    4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t	audit_lost = ATOMIC_INIT(0);
138 
139 /* Monotonically increasing sum of time the kernel has spent
140  * waiting while the backlog limit is exceeded.
141  */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143 
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146 
147 static struct kmem_cache *audit_buffer_cache;
148 
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155 
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159 
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162 
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 				   .mask = -1,
165 				   .features = 0,
166 				   .lock = 0,};
167 
168 static char *audit_feature_names[2] = {
169 	"only_unset_loginuid",
170 	"loginuid_immutable",
171 };
172 
173 /**
174  * struct audit_ctl_mutex - serialize requests from userspace
175  * @lock: the mutex used for locking
176  * @owner: the task which owns the lock
177  *
178  * Description:
179  * This is the lock struct used to ensure we only process userspace requests
180  * in an orderly fashion.  We can't simply use a mutex/lock here because we
181  * need to track lock ownership so we don't end up blocking the lock owner in
182  * audit_log_start() or similar.
183  */
184 static struct audit_ctl_mutex {
185 	struct mutex lock;
186 	void *owner;
187 } audit_cmd_mutex;
188 
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190  * audit records.  Since printk uses a 1024 byte buffer, this buffer
191  * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193 
194 /* The audit_buffer is used when formatting an audit record.  The caller
195  * locks briefly to get the record off the freelist or to allocate the
196  * buffer, and locks briefly to send the buffer to the netlink layer or
197  * to place it on a transmit queue.  Multiple audit_buffers can be in
198  * use simultaneously. */
199 struct audit_buffer {
200 	struct sk_buff       *skb;	/* formatted skb ready to send */
201 	struct audit_context *ctx;	/* NULL or associated context */
202 	gfp_t		     gfp_mask;
203 };
204 
205 struct audit_reply {
206 	__u32 portid;
207 	struct net *net;
208 	struct sk_buff *skb;
209 };
210 
211 /**
212  * auditd_test_task - Check to see if a given task is an audit daemon
213  * @task: the task to check
214  *
215  * Description:
216  * Return 1 if the task is a registered audit daemon, 0 otherwise.
217  */
auditd_test_task(struct task_struct * task)218 int auditd_test_task(struct task_struct *task)
219 {
220 	int rc;
221 	struct auditd_connection *ac;
222 
223 	rcu_read_lock();
224 	ac = rcu_dereference(auditd_conn);
225 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 	rcu_read_unlock();
227 
228 	return rc;
229 }
230 
231 /**
232  * audit_ctl_lock - Take the audit control lock
233  */
audit_ctl_lock(void)234 void audit_ctl_lock(void)
235 {
236 	mutex_lock(&audit_cmd_mutex.lock);
237 	audit_cmd_mutex.owner = current;
238 }
239 
240 /**
241  * audit_ctl_unlock - Drop the audit control lock
242  */
audit_ctl_unlock(void)243 void audit_ctl_unlock(void)
244 {
245 	audit_cmd_mutex.owner = NULL;
246 	mutex_unlock(&audit_cmd_mutex.lock);
247 }
248 
249 /**
250  * audit_ctl_owner_current - Test to see if the current task owns the lock
251  *
252  * Description:
253  * Return true if the current task owns the audit control lock, false if it
254  * doesn't own the lock.
255  */
audit_ctl_owner_current(void)256 static bool audit_ctl_owner_current(void)
257 {
258 	return (current == audit_cmd_mutex.owner);
259 }
260 
261 /**
262  * auditd_pid_vnr - Return the auditd PID relative to the namespace
263  *
264  * Description:
265  * Returns the PID in relation to the namespace, 0 on failure.
266  */
auditd_pid_vnr(void)267 static pid_t auditd_pid_vnr(void)
268 {
269 	pid_t pid;
270 	const struct auditd_connection *ac;
271 
272 	rcu_read_lock();
273 	ac = rcu_dereference(auditd_conn);
274 	if (!ac || !ac->pid)
275 		pid = 0;
276 	else
277 		pid = pid_vnr(ac->pid);
278 	rcu_read_unlock();
279 
280 	return pid;
281 }
282 
283 /**
284  * audit_get_sk - Return the audit socket for the given network namespace
285  * @net: the destination network namespace
286  *
287  * Description:
288  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
289  * that a reference is held for the network namespace while the sock is in use.
290  */
audit_get_sk(const struct net * net)291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 	struct audit_net *aunet;
294 
295 	if (!net)
296 		return NULL;
297 
298 	aunet = net_generic(net, audit_net_id);
299 	return aunet->sk;
300 }
301 
audit_panic(const char * message)302 void audit_panic(const char *message)
303 {
304 	switch (audit_failure) {
305 	case AUDIT_FAIL_SILENT:
306 		break;
307 	case AUDIT_FAIL_PRINTK:
308 		if (printk_ratelimit())
309 			pr_err("%s\n", message);
310 		break;
311 	case AUDIT_FAIL_PANIC:
312 		panic("audit: %s\n", message);
313 		break;
314 	}
315 }
316 
audit_rate_check(void)317 static inline int audit_rate_check(void)
318 {
319 	static unsigned long	last_check = 0;
320 	static int		messages   = 0;
321 	static DEFINE_SPINLOCK(lock);
322 	unsigned long		flags;
323 	unsigned long		now;
324 	int			retval	   = 0;
325 
326 	if (!audit_rate_limit) return 1;
327 
328 	spin_lock_irqsave(&lock, flags);
329 	if (++messages < audit_rate_limit) {
330 		retval = 1;
331 	} else {
332 		now = jiffies;
333 		if (time_after(now, last_check + HZ)) {
334 			last_check = now;
335 			messages   = 0;
336 			retval     = 1;
337 		}
338 	}
339 	spin_unlock_irqrestore(&lock, flags);
340 
341 	return retval;
342 }
343 
344 /**
345  * audit_log_lost - conditionally log lost audit message event
346  * @message: the message stating reason for lost audit message
347  *
348  * Emit at least 1 message per second, even if audit_rate_check is
349  * throttling.
350  * Always increment the lost messages counter.
351 */
audit_log_lost(const char * message)352 void audit_log_lost(const char *message)
353 {
354 	static unsigned long	last_msg = 0;
355 	static DEFINE_SPINLOCK(lock);
356 	unsigned long		flags;
357 	unsigned long		now;
358 	int			print;
359 
360 	atomic_inc(&audit_lost);
361 
362 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
363 
364 	if (!print) {
365 		spin_lock_irqsave(&lock, flags);
366 		now = jiffies;
367 		if (time_after(now, last_msg + HZ)) {
368 			print = 1;
369 			last_msg = now;
370 		}
371 		spin_unlock_irqrestore(&lock, flags);
372 	}
373 
374 	if (print) {
375 		if (printk_ratelimit())
376 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
377 				atomic_read(&audit_lost),
378 				audit_rate_limit,
379 				audit_backlog_limit);
380 		audit_panic(message);
381 	}
382 }
383 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)384 static int audit_log_config_change(char *function_name, u32 new, u32 old,
385 				   int allow_changes)
386 {
387 	struct audit_buffer *ab;
388 	int rc = 0;
389 
390 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
391 	if (unlikely(!ab))
392 		return rc;
393 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
394 	audit_log_session_info(ab);
395 	rc = audit_log_task_context(ab);
396 	if (rc)
397 		allow_changes = 0; /* Something weird, deny request */
398 	audit_log_format(ab, " res=%d", allow_changes);
399 	audit_log_end(ab);
400 	return rc;
401 }
402 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)403 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
404 {
405 	int allow_changes, rc = 0;
406 	u32 old = *to_change;
407 
408 	/* check if we are locked */
409 	if (audit_enabled == AUDIT_LOCKED)
410 		allow_changes = 0;
411 	else
412 		allow_changes = 1;
413 
414 	if (audit_enabled != AUDIT_OFF) {
415 		rc = audit_log_config_change(function_name, new, old, allow_changes);
416 		if (rc)
417 			allow_changes = 0;
418 	}
419 
420 	/* If we are allowed, make the change */
421 	if (allow_changes == 1)
422 		*to_change = new;
423 	/* Not allowed, update reason */
424 	else if (rc == 0)
425 		rc = -EPERM;
426 	return rc;
427 }
428 
audit_set_rate_limit(u32 limit)429 static int audit_set_rate_limit(u32 limit)
430 {
431 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
432 }
433 
audit_set_backlog_limit(u32 limit)434 static int audit_set_backlog_limit(u32 limit)
435 {
436 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
437 }
438 
audit_set_backlog_wait_time(u32 timeout)439 static int audit_set_backlog_wait_time(u32 timeout)
440 {
441 	return audit_do_config_change("audit_backlog_wait_time",
442 				      &audit_backlog_wait_time, timeout);
443 }
444 
audit_set_enabled(u32 state)445 static int audit_set_enabled(u32 state)
446 {
447 	int rc;
448 	if (state > AUDIT_LOCKED)
449 		return -EINVAL;
450 
451 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
452 	if (!rc)
453 		audit_ever_enabled |= !!state;
454 
455 	return rc;
456 }
457 
audit_set_failure(u32 state)458 static int audit_set_failure(u32 state)
459 {
460 	if (state != AUDIT_FAIL_SILENT
461 	    && state != AUDIT_FAIL_PRINTK
462 	    && state != AUDIT_FAIL_PANIC)
463 		return -EINVAL;
464 
465 	return audit_do_config_change("audit_failure", &audit_failure, state);
466 }
467 
468 /**
469  * auditd_conn_free - RCU helper to release an auditd connection struct
470  * @rcu: RCU head
471  *
472  * Description:
473  * Drop any references inside the auditd connection tracking struct and free
474  * the memory.
475  */
auditd_conn_free(struct rcu_head * rcu)476 static void auditd_conn_free(struct rcu_head *rcu)
477 {
478 	struct auditd_connection *ac;
479 
480 	ac = container_of(rcu, struct auditd_connection, rcu);
481 	put_pid(ac->pid);
482 	put_net(ac->net);
483 	kfree(ac);
484 }
485 
486 /**
487  * auditd_set - Set/Reset the auditd connection state
488  * @pid: auditd PID
489  * @portid: auditd netlink portid
490  * @net: auditd network namespace pointer
491  * @skb: the netlink command from the audit daemon
492  * @ack: netlink ack flag, cleared if ack'd here
493  *
494  * Description:
495  * This function will obtain and drop network namespace references as
496  * necessary.  Returns zero on success, negative values on failure.
497  */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)498 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
499 		      struct sk_buff *skb, bool *ack)
500 {
501 	unsigned long flags;
502 	struct auditd_connection *ac_old, *ac_new;
503 	struct nlmsghdr *nlh;
504 
505 	if (!pid || !net)
506 		return -EINVAL;
507 
508 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
509 	if (!ac_new)
510 		return -ENOMEM;
511 	ac_new->pid = get_pid(pid);
512 	ac_new->portid = portid;
513 	ac_new->net = get_net(net);
514 
515 	/* send the ack now to avoid a race with the queue backlog */
516 	if (*ack) {
517 		nlh = nlmsg_hdr(skb);
518 		netlink_ack(skb, nlh, 0, NULL);
519 		*ack = false;
520 	}
521 
522 	spin_lock_irqsave(&auditd_conn_lock, flags);
523 	ac_old = rcu_dereference_protected(auditd_conn,
524 					   lockdep_is_held(&auditd_conn_lock));
525 	rcu_assign_pointer(auditd_conn, ac_new);
526 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
527 
528 	if (ac_old)
529 		call_rcu(&ac_old->rcu, auditd_conn_free);
530 
531 	return 0;
532 }
533 
534 /**
535  * kauditd_printk_skb - Print the audit record to the ring buffer
536  * @skb: audit record
537  *
538  * Whatever the reason, this packet may not make it to the auditd connection
539  * so write it via printk so the information isn't completely lost.
540  */
kauditd_printk_skb(struct sk_buff * skb)541 static void kauditd_printk_skb(struct sk_buff *skb)
542 {
543 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
544 	char *data = nlmsg_data(nlh);
545 
546 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
547 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
548 }
549 
550 /**
551  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
552  * @skb: audit record
553  * @error: error code (unused)
554  *
555  * Description:
556  * This should only be used by the kauditd_thread when it fails to flush the
557  * hold queue.
558  */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)559 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
560 {
561 	/* put the record back in the queue */
562 	skb_queue_tail(&audit_hold_queue, skb);
563 }
564 
565 /**
566  * kauditd_hold_skb - Queue an audit record, waiting for auditd
567  * @skb: audit record
568  * @error: error code
569  *
570  * Description:
571  * Queue the audit record, waiting for an instance of auditd.  When this
572  * function is called we haven't given up yet on sending the record, but things
573  * are not looking good.  The first thing we want to do is try to write the
574  * record via printk and then see if we want to try and hold on to the record
575  * and queue it, if we have room.  If we want to hold on to the record, but we
576  * don't have room, record a record lost message.
577  */
kauditd_hold_skb(struct sk_buff * skb,int error)578 static void kauditd_hold_skb(struct sk_buff *skb, int error)
579 {
580 	/* at this point it is uncertain if we will ever send this to auditd so
581 	 * try to send the message via printk before we go any further */
582 	kauditd_printk_skb(skb);
583 
584 	/* can we just silently drop the message? */
585 	if (!audit_default)
586 		goto drop;
587 
588 	/* the hold queue is only for when the daemon goes away completely,
589 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
590 	 * record on the retry queue unless it's full, in which case drop it
591 	 */
592 	if (error == -EAGAIN) {
593 		if (!audit_backlog_limit ||
594 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
595 			skb_queue_tail(&audit_retry_queue, skb);
596 			return;
597 		}
598 		audit_log_lost("kauditd retry queue overflow");
599 		goto drop;
600 	}
601 
602 	/* if we have room in the hold queue, queue the message */
603 	if (!audit_backlog_limit ||
604 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
605 		skb_queue_tail(&audit_hold_queue, skb);
606 		return;
607 	}
608 
609 	/* we have no other options - drop the message */
610 	audit_log_lost("kauditd hold queue overflow");
611 drop:
612 	kfree_skb(skb);
613 }
614 
615 /**
616  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
617  * @skb: audit record
618  * @error: error code (unused)
619  *
620  * Description:
621  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
622  * but for some reason we are having problems sending it audit records so
623  * queue the given record and attempt to resend.
624  */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)625 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
626 {
627 	if (!audit_backlog_limit ||
628 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
629 		skb_queue_tail(&audit_retry_queue, skb);
630 		return;
631 	}
632 
633 	/* we have to drop the record, send it via printk as a last effort */
634 	kauditd_printk_skb(skb);
635 	audit_log_lost("kauditd retry queue overflow");
636 	kfree_skb(skb);
637 }
638 
639 /**
640  * auditd_reset - Disconnect the auditd connection
641  * @ac: auditd connection state
642  *
643  * Description:
644  * Break the auditd/kauditd connection and move all the queued records into the
645  * hold queue in case auditd reconnects.  It is important to note that the @ac
646  * pointer should never be dereferenced inside this function as it may be NULL
647  * or invalid, you can only compare the memory address!  If @ac is NULL then
648  * the connection will always be reset.
649  */
auditd_reset(const struct auditd_connection * ac)650 static void auditd_reset(const struct auditd_connection *ac)
651 {
652 	unsigned long flags;
653 	struct sk_buff *skb;
654 	struct auditd_connection *ac_old;
655 
656 	/* if it isn't already broken, break the connection */
657 	spin_lock_irqsave(&auditd_conn_lock, flags);
658 	ac_old = rcu_dereference_protected(auditd_conn,
659 					   lockdep_is_held(&auditd_conn_lock));
660 	if (ac && ac != ac_old) {
661 		/* someone already registered a new auditd connection */
662 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
663 		return;
664 	}
665 	rcu_assign_pointer(auditd_conn, NULL);
666 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
667 
668 	if (ac_old)
669 		call_rcu(&ac_old->rcu, auditd_conn_free);
670 
671 	/* flush the retry queue to the hold queue, but don't touch the main
672 	 * queue since we need to process that normally for multicast */
673 	while ((skb = skb_dequeue(&audit_retry_queue)))
674 		kauditd_hold_skb(skb, -ECONNREFUSED);
675 }
676 
677 /**
678  * auditd_send_unicast_skb - Send a record via unicast to auditd
679  * @skb: audit record
680  *
681  * Description:
682  * Send a skb to the audit daemon, returns positive/zero values on success and
683  * negative values on failure; in all cases the skb will be consumed by this
684  * function.  If the send results in -ECONNREFUSED the connection with auditd
685  * will be reset.  This function may sleep so callers should not hold any locks
686  * where this would cause a problem.
687  */
auditd_send_unicast_skb(struct sk_buff * skb)688 static int auditd_send_unicast_skb(struct sk_buff *skb)
689 {
690 	int rc;
691 	u32 portid;
692 	struct net *net;
693 	struct sock *sk;
694 	struct auditd_connection *ac;
695 
696 	/* NOTE: we can't call netlink_unicast while in the RCU section so
697 	 *       take a reference to the network namespace and grab local
698 	 *       copies of the namespace, the sock, and the portid; the
699 	 *       namespace and sock aren't going to go away while we hold a
700 	 *       reference and if the portid does become invalid after the RCU
701 	 *       section netlink_unicast() should safely return an error */
702 
703 	rcu_read_lock();
704 	ac = rcu_dereference(auditd_conn);
705 	if (!ac) {
706 		rcu_read_unlock();
707 		kfree_skb(skb);
708 		rc = -ECONNREFUSED;
709 		goto err;
710 	}
711 	net = get_net(ac->net);
712 	sk = audit_get_sk(net);
713 	portid = ac->portid;
714 	rcu_read_unlock();
715 
716 	rc = netlink_unicast(sk, skb, portid, 0);
717 	put_net(net);
718 	if (rc < 0)
719 		goto err;
720 
721 	return rc;
722 
723 err:
724 	if (ac && rc == -ECONNREFUSED)
725 		auditd_reset(ac);
726 	return rc;
727 }
728 
729 /**
730  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
731  * @sk: the sending sock
732  * @portid: the netlink destination
733  * @queue: the skb queue to process
734  * @retry_limit: limit on number of netlink unicast failures
735  * @skb_hook: per-skb hook for additional processing
736  * @err_hook: hook called if the skb fails the netlink unicast send
737  *
738  * Description:
739  * Run through the given queue and attempt to send the audit records to auditd,
740  * returns zero on success, negative values on failure.  It is up to the caller
741  * to ensure that the @sk is valid for the duration of this function.
742  *
743  */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))744 static int kauditd_send_queue(struct sock *sk, u32 portid,
745 			      struct sk_buff_head *queue,
746 			      unsigned int retry_limit,
747 			      void (*skb_hook)(struct sk_buff *skb),
748 			      void (*err_hook)(struct sk_buff *skb, int error))
749 {
750 	int rc = 0;
751 	struct sk_buff *skb = NULL;
752 	struct sk_buff *skb_tail;
753 	unsigned int failed = 0;
754 
755 	/* NOTE: kauditd_thread takes care of all our locking, we just use
756 	 *       the netlink info passed to us (e.g. sk and portid) */
757 
758 	skb_tail = skb_peek_tail(queue);
759 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
760 		/* call the skb_hook for each skb we touch */
761 		if (skb_hook)
762 			(*skb_hook)(skb);
763 
764 		/* can we send to anyone via unicast? */
765 		if (!sk) {
766 			if (err_hook)
767 				(*err_hook)(skb, -ECONNREFUSED);
768 			continue;
769 		}
770 
771 retry:
772 		/* grab an extra skb reference in case of error */
773 		skb_get(skb);
774 		rc = netlink_unicast(sk, skb, portid, 0);
775 		if (rc < 0) {
776 			/* send failed - try a few times unless fatal error */
777 			if (++failed >= retry_limit ||
778 			    rc == -ECONNREFUSED || rc == -EPERM) {
779 				sk = NULL;
780 				if (err_hook)
781 					(*err_hook)(skb, rc);
782 				if (rc == -EAGAIN)
783 					rc = 0;
784 				/* continue to drain the queue */
785 				continue;
786 			} else
787 				goto retry;
788 		} else {
789 			/* skb sent - drop the extra reference and continue */
790 			consume_skb(skb);
791 			failed = 0;
792 		}
793 	}
794 
795 	return (rc >= 0 ? 0 : rc);
796 }
797 
798 /*
799  * kauditd_send_multicast_skb - Send a record to any multicast listeners
800  * @skb: audit record
801  *
802  * Description:
803  * Write a multicast message to anyone listening in the initial network
804  * namespace.  This function doesn't consume an skb as might be expected since
805  * it has to copy it anyways.
806  */
kauditd_send_multicast_skb(struct sk_buff * skb)807 static void kauditd_send_multicast_skb(struct sk_buff *skb)
808 {
809 	struct sk_buff *copy;
810 	struct sock *sock = audit_get_sk(&init_net);
811 	struct nlmsghdr *nlh;
812 
813 	/* NOTE: we are not taking an additional reference for init_net since
814 	 *       we don't have to worry about it going away */
815 
816 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
817 		return;
818 
819 	/*
820 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
821 	 * using skb_get() is necessary because non-standard mods are made to
822 	 * the skb by the original kaudit unicast socket send routine.  The
823 	 * existing auditd daemon assumes this breakage.  Fixing this would
824 	 * require co-ordinating a change in the established protocol between
825 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
826 	 * no reason for new multicast clients to continue with this
827 	 * non-compliance.
828 	 */
829 	copy = skb_copy(skb, GFP_KERNEL);
830 	if (!copy)
831 		return;
832 	nlh = nlmsg_hdr(copy);
833 	nlh->nlmsg_len = skb->len;
834 
835 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
836 }
837 
838 /**
839  * kauditd_thread - Worker thread to send audit records to userspace
840  * @dummy: unused
841  */
kauditd_thread(void * dummy)842 static int kauditd_thread(void *dummy)
843 {
844 	int rc;
845 	u32 portid = 0;
846 	struct net *net = NULL;
847 	struct sock *sk = NULL;
848 	struct auditd_connection *ac;
849 
850 #define UNICAST_RETRIES 5
851 
852 	set_freezable();
853 	while (!kthread_should_stop()) {
854 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
855 		rcu_read_lock();
856 		ac = rcu_dereference(auditd_conn);
857 		if (!ac) {
858 			rcu_read_unlock();
859 			goto main_queue;
860 		}
861 		net = get_net(ac->net);
862 		sk = audit_get_sk(net);
863 		portid = ac->portid;
864 		rcu_read_unlock();
865 
866 		/* attempt to flush the hold queue */
867 		rc = kauditd_send_queue(sk, portid,
868 					&audit_hold_queue, UNICAST_RETRIES,
869 					NULL, kauditd_rehold_skb);
870 		if (rc < 0) {
871 			sk = NULL;
872 			auditd_reset(ac);
873 			goto main_queue;
874 		}
875 
876 		/* attempt to flush the retry queue */
877 		rc = kauditd_send_queue(sk, portid,
878 					&audit_retry_queue, UNICAST_RETRIES,
879 					NULL, kauditd_hold_skb);
880 		if (rc < 0) {
881 			sk = NULL;
882 			auditd_reset(ac);
883 			goto main_queue;
884 		}
885 
886 main_queue:
887 		/* process the main queue - do the multicast send and attempt
888 		 * unicast, dump failed record sends to the retry queue; if
889 		 * sk == NULL due to previous failures we will just do the
890 		 * multicast send and move the record to the hold queue */
891 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
892 					kauditd_send_multicast_skb,
893 					(sk ?
894 					 kauditd_retry_skb : kauditd_hold_skb));
895 		if (ac && rc < 0)
896 			auditd_reset(ac);
897 		sk = NULL;
898 
899 		/* drop our netns reference, no auditd sends past this line */
900 		if (net) {
901 			put_net(net);
902 			net = NULL;
903 		}
904 
905 		/* we have processed all the queues so wake everyone */
906 		wake_up(&audit_backlog_wait);
907 
908 		/* NOTE: we want to wake up if there is anything on the queue,
909 		 *       regardless of if an auditd is connected, as we need to
910 		 *       do the multicast send and rotate records from the
911 		 *       main queue to the retry/hold queues */
912 		wait_event_freezable(kauditd_wait,
913 				     (skb_queue_len(&audit_queue) ? 1 : 0));
914 	}
915 
916 	return 0;
917 }
918 
audit_send_list_thread(void * _dest)919 int audit_send_list_thread(void *_dest)
920 {
921 	struct audit_netlink_list *dest = _dest;
922 	struct sk_buff *skb;
923 	struct sock *sk = audit_get_sk(dest->net);
924 
925 	/* wait for parent to finish and send an ACK */
926 	audit_ctl_lock();
927 	audit_ctl_unlock();
928 
929 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
930 		netlink_unicast(sk, skb, dest->portid, 0);
931 
932 	put_net(dest->net);
933 	kfree(dest);
934 
935 	return 0;
936 }
937 
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)938 struct sk_buff *audit_make_reply(int seq, int type, int done,
939 				 int multi, const void *payload, int size)
940 {
941 	struct sk_buff	*skb;
942 	struct nlmsghdr	*nlh;
943 	void		*data;
944 	int		flags = multi ? NLM_F_MULTI : 0;
945 	int		t     = done  ? NLMSG_DONE  : type;
946 
947 	skb = nlmsg_new(size, GFP_KERNEL);
948 	if (!skb)
949 		return NULL;
950 
951 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
952 	if (!nlh)
953 		goto out_kfree_skb;
954 	data = nlmsg_data(nlh);
955 	memcpy(data, payload, size);
956 	return skb;
957 
958 out_kfree_skb:
959 	kfree_skb(skb);
960 	return NULL;
961 }
962 
audit_free_reply(struct audit_reply * reply)963 static void audit_free_reply(struct audit_reply *reply)
964 {
965 	if (!reply)
966 		return;
967 
968 	kfree_skb(reply->skb);
969 	if (reply->net)
970 		put_net(reply->net);
971 	kfree(reply);
972 }
973 
audit_send_reply_thread(void * arg)974 static int audit_send_reply_thread(void *arg)
975 {
976 	struct audit_reply *reply = (struct audit_reply *)arg;
977 
978 	audit_ctl_lock();
979 	audit_ctl_unlock();
980 
981 	/* Ignore failure. It'll only happen if the sender goes away,
982 	   because our timeout is set to infinite. */
983 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
984 	reply->skb = NULL;
985 	audit_free_reply(reply);
986 	return 0;
987 }
988 
989 /**
990  * audit_send_reply - send an audit reply message via netlink
991  * @request_skb: skb of request we are replying to (used to target the reply)
992  * @seq: sequence number
993  * @type: audit message type
994  * @done: done (last) flag
995  * @multi: multi-part message flag
996  * @payload: payload data
997  * @size: payload size
998  *
999  * Allocates a skb, builds the netlink message, and sends it to the port id.
1000  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1001 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1002 			     int multi, const void *payload, int size)
1003 {
1004 	struct task_struct *tsk;
1005 	struct audit_reply *reply;
1006 
1007 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1008 	if (!reply)
1009 		return;
1010 
1011 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1012 	if (!reply->skb)
1013 		goto err;
1014 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1015 	reply->portid = NETLINK_CB(request_skb).portid;
1016 
1017 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1018 	if (IS_ERR(tsk))
1019 		goto err;
1020 
1021 	return;
1022 
1023 err:
1024 	audit_free_reply(reply);
1025 }
1026 
1027 /*
1028  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1029  * control messages.
1030  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1031 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1032 {
1033 	int err = 0;
1034 
1035 	/* Only support initial user namespace for now. */
1036 	/*
1037 	 * We return ECONNREFUSED because it tricks userspace into thinking
1038 	 * that audit was not configured into the kernel.  Lots of users
1039 	 * configure their PAM stack (because that's what the distro does)
1040 	 * to reject login if unable to send messages to audit.  If we return
1041 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1042 	 * configured in and will let login proceed.  If we return EPERM
1043 	 * userspace will reject all logins.  This should be removed when we
1044 	 * support non init namespaces!!
1045 	 */
1046 	if (current_user_ns() != &init_user_ns)
1047 		return -ECONNREFUSED;
1048 
1049 	switch (msg_type) {
1050 	case AUDIT_LIST:
1051 	case AUDIT_ADD:
1052 	case AUDIT_DEL:
1053 		return -EOPNOTSUPP;
1054 	case AUDIT_GET:
1055 	case AUDIT_SET:
1056 	case AUDIT_GET_FEATURE:
1057 	case AUDIT_SET_FEATURE:
1058 	case AUDIT_LIST_RULES:
1059 	case AUDIT_ADD_RULE:
1060 	case AUDIT_DEL_RULE:
1061 	case AUDIT_SIGNAL_INFO:
1062 	case AUDIT_TTY_GET:
1063 	case AUDIT_TTY_SET:
1064 	case AUDIT_TRIM:
1065 	case AUDIT_MAKE_EQUIV:
1066 		/* Only support auditd and auditctl in initial pid namespace
1067 		 * for now. */
1068 		if (task_active_pid_ns(current) != &init_pid_ns)
1069 			return -EPERM;
1070 
1071 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1072 			err = -EPERM;
1073 		break;
1074 	case AUDIT_USER:
1075 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1076 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1077 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1078 			err = -EPERM;
1079 		break;
1080 	default:  /* bad msg */
1081 		err = -EINVAL;
1082 	}
1083 
1084 	return err;
1085 }
1086 
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1087 static void audit_log_common_recv_msg(struct audit_context *context,
1088 					struct audit_buffer **ab, u16 msg_type)
1089 {
1090 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1091 	pid_t pid = task_tgid_nr(current);
1092 
1093 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1094 		*ab = NULL;
1095 		return;
1096 	}
1097 
1098 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1099 	if (unlikely(!*ab))
1100 		return;
1101 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1102 	audit_log_session_info(*ab);
1103 	audit_log_task_context(*ab);
1104 }
1105 
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1106 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1107 					   u16 msg_type)
1108 {
1109 	audit_log_common_recv_msg(NULL, ab, msg_type);
1110 }
1111 
is_audit_feature_set(int i)1112 static int is_audit_feature_set(int i)
1113 {
1114 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1115 }
1116 
1117 
audit_get_feature(struct sk_buff * skb)1118 static int audit_get_feature(struct sk_buff *skb)
1119 {
1120 	u32 seq;
1121 
1122 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1123 
1124 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1125 
1126 	return 0;
1127 }
1128 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1129 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1130 				     u32 old_lock, u32 new_lock, int res)
1131 {
1132 	struct audit_buffer *ab;
1133 
1134 	if (audit_enabled == AUDIT_OFF)
1135 		return;
1136 
1137 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1138 	if (!ab)
1139 		return;
1140 	audit_log_task_info(ab);
1141 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1142 			 audit_feature_names[which], !!old_feature, !!new_feature,
1143 			 !!old_lock, !!new_lock, res);
1144 	audit_log_end(ab);
1145 }
1146 
audit_set_feature(struct audit_features * uaf)1147 static int audit_set_feature(struct audit_features *uaf)
1148 {
1149 	int i;
1150 
1151 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1152 
1153 	/* if there is ever a version 2 we should handle that here */
1154 
1155 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1156 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1157 		u32 old_feature, new_feature, old_lock, new_lock;
1158 
1159 		/* if we are not changing this feature, move along */
1160 		if (!(feature & uaf->mask))
1161 			continue;
1162 
1163 		old_feature = af.features & feature;
1164 		new_feature = uaf->features & feature;
1165 		new_lock = (uaf->lock | af.lock) & feature;
1166 		old_lock = af.lock & feature;
1167 
1168 		/* are we changing a locked feature? */
1169 		if (old_lock && (new_feature != old_feature)) {
1170 			audit_log_feature_change(i, old_feature, new_feature,
1171 						 old_lock, new_lock, 0);
1172 			return -EPERM;
1173 		}
1174 	}
1175 	/* nothing invalid, do the changes */
1176 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1177 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1178 		u32 old_feature, new_feature, old_lock, new_lock;
1179 
1180 		/* if we are not changing this feature, move along */
1181 		if (!(feature & uaf->mask))
1182 			continue;
1183 
1184 		old_feature = af.features & feature;
1185 		new_feature = uaf->features & feature;
1186 		old_lock = af.lock & feature;
1187 		new_lock = (uaf->lock | af.lock) & feature;
1188 
1189 		if (new_feature != old_feature)
1190 			audit_log_feature_change(i, old_feature, new_feature,
1191 						 old_lock, new_lock, 1);
1192 
1193 		if (new_feature)
1194 			af.features |= feature;
1195 		else
1196 			af.features &= ~feature;
1197 		af.lock |= new_lock;
1198 	}
1199 
1200 	return 0;
1201 }
1202 
audit_replace(struct pid * pid)1203 static int audit_replace(struct pid *pid)
1204 {
1205 	pid_t pvnr;
1206 	struct sk_buff *skb;
1207 
1208 	pvnr = pid_vnr(pid);
1209 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1210 	if (!skb)
1211 		return -ENOMEM;
1212 	return auditd_send_unicast_skb(skb);
1213 }
1214 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1215 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1216 			     bool *ack)
1217 {
1218 	u32			seq;
1219 	void			*data;
1220 	int			data_len;
1221 	int			err;
1222 	struct audit_buffer	*ab;
1223 	u16			msg_type = nlh->nlmsg_type;
1224 	struct audit_sig_info   *sig_data;
1225 	char			*ctx = NULL;
1226 	u32			len;
1227 
1228 	err = audit_netlink_ok(skb, msg_type);
1229 	if (err)
1230 		return err;
1231 
1232 	seq  = nlh->nlmsg_seq;
1233 	data = nlmsg_data(nlh);
1234 	data_len = nlmsg_len(nlh);
1235 
1236 	switch (msg_type) {
1237 	case AUDIT_GET: {
1238 		struct audit_status	s;
1239 		memset(&s, 0, sizeof(s));
1240 		s.enabled		   = audit_enabled;
1241 		s.failure		   = audit_failure;
1242 		/* NOTE: use pid_vnr() so the PID is relative to the current
1243 		 *       namespace */
1244 		s.pid			   = auditd_pid_vnr();
1245 		s.rate_limit		   = audit_rate_limit;
1246 		s.backlog_limit		   = audit_backlog_limit;
1247 		s.lost			   = atomic_read(&audit_lost);
1248 		s.backlog		   = skb_queue_len(&audit_queue);
1249 		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1250 		s.backlog_wait_time	   = audit_backlog_wait_time;
1251 		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1252 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1253 		break;
1254 	}
1255 	case AUDIT_SET: {
1256 		struct audit_status	s;
1257 		memset(&s, 0, sizeof(s));
1258 		/* guard against past and future API changes */
1259 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1260 		if (s.mask & AUDIT_STATUS_ENABLED) {
1261 			err = audit_set_enabled(s.enabled);
1262 			if (err < 0)
1263 				return err;
1264 		}
1265 		if (s.mask & AUDIT_STATUS_FAILURE) {
1266 			err = audit_set_failure(s.failure);
1267 			if (err < 0)
1268 				return err;
1269 		}
1270 		if (s.mask & AUDIT_STATUS_PID) {
1271 			/* NOTE: we are using the vnr PID functions below
1272 			 *       because the s.pid value is relative to the
1273 			 *       namespace of the caller; at present this
1274 			 *       doesn't matter much since you can really only
1275 			 *       run auditd from the initial pid namespace, but
1276 			 *       something to keep in mind if this changes */
1277 			pid_t new_pid = s.pid;
1278 			pid_t auditd_pid;
1279 			struct pid *req_pid = task_tgid(current);
1280 
1281 			/* Sanity check - PID values must match. Setting
1282 			 * pid to 0 is how auditd ends auditing. */
1283 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1284 				return -EINVAL;
1285 
1286 			/* test the auditd connection */
1287 			audit_replace(req_pid);
1288 
1289 			auditd_pid = auditd_pid_vnr();
1290 			if (auditd_pid) {
1291 				/* replacing a healthy auditd is not allowed */
1292 				if (new_pid) {
1293 					audit_log_config_change("audit_pid",
1294 							new_pid, auditd_pid, 0);
1295 					return -EEXIST;
1296 				}
1297 				/* only current auditd can unregister itself */
1298 				if (pid_vnr(req_pid) != auditd_pid) {
1299 					audit_log_config_change("audit_pid",
1300 							new_pid, auditd_pid, 0);
1301 					return -EACCES;
1302 				}
1303 			}
1304 
1305 			if (new_pid) {
1306 				/* register a new auditd connection */
1307 				err = auditd_set(req_pid,
1308 						 NETLINK_CB(skb).portid,
1309 						 sock_net(NETLINK_CB(skb).sk),
1310 						 skb, ack);
1311 				if (audit_enabled != AUDIT_OFF)
1312 					audit_log_config_change("audit_pid",
1313 								new_pid,
1314 								auditd_pid,
1315 								err ? 0 : 1);
1316 				if (err)
1317 					return err;
1318 
1319 				/* try to process any backlog */
1320 				wake_up_interruptible(&kauditd_wait);
1321 			} else {
1322 				if (audit_enabled != AUDIT_OFF)
1323 					audit_log_config_change("audit_pid",
1324 								new_pid,
1325 								auditd_pid, 1);
1326 
1327 				/* unregister the auditd connection */
1328 				auditd_reset(NULL);
1329 			}
1330 		}
1331 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1332 			err = audit_set_rate_limit(s.rate_limit);
1333 			if (err < 0)
1334 				return err;
1335 		}
1336 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1337 			err = audit_set_backlog_limit(s.backlog_limit);
1338 			if (err < 0)
1339 				return err;
1340 		}
1341 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1342 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1343 				return -EINVAL;
1344 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1345 				return -EINVAL;
1346 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1347 			if (err < 0)
1348 				return err;
1349 		}
1350 		if (s.mask == AUDIT_STATUS_LOST) {
1351 			u32 lost = atomic_xchg(&audit_lost, 0);
1352 
1353 			audit_log_config_change("lost", 0, lost, 1);
1354 			return lost;
1355 		}
1356 		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1357 			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1358 
1359 			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1360 			return actual;
1361 		}
1362 		break;
1363 	}
1364 	case AUDIT_GET_FEATURE:
1365 		err = audit_get_feature(skb);
1366 		if (err)
1367 			return err;
1368 		break;
1369 	case AUDIT_SET_FEATURE:
1370 		if (data_len < sizeof(struct audit_features))
1371 			return -EINVAL;
1372 		err = audit_set_feature(data);
1373 		if (err)
1374 			return err;
1375 		break;
1376 	case AUDIT_USER:
1377 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1378 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1379 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1380 			return 0;
1381 		/* exit early if there isn't at least one character to print */
1382 		if (data_len < 2)
1383 			return -EINVAL;
1384 
1385 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1386 		if (err == 1) { /* match or error */
1387 			char *str = data;
1388 
1389 			err = 0;
1390 			if (msg_type == AUDIT_USER_TTY) {
1391 				err = tty_audit_push();
1392 				if (err)
1393 					break;
1394 			}
1395 			audit_log_user_recv_msg(&ab, msg_type);
1396 			if (msg_type != AUDIT_USER_TTY) {
1397 				/* ensure NULL termination */
1398 				str[data_len - 1] = '\0';
1399 				audit_log_format(ab, " msg='%.*s'",
1400 						 AUDIT_MESSAGE_TEXT_MAX,
1401 						 str);
1402 			} else {
1403 				audit_log_format(ab, " data=");
1404 				if (str[data_len - 1] == '\0')
1405 					data_len--;
1406 				audit_log_n_untrustedstring(ab, str, data_len);
1407 			}
1408 			audit_log_end(ab);
1409 		}
1410 		break;
1411 	case AUDIT_ADD_RULE:
1412 	case AUDIT_DEL_RULE:
1413 		if (data_len < sizeof(struct audit_rule_data))
1414 			return -EINVAL;
1415 		if (audit_enabled == AUDIT_LOCKED) {
1416 			audit_log_common_recv_msg(audit_context(), &ab,
1417 						  AUDIT_CONFIG_CHANGE);
1418 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1419 					 msg_type == AUDIT_ADD_RULE ?
1420 						"add_rule" : "remove_rule",
1421 					 audit_enabled);
1422 			audit_log_end(ab);
1423 			return -EPERM;
1424 		}
1425 		err = audit_rule_change(msg_type, seq, data, data_len);
1426 		break;
1427 	case AUDIT_LIST_RULES:
1428 		err = audit_list_rules_send(skb, seq);
1429 		break;
1430 	case AUDIT_TRIM:
1431 		audit_trim_trees();
1432 		audit_log_common_recv_msg(audit_context(), &ab,
1433 					  AUDIT_CONFIG_CHANGE);
1434 		audit_log_format(ab, " op=trim res=1");
1435 		audit_log_end(ab);
1436 		break;
1437 	case AUDIT_MAKE_EQUIV: {
1438 		void *bufp = data;
1439 		u32 sizes[2];
1440 		size_t msglen = data_len;
1441 		char *old, *new;
1442 
1443 		err = -EINVAL;
1444 		if (msglen < 2 * sizeof(u32))
1445 			break;
1446 		memcpy(sizes, bufp, 2 * sizeof(u32));
1447 		bufp += 2 * sizeof(u32);
1448 		msglen -= 2 * sizeof(u32);
1449 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1450 		if (IS_ERR(old)) {
1451 			err = PTR_ERR(old);
1452 			break;
1453 		}
1454 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1455 		if (IS_ERR(new)) {
1456 			err = PTR_ERR(new);
1457 			kfree(old);
1458 			break;
1459 		}
1460 		/* OK, here comes... */
1461 		err = audit_tag_tree(old, new);
1462 
1463 		audit_log_common_recv_msg(audit_context(), &ab,
1464 					  AUDIT_CONFIG_CHANGE);
1465 		audit_log_format(ab, " op=make_equiv old=");
1466 		audit_log_untrustedstring(ab, old);
1467 		audit_log_format(ab, " new=");
1468 		audit_log_untrustedstring(ab, new);
1469 		audit_log_format(ab, " res=%d", !err);
1470 		audit_log_end(ab);
1471 		kfree(old);
1472 		kfree(new);
1473 		break;
1474 	}
1475 	case AUDIT_SIGNAL_INFO:
1476 		len = 0;
1477 		if (audit_sig_sid) {
1478 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1479 			if (err)
1480 				return err;
1481 		}
1482 		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1483 		if (!sig_data) {
1484 			if (audit_sig_sid)
1485 				security_release_secctx(ctx, len);
1486 			return -ENOMEM;
1487 		}
1488 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1489 		sig_data->pid = audit_sig_pid;
1490 		if (audit_sig_sid) {
1491 			memcpy(sig_data->ctx, ctx, len);
1492 			security_release_secctx(ctx, len);
1493 		}
1494 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1495 				 sig_data, struct_size(sig_data, ctx, len));
1496 		kfree(sig_data);
1497 		break;
1498 	case AUDIT_TTY_GET: {
1499 		struct audit_tty_status s;
1500 		unsigned int t;
1501 
1502 		t = READ_ONCE(current->signal->audit_tty);
1503 		s.enabled = t & AUDIT_TTY_ENABLE;
1504 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1505 
1506 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1507 		break;
1508 	}
1509 	case AUDIT_TTY_SET: {
1510 		struct audit_tty_status s, old;
1511 		struct audit_buffer	*ab;
1512 		unsigned int t;
1513 
1514 		memset(&s, 0, sizeof(s));
1515 		/* guard against past and future API changes */
1516 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1517 		/* check if new data is valid */
1518 		if ((s.enabled != 0 && s.enabled != 1) ||
1519 		    (s.log_passwd != 0 && s.log_passwd != 1))
1520 			err = -EINVAL;
1521 
1522 		if (err)
1523 			t = READ_ONCE(current->signal->audit_tty);
1524 		else {
1525 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1526 			t = xchg(&current->signal->audit_tty, t);
1527 		}
1528 		old.enabled = t & AUDIT_TTY_ENABLE;
1529 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1530 
1531 		audit_log_common_recv_msg(audit_context(), &ab,
1532 					  AUDIT_CONFIG_CHANGE);
1533 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1534 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1535 				 old.enabled, s.enabled, old.log_passwd,
1536 				 s.log_passwd, !err);
1537 		audit_log_end(ab);
1538 		break;
1539 	}
1540 	default:
1541 		err = -EINVAL;
1542 		break;
1543 	}
1544 
1545 	return err < 0 ? err : 0;
1546 }
1547 
1548 /**
1549  * audit_receive - receive messages from a netlink control socket
1550  * @skb: the message buffer
1551  *
1552  * Parse the provided skb and deal with any messages that may be present,
1553  * malformed skbs are discarded.
1554  */
audit_receive(struct sk_buff * skb)1555 static void audit_receive(struct sk_buff *skb)
1556 {
1557 	struct nlmsghdr *nlh;
1558 	bool ack;
1559 	/*
1560 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1561 	 * if the nlmsg_len was not aligned
1562 	 */
1563 	int len;
1564 	int err;
1565 
1566 	nlh = nlmsg_hdr(skb);
1567 	len = skb->len;
1568 
1569 	audit_ctl_lock();
1570 	while (nlmsg_ok(nlh, len)) {
1571 		ack = nlh->nlmsg_flags & NLM_F_ACK;
1572 		err = audit_receive_msg(skb, nlh, &ack);
1573 
1574 		/* send an ack if the user asked for one and audit_receive_msg
1575 		 * didn't already do it, or if there was an error. */
1576 		if (ack || err)
1577 			netlink_ack(skb, nlh, err, NULL);
1578 
1579 		nlh = nlmsg_next(nlh, &len);
1580 	}
1581 	audit_ctl_unlock();
1582 
1583 	/* can't block with the ctrl lock, so penalize the sender now */
1584 	if (audit_backlog_limit &&
1585 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1586 		DECLARE_WAITQUEUE(wait, current);
1587 
1588 		/* wake kauditd to try and flush the queue */
1589 		wake_up_interruptible(&kauditd_wait);
1590 
1591 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1592 		set_current_state(TASK_UNINTERRUPTIBLE);
1593 		schedule_timeout(audit_backlog_wait_time);
1594 		remove_wait_queue(&audit_backlog_wait, &wait);
1595 	}
1596 }
1597 
1598 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1599 static void audit_log_multicast(int group, const char *op, int err)
1600 {
1601 	const struct cred *cred;
1602 	struct tty_struct *tty;
1603 	char comm[sizeof(current->comm)];
1604 	struct audit_buffer *ab;
1605 
1606 	if (!audit_enabled)
1607 		return;
1608 
1609 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1610 	if (!ab)
1611 		return;
1612 
1613 	cred = current_cred();
1614 	tty = audit_get_tty();
1615 	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1616 			 task_pid_nr(current),
1617 			 from_kuid(&init_user_ns, cred->uid),
1618 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1619 			 tty ? tty_name(tty) : "(none)",
1620 			 audit_get_sessionid(current));
1621 	audit_put_tty(tty);
1622 	audit_log_task_context(ab); /* subj= */
1623 	audit_log_format(ab, " comm=");
1624 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1625 	audit_log_d_path_exe(ab, current->mm); /* exe= */
1626 	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1627 	audit_log_end(ab);
1628 }
1629 
1630 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1631 static int audit_multicast_bind(struct net *net, int group)
1632 {
1633 	int err = 0;
1634 
1635 	if (!capable(CAP_AUDIT_READ))
1636 		err = -EPERM;
1637 	audit_log_multicast(group, "connect", err);
1638 	return err;
1639 }
1640 
audit_multicast_unbind(struct net * net,int group)1641 static void audit_multicast_unbind(struct net *net, int group)
1642 {
1643 	audit_log_multicast(group, "disconnect", 0);
1644 }
1645 
audit_net_init(struct net * net)1646 static int __net_init audit_net_init(struct net *net)
1647 {
1648 	struct netlink_kernel_cfg cfg = {
1649 		.input	= audit_receive,
1650 		.bind	= audit_multicast_bind,
1651 		.unbind	= audit_multicast_unbind,
1652 		.flags	= NL_CFG_F_NONROOT_RECV,
1653 		.groups	= AUDIT_NLGRP_MAX,
1654 	};
1655 
1656 	struct audit_net *aunet = net_generic(net, audit_net_id);
1657 
1658 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1659 	if (aunet->sk == NULL) {
1660 		audit_panic("cannot initialize netlink socket in namespace");
1661 		return -ENOMEM;
1662 	}
1663 	/* limit the timeout in case auditd is blocked/stopped */
1664 	aunet->sk->sk_sndtimeo = HZ / 10;
1665 
1666 	return 0;
1667 }
1668 
audit_net_exit(struct net * net)1669 static void __net_exit audit_net_exit(struct net *net)
1670 {
1671 	struct audit_net *aunet = net_generic(net, audit_net_id);
1672 
1673 	/* NOTE: you would think that we would want to check the auditd
1674 	 * connection and potentially reset it here if it lives in this
1675 	 * namespace, but since the auditd connection tracking struct holds a
1676 	 * reference to this namespace (see auditd_set()) we are only ever
1677 	 * going to get here after that connection has been released */
1678 
1679 	netlink_kernel_release(aunet->sk);
1680 }
1681 
1682 static struct pernet_operations audit_net_ops __net_initdata = {
1683 	.init = audit_net_init,
1684 	.exit = audit_net_exit,
1685 	.id = &audit_net_id,
1686 	.size = sizeof(struct audit_net),
1687 };
1688 
1689 /* Initialize audit support at boot time. */
audit_init(void)1690 static int __init audit_init(void)
1691 {
1692 	int i;
1693 
1694 	if (audit_initialized == AUDIT_DISABLED)
1695 		return 0;
1696 
1697 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1698 					       sizeof(struct audit_buffer),
1699 					       0, SLAB_PANIC, NULL);
1700 
1701 	skb_queue_head_init(&audit_queue);
1702 	skb_queue_head_init(&audit_retry_queue);
1703 	skb_queue_head_init(&audit_hold_queue);
1704 
1705 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1706 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1707 
1708 	mutex_init(&audit_cmd_mutex.lock);
1709 	audit_cmd_mutex.owner = NULL;
1710 
1711 	pr_info("initializing netlink subsys (%s)\n",
1712 		audit_default ? "enabled" : "disabled");
1713 	register_pernet_subsys(&audit_net_ops);
1714 
1715 	audit_initialized = AUDIT_INITIALIZED;
1716 
1717 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1718 	if (IS_ERR(kauditd_task)) {
1719 		int err = PTR_ERR(kauditd_task);
1720 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1721 	}
1722 
1723 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1724 		"state=initialized audit_enabled=%u res=1",
1725 		 audit_enabled);
1726 
1727 	return 0;
1728 }
1729 postcore_initcall(audit_init);
1730 
1731 /*
1732  * Process kernel command-line parameter at boot time.
1733  * audit={0|off} or audit={1|on}.
1734  */
audit_enable(char * str)1735 static int __init audit_enable(char *str)
1736 {
1737 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1738 		audit_default = AUDIT_OFF;
1739 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1740 		audit_default = AUDIT_ON;
1741 	else {
1742 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1743 		audit_default = AUDIT_ON;
1744 	}
1745 
1746 	if (audit_default == AUDIT_OFF)
1747 		audit_initialized = AUDIT_DISABLED;
1748 	if (audit_set_enabled(audit_default))
1749 		pr_err("audit: error setting audit state (%d)\n",
1750 		       audit_default);
1751 
1752 	pr_info("%s\n", audit_default ?
1753 		"enabled (after initialization)" : "disabled (until reboot)");
1754 
1755 	return 1;
1756 }
1757 __setup("audit=", audit_enable);
1758 
1759 /* Process kernel command-line parameter at boot time.
1760  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1761 static int __init audit_backlog_limit_set(char *str)
1762 {
1763 	u32 audit_backlog_limit_arg;
1764 
1765 	pr_info("audit_backlog_limit: ");
1766 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1767 		pr_cont("using default of %u, unable to parse %s\n",
1768 			audit_backlog_limit, str);
1769 		return 1;
1770 	}
1771 
1772 	audit_backlog_limit = audit_backlog_limit_arg;
1773 	pr_cont("%d\n", audit_backlog_limit);
1774 
1775 	return 1;
1776 }
1777 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1778 
audit_buffer_free(struct audit_buffer * ab)1779 static void audit_buffer_free(struct audit_buffer *ab)
1780 {
1781 	if (!ab)
1782 		return;
1783 
1784 	kfree_skb(ab->skb);
1785 	kmem_cache_free(audit_buffer_cache, ab);
1786 }
1787 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1788 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1789 					       gfp_t gfp_mask, int type)
1790 {
1791 	struct audit_buffer *ab;
1792 
1793 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1794 	if (!ab)
1795 		return NULL;
1796 
1797 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1798 	if (!ab->skb)
1799 		goto err;
1800 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1801 		goto err;
1802 
1803 	ab->ctx = ctx;
1804 	ab->gfp_mask = gfp_mask;
1805 
1806 	return ab;
1807 
1808 err:
1809 	audit_buffer_free(ab);
1810 	return NULL;
1811 }
1812 
1813 /**
1814  * audit_serial - compute a serial number for the audit record
1815  *
1816  * Compute a serial number for the audit record.  Audit records are
1817  * written to user-space as soon as they are generated, so a complete
1818  * audit record may be written in several pieces.  The timestamp of the
1819  * record and this serial number are used by the user-space tools to
1820  * determine which pieces belong to the same audit record.  The
1821  * (timestamp,serial) tuple is unique for each syscall and is live from
1822  * syscall entry to syscall exit.
1823  *
1824  * NOTE: Another possibility is to store the formatted records off the
1825  * audit context (for those records that have a context), and emit them
1826  * all at syscall exit.  However, this could delay the reporting of
1827  * significant errors until syscall exit (or never, if the system
1828  * halts).
1829  */
audit_serial(void)1830 unsigned int audit_serial(void)
1831 {
1832 	static atomic_t serial = ATOMIC_INIT(0);
1833 
1834 	return atomic_inc_return(&serial);
1835 }
1836 
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1837 static inline void audit_get_stamp(struct audit_context *ctx,
1838 				   struct timespec64 *t, unsigned int *serial)
1839 {
1840 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1841 		ktime_get_coarse_real_ts64(t);
1842 		*serial = audit_serial();
1843 	}
1844 }
1845 
1846 /**
1847  * audit_log_start - obtain an audit buffer
1848  * @ctx: audit_context (may be NULL)
1849  * @gfp_mask: type of allocation
1850  * @type: audit message type
1851  *
1852  * Returns audit_buffer pointer on success or NULL on error.
1853  *
1854  * Obtain an audit buffer.  This routine does locking to obtain the
1855  * audit buffer, but then no locking is required for calls to
1856  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1857  * syscall, then the syscall is marked as auditable and an audit record
1858  * will be written at syscall exit.  If there is no associated task, then
1859  * task context (ctx) should be NULL.
1860  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1861 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1862 				     int type)
1863 {
1864 	struct audit_buffer *ab;
1865 	struct timespec64 t;
1866 	unsigned int serial;
1867 
1868 	if (audit_initialized != AUDIT_INITIALIZED)
1869 		return NULL;
1870 
1871 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1872 		return NULL;
1873 
1874 	/* NOTE: don't ever fail/sleep on these two conditions:
1875 	 * 1. auditd generated record - since we need auditd to drain the
1876 	 *    queue; also, when we are checking for auditd, compare PIDs using
1877 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1878 	 *    using a PID anchored in the caller's namespace
1879 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1880 	 *    while holding the mutex, although we do penalize the sender
1881 	 *    later in audit_receive() when it is safe to block
1882 	 */
1883 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1884 		long stime = audit_backlog_wait_time;
1885 
1886 		while (audit_backlog_limit &&
1887 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1888 			/* wake kauditd to try and flush the queue */
1889 			wake_up_interruptible(&kauditd_wait);
1890 
1891 			/* sleep if we are allowed and we haven't exhausted our
1892 			 * backlog wait limit */
1893 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1894 				long rtime = stime;
1895 
1896 				DECLARE_WAITQUEUE(wait, current);
1897 
1898 				add_wait_queue_exclusive(&audit_backlog_wait,
1899 							 &wait);
1900 				set_current_state(TASK_UNINTERRUPTIBLE);
1901 				stime = schedule_timeout(rtime);
1902 				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1903 				remove_wait_queue(&audit_backlog_wait, &wait);
1904 			} else {
1905 				if (audit_rate_check() && printk_ratelimit())
1906 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1907 						skb_queue_len(&audit_queue),
1908 						audit_backlog_limit);
1909 				audit_log_lost("backlog limit exceeded");
1910 				return NULL;
1911 			}
1912 		}
1913 	}
1914 
1915 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1916 	if (!ab) {
1917 		audit_log_lost("out of memory in audit_log_start");
1918 		return NULL;
1919 	}
1920 
1921 	audit_get_stamp(ab->ctx, &t, &serial);
1922 	/* cancel dummy context to enable supporting records */
1923 	if (ctx)
1924 		ctx->dummy = 0;
1925 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1926 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1927 
1928 	return ab;
1929 }
1930 
1931 /**
1932  * audit_expand - expand skb in the audit buffer
1933  * @ab: audit_buffer
1934  * @extra: space to add at tail of the skb
1935  *
1936  * Returns 0 (no space) on failed expansion, or available space if
1937  * successful.
1938  */
audit_expand(struct audit_buffer * ab,int extra)1939 static inline int audit_expand(struct audit_buffer *ab, int extra)
1940 {
1941 	struct sk_buff *skb = ab->skb;
1942 	int oldtail = skb_tailroom(skb);
1943 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1944 	int newtail = skb_tailroom(skb);
1945 
1946 	if (ret < 0) {
1947 		audit_log_lost("out of memory in audit_expand");
1948 		return 0;
1949 	}
1950 
1951 	skb->truesize += newtail - oldtail;
1952 	return newtail;
1953 }
1954 
1955 /*
1956  * Format an audit message into the audit buffer.  If there isn't enough
1957  * room in the audit buffer, more room will be allocated and vsnprint
1958  * will be called a second time.  Currently, we assume that a printk
1959  * can't format message larger than 1024 bytes, so we don't either.
1960  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1961 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1962 			      va_list args)
1963 {
1964 	int len, avail;
1965 	struct sk_buff *skb;
1966 	va_list args2;
1967 
1968 	if (!ab)
1969 		return;
1970 
1971 	BUG_ON(!ab->skb);
1972 	skb = ab->skb;
1973 	avail = skb_tailroom(skb);
1974 	if (avail == 0) {
1975 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1976 		if (!avail)
1977 			goto out;
1978 	}
1979 	va_copy(args2, args);
1980 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1981 	if (len >= avail) {
1982 		/* The printk buffer is 1024 bytes long, so if we get
1983 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1984 		 * log everything that printk could have logged. */
1985 		avail = audit_expand(ab,
1986 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1987 		if (!avail)
1988 			goto out_va_end;
1989 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1990 	}
1991 	if (len > 0)
1992 		skb_put(skb, len);
1993 out_va_end:
1994 	va_end(args2);
1995 out:
1996 	return;
1997 }
1998 
1999 /**
2000  * audit_log_format - format a message into the audit buffer.
2001  * @ab: audit_buffer
2002  * @fmt: format string
2003  * @...: optional parameters matching @fmt string
2004  *
2005  * All the work is done in audit_log_vformat.
2006  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2007 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2008 {
2009 	va_list args;
2010 
2011 	if (!ab)
2012 		return;
2013 	va_start(args, fmt);
2014 	audit_log_vformat(ab, fmt, args);
2015 	va_end(args);
2016 }
2017 
2018 /**
2019  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2020  * @ab: the audit_buffer
2021  * @buf: buffer to convert to hex
2022  * @len: length of @buf to be converted
2023  *
2024  * No return value; failure to expand is silently ignored.
2025  *
2026  * This function will take the passed buf and convert it into a string of
2027  * ascii hex digits. The new string is placed onto the skb.
2028  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2029 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2030 		size_t len)
2031 {
2032 	int i, avail, new_len;
2033 	unsigned char *ptr;
2034 	struct sk_buff *skb;
2035 
2036 	if (!ab)
2037 		return;
2038 
2039 	BUG_ON(!ab->skb);
2040 	skb = ab->skb;
2041 	avail = skb_tailroom(skb);
2042 	new_len = len<<1;
2043 	if (new_len >= avail) {
2044 		/* Round the buffer request up to the next multiple */
2045 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2046 		avail = audit_expand(ab, new_len);
2047 		if (!avail)
2048 			return;
2049 	}
2050 
2051 	ptr = skb_tail_pointer(skb);
2052 	for (i = 0; i < len; i++)
2053 		ptr = hex_byte_pack_upper(ptr, buf[i]);
2054 	*ptr = 0;
2055 	skb_put(skb, len << 1); /* new string is twice the old string */
2056 }
2057 
2058 /*
2059  * Format a string of no more than slen characters into the audit buffer,
2060  * enclosed in quote marks.
2061  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2062 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2063 			size_t slen)
2064 {
2065 	int avail, new_len;
2066 	unsigned char *ptr;
2067 	struct sk_buff *skb;
2068 
2069 	if (!ab)
2070 		return;
2071 
2072 	BUG_ON(!ab->skb);
2073 	skb = ab->skb;
2074 	avail = skb_tailroom(skb);
2075 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2076 	if (new_len > avail) {
2077 		avail = audit_expand(ab, new_len);
2078 		if (!avail)
2079 			return;
2080 	}
2081 	ptr = skb_tail_pointer(skb);
2082 	*ptr++ = '"';
2083 	memcpy(ptr, string, slen);
2084 	ptr += slen;
2085 	*ptr++ = '"';
2086 	*ptr = 0;
2087 	skb_put(skb, slen + 2);	/* don't include null terminator */
2088 }
2089 
2090 /**
2091  * audit_string_contains_control - does a string need to be logged in hex
2092  * @string: string to be checked
2093  * @len: max length of the string to check
2094  */
audit_string_contains_control(const char * string,size_t len)2095 bool audit_string_contains_control(const char *string, size_t len)
2096 {
2097 	const unsigned char *p;
2098 	for (p = string; p < (const unsigned char *)string + len; p++) {
2099 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2100 			return true;
2101 	}
2102 	return false;
2103 }
2104 
2105 /**
2106  * audit_log_n_untrustedstring - log a string that may contain random characters
2107  * @ab: audit_buffer
2108  * @len: length of string (not including trailing null)
2109  * @string: string to be logged
2110  *
2111  * This code will escape a string that is passed to it if the string
2112  * contains a control character, unprintable character, double quote mark,
2113  * or a space. Unescaped strings will start and end with a double quote mark.
2114  * Strings that are escaped are printed in hex (2 digits per char).
2115  *
2116  * The caller specifies the number of characters in the string to log, which may
2117  * or may not be the entire string.
2118  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2119 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2120 				 size_t len)
2121 {
2122 	if (audit_string_contains_control(string, len))
2123 		audit_log_n_hex(ab, string, len);
2124 	else
2125 		audit_log_n_string(ab, string, len);
2126 }
2127 
2128 /**
2129  * audit_log_untrustedstring - log a string that may contain random characters
2130  * @ab: audit_buffer
2131  * @string: string to be logged
2132  *
2133  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2134  * determine string length.
2135  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2136 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2137 {
2138 	audit_log_n_untrustedstring(ab, string, strlen(string));
2139 }
2140 
2141 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2142 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2143 		      const struct path *path)
2144 {
2145 	char *p, *pathname;
2146 
2147 	if (prefix)
2148 		audit_log_format(ab, "%s", prefix);
2149 
2150 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2151 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2152 	if (!pathname) {
2153 		audit_log_format(ab, "\"<no_memory>\"");
2154 		return;
2155 	}
2156 	p = d_path(path, pathname, PATH_MAX+11);
2157 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2158 		/* FIXME: can we save some information here? */
2159 		audit_log_format(ab, "\"<too_long>\"");
2160 	} else
2161 		audit_log_untrustedstring(ab, p);
2162 	kfree(pathname);
2163 }
2164 
audit_log_session_info(struct audit_buffer * ab)2165 void audit_log_session_info(struct audit_buffer *ab)
2166 {
2167 	unsigned int sessionid = audit_get_sessionid(current);
2168 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2169 
2170 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2171 }
2172 
audit_log_key(struct audit_buffer * ab,char * key)2173 void audit_log_key(struct audit_buffer *ab, char *key)
2174 {
2175 	audit_log_format(ab, " key=");
2176 	if (key)
2177 		audit_log_untrustedstring(ab, key);
2178 	else
2179 		audit_log_format(ab, "(null)");
2180 }
2181 
audit_log_task_context(struct audit_buffer * ab)2182 int audit_log_task_context(struct audit_buffer *ab)
2183 {
2184 	char *ctx = NULL;
2185 	unsigned len;
2186 	int error;
2187 	u32 sid;
2188 
2189 	security_current_getsecid_subj(&sid);
2190 	if (!sid)
2191 		return 0;
2192 
2193 	error = security_secid_to_secctx(sid, &ctx, &len);
2194 	if (error) {
2195 		if (error != -EINVAL)
2196 			goto error_path;
2197 		return 0;
2198 	}
2199 
2200 	audit_log_format(ab, " subj=%s", ctx);
2201 	security_release_secctx(ctx, len);
2202 	return 0;
2203 
2204 error_path:
2205 	audit_panic("error in audit_log_task_context");
2206 	return error;
2207 }
2208 EXPORT_SYMBOL(audit_log_task_context);
2209 
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2210 void audit_log_d_path_exe(struct audit_buffer *ab,
2211 			  struct mm_struct *mm)
2212 {
2213 	struct file *exe_file;
2214 
2215 	if (!mm)
2216 		goto out_null;
2217 
2218 	exe_file = get_mm_exe_file(mm);
2219 	if (!exe_file)
2220 		goto out_null;
2221 
2222 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2223 	fput(exe_file);
2224 	return;
2225 out_null:
2226 	audit_log_format(ab, " exe=(null)");
2227 }
2228 
audit_get_tty(void)2229 struct tty_struct *audit_get_tty(void)
2230 {
2231 	struct tty_struct *tty = NULL;
2232 	unsigned long flags;
2233 
2234 	spin_lock_irqsave(&current->sighand->siglock, flags);
2235 	if (current->signal)
2236 		tty = tty_kref_get(current->signal->tty);
2237 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2238 	return tty;
2239 }
2240 
audit_put_tty(struct tty_struct * tty)2241 void audit_put_tty(struct tty_struct *tty)
2242 {
2243 	tty_kref_put(tty);
2244 }
2245 
audit_log_task_info(struct audit_buffer * ab)2246 void audit_log_task_info(struct audit_buffer *ab)
2247 {
2248 	const struct cred *cred;
2249 	char comm[sizeof(current->comm)];
2250 	struct tty_struct *tty;
2251 
2252 	if (!ab)
2253 		return;
2254 
2255 	cred = current_cred();
2256 	tty = audit_get_tty();
2257 	audit_log_format(ab,
2258 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2259 			 " euid=%u suid=%u fsuid=%u"
2260 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2261 			 task_ppid_nr(current),
2262 			 task_tgid_nr(current),
2263 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2264 			 from_kuid(&init_user_ns, cred->uid),
2265 			 from_kgid(&init_user_ns, cred->gid),
2266 			 from_kuid(&init_user_ns, cred->euid),
2267 			 from_kuid(&init_user_ns, cred->suid),
2268 			 from_kuid(&init_user_ns, cred->fsuid),
2269 			 from_kgid(&init_user_ns, cred->egid),
2270 			 from_kgid(&init_user_ns, cred->sgid),
2271 			 from_kgid(&init_user_ns, cred->fsgid),
2272 			 tty ? tty_name(tty) : "(none)",
2273 			 audit_get_sessionid(current));
2274 	audit_put_tty(tty);
2275 	audit_log_format(ab, " comm=");
2276 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2277 	audit_log_d_path_exe(ab, current->mm);
2278 	audit_log_task_context(ab);
2279 }
2280 EXPORT_SYMBOL(audit_log_task_info);
2281 
2282 /**
2283  * audit_log_path_denied - report a path restriction denial
2284  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2285  * @operation: specific operation name
2286  */
audit_log_path_denied(int type,const char * operation)2287 void audit_log_path_denied(int type, const char *operation)
2288 {
2289 	struct audit_buffer *ab;
2290 
2291 	if (!audit_enabled || audit_dummy_context())
2292 		return;
2293 
2294 	/* Generate log with subject, operation, outcome. */
2295 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2296 	if (!ab)
2297 		return;
2298 	audit_log_format(ab, "op=%s", operation);
2299 	audit_log_task_info(ab);
2300 	audit_log_format(ab, " res=0");
2301 	audit_log_end(ab);
2302 }
2303 
2304 /* global counter which is incremented every time something logs in */
2305 static atomic_t session_id = ATOMIC_INIT(0);
2306 
audit_set_loginuid_perm(kuid_t loginuid)2307 static int audit_set_loginuid_perm(kuid_t loginuid)
2308 {
2309 	/* if we are unset, we don't need privs */
2310 	if (!audit_loginuid_set(current))
2311 		return 0;
2312 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2313 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2314 		return -EPERM;
2315 	/* it is set, you need permission */
2316 	if (!capable(CAP_AUDIT_CONTROL))
2317 		return -EPERM;
2318 	/* reject if this is not an unset and we don't allow that */
2319 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2320 				 && uid_valid(loginuid))
2321 		return -EPERM;
2322 	return 0;
2323 }
2324 
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2325 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2326 				   unsigned int oldsessionid,
2327 				   unsigned int sessionid, int rc)
2328 {
2329 	struct audit_buffer *ab;
2330 	uid_t uid, oldloginuid, loginuid;
2331 	struct tty_struct *tty;
2332 
2333 	if (!audit_enabled)
2334 		return;
2335 
2336 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2337 	if (!ab)
2338 		return;
2339 
2340 	uid = from_kuid(&init_user_ns, task_uid(current));
2341 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2342 	loginuid = from_kuid(&init_user_ns, kloginuid);
2343 	tty = audit_get_tty();
2344 
2345 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2346 	audit_log_task_context(ab);
2347 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2348 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2349 			 oldsessionid, sessionid, !rc);
2350 	audit_put_tty(tty);
2351 	audit_log_end(ab);
2352 }
2353 
2354 /**
2355  * audit_set_loginuid - set current task's loginuid
2356  * @loginuid: loginuid value
2357  *
2358  * Returns 0.
2359  *
2360  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2361  */
audit_set_loginuid(kuid_t loginuid)2362 int audit_set_loginuid(kuid_t loginuid)
2363 {
2364 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2365 	kuid_t oldloginuid;
2366 	int rc;
2367 
2368 	oldloginuid = audit_get_loginuid(current);
2369 	oldsessionid = audit_get_sessionid(current);
2370 
2371 	rc = audit_set_loginuid_perm(loginuid);
2372 	if (rc)
2373 		goto out;
2374 
2375 	/* are we setting or clearing? */
2376 	if (uid_valid(loginuid)) {
2377 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2378 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2379 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2380 	}
2381 
2382 	current->sessionid = sessionid;
2383 	current->loginuid = loginuid;
2384 out:
2385 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2386 	return rc;
2387 }
2388 
2389 /**
2390  * audit_signal_info - record signal info for shutting down audit subsystem
2391  * @sig: signal value
2392  * @t: task being signaled
2393  *
2394  * If the audit subsystem is being terminated, record the task (pid)
2395  * and uid that is doing that.
2396  */
audit_signal_info(int sig,struct task_struct * t)2397 int audit_signal_info(int sig, struct task_struct *t)
2398 {
2399 	kuid_t uid = current_uid(), auid;
2400 
2401 	if (auditd_test_task(t) &&
2402 	    (sig == SIGTERM || sig == SIGHUP ||
2403 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2404 		audit_sig_pid = task_tgid_nr(current);
2405 		auid = audit_get_loginuid(current);
2406 		if (uid_valid(auid))
2407 			audit_sig_uid = auid;
2408 		else
2409 			audit_sig_uid = uid;
2410 		security_current_getsecid_subj(&audit_sig_sid);
2411 	}
2412 
2413 	return audit_signal_info_syscall(t);
2414 }
2415 
2416 /**
2417  * audit_log_end - end one audit record
2418  * @ab: the audit_buffer
2419  *
2420  * We can not do a netlink send inside an irq context because it blocks (last
2421  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2422  * queue and a kthread is scheduled to remove them from the queue outside the
2423  * irq context.  May be called in any context.
2424  */
audit_log_end(struct audit_buffer * ab)2425 void audit_log_end(struct audit_buffer *ab)
2426 {
2427 	struct sk_buff *skb;
2428 	struct nlmsghdr *nlh;
2429 
2430 	if (!ab)
2431 		return;
2432 
2433 	if (audit_rate_check()) {
2434 		skb = ab->skb;
2435 		ab->skb = NULL;
2436 
2437 		/* setup the netlink header, see the comments in
2438 		 * kauditd_send_multicast_skb() for length quirks */
2439 		nlh = nlmsg_hdr(skb);
2440 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2441 
2442 		/* queue the netlink packet and poke the kauditd thread */
2443 		skb_queue_tail(&audit_queue, skb);
2444 		wake_up_interruptible(&kauditd_wait);
2445 	} else
2446 		audit_log_lost("rate limit exceeded");
2447 
2448 	audit_buffer_free(ab);
2449 }
2450 
2451 /**
2452  * audit_log - Log an audit record
2453  * @ctx: audit context
2454  * @gfp_mask: type of allocation
2455  * @type: audit message type
2456  * @fmt: format string to use
2457  * @...: variable parameters matching the format string
2458  *
2459  * This is a convenience function that calls audit_log_start,
2460  * audit_log_vformat, and audit_log_end.  It may be called
2461  * in any context.
2462  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2463 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2464 	       const char *fmt, ...)
2465 {
2466 	struct audit_buffer *ab;
2467 	va_list args;
2468 
2469 	ab = audit_log_start(ctx, gfp_mask, type);
2470 	if (ab) {
2471 		va_start(args, fmt);
2472 		audit_log_vformat(ab, fmt, args);
2473 		va_end(args);
2474 		audit_log_end(ab);
2475 	}
2476 }
2477 
2478 EXPORT_SYMBOL(audit_log_start);
2479 EXPORT_SYMBOL(audit_log_end);
2480 EXPORT_SYMBOL(audit_log_format);
2481 EXPORT_SYMBOL(audit_log);
2482