1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62
63 #include "audit.h"
64
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized = AUDIT_UNINITIALIZED;
71
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
74
75 EXPORT_SYMBOL_GPL(audit_enabled);
76
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
79
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
82
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
89 */
90 struct audit_net {
91 struct sock *sk;
92 };
93
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
100 *
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
104 */
105 struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117 static u32 audit_rate_limit;
118
119 /* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121 static u32 audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t audit_sig_uid = INVALID_UID;
127 static pid_t audit_sig_pid = -1;
128 static u32 audit_sig_sid;
129
130 /* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t audit_lost = ATOMIC_INIT(0);
138
139 /* Monotonically increasing sum of time the kernel has spent
140 * waiting while the backlog limit is exceeded.
141 */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146
147 static struct kmem_cache *audit_buffer_cache;
148
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 .mask = -1,
165 .features = 0,
166 .lock = 0,};
167
168 static char *audit_feature_names[2] = {
169 "only_unset_loginuid",
170 "loginuid_immutable",
171 };
172
173 /**
174 * struct audit_ctl_mutex - serialize requests from userspace
175 * @lock: the mutex used for locking
176 * @owner: the task which owns the lock
177 *
178 * Description:
179 * This is the lock struct used to ensure we only process userspace requests
180 * in an orderly fashion. We can't simply use a mutex/lock here because we
181 * need to track lock ownership so we don't end up blocking the lock owner in
182 * audit_log_start() or similar.
183 */
184 static struct audit_ctl_mutex {
185 struct mutex lock;
186 void *owner;
187 } audit_cmd_mutex;
188
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193
194 /* The audit_buffer is used when formatting an audit record. The caller
195 * locks briefly to get the record off the freelist or to allocate the
196 * buffer, and locks briefly to send the buffer to the netlink layer or
197 * to place it on a transmit queue. Multiple audit_buffers can be in
198 * use simultaneously. */
199 struct audit_buffer {
200 struct sk_buff *skb; /* formatted skb ready to send */
201 struct audit_context *ctx; /* NULL or associated context */
202 gfp_t gfp_mask;
203 };
204
205 struct audit_reply {
206 __u32 portid;
207 struct net *net;
208 struct sk_buff *skb;
209 };
210
211 /**
212 * auditd_test_task - Check to see if a given task is an audit daemon
213 * @task: the task to check
214 *
215 * Description:
216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
217 */
auditd_test_task(struct task_struct * task)218 int auditd_test_task(struct task_struct *task)
219 {
220 int rc;
221 struct auditd_connection *ac;
222
223 rcu_read_lock();
224 ac = rcu_dereference(auditd_conn);
225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 rcu_read_unlock();
227
228 return rc;
229 }
230
231 /**
232 * audit_ctl_lock - Take the audit control lock
233 */
audit_ctl_lock(void)234 void audit_ctl_lock(void)
235 {
236 mutex_lock(&audit_cmd_mutex.lock);
237 audit_cmd_mutex.owner = current;
238 }
239
240 /**
241 * audit_ctl_unlock - Drop the audit control lock
242 */
audit_ctl_unlock(void)243 void audit_ctl_unlock(void)
244 {
245 audit_cmd_mutex.owner = NULL;
246 mutex_unlock(&audit_cmd_mutex.lock);
247 }
248
249 /**
250 * audit_ctl_owner_current - Test to see if the current task owns the lock
251 *
252 * Description:
253 * Return true if the current task owns the audit control lock, false if it
254 * doesn't own the lock.
255 */
audit_ctl_owner_current(void)256 static bool audit_ctl_owner_current(void)
257 {
258 return (current == audit_cmd_mutex.owner);
259 }
260
261 /**
262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
263 *
264 * Description:
265 * Returns the PID in relation to the namespace, 0 on failure.
266 */
auditd_pid_vnr(void)267 static pid_t auditd_pid_vnr(void)
268 {
269 pid_t pid;
270 const struct auditd_connection *ac;
271
272 rcu_read_lock();
273 ac = rcu_dereference(auditd_conn);
274 if (!ac || !ac->pid)
275 pid = 0;
276 else
277 pid = pid_vnr(ac->pid);
278 rcu_read_unlock();
279
280 return pid;
281 }
282
283 /**
284 * audit_get_sk - Return the audit socket for the given network namespace
285 * @net: the destination network namespace
286 *
287 * Description:
288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
289 * that a reference is held for the network namespace while the sock is in use.
290 */
audit_get_sk(const struct net * net)291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 struct audit_net *aunet;
294
295 if (!net)
296 return NULL;
297
298 aunet = net_generic(net, audit_net_id);
299 return aunet->sk;
300 }
301
audit_panic(const char * message)302 void audit_panic(const char *message)
303 {
304 switch (audit_failure) {
305 case AUDIT_FAIL_SILENT:
306 break;
307 case AUDIT_FAIL_PRINTK:
308 if (printk_ratelimit())
309 pr_err("%s\n", message);
310 break;
311 case AUDIT_FAIL_PANIC:
312 panic("audit: %s\n", message);
313 break;
314 }
315 }
316
audit_rate_check(void)317 static inline int audit_rate_check(void)
318 {
319 static unsigned long last_check = 0;
320 static int messages = 0;
321 static DEFINE_SPINLOCK(lock);
322 unsigned long flags;
323 unsigned long now;
324 int retval = 0;
325
326 if (!audit_rate_limit) return 1;
327
328 spin_lock_irqsave(&lock, flags);
329 if (++messages < audit_rate_limit) {
330 retval = 1;
331 } else {
332 now = jiffies;
333 if (time_after(now, last_check + HZ)) {
334 last_check = now;
335 messages = 0;
336 retval = 1;
337 }
338 }
339 spin_unlock_irqrestore(&lock, flags);
340
341 return retval;
342 }
343
344 /**
345 * audit_log_lost - conditionally log lost audit message event
346 * @message: the message stating reason for lost audit message
347 *
348 * Emit at least 1 message per second, even if audit_rate_check is
349 * throttling.
350 * Always increment the lost messages counter.
351 */
audit_log_lost(const char * message)352 void audit_log_lost(const char *message)
353 {
354 static unsigned long last_msg = 0;
355 static DEFINE_SPINLOCK(lock);
356 unsigned long flags;
357 unsigned long now;
358 int print;
359
360 atomic_inc(&audit_lost);
361
362 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
363
364 if (!print) {
365 spin_lock_irqsave(&lock, flags);
366 now = jiffies;
367 if (time_after(now, last_msg + HZ)) {
368 print = 1;
369 last_msg = now;
370 }
371 spin_unlock_irqrestore(&lock, flags);
372 }
373
374 if (print) {
375 if (printk_ratelimit())
376 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
377 atomic_read(&audit_lost),
378 audit_rate_limit,
379 audit_backlog_limit);
380 audit_panic(message);
381 }
382 }
383
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)384 static int audit_log_config_change(char *function_name, u32 new, u32 old,
385 int allow_changes)
386 {
387 struct audit_buffer *ab;
388 int rc = 0;
389
390 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
391 if (unlikely(!ab))
392 return rc;
393 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
394 audit_log_session_info(ab);
395 rc = audit_log_task_context(ab);
396 if (rc)
397 allow_changes = 0; /* Something weird, deny request */
398 audit_log_format(ab, " res=%d", allow_changes);
399 audit_log_end(ab);
400 return rc;
401 }
402
audit_do_config_change(char * function_name,u32 * to_change,u32 new)403 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
404 {
405 int allow_changes, rc = 0;
406 u32 old = *to_change;
407
408 /* check if we are locked */
409 if (audit_enabled == AUDIT_LOCKED)
410 allow_changes = 0;
411 else
412 allow_changes = 1;
413
414 if (audit_enabled != AUDIT_OFF) {
415 rc = audit_log_config_change(function_name, new, old, allow_changes);
416 if (rc)
417 allow_changes = 0;
418 }
419
420 /* If we are allowed, make the change */
421 if (allow_changes == 1)
422 *to_change = new;
423 /* Not allowed, update reason */
424 else if (rc == 0)
425 rc = -EPERM;
426 return rc;
427 }
428
audit_set_rate_limit(u32 limit)429 static int audit_set_rate_limit(u32 limit)
430 {
431 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
432 }
433
audit_set_backlog_limit(u32 limit)434 static int audit_set_backlog_limit(u32 limit)
435 {
436 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
437 }
438
audit_set_backlog_wait_time(u32 timeout)439 static int audit_set_backlog_wait_time(u32 timeout)
440 {
441 return audit_do_config_change("audit_backlog_wait_time",
442 &audit_backlog_wait_time, timeout);
443 }
444
audit_set_enabled(u32 state)445 static int audit_set_enabled(u32 state)
446 {
447 int rc;
448 if (state > AUDIT_LOCKED)
449 return -EINVAL;
450
451 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
452 if (!rc)
453 audit_ever_enabled |= !!state;
454
455 return rc;
456 }
457
audit_set_failure(u32 state)458 static int audit_set_failure(u32 state)
459 {
460 if (state != AUDIT_FAIL_SILENT
461 && state != AUDIT_FAIL_PRINTK
462 && state != AUDIT_FAIL_PANIC)
463 return -EINVAL;
464
465 return audit_do_config_change("audit_failure", &audit_failure, state);
466 }
467
468 /**
469 * auditd_conn_free - RCU helper to release an auditd connection struct
470 * @rcu: RCU head
471 *
472 * Description:
473 * Drop any references inside the auditd connection tracking struct and free
474 * the memory.
475 */
auditd_conn_free(struct rcu_head * rcu)476 static void auditd_conn_free(struct rcu_head *rcu)
477 {
478 struct auditd_connection *ac;
479
480 ac = container_of(rcu, struct auditd_connection, rcu);
481 put_pid(ac->pid);
482 put_net(ac->net);
483 kfree(ac);
484 }
485
486 /**
487 * auditd_set - Set/Reset the auditd connection state
488 * @pid: auditd PID
489 * @portid: auditd netlink portid
490 * @net: auditd network namespace pointer
491 * @skb: the netlink command from the audit daemon
492 * @ack: netlink ack flag, cleared if ack'd here
493 *
494 * Description:
495 * This function will obtain and drop network namespace references as
496 * necessary. Returns zero on success, negative values on failure.
497 */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)498 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
499 struct sk_buff *skb, bool *ack)
500 {
501 unsigned long flags;
502 struct auditd_connection *ac_old, *ac_new;
503 struct nlmsghdr *nlh;
504
505 if (!pid || !net)
506 return -EINVAL;
507
508 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
509 if (!ac_new)
510 return -ENOMEM;
511 ac_new->pid = get_pid(pid);
512 ac_new->portid = portid;
513 ac_new->net = get_net(net);
514
515 /* send the ack now to avoid a race with the queue backlog */
516 if (*ack) {
517 nlh = nlmsg_hdr(skb);
518 netlink_ack(skb, nlh, 0, NULL);
519 *ack = false;
520 }
521
522 spin_lock_irqsave(&auditd_conn_lock, flags);
523 ac_old = rcu_dereference_protected(auditd_conn,
524 lockdep_is_held(&auditd_conn_lock));
525 rcu_assign_pointer(auditd_conn, ac_new);
526 spin_unlock_irqrestore(&auditd_conn_lock, flags);
527
528 if (ac_old)
529 call_rcu(&ac_old->rcu, auditd_conn_free);
530
531 return 0;
532 }
533
534 /**
535 * kauditd_printk_skb - Print the audit record to the ring buffer
536 * @skb: audit record
537 *
538 * Whatever the reason, this packet may not make it to the auditd connection
539 * so write it via printk so the information isn't completely lost.
540 */
kauditd_printk_skb(struct sk_buff * skb)541 static void kauditd_printk_skb(struct sk_buff *skb)
542 {
543 struct nlmsghdr *nlh = nlmsg_hdr(skb);
544 char *data = nlmsg_data(nlh);
545
546 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
547 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
548 }
549
550 /**
551 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
552 * @skb: audit record
553 * @error: error code (unused)
554 *
555 * Description:
556 * This should only be used by the kauditd_thread when it fails to flush the
557 * hold queue.
558 */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)559 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
560 {
561 /* put the record back in the queue */
562 skb_queue_tail(&audit_hold_queue, skb);
563 }
564
565 /**
566 * kauditd_hold_skb - Queue an audit record, waiting for auditd
567 * @skb: audit record
568 * @error: error code
569 *
570 * Description:
571 * Queue the audit record, waiting for an instance of auditd. When this
572 * function is called we haven't given up yet on sending the record, but things
573 * are not looking good. The first thing we want to do is try to write the
574 * record via printk and then see if we want to try and hold on to the record
575 * and queue it, if we have room. If we want to hold on to the record, but we
576 * don't have room, record a record lost message.
577 */
kauditd_hold_skb(struct sk_buff * skb,int error)578 static void kauditd_hold_skb(struct sk_buff *skb, int error)
579 {
580 /* at this point it is uncertain if we will ever send this to auditd so
581 * try to send the message via printk before we go any further */
582 kauditd_printk_skb(skb);
583
584 /* can we just silently drop the message? */
585 if (!audit_default)
586 goto drop;
587
588 /* the hold queue is only for when the daemon goes away completely,
589 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
590 * record on the retry queue unless it's full, in which case drop it
591 */
592 if (error == -EAGAIN) {
593 if (!audit_backlog_limit ||
594 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
595 skb_queue_tail(&audit_retry_queue, skb);
596 return;
597 }
598 audit_log_lost("kauditd retry queue overflow");
599 goto drop;
600 }
601
602 /* if we have room in the hold queue, queue the message */
603 if (!audit_backlog_limit ||
604 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
605 skb_queue_tail(&audit_hold_queue, skb);
606 return;
607 }
608
609 /* we have no other options - drop the message */
610 audit_log_lost("kauditd hold queue overflow");
611 drop:
612 kfree_skb(skb);
613 }
614
615 /**
616 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
617 * @skb: audit record
618 * @error: error code (unused)
619 *
620 * Description:
621 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
622 * but for some reason we are having problems sending it audit records so
623 * queue the given record and attempt to resend.
624 */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)625 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
626 {
627 if (!audit_backlog_limit ||
628 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
629 skb_queue_tail(&audit_retry_queue, skb);
630 return;
631 }
632
633 /* we have to drop the record, send it via printk as a last effort */
634 kauditd_printk_skb(skb);
635 audit_log_lost("kauditd retry queue overflow");
636 kfree_skb(skb);
637 }
638
639 /**
640 * auditd_reset - Disconnect the auditd connection
641 * @ac: auditd connection state
642 *
643 * Description:
644 * Break the auditd/kauditd connection and move all the queued records into the
645 * hold queue in case auditd reconnects. It is important to note that the @ac
646 * pointer should never be dereferenced inside this function as it may be NULL
647 * or invalid, you can only compare the memory address! If @ac is NULL then
648 * the connection will always be reset.
649 */
auditd_reset(const struct auditd_connection * ac)650 static void auditd_reset(const struct auditd_connection *ac)
651 {
652 unsigned long flags;
653 struct sk_buff *skb;
654 struct auditd_connection *ac_old;
655
656 /* if it isn't already broken, break the connection */
657 spin_lock_irqsave(&auditd_conn_lock, flags);
658 ac_old = rcu_dereference_protected(auditd_conn,
659 lockdep_is_held(&auditd_conn_lock));
660 if (ac && ac != ac_old) {
661 /* someone already registered a new auditd connection */
662 spin_unlock_irqrestore(&auditd_conn_lock, flags);
663 return;
664 }
665 rcu_assign_pointer(auditd_conn, NULL);
666 spin_unlock_irqrestore(&auditd_conn_lock, flags);
667
668 if (ac_old)
669 call_rcu(&ac_old->rcu, auditd_conn_free);
670
671 /* flush the retry queue to the hold queue, but don't touch the main
672 * queue since we need to process that normally for multicast */
673 while ((skb = skb_dequeue(&audit_retry_queue)))
674 kauditd_hold_skb(skb, -ECONNREFUSED);
675 }
676
677 /**
678 * auditd_send_unicast_skb - Send a record via unicast to auditd
679 * @skb: audit record
680 *
681 * Description:
682 * Send a skb to the audit daemon, returns positive/zero values on success and
683 * negative values on failure; in all cases the skb will be consumed by this
684 * function. If the send results in -ECONNREFUSED the connection with auditd
685 * will be reset. This function may sleep so callers should not hold any locks
686 * where this would cause a problem.
687 */
auditd_send_unicast_skb(struct sk_buff * skb)688 static int auditd_send_unicast_skb(struct sk_buff *skb)
689 {
690 int rc;
691 u32 portid;
692 struct net *net;
693 struct sock *sk;
694 struct auditd_connection *ac;
695
696 /* NOTE: we can't call netlink_unicast while in the RCU section so
697 * take a reference to the network namespace and grab local
698 * copies of the namespace, the sock, and the portid; the
699 * namespace and sock aren't going to go away while we hold a
700 * reference and if the portid does become invalid after the RCU
701 * section netlink_unicast() should safely return an error */
702
703 rcu_read_lock();
704 ac = rcu_dereference(auditd_conn);
705 if (!ac) {
706 rcu_read_unlock();
707 kfree_skb(skb);
708 rc = -ECONNREFUSED;
709 goto err;
710 }
711 net = get_net(ac->net);
712 sk = audit_get_sk(net);
713 portid = ac->portid;
714 rcu_read_unlock();
715
716 rc = netlink_unicast(sk, skb, portid, 0);
717 put_net(net);
718 if (rc < 0)
719 goto err;
720
721 return rc;
722
723 err:
724 if (ac && rc == -ECONNREFUSED)
725 auditd_reset(ac);
726 return rc;
727 }
728
729 /**
730 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
731 * @sk: the sending sock
732 * @portid: the netlink destination
733 * @queue: the skb queue to process
734 * @retry_limit: limit on number of netlink unicast failures
735 * @skb_hook: per-skb hook for additional processing
736 * @err_hook: hook called if the skb fails the netlink unicast send
737 *
738 * Description:
739 * Run through the given queue and attempt to send the audit records to auditd,
740 * returns zero on success, negative values on failure. It is up to the caller
741 * to ensure that the @sk is valid for the duration of this function.
742 *
743 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))744 static int kauditd_send_queue(struct sock *sk, u32 portid,
745 struct sk_buff_head *queue,
746 unsigned int retry_limit,
747 void (*skb_hook)(struct sk_buff *skb),
748 void (*err_hook)(struct sk_buff *skb, int error))
749 {
750 int rc = 0;
751 struct sk_buff *skb = NULL;
752 struct sk_buff *skb_tail;
753 unsigned int failed = 0;
754
755 /* NOTE: kauditd_thread takes care of all our locking, we just use
756 * the netlink info passed to us (e.g. sk and portid) */
757
758 skb_tail = skb_peek_tail(queue);
759 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
760 /* call the skb_hook for each skb we touch */
761 if (skb_hook)
762 (*skb_hook)(skb);
763
764 /* can we send to anyone via unicast? */
765 if (!sk) {
766 if (err_hook)
767 (*err_hook)(skb, -ECONNREFUSED);
768 continue;
769 }
770
771 retry:
772 /* grab an extra skb reference in case of error */
773 skb_get(skb);
774 rc = netlink_unicast(sk, skb, portid, 0);
775 if (rc < 0) {
776 /* send failed - try a few times unless fatal error */
777 if (++failed >= retry_limit ||
778 rc == -ECONNREFUSED || rc == -EPERM) {
779 sk = NULL;
780 if (err_hook)
781 (*err_hook)(skb, rc);
782 if (rc == -EAGAIN)
783 rc = 0;
784 /* continue to drain the queue */
785 continue;
786 } else
787 goto retry;
788 } else {
789 /* skb sent - drop the extra reference and continue */
790 consume_skb(skb);
791 failed = 0;
792 }
793 }
794
795 return (rc >= 0 ? 0 : rc);
796 }
797
798 /*
799 * kauditd_send_multicast_skb - Send a record to any multicast listeners
800 * @skb: audit record
801 *
802 * Description:
803 * Write a multicast message to anyone listening in the initial network
804 * namespace. This function doesn't consume an skb as might be expected since
805 * it has to copy it anyways.
806 */
kauditd_send_multicast_skb(struct sk_buff * skb)807 static void kauditd_send_multicast_skb(struct sk_buff *skb)
808 {
809 struct sk_buff *copy;
810 struct sock *sock = audit_get_sk(&init_net);
811 struct nlmsghdr *nlh;
812
813 /* NOTE: we are not taking an additional reference for init_net since
814 * we don't have to worry about it going away */
815
816 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
817 return;
818
819 /*
820 * The seemingly wasteful skb_copy() rather than bumping the refcount
821 * using skb_get() is necessary because non-standard mods are made to
822 * the skb by the original kaudit unicast socket send routine. The
823 * existing auditd daemon assumes this breakage. Fixing this would
824 * require co-ordinating a change in the established protocol between
825 * the kaudit kernel subsystem and the auditd userspace code. There is
826 * no reason for new multicast clients to continue with this
827 * non-compliance.
828 */
829 copy = skb_copy(skb, GFP_KERNEL);
830 if (!copy)
831 return;
832 nlh = nlmsg_hdr(copy);
833 nlh->nlmsg_len = skb->len;
834
835 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
836 }
837
838 /**
839 * kauditd_thread - Worker thread to send audit records to userspace
840 * @dummy: unused
841 */
kauditd_thread(void * dummy)842 static int kauditd_thread(void *dummy)
843 {
844 int rc;
845 u32 portid = 0;
846 struct net *net = NULL;
847 struct sock *sk = NULL;
848 struct auditd_connection *ac;
849
850 #define UNICAST_RETRIES 5
851
852 set_freezable();
853 while (!kthread_should_stop()) {
854 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
855 rcu_read_lock();
856 ac = rcu_dereference(auditd_conn);
857 if (!ac) {
858 rcu_read_unlock();
859 goto main_queue;
860 }
861 net = get_net(ac->net);
862 sk = audit_get_sk(net);
863 portid = ac->portid;
864 rcu_read_unlock();
865
866 /* attempt to flush the hold queue */
867 rc = kauditd_send_queue(sk, portid,
868 &audit_hold_queue, UNICAST_RETRIES,
869 NULL, kauditd_rehold_skb);
870 if (rc < 0) {
871 sk = NULL;
872 auditd_reset(ac);
873 goto main_queue;
874 }
875
876 /* attempt to flush the retry queue */
877 rc = kauditd_send_queue(sk, portid,
878 &audit_retry_queue, UNICAST_RETRIES,
879 NULL, kauditd_hold_skb);
880 if (rc < 0) {
881 sk = NULL;
882 auditd_reset(ac);
883 goto main_queue;
884 }
885
886 main_queue:
887 /* process the main queue - do the multicast send and attempt
888 * unicast, dump failed record sends to the retry queue; if
889 * sk == NULL due to previous failures we will just do the
890 * multicast send and move the record to the hold queue */
891 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
892 kauditd_send_multicast_skb,
893 (sk ?
894 kauditd_retry_skb : kauditd_hold_skb));
895 if (ac && rc < 0)
896 auditd_reset(ac);
897 sk = NULL;
898
899 /* drop our netns reference, no auditd sends past this line */
900 if (net) {
901 put_net(net);
902 net = NULL;
903 }
904
905 /* we have processed all the queues so wake everyone */
906 wake_up(&audit_backlog_wait);
907
908 /* NOTE: we want to wake up if there is anything on the queue,
909 * regardless of if an auditd is connected, as we need to
910 * do the multicast send and rotate records from the
911 * main queue to the retry/hold queues */
912 wait_event_freezable(kauditd_wait,
913 (skb_queue_len(&audit_queue) ? 1 : 0));
914 }
915
916 return 0;
917 }
918
audit_send_list_thread(void * _dest)919 int audit_send_list_thread(void *_dest)
920 {
921 struct audit_netlink_list *dest = _dest;
922 struct sk_buff *skb;
923 struct sock *sk = audit_get_sk(dest->net);
924
925 /* wait for parent to finish and send an ACK */
926 audit_ctl_lock();
927 audit_ctl_unlock();
928
929 while ((skb = __skb_dequeue(&dest->q)) != NULL)
930 netlink_unicast(sk, skb, dest->portid, 0);
931
932 put_net(dest->net);
933 kfree(dest);
934
935 return 0;
936 }
937
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)938 struct sk_buff *audit_make_reply(int seq, int type, int done,
939 int multi, const void *payload, int size)
940 {
941 struct sk_buff *skb;
942 struct nlmsghdr *nlh;
943 void *data;
944 int flags = multi ? NLM_F_MULTI : 0;
945 int t = done ? NLMSG_DONE : type;
946
947 skb = nlmsg_new(size, GFP_KERNEL);
948 if (!skb)
949 return NULL;
950
951 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
952 if (!nlh)
953 goto out_kfree_skb;
954 data = nlmsg_data(nlh);
955 memcpy(data, payload, size);
956 return skb;
957
958 out_kfree_skb:
959 kfree_skb(skb);
960 return NULL;
961 }
962
audit_free_reply(struct audit_reply * reply)963 static void audit_free_reply(struct audit_reply *reply)
964 {
965 if (!reply)
966 return;
967
968 kfree_skb(reply->skb);
969 if (reply->net)
970 put_net(reply->net);
971 kfree(reply);
972 }
973
audit_send_reply_thread(void * arg)974 static int audit_send_reply_thread(void *arg)
975 {
976 struct audit_reply *reply = (struct audit_reply *)arg;
977
978 audit_ctl_lock();
979 audit_ctl_unlock();
980
981 /* Ignore failure. It'll only happen if the sender goes away,
982 because our timeout is set to infinite. */
983 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
984 reply->skb = NULL;
985 audit_free_reply(reply);
986 return 0;
987 }
988
989 /**
990 * audit_send_reply - send an audit reply message via netlink
991 * @request_skb: skb of request we are replying to (used to target the reply)
992 * @seq: sequence number
993 * @type: audit message type
994 * @done: done (last) flag
995 * @multi: multi-part message flag
996 * @payload: payload data
997 * @size: payload size
998 *
999 * Allocates a skb, builds the netlink message, and sends it to the port id.
1000 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)1001 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1002 int multi, const void *payload, int size)
1003 {
1004 struct task_struct *tsk;
1005 struct audit_reply *reply;
1006
1007 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1008 if (!reply)
1009 return;
1010
1011 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1012 if (!reply->skb)
1013 goto err;
1014 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1015 reply->portid = NETLINK_CB(request_skb).portid;
1016
1017 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1018 if (IS_ERR(tsk))
1019 goto err;
1020
1021 return;
1022
1023 err:
1024 audit_free_reply(reply);
1025 }
1026
1027 /*
1028 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1029 * control messages.
1030 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1031 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1032 {
1033 int err = 0;
1034
1035 /* Only support initial user namespace for now. */
1036 /*
1037 * We return ECONNREFUSED because it tricks userspace into thinking
1038 * that audit was not configured into the kernel. Lots of users
1039 * configure their PAM stack (because that's what the distro does)
1040 * to reject login if unable to send messages to audit. If we return
1041 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1042 * configured in and will let login proceed. If we return EPERM
1043 * userspace will reject all logins. This should be removed when we
1044 * support non init namespaces!!
1045 */
1046 if (current_user_ns() != &init_user_ns)
1047 return -ECONNREFUSED;
1048
1049 switch (msg_type) {
1050 case AUDIT_LIST:
1051 case AUDIT_ADD:
1052 case AUDIT_DEL:
1053 return -EOPNOTSUPP;
1054 case AUDIT_GET:
1055 case AUDIT_SET:
1056 case AUDIT_GET_FEATURE:
1057 case AUDIT_SET_FEATURE:
1058 case AUDIT_LIST_RULES:
1059 case AUDIT_ADD_RULE:
1060 case AUDIT_DEL_RULE:
1061 case AUDIT_SIGNAL_INFO:
1062 case AUDIT_TTY_GET:
1063 case AUDIT_TTY_SET:
1064 case AUDIT_TRIM:
1065 case AUDIT_MAKE_EQUIV:
1066 /* Only support auditd and auditctl in initial pid namespace
1067 * for now. */
1068 if (task_active_pid_ns(current) != &init_pid_ns)
1069 return -EPERM;
1070
1071 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1072 err = -EPERM;
1073 break;
1074 case AUDIT_USER:
1075 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1076 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1077 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1078 err = -EPERM;
1079 break;
1080 default: /* bad msg */
1081 err = -EINVAL;
1082 }
1083
1084 return err;
1085 }
1086
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1087 static void audit_log_common_recv_msg(struct audit_context *context,
1088 struct audit_buffer **ab, u16 msg_type)
1089 {
1090 uid_t uid = from_kuid(&init_user_ns, current_uid());
1091 pid_t pid = task_tgid_nr(current);
1092
1093 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1094 *ab = NULL;
1095 return;
1096 }
1097
1098 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1099 if (unlikely(!*ab))
1100 return;
1101 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1102 audit_log_session_info(*ab);
1103 audit_log_task_context(*ab);
1104 }
1105
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1106 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1107 u16 msg_type)
1108 {
1109 audit_log_common_recv_msg(NULL, ab, msg_type);
1110 }
1111
is_audit_feature_set(int i)1112 static int is_audit_feature_set(int i)
1113 {
1114 return af.features & AUDIT_FEATURE_TO_MASK(i);
1115 }
1116
1117
audit_get_feature(struct sk_buff * skb)1118 static int audit_get_feature(struct sk_buff *skb)
1119 {
1120 u32 seq;
1121
1122 seq = nlmsg_hdr(skb)->nlmsg_seq;
1123
1124 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1125
1126 return 0;
1127 }
1128
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1129 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1130 u32 old_lock, u32 new_lock, int res)
1131 {
1132 struct audit_buffer *ab;
1133
1134 if (audit_enabled == AUDIT_OFF)
1135 return;
1136
1137 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1138 if (!ab)
1139 return;
1140 audit_log_task_info(ab);
1141 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1142 audit_feature_names[which], !!old_feature, !!new_feature,
1143 !!old_lock, !!new_lock, res);
1144 audit_log_end(ab);
1145 }
1146
audit_set_feature(struct audit_features * uaf)1147 static int audit_set_feature(struct audit_features *uaf)
1148 {
1149 int i;
1150
1151 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1152
1153 /* if there is ever a version 2 we should handle that here */
1154
1155 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1156 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1157 u32 old_feature, new_feature, old_lock, new_lock;
1158
1159 /* if we are not changing this feature, move along */
1160 if (!(feature & uaf->mask))
1161 continue;
1162
1163 old_feature = af.features & feature;
1164 new_feature = uaf->features & feature;
1165 new_lock = (uaf->lock | af.lock) & feature;
1166 old_lock = af.lock & feature;
1167
1168 /* are we changing a locked feature? */
1169 if (old_lock && (new_feature != old_feature)) {
1170 audit_log_feature_change(i, old_feature, new_feature,
1171 old_lock, new_lock, 0);
1172 return -EPERM;
1173 }
1174 }
1175 /* nothing invalid, do the changes */
1176 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1177 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1178 u32 old_feature, new_feature, old_lock, new_lock;
1179
1180 /* if we are not changing this feature, move along */
1181 if (!(feature & uaf->mask))
1182 continue;
1183
1184 old_feature = af.features & feature;
1185 new_feature = uaf->features & feature;
1186 old_lock = af.lock & feature;
1187 new_lock = (uaf->lock | af.lock) & feature;
1188
1189 if (new_feature != old_feature)
1190 audit_log_feature_change(i, old_feature, new_feature,
1191 old_lock, new_lock, 1);
1192
1193 if (new_feature)
1194 af.features |= feature;
1195 else
1196 af.features &= ~feature;
1197 af.lock |= new_lock;
1198 }
1199
1200 return 0;
1201 }
1202
audit_replace(struct pid * pid)1203 static int audit_replace(struct pid *pid)
1204 {
1205 pid_t pvnr;
1206 struct sk_buff *skb;
1207
1208 pvnr = pid_vnr(pid);
1209 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1210 if (!skb)
1211 return -ENOMEM;
1212 return auditd_send_unicast_skb(skb);
1213 }
1214
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1215 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1216 bool *ack)
1217 {
1218 u32 seq;
1219 void *data;
1220 int data_len;
1221 int err;
1222 struct audit_buffer *ab;
1223 u16 msg_type = nlh->nlmsg_type;
1224 struct audit_sig_info *sig_data;
1225 char *ctx = NULL;
1226 u32 len;
1227
1228 err = audit_netlink_ok(skb, msg_type);
1229 if (err)
1230 return err;
1231
1232 seq = nlh->nlmsg_seq;
1233 data = nlmsg_data(nlh);
1234 data_len = nlmsg_len(nlh);
1235
1236 switch (msg_type) {
1237 case AUDIT_GET: {
1238 struct audit_status s;
1239 memset(&s, 0, sizeof(s));
1240 s.enabled = audit_enabled;
1241 s.failure = audit_failure;
1242 /* NOTE: use pid_vnr() so the PID is relative to the current
1243 * namespace */
1244 s.pid = auditd_pid_vnr();
1245 s.rate_limit = audit_rate_limit;
1246 s.backlog_limit = audit_backlog_limit;
1247 s.lost = atomic_read(&audit_lost);
1248 s.backlog = skb_queue_len(&audit_queue);
1249 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1250 s.backlog_wait_time = audit_backlog_wait_time;
1251 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1252 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1253 break;
1254 }
1255 case AUDIT_SET: {
1256 struct audit_status s;
1257 memset(&s, 0, sizeof(s));
1258 /* guard against past and future API changes */
1259 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1260 if (s.mask & AUDIT_STATUS_ENABLED) {
1261 err = audit_set_enabled(s.enabled);
1262 if (err < 0)
1263 return err;
1264 }
1265 if (s.mask & AUDIT_STATUS_FAILURE) {
1266 err = audit_set_failure(s.failure);
1267 if (err < 0)
1268 return err;
1269 }
1270 if (s.mask & AUDIT_STATUS_PID) {
1271 /* NOTE: we are using the vnr PID functions below
1272 * because the s.pid value is relative to the
1273 * namespace of the caller; at present this
1274 * doesn't matter much since you can really only
1275 * run auditd from the initial pid namespace, but
1276 * something to keep in mind if this changes */
1277 pid_t new_pid = s.pid;
1278 pid_t auditd_pid;
1279 struct pid *req_pid = task_tgid(current);
1280
1281 /* Sanity check - PID values must match. Setting
1282 * pid to 0 is how auditd ends auditing. */
1283 if (new_pid && (new_pid != pid_vnr(req_pid)))
1284 return -EINVAL;
1285
1286 /* test the auditd connection */
1287 audit_replace(req_pid);
1288
1289 auditd_pid = auditd_pid_vnr();
1290 if (auditd_pid) {
1291 /* replacing a healthy auditd is not allowed */
1292 if (new_pid) {
1293 audit_log_config_change("audit_pid",
1294 new_pid, auditd_pid, 0);
1295 return -EEXIST;
1296 }
1297 /* only current auditd can unregister itself */
1298 if (pid_vnr(req_pid) != auditd_pid) {
1299 audit_log_config_change("audit_pid",
1300 new_pid, auditd_pid, 0);
1301 return -EACCES;
1302 }
1303 }
1304
1305 if (new_pid) {
1306 /* register a new auditd connection */
1307 err = auditd_set(req_pid,
1308 NETLINK_CB(skb).portid,
1309 sock_net(NETLINK_CB(skb).sk),
1310 skb, ack);
1311 if (audit_enabled != AUDIT_OFF)
1312 audit_log_config_change("audit_pid",
1313 new_pid,
1314 auditd_pid,
1315 err ? 0 : 1);
1316 if (err)
1317 return err;
1318
1319 /* try to process any backlog */
1320 wake_up_interruptible(&kauditd_wait);
1321 } else {
1322 if (audit_enabled != AUDIT_OFF)
1323 audit_log_config_change("audit_pid",
1324 new_pid,
1325 auditd_pid, 1);
1326
1327 /* unregister the auditd connection */
1328 auditd_reset(NULL);
1329 }
1330 }
1331 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1332 err = audit_set_rate_limit(s.rate_limit);
1333 if (err < 0)
1334 return err;
1335 }
1336 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1337 err = audit_set_backlog_limit(s.backlog_limit);
1338 if (err < 0)
1339 return err;
1340 }
1341 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1342 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1343 return -EINVAL;
1344 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1345 return -EINVAL;
1346 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1347 if (err < 0)
1348 return err;
1349 }
1350 if (s.mask == AUDIT_STATUS_LOST) {
1351 u32 lost = atomic_xchg(&audit_lost, 0);
1352
1353 audit_log_config_change("lost", 0, lost, 1);
1354 return lost;
1355 }
1356 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1357 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1358
1359 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1360 return actual;
1361 }
1362 break;
1363 }
1364 case AUDIT_GET_FEATURE:
1365 err = audit_get_feature(skb);
1366 if (err)
1367 return err;
1368 break;
1369 case AUDIT_SET_FEATURE:
1370 if (data_len < sizeof(struct audit_features))
1371 return -EINVAL;
1372 err = audit_set_feature(data);
1373 if (err)
1374 return err;
1375 break;
1376 case AUDIT_USER:
1377 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1378 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1379 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1380 return 0;
1381 /* exit early if there isn't at least one character to print */
1382 if (data_len < 2)
1383 return -EINVAL;
1384
1385 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1386 if (err == 1) { /* match or error */
1387 char *str = data;
1388
1389 err = 0;
1390 if (msg_type == AUDIT_USER_TTY) {
1391 err = tty_audit_push();
1392 if (err)
1393 break;
1394 }
1395 audit_log_user_recv_msg(&ab, msg_type);
1396 if (msg_type != AUDIT_USER_TTY) {
1397 /* ensure NULL termination */
1398 str[data_len - 1] = '\0';
1399 audit_log_format(ab, " msg='%.*s'",
1400 AUDIT_MESSAGE_TEXT_MAX,
1401 str);
1402 } else {
1403 audit_log_format(ab, " data=");
1404 if (str[data_len - 1] == '\0')
1405 data_len--;
1406 audit_log_n_untrustedstring(ab, str, data_len);
1407 }
1408 audit_log_end(ab);
1409 }
1410 break;
1411 case AUDIT_ADD_RULE:
1412 case AUDIT_DEL_RULE:
1413 if (data_len < sizeof(struct audit_rule_data))
1414 return -EINVAL;
1415 if (audit_enabled == AUDIT_LOCKED) {
1416 audit_log_common_recv_msg(audit_context(), &ab,
1417 AUDIT_CONFIG_CHANGE);
1418 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1419 msg_type == AUDIT_ADD_RULE ?
1420 "add_rule" : "remove_rule",
1421 audit_enabled);
1422 audit_log_end(ab);
1423 return -EPERM;
1424 }
1425 err = audit_rule_change(msg_type, seq, data, data_len);
1426 break;
1427 case AUDIT_LIST_RULES:
1428 err = audit_list_rules_send(skb, seq);
1429 break;
1430 case AUDIT_TRIM:
1431 audit_trim_trees();
1432 audit_log_common_recv_msg(audit_context(), &ab,
1433 AUDIT_CONFIG_CHANGE);
1434 audit_log_format(ab, " op=trim res=1");
1435 audit_log_end(ab);
1436 break;
1437 case AUDIT_MAKE_EQUIV: {
1438 void *bufp = data;
1439 u32 sizes[2];
1440 size_t msglen = data_len;
1441 char *old, *new;
1442
1443 err = -EINVAL;
1444 if (msglen < 2 * sizeof(u32))
1445 break;
1446 memcpy(sizes, bufp, 2 * sizeof(u32));
1447 bufp += 2 * sizeof(u32);
1448 msglen -= 2 * sizeof(u32);
1449 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1450 if (IS_ERR(old)) {
1451 err = PTR_ERR(old);
1452 break;
1453 }
1454 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1455 if (IS_ERR(new)) {
1456 err = PTR_ERR(new);
1457 kfree(old);
1458 break;
1459 }
1460 /* OK, here comes... */
1461 err = audit_tag_tree(old, new);
1462
1463 audit_log_common_recv_msg(audit_context(), &ab,
1464 AUDIT_CONFIG_CHANGE);
1465 audit_log_format(ab, " op=make_equiv old=");
1466 audit_log_untrustedstring(ab, old);
1467 audit_log_format(ab, " new=");
1468 audit_log_untrustedstring(ab, new);
1469 audit_log_format(ab, " res=%d", !err);
1470 audit_log_end(ab);
1471 kfree(old);
1472 kfree(new);
1473 break;
1474 }
1475 case AUDIT_SIGNAL_INFO:
1476 len = 0;
1477 if (audit_sig_sid) {
1478 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1479 if (err)
1480 return err;
1481 }
1482 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1483 if (!sig_data) {
1484 if (audit_sig_sid)
1485 security_release_secctx(ctx, len);
1486 return -ENOMEM;
1487 }
1488 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1489 sig_data->pid = audit_sig_pid;
1490 if (audit_sig_sid) {
1491 memcpy(sig_data->ctx, ctx, len);
1492 security_release_secctx(ctx, len);
1493 }
1494 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1495 sig_data, struct_size(sig_data, ctx, len));
1496 kfree(sig_data);
1497 break;
1498 case AUDIT_TTY_GET: {
1499 struct audit_tty_status s;
1500 unsigned int t;
1501
1502 t = READ_ONCE(current->signal->audit_tty);
1503 s.enabled = t & AUDIT_TTY_ENABLE;
1504 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1505
1506 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1507 break;
1508 }
1509 case AUDIT_TTY_SET: {
1510 struct audit_tty_status s, old;
1511 struct audit_buffer *ab;
1512 unsigned int t;
1513
1514 memset(&s, 0, sizeof(s));
1515 /* guard against past and future API changes */
1516 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1517 /* check if new data is valid */
1518 if ((s.enabled != 0 && s.enabled != 1) ||
1519 (s.log_passwd != 0 && s.log_passwd != 1))
1520 err = -EINVAL;
1521
1522 if (err)
1523 t = READ_ONCE(current->signal->audit_tty);
1524 else {
1525 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1526 t = xchg(¤t->signal->audit_tty, t);
1527 }
1528 old.enabled = t & AUDIT_TTY_ENABLE;
1529 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1530
1531 audit_log_common_recv_msg(audit_context(), &ab,
1532 AUDIT_CONFIG_CHANGE);
1533 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1534 " old-log_passwd=%d new-log_passwd=%d res=%d",
1535 old.enabled, s.enabled, old.log_passwd,
1536 s.log_passwd, !err);
1537 audit_log_end(ab);
1538 break;
1539 }
1540 default:
1541 err = -EINVAL;
1542 break;
1543 }
1544
1545 return err < 0 ? err : 0;
1546 }
1547
1548 /**
1549 * audit_receive - receive messages from a netlink control socket
1550 * @skb: the message buffer
1551 *
1552 * Parse the provided skb and deal with any messages that may be present,
1553 * malformed skbs are discarded.
1554 */
audit_receive(struct sk_buff * skb)1555 static void audit_receive(struct sk_buff *skb)
1556 {
1557 struct nlmsghdr *nlh;
1558 bool ack;
1559 /*
1560 * len MUST be signed for nlmsg_next to be able to dec it below 0
1561 * if the nlmsg_len was not aligned
1562 */
1563 int len;
1564 int err;
1565
1566 nlh = nlmsg_hdr(skb);
1567 len = skb->len;
1568
1569 audit_ctl_lock();
1570 while (nlmsg_ok(nlh, len)) {
1571 ack = nlh->nlmsg_flags & NLM_F_ACK;
1572 err = audit_receive_msg(skb, nlh, &ack);
1573
1574 /* send an ack if the user asked for one and audit_receive_msg
1575 * didn't already do it, or if there was an error. */
1576 if (ack || err)
1577 netlink_ack(skb, nlh, err, NULL);
1578
1579 nlh = nlmsg_next(nlh, &len);
1580 }
1581 audit_ctl_unlock();
1582
1583 /* can't block with the ctrl lock, so penalize the sender now */
1584 if (audit_backlog_limit &&
1585 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1586 DECLARE_WAITQUEUE(wait, current);
1587
1588 /* wake kauditd to try and flush the queue */
1589 wake_up_interruptible(&kauditd_wait);
1590
1591 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1592 set_current_state(TASK_UNINTERRUPTIBLE);
1593 schedule_timeout(audit_backlog_wait_time);
1594 remove_wait_queue(&audit_backlog_wait, &wait);
1595 }
1596 }
1597
1598 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1599 static void audit_log_multicast(int group, const char *op, int err)
1600 {
1601 const struct cred *cred;
1602 struct tty_struct *tty;
1603 char comm[sizeof(current->comm)];
1604 struct audit_buffer *ab;
1605
1606 if (!audit_enabled)
1607 return;
1608
1609 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1610 if (!ab)
1611 return;
1612
1613 cred = current_cred();
1614 tty = audit_get_tty();
1615 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1616 task_pid_nr(current),
1617 from_kuid(&init_user_ns, cred->uid),
1618 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1619 tty ? tty_name(tty) : "(none)",
1620 audit_get_sessionid(current));
1621 audit_put_tty(tty);
1622 audit_log_task_context(ab); /* subj= */
1623 audit_log_format(ab, " comm=");
1624 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1625 audit_log_d_path_exe(ab, current->mm); /* exe= */
1626 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1627 audit_log_end(ab);
1628 }
1629
1630 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1631 static int audit_multicast_bind(struct net *net, int group)
1632 {
1633 int err = 0;
1634
1635 if (!capable(CAP_AUDIT_READ))
1636 err = -EPERM;
1637 audit_log_multicast(group, "connect", err);
1638 return err;
1639 }
1640
audit_multicast_unbind(struct net * net,int group)1641 static void audit_multicast_unbind(struct net *net, int group)
1642 {
1643 audit_log_multicast(group, "disconnect", 0);
1644 }
1645
audit_net_init(struct net * net)1646 static int __net_init audit_net_init(struct net *net)
1647 {
1648 struct netlink_kernel_cfg cfg = {
1649 .input = audit_receive,
1650 .bind = audit_multicast_bind,
1651 .unbind = audit_multicast_unbind,
1652 .flags = NL_CFG_F_NONROOT_RECV,
1653 .groups = AUDIT_NLGRP_MAX,
1654 };
1655
1656 struct audit_net *aunet = net_generic(net, audit_net_id);
1657
1658 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1659 if (aunet->sk == NULL) {
1660 audit_panic("cannot initialize netlink socket in namespace");
1661 return -ENOMEM;
1662 }
1663 /* limit the timeout in case auditd is blocked/stopped */
1664 aunet->sk->sk_sndtimeo = HZ / 10;
1665
1666 return 0;
1667 }
1668
audit_net_exit(struct net * net)1669 static void __net_exit audit_net_exit(struct net *net)
1670 {
1671 struct audit_net *aunet = net_generic(net, audit_net_id);
1672
1673 /* NOTE: you would think that we would want to check the auditd
1674 * connection and potentially reset it here if it lives in this
1675 * namespace, but since the auditd connection tracking struct holds a
1676 * reference to this namespace (see auditd_set()) we are only ever
1677 * going to get here after that connection has been released */
1678
1679 netlink_kernel_release(aunet->sk);
1680 }
1681
1682 static struct pernet_operations audit_net_ops __net_initdata = {
1683 .init = audit_net_init,
1684 .exit = audit_net_exit,
1685 .id = &audit_net_id,
1686 .size = sizeof(struct audit_net),
1687 };
1688
1689 /* Initialize audit support at boot time. */
audit_init(void)1690 static int __init audit_init(void)
1691 {
1692 int i;
1693
1694 if (audit_initialized == AUDIT_DISABLED)
1695 return 0;
1696
1697 audit_buffer_cache = kmem_cache_create("audit_buffer",
1698 sizeof(struct audit_buffer),
1699 0, SLAB_PANIC, NULL);
1700
1701 skb_queue_head_init(&audit_queue);
1702 skb_queue_head_init(&audit_retry_queue);
1703 skb_queue_head_init(&audit_hold_queue);
1704
1705 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1706 INIT_LIST_HEAD(&audit_inode_hash[i]);
1707
1708 mutex_init(&audit_cmd_mutex.lock);
1709 audit_cmd_mutex.owner = NULL;
1710
1711 pr_info("initializing netlink subsys (%s)\n",
1712 audit_default ? "enabled" : "disabled");
1713 register_pernet_subsys(&audit_net_ops);
1714
1715 audit_initialized = AUDIT_INITIALIZED;
1716
1717 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1718 if (IS_ERR(kauditd_task)) {
1719 int err = PTR_ERR(kauditd_task);
1720 panic("audit: failed to start the kauditd thread (%d)\n", err);
1721 }
1722
1723 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1724 "state=initialized audit_enabled=%u res=1",
1725 audit_enabled);
1726
1727 return 0;
1728 }
1729 postcore_initcall(audit_init);
1730
1731 /*
1732 * Process kernel command-line parameter at boot time.
1733 * audit={0|off} or audit={1|on}.
1734 */
audit_enable(char * str)1735 static int __init audit_enable(char *str)
1736 {
1737 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1738 audit_default = AUDIT_OFF;
1739 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1740 audit_default = AUDIT_ON;
1741 else {
1742 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1743 audit_default = AUDIT_ON;
1744 }
1745
1746 if (audit_default == AUDIT_OFF)
1747 audit_initialized = AUDIT_DISABLED;
1748 if (audit_set_enabled(audit_default))
1749 pr_err("audit: error setting audit state (%d)\n",
1750 audit_default);
1751
1752 pr_info("%s\n", audit_default ?
1753 "enabled (after initialization)" : "disabled (until reboot)");
1754
1755 return 1;
1756 }
1757 __setup("audit=", audit_enable);
1758
1759 /* Process kernel command-line parameter at boot time.
1760 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1761 static int __init audit_backlog_limit_set(char *str)
1762 {
1763 u32 audit_backlog_limit_arg;
1764
1765 pr_info("audit_backlog_limit: ");
1766 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1767 pr_cont("using default of %u, unable to parse %s\n",
1768 audit_backlog_limit, str);
1769 return 1;
1770 }
1771
1772 audit_backlog_limit = audit_backlog_limit_arg;
1773 pr_cont("%d\n", audit_backlog_limit);
1774
1775 return 1;
1776 }
1777 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1778
audit_buffer_free(struct audit_buffer * ab)1779 static void audit_buffer_free(struct audit_buffer *ab)
1780 {
1781 if (!ab)
1782 return;
1783
1784 kfree_skb(ab->skb);
1785 kmem_cache_free(audit_buffer_cache, ab);
1786 }
1787
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1788 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1789 gfp_t gfp_mask, int type)
1790 {
1791 struct audit_buffer *ab;
1792
1793 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1794 if (!ab)
1795 return NULL;
1796
1797 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1798 if (!ab->skb)
1799 goto err;
1800 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1801 goto err;
1802
1803 ab->ctx = ctx;
1804 ab->gfp_mask = gfp_mask;
1805
1806 return ab;
1807
1808 err:
1809 audit_buffer_free(ab);
1810 return NULL;
1811 }
1812
1813 /**
1814 * audit_serial - compute a serial number for the audit record
1815 *
1816 * Compute a serial number for the audit record. Audit records are
1817 * written to user-space as soon as they are generated, so a complete
1818 * audit record may be written in several pieces. The timestamp of the
1819 * record and this serial number are used by the user-space tools to
1820 * determine which pieces belong to the same audit record. The
1821 * (timestamp,serial) tuple is unique for each syscall and is live from
1822 * syscall entry to syscall exit.
1823 *
1824 * NOTE: Another possibility is to store the formatted records off the
1825 * audit context (for those records that have a context), and emit them
1826 * all at syscall exit. However, this could delay the reporting of
1827 * significant errors until syscall exit (or never, if the system
1828 * halts).
1829 */
audit_serial(void)1830 unsigned int audit_serial(void)
1831 {
1832 static atomic_t serial = ATOMIC_INIT(0);
1833
1834 return atomic_inc_return(&serial);
1835 }
1836
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1837 static inline void audit_get_stamp(struct audit_context *ctx,
1838 struct timespec64 *t, unsigned int *serial)
1839 {
1840 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1841 ktime_get_coarse_real_ts64(t);
1842 *serial = audit_serial();
1843 }
1844 }
1845
1846 /**
1847 * audit_log_start - obtain an audit buffer
1848 * @ctx: audit_context (may be NULL)
1849 * @gfp_mask: type of allocation
1850 * @type: audit message type
1851 *
1852 * Returns audit_buffer pointer on success or NULL on error.
1853 *
1854 * Obtain an audit buffer. This routine does locking to obtain the
1855 * audit buffer, but then no locking is required for calls to
1856 * audit_log_*format. If the task (ctx) is a task that is currently in a
1857 * syscall, then the syscall is marked as auditable and an audit record
1858 * will be written at syscall exit. If there is no associated task, then
1859 * task context (ctx) should be NULL.
1860 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1861 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1862 int type)
1863 {
1864 struct audit_buffer *ab;
1865 struct timespec64 t;
1866 unsigned int serial;
1867
1868 if (audit_initialized != AUDIT_INITIALIZED)
1869 return NULL;
1870
1871 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1872 return NULL;
1873
1874 /* NOTE: don't ever fail/sleep on these two conditions:
1875 * 1. auditd generated record - since we need auditd to drain the
1876 * queue; also, when we are checking for auditd, compare PIDs using
1877 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1878 * using a PID anchored in the caller's namespace
1879 * 2. generator holding the audit_cmd_mutex - we don't want to block
1880 * while holding the mutex, although we do penalize the sender
1881 * later in audit_receive() when it is safe to block
1882 */
1883 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1884 long stime = audit_backlog_wait_time;
1885
1886 while (audit_backlog_limit &&
1887 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1888 /* wake kauditd to try and flush the queue */
1889 wake_up_interruptible(&kauditd_wait);
1890
1891 /* sleep if we are allowed and we haven't exhausted our
1892 * backlog wait limit */
1893 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1894 long rtime = stime;
1895
1896 DECLARE_WAITQUEUE(wait, current);
1897
1898 add_wait_queue_exclusive(&audit_backlog_wait,
1899 &wait);
1900 set_current_state(TASK_UNINTERRUPTIBLE);
1901 stime = schedule_timeout(rtime);
1902 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1903 remove_wait_queue(&audit_backlog_wait, &wait);
1904 } else {
1905 if (audit_rate_check() && printk_ratelimit())
1906 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1907 skb_queue_len(&audit_queue),
1908 audit_backlog_limit);
1909 audit_log_lost("backlog limit exceeded");
1910 return NULL;
1911 }
1912 }
1913 }
1914
1915 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1916 if (!ab) {
1917 audit_log_lost("out of memory in audit_log_start");
1918 return NULL;
1919 }
1920
1921 audit_get_stamp(ab->ctx, &t, &serial);
1922 /* cancel dummy context to enable supporting records */
1923 if (ctx)
1924 ctx->dummy = 0;
1925 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1926 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1927
1928 return ab;
1929 }
1930
1931 /**
1932 * audit_expand - expand skb in the audit buffer
1933 * @ab: audit_buffer
1934 * @extra: space to add at tail of the skb
1935 *
1936 * Returns 0 (no space) on failed expansion, or available space if
1937 * successful.
1938 */
audit_expand(struct audit_buffer * ab,int extra)1939 static inline int audit_expand(struct audit_buffer *ab, int extra)
1940 {
1941 struct sk_buff *skb = ab->skb;
1942 int oldtail = skb_tailroom(skb);
1943 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1944 int newtail = skb_tailroom(skb);
1945
1946 if (ret < 0) {
1947 audit_log_lost("out of memory in audit_expand");
1948 return 0;
1949 }
1950
1951 skb->truesize += newtail - oldtail;
1952 return newtail;
1953 }
1954
1955 /*
1956 * Format an audit message into the audit buffer. If there isn't enough
1957 * room in the audit buffer, more room will be allocated and vsnprint
1958 * will be called a second time. Currently, we assume that a printk
1959 * can't format message larger than 1024 bytes, so we don't either.
1960 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1961 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1962 va_list args)
1963 {
1964 int len, avail;
1965 struct sk_buff *skb;
1966 va_list args2;
1967
1968 if (!ab)
1969 return;
1970
1971 BUG_ON(!ab->skb);
1972 skb = ab->skb;
1973 avail = skb_tailroom(skb);
1974 if (avail == 0) {
1975 avail = audit_expand(ab, AUDIT_BUFSIZ);
1976 if (!avail)
1977 goto out;
1978 }
1979 va_copy(args2, args);
1980 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1981 if (len >= avail) {
1982 /* The printk buffer is 1024 bytes long, so if we get
1983 * here and AUDIT_BUFSIZ is at least 1024, then we can
1984 * log everything that printk could have logged. */
1985 avail = audit_expand(ab,
1986 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1987 if (!avail)
1988 goto out_va_end;
1989 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1990 }
1991 if (len > 0)
1992 skb_put(skb, len);
1993 out_va_end:
1994 va_end(args2);
1995 out:
1996 return;
1997 }
1998
1999 /**
2000 * audit_log_format - format a message into the audit buffer.
2001 * @ab: audit_buffer
2002 * @fmt: format string
2003 * @...: optional parameters matching @fmt string
2004 *
2005 * All the work is done in audit_log_vformat.
2006 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)2007 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2008 {
2009 va_list args;
2010
2011 if (!ab)
2012 return;
2013 va_start(args, fmt);
2014 audit_log_vformat(ab, fmt, args);
2015 va_end(args);
2016 }
2017
2018 /**
2019 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2020 * @ab: the audit_buffer
2021 * @buf: buffer to convert to hex
2022 * @len: length of @buf to be converted
2023 *
2024 * No return value; failure to expand is silently ignored.
2025 *
2026 * This function will take the passed buf and convert it into a string of
2027 * ascii hex digits. The new string is placed onto the skb.
2028 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)2029 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2030 size_t len)
2031 {
2032 int i, avail, new_len;
2033 unsigned char *ptr;
2034 struct sk_buff *skb;
2035
2036 if (!ab)
2037 return;
2038
2039 BUG_ON(!ab->skb);
2040 skb = ab->skb;
2041 avail = skb_tailroom(skb);
2042 new_len = len<<1;
2043 if (new_len >= avail) {
2044 /* Round the buffer request up to the next multiple */
2045 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2046 avail = audit_expand(ab, new_len);
2047 if (!avail)
2048 return;
2049 }
2050
2051 ptr = skb_tail_pointer(skb);
2052 for (i = 0; i < len; i++)
2053 ptr = hex_byte_pack_upper(ptr, buf[i]);
2054 *ptr = 0;
2055 skb_put(skb, len << 1); /* new string is twice the old string */
2056 }
2057
2058 /*
2059 * Format a string of no more than slen characters into the audit buffer,
2060 * enclosed in quote marks.
2061 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2062 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2063 size_t slen)
2064 {
2065 int avail, new_len;
2066 unsigned char *ptr;
2067 struct sk_buff *skb;
2068
2069 if (!ab)
2070 return;
2071
2072 BUG_ON(!ab->skb);
2073 skb = ab->skb;
2074 avail = skb_tailroom(skb);
2075 new_len = slen + 3; /* enclosing quotes + null terminator */
2076 if (new_len > avail) {
2077 avail = audit_expand(ab, new_len);
2078 if (!avail)
2079 return;
2080 }
2081 ptr = skb_tail_pointer(skb);
2082 *ptr++ = '"';
2083 memcpy(ptr, string, slen);
2084 ptr += slen;
2085 *ptr++ = '"';
2086 *ptr = 0;
2087 skb_put(skb, slen + 2); /* don't include null terminator */
2088 }
2089
2090 /**
2091 * audit_string_contains_control - does a string need to be logged in hex
2092 * @string: string to be checked
2093 * @len: max length of the string to check
2094 */
audit_string_contains_control(const char * string,size_t len)2095 bool audit_string_contains_control(const char *string, size_t len)
2096 {
2097 const unsigned char *p;
2098 for (p = string; p < (const unsigned char *)string + len; p++) {
2099 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2100 return true;
2101 }
2102 return false;
2103 }
2104
2105 /**
2106 * audit_log_n_untrustedstring - log a string that may contain random characters
2107 * @ab: audit_buffer
2108 * @len: length of string (not including trailing null)
2109 * @string: string to be logged
2110 *
2111 * This code will escape a string that is passed to it if the string
2112 * contains a control character, unprintable character, double quote mark,
2113 * or a space. Unescaped strings will start and end with a double quote mark.
2114 * Strings that are escaped are printed in hex (2 digits per char).
2115 *
2116 * The caller specifies the number of characters in the string to log, which may
2117 * or may not be the entire string.
2118 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2119 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2120 size_t len)
2121 {
2122 if (audit_string_contains_control(string, len))
2123 audit_log_n_hex(ab, string, len);
2124 else
2125 audit_log_n_string(ab, string, len);
2126 }
2127
2128 /**
2129 * audit_log_untrustedstring - log a string that may contain random characters
2130 * @ab: audit_buffer
2131 * @string: string to be logged
2132 *
2133 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2134 * determine string length.
2135 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2136 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2137 {
2138 audit_log_n_untrustedstring(ab, string, strlen(string));
2139 }
2140
2141 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2142 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2143 const struct path *path)
2144 {
2145 char *p, *pathname;
2146
2147 if (prefix)
2148 audit_log_format(ab, "%s", prefix);
2149
2150 /* We will allow 11 spaces for ' (deleted)' to be appended */
2151 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2152 if (!pathname) {
2153 audit_log_format(ab, "\"<no_memory>\"");
2154 return;
2155 }
2156 p = d_path(path, pathname, PATH_MAX+11);
2157 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2158 /* FIXME: can we save some information here? */
2159 audit_log_format(ab, "\"<too_long>\"");
2160 } else
2161 audit_log_untrustedstring(ab, p);
2162 kfree(pathname);
2163 }
2164
audit_log_session_info(struct audit_buffer * ab)2165 void audit_log_session_info(struct audit_buffer *ab)
2166 {
2167 unsigned int sessionid = audit_get_sessionid(current);
2168 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2169
2170 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2171 }
2172
audit_log_key(struct audit_buffer * ab,char * key)2173 void audit_log_key(struct audit_buffer *ab, char *key)
2174 {
2175 audit_log_format(ab, " key=");
2176 if (key)
2177 audit_log_untrustedstring(ab, key);
2178 else
2179 audit_log_format(ab, "(null)");
2180 }
2181
audit_log_task_context(struct audit_buffer * ab)2182 int audit_log_task_context(struct audit_buffer *ab)
2183 {
2184 char *ctx = NULL;
2185 unsigned len;
2186 int error;
2187 u32 sid;
2188
2189 security_current_getsecid_subj(&sid);
2190 if (!sid)
2191 return 0;
2192
2193 error = security_secid_to_secctx(sid, &ctx, &len);
2194 if (error) {
2195 if (error != -EINVAL)
2196 goto error_path;
2197 return 0;
2198 }
2199
2200 audit_log_format(ab, " subj=%s", ctx);
2201 security_release_secctx(ctx, len);
2202 return 0;
2203
2204 error_path:
2205 audit_panic("error in audit_log_task_context");
2206 return error;
2207 }
2208 EXPORT_SYMBOL(audit_log_task_context);
2209
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2210 void audit_log_d_path_exe(struct audit_buffer *ab,
2211 struct mm_struct *mm)
2212 {
2213 struct file *exe_file;
2214
2215 if (!mm)
2216 goto out_null;
2217
2218 exe_file = get_mm_exe_file(mm);
2219 if (!exe_file)
2220 goto out_null;
2221
2222 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2223 fput(exe_file);
2224 return;
2225 out_null:
2226 audit_log_format(ab, " exe=(null)");
2227 }
2228
audit_get_tty(void)2229 struct tty_struct *audit_get_tty(void)
2230 {
2231 struct tty_struct *tty = NULL;
2232 unsigned long flags;
2233
2234 spin_lock_irqsave(¤t->sighand->siglock, flags);
2235 if (current->signal)
2236 tty = tty_kref_get(current->signal->tty);
2237 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2238 return tty;
2239 }
2240
audit_put_tty(struct tty_struct * tty)2241 void audit_put_tty(struct tty_struct *tty)
2242 {
2243 tty_kref_put(tty);
2244 }
2245
audit_log_task_info(struct audit_buffer * ab)2246 void audit_log_task_info(struct audit_buffer *ab)
2247 {
2248 const struct cred *cred;
2249 char comm[sizeof(current->comm)];
2250 struct tty_struct *tty;
2251
2252 if (!ab)
2253 return;
2254
2255 cred = current_cred();
2256 tty = audit_get_tty();
2257 audit_log_format(ab,
2258 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2259 " euid=%u suid=%u fsuid=%u"
2260 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2261 task_ppid_nr(current),
2262 task_tgid_nr(current),
2263 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2264 from_kuid(&init_user_ns, cred->uid),
2265 from_kgid(&init_user_ns, cred->gid),
2266 from_kuid(&init_user_ns, cred->euid),
2267 from_kuid(&init_user_ns, cred->suid),
2268 from_kuid(&init_user_ns, cred->fsuid),
2269 from_kgid(&init_user_ns, cred->egid),
2270 from_kgid(&init_user_ns, cred->sgid),
2271 from_kgid(&init_user_ns, cred->fsgid),
2272 tty ? tty_name(tty) : "(none)",
2273 audit_get_sessionid(current));
2274 audit_put_tty(tty);
2275 audit_log_format(ab, " comm=");
2276 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2277 audit_log_d_path_exe(ab, current->mm);
2278 audit_log_task_context(ab);
2279 }
2280 EXPORT_SYMBOL(audit_log_task_info);
2281
2282 /**
2283 * audit_log_path_denied - report a path restriction denial
2284 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2285 * @operation: specific operation name
2286 */
audit_log_path_denied(int type,const char * operation)2287 void audit_log_path_denied(int type, const char *operation)
2288 {
2289 struct audit_buffer *ab;
2290
2291 if (!audit_enabled || audit_dummy_context())
2292 return;
2293
2294 /* Generate log with subject, operation, outcome. */
2295 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2296 if (!ab)
2297 return;
2298 audit_log_format(ab, "op=%s", operation);
2299 audit_log_task_info(ab);
2300 audit_log_format(ab, " res=0");
2301 audit_log_end(ab);
2302 }
2303
2304 /* global counter which is incremented every time something logs in */
2305 static atomic_t session_id = ATOMIC_INIT(0);
2306
audit_set_loginuid_perm(kuid_t loginuid)2307 static int audit_set_loginuid_perm(kuid_t loginuid)
2308 {
2309 /* if we are unset, we don't need privs */
2310 if (!audit_loginuid_set(current))
2311 return 0;
2312 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2313 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2314 return -EPERM;
2315 /* it is set, you need permission */
2316 if (!capable(CAP_AUDIT_CONTROL))
2317 return -EPERM;
2318 /* reject if this is not an unset and we don't allow that */
2319 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2320 && uid_valid(loginuid))
2321 return -EPERM;
2322 return 0;
2323 }
2324
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2325 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2326 unsigned int oldsessionid,
2327 unsigned int sessionid, int rc)
2328 {
2329 struct audit_buffer *ab;
2330 uid_t uid, oldloginuid, loginuid;
2331 struct tty_struct *tty;
2332
2333 if (!audit_enabled)
2334 return;
2335
2336 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2337 if (!ab)
2338 return;
2339
2340 uid = from_kuid(&init_user_ns, task_uid(current));
2341 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2342 loginuid = from_kuid(&init_user_ns, kloginuid);
2343 tty = audit_get_tty();
2344
2345 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2346 audit_log_task_context(ab);
2347 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2348 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2349 oldsessionid, sessionid, !rc);
2350 audit_put_tty(tty);
2351 audit_log_end(ab);
2352 }
2353
2354 /**
2355 * audit_set_loginuid - set current task's loginuid
2356 * @loginuid: loginuid value
2357 *
2358 * Returns 0.
2359 *
2360 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2361 */
audit_set_loginuid(kuid_t loginuid)2362 int audit_set_loginuid(kuid_t loginuid)
2363 {
2364 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2365 kuid_t oldloginuid;
2366 int rc;
2367
2368 oldloginuid = audit_get_loginuid(current);
2369 oldsessionid = audit_get_sessionid(current);
2370
2371 rc = audit_set_loginuid_perm(loginuid);
2372 if (rc)
2373 goto out;
2374
2375 /* are we setting or clearing? */
2376 if (uid_valid(loginuid)) {
2377 sessionid = (unsigned int)atomic_inc_return(&session_id);
2378 if (unlikely(sessionid == AUDIT_SID_UNSET))
2379 sessionid = (unsigned int)atomic_inc_return(&session_id);
2380 }
2381
2382 current->sessionid = sessionid;
2383 current->loginuid = loginuid;
2384 out:
2385 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2386 return rc;
2387 }
2388
2389 /**
2390 * audit_signal_info - record signal info for shutting down audit subsystem
2391 * @sig: signal value
2392 * @t: task being signaled
2393 *
2394 * If the audit subsystem is being terminated, record the task (pid)
2395 * and uid that is doing that.
2396 */
audit_signal_info(int sig,struct task_struct * t)2397 int audit_signal_info(int sig, struct task_struct *t)
2398 {
2399 kuid_t uid = current_uid(), auid;
2400
2401 if (auditd_test_task(t) &&
2402 (sig == SIGTERM || sig == SIGHUP ||
2403 sig == SIGUSR1 || sig == SIGUSR2)) {
2404 audit_sig_pid = task_tgid_nr(current);
2405 auid = audit_get_loginuid(current);
2406 if (uid_valid(auid))
2407 audit_sig_uid = auid;
2408 else
2409 audit_sig_uid = uid;
2410 security_current_getsecid_subj(&audit_sig_sid);
2411 }
2412
2413 return audit_signal_info_syscall(t);
2414 }
2415
2416 /**
2417 * audit_log_end - end one audit record
2418 * @ab: the audit_buffer
2419 *
2420 * We can not do a netlink send inside an irq context because it blocks (last
2421 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2422 * queue and a kthread is scheduled to remove them from the queue outside the
2423 * irq context. May be called in any context.
2424 */
audit_log_end(struct audit_buffer * ab)2425 void audit_log_end(struct audit_buffer *ab)
2426 {
2427 struct sk_buff *skb;
2428 struct nlmsghdr *nlh;
2429
2430 if (!ab)
2431 return;
2432
2433 if (audit_rate_check()) {
2434 skb = ab->skb;
2435 ab->skb = NULL;
2436
2437 /* setup the netlink header, see the comments in
2438 * kauditd_send_multicast_skb() for length quirks */
2439 nlh = nlmsg_hdr(skb);
2440 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2441
2442 /* queue the netlink packet and poke the kauditd thread */
2443 skb_queue_tail(&audit_queue, skb);
2444 wake_up_interruptible(&kauditd_wait);
2445 } else
2446 audit_log_lost("rate limit exceeded");
2447
2448 audit_buffer_free(ab);
2449 }
2450
2451 /**
2452 * audit_log - Log an audit record
2453 * @ctx: audit context
2454 * @gfp_mask: type of allocation
2455 * @type: audit message type
2456 * @fmt: format string to use
2457 * @...: variable parameters matching the format string
2458 *
2459 * This is a convenience function that calls audit_log_start,
2460 * audit_log_vformat, and audit_log_end. It may be called
2461 * in any context.
2462 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2463 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2464 const char *fmt, ...)
2465 {
2466 struct audit_buffer *ab;
2467 va_list args;
2468
2469 ab = audit_log_start(ctx, gfp_mask, type);
2470 if (ab) {
2471 va_start(args, fmt);
2472 audit_log_vformat(ab, fmt, args);
2473 va_end(args);
2474 audit_log_end(ab);
2475 }
2476 }
2477
2478 EXPORT_SYMBOL(audit_log_start);
2479 EXPORT_SYMBOL(audit_log_end);
2480 EXPORT_SYMBOL(audit_log_format);
2481 EXPORT_SYMBOL(audit_log);
2482