1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
37 #include <linux/fs.h>
38 #include <linux/namei.h>
39 #include <linux/mm.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67
68 #include "audit.h"
69
70 /* flags stating the success for a syscall */
71 #define AUDITSC_INVALID 0
72 #define AUDITSC_SUCCESS 1
73 #define AUDITSC_FAILURE 2
74
75 /* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
77 #define MAX_EXECVE_AUDIT_LEN 7500
78
79 /* max length to print of cmdline/proctitle value during audit */
80 #define MAX_PROCTITLE_AUDIT_LEN 128
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91 };
92
93 /* Number of target pids per aux struct. */
94 #define AUDIT_AUX_PIDS 16
95
96 struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
99 kuid_t target_auid[AUDIT_AUX_PIDS];
100 kuid_t target_uid[AUDIT_AUX_PIDS];
101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
102 u32 target_sid[AUDIT_AUX_PIDS];
103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
104 int pid_count;
105 };
106
107 struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
113 };
114
115 struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
118 };
119
120 struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
122 const char *s;
123 };
124
125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
146 };
147
audit_match_perm(struct audit_context * ctx,int mask)148 static int audit_match_perm(struct audit_context *ctx, int mask)
149 {
150 unsigned n;
151
152 if (unlikely(!ctx))
153 return 0;
154 n = ctx->major;
155
156 switch (audit_classify_syscall(ctx->arch, n)) {
157 case AUDITSC_NATIVE:
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
160 return 1;
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
163 return 1;
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
166 return 1;
167 return 0;
168 case AUDITSC_COMPAT: /* 32bit on biarch */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
177 return 1;
178 return 0;
179 case AUDITSC_OPEN:
180 return mask & ACC_MODE(ctx->argv[1]);
181 case AUDITSC_OPENAT:
182 return mask & ACC_MODE(ctx->argv[2]);
183 case AUDITSC_SOCKETCALL:
184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
185 case AUDITSC_EXECVE:
186 return mask & AUDIT_PERM_EXEC;
187 case AUDITSC_OPENAT2:
188 return mask & ACC_MODE((u32)ctx->openat2.flags);
189 default:
190 return 0;
191 }
192 }
193
audit_match_filetype(struct audit_context * ctx,int val)194 static int audit_match_filetype(struct audit_context *ctx, int val)
195 {
196 struct audit_names *n;
197 umode_t mode = (umode_t)val;
198
199 if (unlikely(!ctx))
200 return 0;
201
202 list_for_each_entry(n, &ctx->names_list, list) {
203 if ((n->ino != AUDIT_INO_UNSET) &&
204 ((n->mode & S_IFMT) == mode))
205 return 1;
206 }
207
208 return 0;
209 }
210
211 /*
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
219 */
220
audit_set_auditable(struct audit_context * ctx)221 static void audit_set_auditable(struct audit_context *ctx)
222 {
223 if (!ctx->prio) {
224 ctx->prio = 1;
225 ctx->current_state = AUDIT_STATE_RECORD;
226 }
227 }
228
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
230 {
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
233
234 if (likely(left)) {
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
237 return 1;
238 }
239 if (!p)
240 return 0;
241 p = p->next;
242 if (p) {
243 p->c[30] = chunk;
244 ctx->trees = p;
245 ctx->tree_count = 30;
246 return 1;
247 }
248 return 0;
249 }
250
grow_tree_refs(struct audit_context * ctx)251 static int grow_tree_refs(struct audit_context *ctx)
252 {
253 struct audit_tree_refs *p = ctx->trees;
254
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
256 if (!ctx->trees) {
257 ctx->trees = p;
258 return 0;
259 }
260 if (p)
261 p->next = ctx->trees;
262 else
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
265 return 1;
266 }
267
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)268 static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
270 {
271 struct audit_tree_refs *q;
272 int n;
273
274 if (!p) {
275 /* we started with empty chain */
276 p = ctx->first_trees;
277 count = 31;
278 /* if the very first allocation has failed, nothing to do */
279 if (!p)
280 return;
281 }
282 n = count;
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
284 while (n--) {
285 audit_put_chunk(q->c[n]);
286 q->c[n] = NULL;
287 }
288 }
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
291 q->c[n] = NULL;
292 }
293 ctx->trees = p;
294 ctx->tree_count = count;
295 }
296
free_tree_refs(struct audit_context * ctx)297 static void free_tree_refs(struct audit_context *ctx)
298 {
299 struct audit_tree_refs *p, *q;
300
301 for (p = ctx->first_trees; p; p = q) {
302 q = p->next;
303 kfree(p);
304 }
305 }
306
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
308 {
309 struct audit_tree_refs *p;
310 int n;
311
312 if (!tree)
313 return 0;
314 /* full ones */
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
318 return 1;
319 }
320 /* partial */
321 if (p) {
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326 return 0;
327 }
328
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)329 static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
333 {
334 struct audit_names *n;
335 int rc;
336
337 if (name) {
338 rc = audit_uid_comparator(uid, f->op, name->uid);
339 if (rc)
340 return rc;
341 }
342
343 if (ctx) {
344 list_for_each_entry(n, &ctx->names_list, list) {
345 rc = audit_uid_comparator(uid, f->op, n->uid);
346 if (rc)
347 return rc;
348 }
349 }
350 return 0;
351 }
352
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)353 static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
357 {
358 struct audit_names *n;
359 int rc;
360
361 if (name) {
362 rc = audit_gid_comparator(gid, f->op, name->gid);
363 if (rc)
364 return rc;
365 }
366
367 if (ctx) {
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
370 if (rc)
371 return rc;
372 }
373 }
374 return 0;
375 }
376
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)377 static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
382 {
383 switch (f->val) {
384 /* process to file object comparisons */
385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
386 return audit_compare_uid(cred->uid, name, f, ctx);
387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
388 return audit_compare_gid(cred->gid, name, f, ctx);
389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
390 return audit_compare_uid(cred->euid, name, f, ctx);
391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
392 return audit_compare_gid(cred->egid, name, f, ctx);
393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->suid, name, f, ctx);
397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->sgid, name, f, ctx);
399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->fsuid, name, f, ctx);
401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->fsgid, name, f, ctx);
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
407 case AUDIT_COMPARE_UID_TO_EUID:
408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
409 case AUDIT_COMPARE_UID_TO_SUID:
410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
411 case AUDIT_COMPARE_UID_TO_FSUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
416 cred->euid);
417 case AUDIT_COMPARE_AUID_TO_SUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->suid);
420 case AUDIT_COMPARE_AUID_TO_FSUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->fsuid);
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
426 case AUDIT_COMPARE_EUID_TO_FSUID:
427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
434 case AUDIT_COMPARE_GID_TO_SGID:
435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
436 case AUDIT_COMPARE_GID_TO_FSGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
441 case AUDIT_COMPARE_EGID_TO_FSGID:
442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
446 default:
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
448 return 0;
449 }
450 return 0;
451 }
452
453 /* Determine if any context name data matches a rule's watch data */
454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
455 * otherwise.
456 *
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
460 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)461 static int audit_filter_rules(struct task_struct *tsk,
462 struct audit_krule *rule,
463 struct audit_context *ctx,
464 struct audit_names *name,
465 enum audit_state *state,
466 bool task_creation)
467 {
468 const struct cred *cred;
469 int i, need_sid = 1;
470 u32 sid;
471 unsigned int sessionid;
472
473 if (ctx && rule->prio <= ctx->prio)
474 return 0;
475
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
477
478 for (i = 0; i < rule->field_count; i++) {
479 struct audit_field *f = &rule->fields[i];
480 struct audit_names *n;
481 int result = 0;
482 pid_t pid;
483
484 switch (f->type) {
485 case AUDIT_PID:
486 pid = task_tgid_nr(tsk);
487 result = audit_comparator(pid, f->op, f->val);
488 break;
489 case AUDIT_PPID:
490 if (ctx) {
491 if (!ctx->ppid)
492 ctx->ppid = task_ppid_nr(tsk);
493 result = audit_comparator(ctx->ppid, f->op, f->val);
494 }
495 break;
496 case AUDIT_EXE:
497 result = audit_exe_compare(tsk, rule->exe);
498 if (f->op == Audit_not_equal)
499 result = !result;
500 break;
501 case AUDIT_UID:
502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
503 break;
504 case AUDIT_EUID:
505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
506 break;
507 case AUDIT_SUID:
508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
509 break;
510 case AUDIT_FSUID:
511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
512 break;
513 case AUDIT_GID:
514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
515 if (f->op == Audit_equal) {
516 if (!result)
517 result = groups_search(cred->group_info, f->gid);
518 } else if (f->op == Audit_not_equal) {
519 if (result)
520 result = !groups_search(cred->group_info, f->gid);
521 }
522 break;
523 case AUDIT_EGID:
524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
525 if (f->op == Audit_equal) {
526 if (!result)
527 result = groups_search(cred->group_info, f->gid);
528 } else if (f->op == Audit_not_equal) {
529 if (result)
530 result = !groups_search(cred->group_info, f->gid);
531 }
532 break;
533 case AUDIT_SGID:
534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
535 break;
536 case AUDIT_FSGID:
537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
538 break;
539 case AUDIT_SESSIONID:
540 sessionid = audit_get_sessionid(tsk);
541 result = audit_comparator(sessionid, f->op, f->val);
542 break;
543 case AUDIT_PERS:
544 result = audit_comparator(tsk->personality, f->op, f->val);
545 break;
546 case AUDIT_ARCH:
547 if (ctx)
548 result = audit_comparator(ctx->arch, f->op, f->val);
549 break;
550
551 case AUDIT_EXIT:
552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
553 result = audit_comparator(ctx->return_code, f->op, f->val);
554 break;
555 case AUDIT_SUCCESS:
556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
557 if (f->val)
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
559 else
560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
561 }
562 break;
563 case AUDIT_DEVMAJOR:
564 if (name) {
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
567 ++result;
568 } else if (ctx) {
569 list_for_each_entry(n, &ctx->names_list, list) {
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_DEVMINOR:
579 if (name) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
582 ++result;
583 } else if (ctx) {
584 list_for_each_entry(n, &ctx->names_list, list) {
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_INODE:
594 if (name)
595 result = audit_comparator(name->ino, f->op, f->val);
596 else if (ctx) {
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
605 case AUDIT_OBJ_UID:
606 if (name) {
607 result = audit_uid_comparator(name->uid, f->op, f->uid);
608 } else if (ctx) {
609 list_for_each_entry(n, &ctx->names_list, list) {
610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
611 ++result;
612 break;
613 }
614 }
615 }
616 break;
617 case AUDIT_OBJ_GID:
618 if (name) {
619 result = audit_gid_comparator(name->gid, f->op, f->gid);
620 } else if (ctx) {
621 list_for_each_entry(n, &ctx->names_list, list) {
622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
623 ++result;
624 break;
625 }
626 }
627 }
628 break;
629 case AUDIT_WATCH:
630 if (name) {
631 result = audit_watch_compare(rule->watch,
632 name->ino,
633 name->dev);
634 if (f->op == Audit_not_equal)
635 result = !result;
636 }
637 break;
638 case AUDIT_DIR:
639 if (ctx) {
640 result = match_tree_refs(ctx, rule->tree);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_LOGINUID:
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
647 f->op, f->uid);
648 break;
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
651 break;
652 case AUDIT_SADDR_FAM:
653 if (ctx && ctx->sockaddr)
654 result = audit_comparator(ctx->sockaddr->ss_family,
655 f->op, f->val);
656 break;
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
660 case AUDIT_SUBJ_SEN:
661 case AUDIT_SUBJ_CLR:
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
666 logged upon error */
667 if (f->lsm_rule) {
668 if (need_sid) {
669 /* @tsk should always be equal to
670 * @current with the exception of
671 * fork()/copy_process() in which case
672 * the new @tsk creds are still a dup
673 * of @current's creds so we can still
674 * use security_current_getsecid_subj()
675 * here even though it always refs
676 * @current's creds
677 */
678 security_current_getsecid_subj(&sid);
679 need_sid = 0;
680 }
681 result = security_audit_rule_match(sid, f->type,
682 f->op,
683 f->lsm_rule);
684 }
685 break;
686 case AUDIT_OBJ_USER:
687 case AUDIT_OBJ_ROLE:
688 case AUDIT_OBJ_TYPE:
689 case AUDIT_OBJ_LEV_LOW:
690 case AUDIT_OBJ_LEV_HIGH:
691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
692 also applies here */
693 if (f->lsm_rule) {
694 /* Find files that match */
695 if (name) {
696 result = security_audit_rule_match(
697 name->osid,
698 f->type,
699 f->op,
700 f->lsm_rule);
701 } else if (ctx) {
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (security_audit_rule_match(
704 n->osid,
705 f->type,
706 f->op,
707 f->lsm_rule)) {
708 ++result;
709 break;
710 }
711 }
712 }
713 /* Find ipc objects that match */
714 if (!ctx || ctx->type != AUDIT_IPC)
715 break;
716 if (security_audit_rule_match(ctx->ipc.osid,
717 f->type, f->op,
718 f->lsm_rule))
719 ++result;
720 }
721 break;
722 case AUDIT_ARG0:
723 case AUDIT_ARG1:
724 case AUDIT_ARG2:
725 case AUDIT_ARG3:
726 if (ctx)
727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
728 break;
729 case AUDIT_FILTERKEY:
730 /* ignore this field for filtering */
731 result = 1;
732 break;
733 case AUDIT_PERM:
734 result = audit_match_perm(ctx, f->val);
735 if (f->op == Audit_not_equal)
736 result = !result;
737 break;
738 case AUDIT_FILETYPE:
739 result = audit_match_filetype(ctx, f->val);
740 if (f->op == Audit_not_equal)
741 result = !result;
742 break;
743 case AUDIT_FIELD_COMPARE:
744 result = audit_field_compare(tsk, cred, f, ctx, name);
745 break;
746 }
747 if (!result)
748 return 0;
749 }
750
751 if (ctx) {
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
758 switch (rule->action) {
759 case AUDIT_NEVER:
760 *state = AUDIT_STATE_DISABLED;
761 break;
762 case AUDIT_ALWAYS:
763 *state = AUDIT_STATE_RECORD;
764 break;
765 }
766 return 1;
767 }
768
769 /* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
audit_filter_task(struct task_struct * tsk,char ** key)773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
774 {
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
789 return AUDIT_STATE_BUILD;
790 }
791
audit_in_mask(const struct audit_krule * rule,unsigned long val)792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793 {
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806 }
807
808 /**
809 * audit_filter_uring - apply filters to an io_uring operation
810 * @tsk: associated task
811 * @ctx: audit context
812 */
audit_filter_uring(struct task_struct * tsk,struct audit_context * ctx)813 static void audit_filter_uring(struct task_struct *tsk,
814 struct audit_context *ctx)
815 {
816 struct audit_entry *e;
817 enum audit_state state;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
824 list) {
825 if (audit_in_mask(&e->rule, ctx->uring_op) &&
826 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
827 false)) {
828 rcu_read_unlock();
829 ctx->current_state = state;
830 return;
831 }
832 }
833 rcu_read_unlock();
834 }
835
836 /* At syscall exit time, this filter is called if the audit_state is
837 * not low enough that auditing cannot take place, but is also not
838 * high enough that we already know we have to write an audit record
839 * (i.e., the state is AUDIT_STATE_BUILD).
840 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx)841 static void audit_filter_syscall(struct task_struct *tsk,
842 struct audit_context *ctx)
843 {
844 struct audit_entry *e;
845 enum audit_state state;
846
847 if (auditd_test_task(tsk))
848 return;
849
850 rcu_read_lock();
851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
852 if (audit_in_mask(&e->rule, ctx->major) &&
853 audit_filter_rules(tsk, &e->rule, ctx, NULL,
854 &state, false)) {
855 rcu_read_unlock();
856 ctx->current_state = state;
857 return;
858 }
859 }
860 rcu_read_unlock();
861 return;
862 }
863
864 /*
865 * Given an audit_name check the inode hash table to see if they match.
866 * Called holding the rcu read lock to protect the use of audit_inode_hash
867 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)868 static int audit_filter_inode_name(struct task_struct *tsk,
869 struct audit_names *n,
870 struct audit_context *ctx) {
871 int h = audit_hash_ino((u32)n->ino);
872 struct list_head *list = &audit_inode_hash[h];
873 struct audit_entry *e;
874 enum audit_state state;
875
876 list_for_each_entry_rcu(e, list, list) {
877 if (audit_in_mask(&e->rule, ctx->major) &&
878 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
879 ctx->current_state = state;
880 return 1;
881 }
882 }
883 return 0;
884 }
885
886 /* At syscall exit time, this filter is called if any audit_names have been
887 * collected during syscall processing. We only check rules in sublists at hash
888 * buckets applicable to the inode numbers in audit_names.
889 * Regarding audit_state, same rules apply as for audit_filter_syscall().
890 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)891 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
892 {
893 struct audit_names *n;
894
895 if (auditd_test_task(tsk))
896 return;
897
898 rcu_read_lock();
899
900 list_for_each_entry(n, &ctx->names_list, list) {
901 if (audit_filter_inode_name(tsk, n, ctx))
902 break;
903 }
904 rcu_read_unlock();
905 }
906
audit_proctitle_free(struct audit_context * context)907 static inline void audit_proctitle_free(struct audit_context *context)
908 {
909 kfree(context->proctitle.value);
910 context->proctitle.value = NULL;
911 context->proctitle.len = 0;
912 }
913
audit_free_module(struct audit_context * context)914 static inline void audit_free_module(struct audit_context *context)
915 {
916 if (context->type == AUDIT_KERN_MODULE) {
917 kfree(context->module.name);
918 context->module.name = NULL;
919 }
920 }
audit_free_names(struct audit_context * context)921 static inline void audit_free_names(struct audit_context *context)
922 {
923 struct audit_names *n, *next;
924
925 list_for_each_entry_safe(n, next, &context->names_list, list) {
926 list_del(&n->list);
927 if (n->name)
928 putname(n->name);
929 if (n->should_free)
930 kfree(n);
931 }
932 context->name_count = 0;
933 path_put(&context->pwd);
934 context->pwd.dentry = NULL;
935 context->pwd.mnt = NULL;
936 }
937
audit_free_aux(struct audit_context * context)938 static inline void audit_free_aux(struct audit_context *context)
939 {
940 struct audit_aux_data *aux;
941
942 while ((aux = context->aux)) {
943 context->aux = aux->next;
944 kfree(aux);
945 }
946 context->aux = NULL;
947 while ((aux = context->aux_pids)) {
948 context->aux_pids = aux->next;
949 kfree(aux);
950 }
951 context->aux_pids = NULL;
952 }
953
954 /**
955 * audit_reset_context - reset a audit_context structure
956 * @ctx: the audit_context to reset
957 *
958 * All fields in the audit_context will be reset to an initial state, all
959 * references held by fields will be dropped, and private memory will be
960 * released. When this function returns the audit_context will be suitable
961 * for reuse, so long as the passed context is not NULL or a dummy context.
962 */
audit_reset_context(struct audit_context * ctx)963 static void audit_reset_context(struct audit_context *ctx)
964 {
965 if (!ctx)
966 return;
967
968 /* if ctx is non-null, reset the "ctx->context" regardless */
969 ctx->context = AUDIT_CTX_UNUSED;
970 if (ctx->dummy)
971 return;
972
973 /*
974 * NOTE: It shouldn't matter in what order we release the fields, so
975 * release them in the order in which they appear in the struct;
976 * this gives us some hope of quickly making sure we are
977 * resetting the audit_context properly.
978 *
979 * Other things worth mentioning:
980 * - we don't reset "dummy"
981 * - we don't reset "state", we do reset "current_state"
982 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
983 * - much of this is likely overkill, but play it safe for now
984 * - we really need to work on improving the audit_context struct
985 */
986
987 ctx->current_state = ctx->state;
988 ctx->serial = 0;
989 ctx->major = 0;
990 ctx->uring_op = 0;
991 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
992 memset(ctx->argv, 0, sizeof(ctx->argv));
993 ctx->return_code = 0;
994 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
995 ctx->return_valid = AUDITSC_INVALID;
996 audit_free_names(ctx);
997 if (ctx->state != AUDIT_STATE_RECORD) {
998 kfree(ctx->filterkey);
999 ctx->filterkey = NULL;
1000 }
1001 audit_free_aux(ctx);
1002 kfree(ctx->sockaddr);
1003 ctx->sockaddr = NULL;
1004 ctx->sockaddr_len = 0;
1005 ctx->ppid = 0;
1006 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1007 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1008 ctx->personality = 0;
1009 ctx->arch = 0;
1010 ctx->target_pid = 0;
1011 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1012 ctx->target_sessionid = 0;
1013 ctx->target_sid = 0;
1014 ctx->target_comm[0] = '\0';
1015 unroll_tree_refs(ctx, NULL, 0);
1016 WARN_ON(!list_empty(&ctx->killed_trees));
1017 audit_free_module(ctx);
1018 ctx->fds[0] = -1;
1019 ctx->type = 0; /* reset last for audit_free_*() */
1020 }
1021
audit_alloc_context(enum audit_state state)1022 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1023 {
1024 struct audit_context *context;
1025
1026 context = kzalloc(sizeof(*context), GFP_KERNEL);
1027 if (!context)
1028 return NULL;
1029 context->context = AUDIT_CTX_UNUSED;
1030 context->state = state;
1031 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1032 INIT_LIST_HEAD(&context->killed_trees);
1033 INIT_LIST_HEAD(&context->names_list);
1034 context->fds[0] = -1;
1035 context->return_valid = AUDITSC_INVALID;
1036 return context;
1037 }
1038
1039 /**
1040 * audit_alloc - allocate an audit context block for a task
1041 * @tsk: task
1042 *
1043 * Filter on the task information and allocate a per-task audit context
1044 * if necessary. Doing so turns on system call auditing for the
1045 * specified task. This is called from copy_process, so no lock is
1046 * needed.
1047 */
audit_alloc(struct task_struct * tsk)1048 int audit_alloc(struct task_struct *tsk)
1049 {
1050 struct audit_context *context;
1051 enum audit_state state;
1052 char *key = NULL;
1053
1054 if (likely(!audit_ever_enabled))
1055 return 0;
1056
1057 state = audit_filter_task(tsk, &key);
1058 if (state == AUDIT_STATE_DISABLED) {
1059 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1060 return 0;
1061 }
1062
1063 if (!(context = audit_alloc_context(state))) {
1064 kfree(key);
1065 audit_log_lost("out of memory in audit_alloc");
1066 return -ENOMEM;
1067 }
1068 context->filterkey = key;
1069
1070 audit_set_context(tsk, context);
1071 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1072 return 0;
1073 }
1074
audit_free_context(struct audit_context * context)1075 static inline void audit_free_context(struct audit_context *context)
1076 {
1077 /* resetting is extra work, but it is likely just noise */
1078 audit_reset_context(context);
1079 audit_proctitle_free(context);
1080 free_tree_refs(context);
1081 kfree(context->filterkey);
1082 kfree(context);
1083 }
1084
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)1085 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1086 kuid_t auid, kuid_t uid, unsigned int sessionid,
1087 u32 sid, char *comm)
1088 {
1089 struct audit_buffer *ab;
1090 char *ctx = NULL;
1091 u32 len;
1092 int rc = 0;
1093
1094 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1095 if (!ab)
1096 return rc;
1097
1098 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1099 from_kuid(&init_user_ns, auid),
1100 from_kuid(&init_user_ns, uid), sessionid);
1101 if (sid) {
1102 if (security_secid_to_secctx(sid, &ctx, &len)) {
1103 audit_log_format(ab, " obj=(none)");
1104 rc = 1;
1105 } else {
1106 audit_log_format(ab, " obj=%s", ctx);
1107 security_release_secctx(ctx, len);
1108 }
1109 }
1110 audit_log_format(ab, " ocomm=");
1111 audit_log_untrustedstring(ab, comm);
1112 audit_log_end(ab);
1113
1114 return rc;
1115 }
1116
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1117 static void audit_log_execve_info(struct audit_context *context,
1118 struct audit_buffer **ab)
1119 {
1120 long len_max;
1121 long len_rem;
1122 long len_full;
1123 long len_buf;
1124 long len_abuf = 0;
1125 long len_tmp;
1126 bool require_data;
1127 bool encode;
1128 unsigned int iter;
1129 unsigned int arg;
1130 char *buf_head;
1131 char *buf;
1132 const char __user *p = (const char __user *)current->mm->arg_start;
1133
1134 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1135 * data we put in the audit record for this argument (see the
1136 * code below) ... at this point in time 96 is plenty */
1137 char abuf[96];
1138
1139 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1140 * current value of 7500 is not as important as the fact that it
1141 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1142 * room if we go over a little bit in the logging below */
1143 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1144 len_max = MAX_EXECVE_AUDIT_LEN;
1145
1146 /* scratch buffer to hold the userspace args */
1147 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1148 if (!buf_head) {
1149 audit_panic("out of memory for argv string");
1150 return;
1151 }
1152 buf = buf_head;
1153
1154 audit_log_format(*ab, "argc=%d", context->execve.argc);
1155
1156 len_rem = len_max;
1157 len_buf = 0;
1158 len_full = 0;
1159 require_data = true;
1160 encode = false;
1161 iter = 0;
1162 arg = 0;
1163 do {
1164 /* NOTE: we don't ever want to trust this value for anything
1165 * serious, but the audit record format insists we
1166 * provide an argument length for really long arguments,
1167 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1168 * to use strncpy_from_user() to obtain this value for
1169 * recording in the log, although we don't use it
1170 * anywhere here to avoid a double-fetch problem */
1171 if (len_full == 0)
1172 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1173
1174 /* read more data from userspace */
1175 if (require_data) {
1176 /* can we make more room in the buffer? */
1177 if (buf != buf_head) {
1178 memmove(buf_head, buf, len_buf);
1179 buf = buf_head;
1180 }
1181
1182 /* fetch as much as we can of the argument */
1183 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1184 len_max - len_buf);
1185 if (len_tmp == -EFAULT) {
1186 /* unable to copy from userspace */
1187 send_sig(SIGKILL, current, 0);
1188 goto out;
1189 } else if (len_tmp == (len_max - len_buf)) {
1190 /* buffer is not large enough */
1191 require_data = true;
1192 /* NOTE: if we are going to span multiple
1193 * buffers force the encoding so we stand
1194 * a chance at a sane len_full value and
1195 * consistent record encoding */
1196 encode = true;
1197 len_full = len_full * 2;
1198 p += len_tmp;
1199 } else {
1200 require_data = false;
1201 if (!encode)
1202 encode = audit_string_contains_control(
1203 buf, len_tmp);
1204 /* try to use a trusted value for len_full */
1205 if (len_full < len_max)
1206 len_full = (encode ?
1207 len_tmp * 2 : len_tmp);
1208 p += len_tmp + 1;
1209 }
1210 len_buf += len_tmp;
1211 buf_head[len_buf] = '\0';
1212
1213 /* length of the buffer in the audit record? */
1214 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1215 }
1216
1217 /* write as much as we can to the audit log */
1218 if (len_buf >= 0) {
1219 /* NOTE: some magic numbers here - basically if we
1220 * can't fit a reasonable amount of data into the
1221 * existing audit buffer, flush it and start with
1222 * a new buffer */
1223 if ((sizeof(abuf) + 8) > len_rem) {
1224 len_rem = len_max;
1225 audit_log_end(*ab);
1226 *ab = audit_log_start(context,
1227 GFP_KERNEL, AUDIT_EXECVE);
1228 if (!*ab)
1229 goto out;
1230 }
1231
1232 /* create the non-arg portion of the arg record */
1233 len_tmp = 0;
1234 if (require_data || (iter > 0) ||
1235 ((len_abuf + sizeof(abuf)) > len_rem)) {
1236 if (iter == 0) {
1237 len_tmp += snprintf(&abuf[len_tmp],
1238 sizeof(abuf) - len_tmp,
1239 " a%d_len=%lu",
1240 arg, len_full);
1241 }
1242 len_tmp += snprintf(&abuf[len_tmp],
1243 sizeof(abuf) - len_tmp,
1244 " a%d[%d]=", arg, iter++);
1245 } else
1246 len_tmp += snprintf(&abuf[len_tmp],
1247 sizeof(abuf) - len_tmp,
1248 " a%d=", arg);
1249 WARN_ON(len_tmp >= sizeof(abuf));
1250 abuf[sizeof(abuf) - 1] = '\0';
1251
1252 /* log the arg in the audit record */
1253 audit_log_format(*ab, "%s", abuf);
1254 len_rem -= len_tmp;
1255 len_tmp = len_buf;
1256 if (encode) {
1257 if (len_abuf > len_rem)
1258 len_tmp = len_rem / 2; /* encoding */
1259 audit_log_n_hex(*ab, buf, len_tmp);
1260 len_rem -= len_tmp * 2;
1261 len_abuf -= len_tmp * 2;
1262 } else {
1263 if (len_abuf > len_rem)
1264 len_tmp = len_rem - 2; /* quotes */
1265 audit_log_n_string(*ab, buf, len_tmp);
1266 len_rem -= len_tmp + 2;
1267 /* don't subtract the "2" because we still need
1268 * to add quotes to the remaining string */
1269 len_abuf -= len_tmp;
1270 }
1271 len_buf -= len_tmp;
1272 buf += len_tmp;
1273 }
1274
1275 /* ready to move to the next argument? */
1276 if ((len_buf == 0) && !require_data) {
1277 arg++;
1278 iter = 0;
1279 len_full = 0;
1280 require_data = true;
1281 encode = false;
1282 }
1283 } while (arg < context->execve.argc);
1284
1285 /* NOTE: the caller handles the final audit_log_end() call */
1286
1287 out:
1288 kfree(buf_head);
1289 }
1290
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1291 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1292 kernel_cap_t *cap)
1293 {
1294 int i;
1295
1296 if (cap_isclear(*cap)) {
1297 audit_log_format(ab, " %s=0", prefix);
1298 return;
1299 }
1300 audit_log_format(ab, " %s=", prefix);
1301 CAP_FOR_EACH_U32(i)
1302 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1303 }
1304
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1305 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1306 {
1307 if (name->fcap_ver == -1) {
1308 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1309 return;
1310 }
1311 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1312 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1313 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1314 name->fcap.fE, name->fcap_ver,
1315 from_kuid(&init_user_ns, name->fcap.rootid));
1316 }
1317
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1318 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1319 {
1320 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1321 const struct timespec64 *tk = &context->time.tk_injoffset;
1322 static const char * const ntp_name[] = {
1323 "offset",
1324 "freq",
1325 "status",
1326 "tai",
1327 "tick",
1328 "adjust",
1329 };
1330 int type;
1331
1332 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1333 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1334 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1335 if (!*ab) {
1336 *ab = audit_log_start(context,
1337 GFP_KERNEL,
1338 AUDIT_TIME_ADJNTPVAL);
1339 if (!*ab)
1340 return;
1341 }
1342 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1343 ntp_name[type],
1344 ntp->vals[type].oldval,
1345 ntp->vals[type].newval);
1346 audit_log_end(*ab);
1347 *ab = NULL;
1348 }
1349 }
1350 }
1351 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1352 if (!*ab) {
1353 *ab = audit_log_start(context, GFP_KERNEL,
1354 AUDIT_TIME_INJOFFSET);
1355 if (!*ab)
1356 return;
1357 }
1358 audit_log_format(*ab, "sec=%lli nsec=%li",
1359 (long long)tk->tv_sec, tk->tv_nsec);
1360 audit_log_end(*ab);
1361 *ab = NULL;
1362 }
1363 }
1364
show_special(struct audit_context * context,int * call_panic)1365 static void show_special(struct audit_context *context, int *call_panic)
1366 {
1367 struct audit_buffer *ab;
1368 int i;
1369
1370 ab = audit_log_start(context, GFP_KERNEL, context->type);
1371 if (!ab)
1372 return;
1373
1374 switch (context->type) {
1375 case AUDIT_SOCKETCALL: {
1376 int nargs = context->socketcall.nargs;
1377
1378 audit_log_format(ab, "nargs=%d", nargs);
1379 for (i = 0; i < nargs; i++)
1380 audit_log_format(ab, " a%d=%lx", i,
1381 context->socketcall.args[i]);
1382 break; }
1383 case AUDIT_IPC: {
1384 u32 osid = context->ipc.osid;
1385
1386 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1387 from_kuid(&init_user_ns, context->ipc.uid),
1388 from_kgid(&init_user_ns, context->ipc.gid),
1389 context->ipc.mode);
1390 if (osid) {
1391 char *ctx = NULL;
1392 u32 len;
1393
1394 if (security_secid_to_secctx(osid, &ctx, &len)) {
1395 audit_log_format(ab, " osid=%u", osid);
1396 *call_panic = 1;
1397 } else {
1398 audit_log_format(ab, " obj=%s", ctx);
1399 security_release_secctx(ctx, len);
1400 }
1401 }
1402 if (context->ipc.has_perm) {
1403 audit_log_end(ab);
1404 ab = audit_log_start(context, GFP_KERNEL,
1405 AUDIT_IPC_SET_PERM);
1406 if (unlikely(!ab))
1407 return;
1408 audit_log_format(ab,
1409 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1410 context->ipc.qbytes,
1411 context->ipc.perm_uid,
1412 context->ipc.perm_gid,
1413 context->ipc.perm_mode);
1414 }
1415 break; }
1416 case AUDIT_MQ_OPEN:
1417 audit_log_format(ab,
1418 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1419 "mq_msgsize=%ld mq_curmsgs=%ld",
1420 context->mq_open.oflag, context->mq_open.mode,
1421 context->mq_open.attr.mq_flags,
1422 context->mq_open.attr.mq_maxmsg,
1423 context->mq_open.attr.mq_msgsize,
1424 context->mq_open.attr.mq_curmsgs);
1425 break;
1426 case AUDIT_MQ_SENDRECV:
1427 audit_log_format(ab,
1428 "mqdes=%d msg_len=%zd msg_prio=%u "
1429 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1430 context->mq_sendrecv.mqdes,
1431 context->mq_sendrecv.msg_len,
1432 context->mq_sendrecv.msg_prio,
1433 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1434 context->mq_sendrecv.abs_timeout.tv_nsec);
1435 break;
1436 case AUDIT_MQ_NOTIFY:
1437 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1438 context->mq_notify.mqdes,
1439 context->mq_notify.sigev_signo);
1440 break;
1441 case AUDIT_MQ_GETSETATTR: {
1442 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1443
1444 audit_log_format(ab,
1445 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1446 "mq_curmsgs=%ld ",
1447 context->mq_getsetattr.mqdes,
1448 attr->mq_flags, attr->mq_maxmsg,
1449 attr->mq_msgsize, attr->mq_curmsgs);
1450 break; }
1451 case AUDIT_CAPSET:
1452 audit_log_format(ab, "pid=%d", context->capset.pid);
1453 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1454 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1455 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1456 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1457 break;
1458 case AUDIT_MMAP:
1459 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1460 context->mmap.flags);
1461 break;
1462 case AUDIT_OPENAT2:
1463 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1464 context->openat2.flags,
1465 context->openat2.mode,
1466 context->openat2.resolve);
1467 break;
1468 case AUDIT_EXECVE:
1469 audit_log_execve_info(context, &ab);
1470 break;
1471 case AUDIT_KERN_MODULE:
1472 audit_log_format(ab, "name=");
1473 if (context->module.name) {
1474 audit_log_untrustedstring(ab, context->module.name);
1475 } else
1476 audit_log_format(ab, "(null)");
1477
1478 break;
1479 case AUDIT_TIME_ADJNTPVAL:
1480 case AUDIT_TIME_INJOFFSET:
1481 /* this call deviates from the rest, eating the buffer */
1482 audit_log_time(context, &ab);
1483 break;
1484 }
1485 audit_log_end(ab);
1486 }
1487
audit_proctitle_rtrim(char * proctitle,int len)1488 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1489 {
1490 char *end = proctitle + len - 1;
1491
1492 while (end > proctitle && !isprint(*end))
1493 end--;
1494
1495 /* catch the case where proctitle is only 1 non-print character */
1496 len = end - proctitle + 1;
1497 len -= isprint(proctitle[len-1]) == 0;
1498 return len;
1499 }
1500
1501 /*
1502 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1503 * @context: audit_context for the task
1504 * @n: audit_names structure with reportable details
1505 * @path: optional path to report instead of audit_names->name
1506 * @record_num: record number to report when handling a list of names
1507 * @call_panic: optional pointer to int that will be updated if secid fails
1508 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1509 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1510 const struct path *path, int record_num, int *call_panic)
1511 {
1512 struct audit_buffer *ab;
1513
1514 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1515 if (!ab)
1516 return;
1517
1518 audit_log_format(ab, "item=%d", record_num);
1519
1520 if (path)
1521 audit_log_d_path(ab, " name=", path);
1522 else if (n->name) {
1523 switch (n->name_len) {
1524 case AUDIT_NAME_FULL:
1525 /* log the full path */
1526 audit_log_format(ab, " name=");
1527 audit_log_untrustedstring(ab, n->name->name);
1528 break;
1529 case 0:
1530 /* name was specified as a relative path and the
1531 * directory component is the cwd
1532 */
1533 if (context->pwd.dentry && context->pwd.mnt)
1534 audit_log_d_path(ab, " name=", &context->pwd);
1535 else
1536 audit_log_format(ab, " name=(null)");
1537 break;
1538 default:
1539 /* log the name's directory component */
1540 audit_log_format(ab, " name=");
1541 audit_log_n_untrustedstring(ab, n->name->name,
1542 n->name_len);
1543 }
1544 } else
1545 audit_log_format(ab, " name=(null)");
1546
1547 if (n->ino != AUDIT_INO_UNSET)
1548 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1549 n->ino,
1550 MAJOR(n->dev),
1551 MINOR(n->dev),
1552 n->mode,
1553 from_kuid(&init_user_ns, n->uid),
1554 from_kgid(&init_user_ns, n->gid),
1555 MAJOR(n->rdev),
1556 MINOR(n->rdev));
1557 if (n->osid != 0) {
1558 char *ctx = NULL;
1559 u32 len;
1560
1561 if (security_secid_to_secctx(
1562 n->osid, &ctx, &len)) {
1563 audit_log_format(ab, " osid=%u", n->osid);
1564 if (call_panic)
1565 *call_panic = 2;
1566 } else {
1567 audit_log_format(ab, " obj=%s", ctx);
1568 security_release_secctx(ctx, len);
1569 }
1570 }
1571
1572 /* log the audit_names record type */
1573 switch (n->type) {
1574 case AUDIT_TYPE_NORMAL:
1575 audit_log_format(ab, " nametype=NORMAL");
1576 break;
1577 case AUDIT_TYPE_PARENT:
1578 audit_log_format(ab, " nametype=PARENT");
1579 break;
1580 case AUDIT_TYPE_CHILD_DELETE:
1581 audit_log_format(ab, " nametype=DELETE");
1582 break;
1583 case AUDIT_TYPE_CHILD_CREATE:
1584 audit_log_format(ab, " nametype=CREATE");
1585 break;
1586 default:
1587 audit_log_format(ab, " nametype=UNKNOWN");
1588 break;
1589 }
1590
1591 audit_log_fcaps(ab, n);
1592 audit_log_end(ab);
1593 }
1594
audit_log_proctitle(void)1595 static void audit_log_proctitle(void)
1596 {
1597 int res;
1598 char *buf;
1599 char *msg = "(null)";
1600 int len = strlen(msg);
1601 struct audit_context *context = audit_context();
1602 struct audit_buffer *ab;
1603
1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1605 if (!ab)
1606 return; /* audit_panic or being filtered */
1607
1608 audit_log_format(ab, "proctitle=");
1609
1610 /* Not cached */
1611 if (!context->proctitle.value) {
1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1613 if (!buf)
1614 goto out;
1615 /* Historically called this from procfs naming */
1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1617 if (res == 0) {
1618 kfree(buf);
1619 goto out;
1620 }
1621 res = audit_proctitle_rtrim(buf, res);
1622 if (res == 0) {
1623 kfree(buf);
1624 goto out;
1625 }
1626 context->proctitle.value = buf;
1627 context->proctitle.len = res;
1628 }
1629 msg = context->proctitle.value;
1630 len = context->proctitle.len;
1631 out:
1632 audit_log_n_untrustedstring(ab, msg, len);
1633 audit_log_end(ab);
1634 }
1635
1636 /**
1637 * audit_log_uring - generate a AUDIT_URINGOP record
1638 * @ctx: the audit context
1639 */
audit_log_uring(struct audit_context * ctx)1640 static void audit_log_uring(struct audit_context *ctx)
1641 {
1642 struct audit_buffer *ab;
1643 const struct cred *cred;
1644
1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1646 if (!ab)
1647 return;
1648 cred = current_cred();
1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1650 if (ctx->return_valid != AUDITSC_INVALID)
1651 audit_log_format(ab, " success=%s exit=%ld",
1652 (ctx->return_valid == AUDITSC_SUCCESS ?
1653 "yes" : "no"),
1654 ctx->return_code);
1655 audit_log_format(ab,
1656 " items=%d"
1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1658 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1659 ctx->name_count,
1660 task_ppid_nr(current), task_tgid_nr(current),
1661 from_kuid(&init_user_ns, cred->uid),
1662 from_kgid(&init_user_ns, cred->gid),
1663 from_kuid(&init_user_ns, cred->euid),
1664 from_kuid(&init_user_ns, cred->suid),
1665 from_kuid(&init_user_ns, cred->fsuid),
1666 from_kgid(&init_user_ns, cred->egid),
1667 from_kgid(&init_user_ns, cred->sgid),
1668 from_kgid(&init_user_ns, cred->fsgid));
1669 audit_log_task_context(ab);
1670 audit_log_key(ab, ctx->filterkey);
1671 audit_log_end(ab);
1672 }
1673
audit_log_exit(void)1674 static void audit_log_exit(void)
1675 {
1676 int i, call_panic = 0;
1677 struct audit_context *context = audit_context();
1678 struct audit_buffer *ab;
1679 struct audit_aux_data *aux;
1680 struct audit_names *n;
1681
1682 context->personality = current->personality;
1683
1684 switch (context->context) {
1685 case AUDIT_CTX_SYSCALL:
1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1687 if (!ab)
1688 return;
1689 audit_log_format(ab, "arch=%x syscall=%d",
1690 context->arch, context->major);
1691 if (context->personality != PER_LINUX)
1692 audit_log_format(ab, " per=%lx", context->personality);
1693 if (context->return_valid != AUDITSC_INVALID)
1694 audit_log_format(ab, " success=%s exit=%ld",
1695 (context->return_valid == AUDITSC_SUCCESS ?
1696 "yes" : "no"),
1697 context->return_code);
1698 audit_log_format(ab,
1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1700 context->argv[0],
1701 context->argv[1],
1702 context->argv[2],
1703 context->argv[3],
1704 context->name_count);
1705 audit_log_task_info(ab);
1706 audit_log_key(ab, context->filterkey);
1707 audit_log_end(ab);
1708 break;
1709 case AUDIT_CTX_URING:
1710 audit_log_uring(context);
1711 break;
1712 default:
1713 BUG();
1714 break;
1715 }
1716
1717 for (aux = context->aux; aux; aux = aux->next) {
1718
1719 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1720 if (!ab)
1721 continue; /* audit_panic has been called */
1722
1723 switch (aux->type) {
1724
1725 case AUDIT_BPRM_FCAPS: {
1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1727
1728 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1729 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1731 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1740 audit_log_format(ab, " frootid=%d",
1741 from_kuid(&init_user_ns,
1742 axs->fcap.rootid));
1743 break; }
1744
1745 }
1746 audit_log_end(ab);
1747 }
1748
1749 if (context->type)
1750 show_special(context, &call_panic);
1751
1752 if (context->fds[0] >= 0) {
1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1754 if (ab) {
1755 audit_log_format(ab, "fd0=%d fd1=%d",
1756 context->fds[0], context->fds[1]);
1757 audit_log_end(ab);
1758 }
1759 }
1760
1761 if (context->sockaddr_len) {
1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1763 if (ab) {
1764 audit_log_format(ab, "saddr=");
1765 audit_log_n_hex(ab, (void *)context->sockaddr,
1766 context->sockaddr_len);
1767 audit_log_end(ab);
1768 }
1769 }
1770
1771 for (aux = context->aux_pids; aux; aux = aux->next) {
1772 struct audit_aux_data_pids *axs = (void *)aux;
1773
1774 for (i = 0; i < axs->pid_count; i++)
1775 if (audit_log_pid_context(context, axs->target_pid[i],
1776 axs->target_auid[i],
1777 axs->target_uid[i],
1778 axs->target_sessionid[i],
1779 axs->target_sid[i],
1780 axs->target_comm[i]))
1781 call_panic = 1;
1782 }
1783
1784 if (context->target_pid &&
1785 audit_log_pid_context(context, context->target_pid,
1786 context->target_auid, context->target_uid,
1787 context->target_sessionid,
1788 context->target_sid, context->target_comm))
1789 call_panic = 1;
1790
1791 if (context->pwd.dentry && context->pwd.mnt) {
1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1793 if (ab) {
1794 audit_log_d_path(ab, "cwd=", &context->pwd);
1795 audit_log_end(ab);
1796 }
1797 }
1798
1799 i = 0;
1800 list_for_each_entry(n, &context->names_list, list) {
1801 if (n->hidden)
1802 continue;
1803 audit_log_name(context, n, NULL, i++, &call_panic);
1804 }
1805
1806 if (context->context == AUDIT_CTX_SYSCALL)
1807 audit_log_proctitle();
1808
1809 /* Send end of event record to help user space know we are finished */
1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1811 if (ab)
1812 audit_log_end(ab);
1813 if (call_panic)
1814 audit_panic("error in audit_log_exit()");
1815 }
1816
1817 /**
1818 * __audit_free - free a per-task audit context
1819 * @tsk: task whose audit context block to free
1820 *
1821 * Called from copy_process, do_exit, and the io_uring code
1822 */
__audit_free(struct task_struct * tsk)1823 void __audit_free(struct task_struct *tsk)
1824 {
1825 struct audit_context *context = tsk->audit_context;
1826
1827 if (!context)
1828 return;
1829
1830 /* this may generate CONFIG_CHANGE records */
1831 if (!list_empty(&context->killed_trees))
1832 audit_kill_trees(context);
1833
1834 /* We are called either by do_exit() or the fork() error handling code;
1835 * in the former case tsk == current and in the latter tsk is a
1836 * random task_struct that doesn't have any meaningful data we
1837 * need to log via audit_log_exit().
1838 */
1839 if (tsk == current && !context->dummy) {
1840 context->return_valid = AUDITSC_INVALID;
1841 context->return_code = 0;
1842 if (context->context == AUDIT_CTX_SYSCALL) {
1843 audit_filter_syscall(tsk, context);
1844 audit_filter_inodes(tsk, context);
1845 if (context->current_state == AUDIT_STATE_RECORD)
1846 audit_log_exit();
1847 } else if (context->context == AUDIT_CTX_URING) {
1848 /* TODO: verify this case is real and valid */
1849 audit_filter_uring(tsk, context);
1850 audit_filter_inodes(tsk, context);
1851 if (context->current_state == AUDIT_STATE_RECORD)
1852 audit_log_uring(context);
1853 }
1854 }
1855
1856 audit_set_context(tsk, NULL);
1857 audit_free_context(context);
1858 }
1859
1860 /**
1861 * audit_return_fixup - fixup the return codes in the audit_context
1862 * @ctx: the audit_context
1863 * @success: true/false value to indicate if the operation succeeded or not
1864 * @code: operation return code
1865 *
1866 * We need to fixup the return code in the audit logs if the actual return
1867 * codes are later going to be fixed by the arch specific signal handlers.
1868 */
audit_return_fixup(struct audit_context * ctx,int success,long code)1869 static void audit_return_fixup(struct audit_context *ctx,
1870 int success, long code)
1871 {
1872 /*
1873 * This is actually a test for:
1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1876 *
1877 * but is faster than a bunch of ||
1878 */
1879 if (unlikely(code <= -ERESTARTSYS) &&
1880 (code >= -ERESTART_RESTARTBLOCK) &&
1881 (code != -ENOIOCTLCMD))
1882 ctx->return_code = -EINTR;
1883 else
1884 ctx->return_code = code;
1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1886 }
1887
1888 /**
1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1890 * @op: the io_uring opcode
1891 *
1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1893 * operations. This function should only ever be called from
1894 * audit_uring_entry() as we rely on the audit context checking present in that
1895 * function.
1896 */
__audit_uring_entry(u8 op)1897 void __audit_uring_entry(u8 op)
1898 {
1899 struct audit_context *ctx = audit_context();
1900
1901 if (ctx->state == AUDIT_STATE_DISABLED)
1902 return;
1903
1904 /*
1905 * NOTE: It's possible that we can be called from the process' context
1906 * before it returns to userspace, and before audit_syscall_exit()
1907 * is called. In this case there is not much to do, just record
1908 * the io_uring details and return.
1909 */
1910 ctx->uring_op = op;
1911 if (ctx->context == AUDIT_CTX_SYSCALL)
1912 return;
1913
1914 ctx->dummy = !audit_n_rules;
1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1916 ctx->prio = 0;
1917
1918 ctx->context = AUDIT_CTX_URING;
1919 ctx->current_state = ctx->state;
1920 ktime_get_coarse_real_ts64(&ctx->ctime);
1921 }
1922
1923 /**
1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1925 * @success: true/false value to indicate if the operation succeeded or not
1926 * @code: operation return code
1927 *
1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1929 * operations. This function should only ever be called from
1930 * audit_uring_exit() as we rely on the audit context checking present in that
1931 * function.
1932 */
__audit_uring_exit(int success,long code)1933 void __audit_uring_exit(int success, long code)
1934 {
1935 struct audit_context *ctx = audit_context();
1936
1937 if (ctx->dummy) {
1938 if (ctx->context != AUDIT_CTX_URING)
1939 return;
1940 goto out;
1941 }
1942
1943 audit_return_fixup(ctx, success, code);
1944 if (ctx->context == AUDIT_CTX_SYSCALL) {
1945 /*
1946 * NOTE: See the note in __audit_uring_entry() about the case
1947 * where we may be called from process context before we
1948 * return to userspace via audit_syscall_exit(). In this
1949 * case we simply emit a URINGOP record and bail, the
1950 * normal syscall exit handling will take care of
1951 * everything else.
1952 * It is also worth mentioning that when we are called,
1953 * the current process creds may differ from the creds
1954 * used during the normal syscall processing; keep that
1955 * in mind if/when we move the record generation code.
1956 */
1957
1958 /*
1959 * We need to filter on the syscall info here to decide if we
1960 * should emit a URINGOP record. I know it seems odd but this
1961 * solves the problem where users have a filter to block *all*
1962 * syscall records in the "exit" filter; we want to preserve
1963 * the behavior here.
1964 */
1965 audit_filter_syscall(current, ctx);
1966 if (ctx->current_state != AUDIT_STATE_RECORD)
1967 audit_filter_uring(current, ctx);
1968 audit_filter_inodes(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 return;
1971
1972 audit_log_uring(ctx);
1973 return;
1974 }
1975
1976 /* this may generate CONFIG_CHANGE records */
1977 if (!list_empty(&ctx->killed_trees))
1978 audit_kill_trees(ctx);
1979
1980 /* run through both filters to ensure we set the filterkey properly */
1981 audit_filter_uring(current, ctx);
1982 audit_filter_inodes(current, ctx);
1983 if (ctx->current_state != AUDIT_STATE_RECORD)
1984 goto out;
1985 audit_log_exit();
1986
1987 out:
1988 audit_reset_context(ctx);
1989 }
1990
1991 /**
1992 * __audit_syscall_entry - fill in an audit record at syscall entry
1993 * @major: major syscall type (function)
1994 * @a1: additional syscall register 1
1995 * @a2: additional syscall register 2
1996 * @a3: additional syscall register 3
1997 * @a4: additional syscall register 4
1998 *
1999 * Fill in audit context at syscall entry. This only happens if the
2000 * audit context was created when the task was created and the state or
2001 * filters demand the audit context be built. If the state from the
2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2003 * then the record will be written at syscall exit time (otherwise, it
2004 * will only be written if another part of the kernel requests that it
2005 * be written).
2006 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2008 unsigned long a3, unsigned long a4)
2009 {
2010 struct audit_context *context = audit_context();
2011 enum audit_state state;
2012
2013 if (!audit_enabled || !context)
2014 return;
2015
2016 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2017 WARN_ON(context->name_count);
2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2019 audit_panic("unrecoverable error in audit_syscall_entry()");
2020 return;
2021 }
2022
2023 state = context->state;
2024 if (state == AUDIT_STATE_DISABLED)
2025 return;
2026
2027 context->dummy = !audit_n_rules;
2028 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2029 context->prio = 0;
2030 if (auditd_test_task(current))
2031 return;
2032 }
2033
2034 context->arch = syscall_get_arch(current);
2035 context->major = major;
2036 context->argv[0] = a1;
2037 context->argv[1] = a2;
2038 context->argv[2] = a3;
2039 context->argv[3] = a4;
2040 context->context = AUDIT_CTX_SYSCALL;
2041 context->current_state = state;
2042 ktime_get_coarse_real_ts64(&context->ctime);
2043 }
2044
2045 /**
2046 * __audit_syscall_exit - deallocate audit context after a system call
2047 * @success: success value of the syscall
2048 * @return_code: return value of the syscall
2049 *
2050 * Tear down after system call. If the audit context has been marked as
2051 * auditable (either because of the AUDIT_STATE_RECORD state from
2052 * filtering, or because some other part of the kernel wrote an audit
2053 * message), then write out the syscall information. In call cases,
2054 * free the names stored from getname().
2055 */
__audit_syscall_exit(int success,long return_code)2056 void __audit_syscall_exit(int success, long return_code)
2057 {
2058 struct audit_context *context = audit_context();
2059
2060 if (!context || context->dummy ||
2061 context->context != AUDIT_CTX_SYSCALL)
2062 goto out;
2063
2064 /* this may generate CONFIG_CHANGE records */
2065 if (!list_empty(&context->killed_trees))
2066 audit_kill_trees(context);
2067
2068 audit_return_fixup(context, success, return_code);
2069 /* run through both filters to ensure we set the filterkey properly */
2070 audit_filter_syscall(current, context);
2071 audit_filter_inodes(current, context);
2072 if (context->current_state != AUDIT_STATE_RECORD)
2073 goto out;
2074
2075 audit_log_exit();
2076
2077 out:
2078 audit_reset_context(context);
2079 }
2080
handle_one(const struct inode * inode)2081 static inline void handle_one(const struct inode *inode)
2082 {
2083 struct audit_context *context;
2084 struct audit_tree_refs *p;
2085 struct audit_chunk *chunk;
2086 int count;
2087
2088 if (likely(!inode->i_fsnotify_marks))
2089 return;
2090 context = audit_context();
2091 p = context->trees;
2092 count = context->tree_count;
2093 rcu_read_lock();
2094 chunk = audit_tree_lookup(inode);
2095 rcu_read_unlock();
2096 if (!chunk)
2097 return;
2098 if (likely(put_tree_ref(context, chunk)))
2099 return;
2100 if (unlikely(!grow_tree_refs(context))) {
2101 pr_warn("out of memory, audit has lost a tree reference\n");
2102 audit_set_auditable(context);
2103 audit_put_chunk(chunk);
2104 unroll_tree_refs(context, p, count);
2105 return;
2106 }
2107 put_tree_ref(context, chunk);
2108 }
2109
handle_path(const struct dentry * dentry)2110 static void handle_path(const struct dentry *dentry)
2111 {
2112 struct audit_context *context;
2113 struct audit_tree_refs *p;
2114 const struct dentry *d, *parent;
2115 struct audit_chunk *drop;
2116 unsigned long seq;
2117 int count;
2118
2119 context = audit_context();
2120 p = context->trees;
2121 count = context->tree_count;
2122 retry:
2123 drop = NULL;
2124 d = dentry;
2125 rcu_read_lock();
2126 seq = read_seqbegin(&rename_lock);
2127 for(;;) {
2128 struct inode *inode = d_backing_inode(d);
2129
2130 if (inode && unlikely(inode->i_fsnotify_marks)) {
2131 struct audit_chunk *chunk;
2132
2133 chunk = audit_tree_lookup(inode);
2134 if (chunk) {
2135 if (unlikely(!put_tree_ref(context, chunk))) {
2136 drop = chunk;
2137 break;
2138 }
2139 }
2140 }
2141 parent = d->d_parent;
2142 if (parent == d)
2143 break;
2144 d = parent;
2145 }
2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2147 rcu_read_unlock();
2148 if (!drop) {
2149 /* just a race with rename */
2150 unroll_tree_refs(context, p, count);
2151 goto retry;
2152 }
2153 audit_put_chunk(drop);
2154 if (grow_tree_refs(context)) {
2155 /* OK, got more space */
2156 unroll_tree_refs(context, p, count);
2157 goto retry;
2158 }
2159 /* too bad */
2160 pr_warn("out of memory, audit has lost a tree reference\n");
2161 unroll_tree_refs(context, p, count);
2162 audit_set_auditable(context);
2163 return;
2164 }
2165 rcu_read_unlock();
2166 }
2167
audit_alloc_name(struct audit_context * context,unsigned char type)2168 static struct audit_names *audit_alloc_name(struct audit_context *context,
2169 unsigned char type)
2170 {
2171 struct audit_names *aname;
2172
2173 if (context->name_count < AUDIT_NAMES) {
2174 aname = &context->preallocated_names[context->name_count];
2175 memset(aname, 0, sizeof(*aname));
2176 } else {
2177 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2178 if (!aname)
2179 return NULL;
2180 aname->should_free = true;
2181 }
2182
2183 aname->ino = AUDIT_INO_UNSET;
2184 aname->type = type;
2185 list_add_tail(&aname->list, &context->names_list);
2186
2187 context->name_count++;
2188 if (!context->pwd.dentry)
2189 get_fs_pwd(current->fs, &context->pwd);
2190 return aname;
2191 }
2192
2193 /**
2194 * __audit_reusename - fill out filename with info from existing entry
2195 * @uptr: userland ptr to pathname
2196 *
2197 * Search the audit_names list for the current audit context. If there is an
2198 * existing entry with a matching "uptr" then return the filename
2199 * associated with that audit_name. If not, return NULL.
2200 */
2201 struct filename *
__audit_reusename(const __user char * uptr)2202 __audit_reusename(const __user char *uptr)
2203 {
2204 struct audit_context *context = audit_context();
2205 struct audit_names *n;
2206
2207 list_for_each_entry(n, &context->names_list, list) {
2208 if (!n->name)
2209 continue;
2210 if (n->name->uptr == uptr) {
2211 n->name->refcnt++;
2212 return n->name;
2213 }
2214 }
2215 return NULL;
2216 }
2217
2218 /**
2219 * __audit_getname - add a name to the list
2220 * @name: name to add
2221 *
2222 * Add a name to the list of audit names for this context.
2223 * Called from fs/namei.c:getname().
2224 */
__audit_getname(struct filename * name)2225 void __audit_getname(struct filename *name)
2226 {
2227 struct audit_context *context = audit_context();
2228 struct audit_names *n;
2229
2230 if (context->context == AUDIT_CTX_UNUSED)
2231 return;
2232
2233 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2234 if (!n)
2235 return;
2236
2237 n->name = name;
2238 n->name_len = AUDIT_NAME_FULL;
2239 name->aname = n;
2240 name->refcnt++;
2241 }
2242
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2243 static inline int audit_copy_fcaps(struct audit_names *name,
2244 const struct dentry *dentry)
2245 {
2246 struct cpu_vfs_cap_data caps;
2247 int rc;
2248
2249 if (!dentry)
2250 return 0;
2251
2252 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2253 if (rc)
2254 return rc;
2255
2256 name->fcap.permitted = caps.permitted;
2257 name->fcap.inheritable = caps.inheritable;
2258 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2259 name->fcap.rootid = caps.rootid;
2260 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2261 VFS_CAP_REVISION_SHIFT;
2262
2263 return 0;
2264 }
2265
2266 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2267 static void audit_copy_inode(struct audit_names *name,
2268 const struct dentry *dentry,
2269 struct inode *inode, unsigned int flags)
2270 {
2271 name->ino = inode->i_ino;
2272 name->dev = inode->i_sb->s_dev;
2273 name->mode = inode->i_mode;
2274 name->uid = inode->i_uid;
2275 name->gid = inode->i_gid;
2276 name->rdev = inode->i_rdev;
2277 security_inode_getsecid(inode, &name->osid);
2278 if (flags & AUDIT_INODE_NOEVAL) {
2279 name->fcap_ver = -1;
2280 return;
2281 }
2282 audit_copy_fcaps(name, dentry);
2283 }
2284
2285 /**
2286 * __audit_inode - store the inode and device from a lookup
2287 * @name: name being audited
2288 * @dentry: dentry being audited
2289 * @flags: attributes for this particular entry
2290 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2291 void __audit_inode(struct filename *name, const struct dentry *dentry,
2292 unsigned int flags)
2293 {
2294 struct audit_context *context = audit_context();
2295 struct inode *inode = d_backing_inode(dentry);
2296 struct audit_names *n;
2297 bool parent = flags & AUDIT_INODE_PARENT;
2298 struct audit_entry *e;
2299 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2300 int i;
2301
2302 if (context->context == AUDIT_CTX_UNUSED)
2303 return;
2304
2305 rcu_read_lock();
2306 list_for_each_entry_rcu(e, list, list) {
2307 for (i = 0; i < e->rule.field_count; i++) {
2308 struct audit_field *f = &e->rule.fields[i];
2309
2310 if (f->type == AUDIT_FSTYPE
2311 && audit_comparator(inode->i_sb->s_magic,
2312 f->op, f->val)
2313 && e->rule.action == AUDIT_NEVER) {
2314 rcu_read_unlock();
2315 return;
2316 }
2317 }
2318 }
2319 rcu_read_unlock();
2320
2321 if (!name)
2322 goto out_alloc;
2323
2324 /*
2325 * If we have a pointer to an audit_names entry already, then we can
2326 * just use it directly if the type is correct.
2327 */
2328 n = name->aname;
2329 if (n) {
2330 if (parent) {
2331 if (n->type == AUDIT_TYPE_PARENT ||
2332 n->type == AUDIT_TYPE_UNKNOWN)
2333 goto out;
2334 } else {
2335 if (n->type != AUDIT_TYPE_PARENT)
2336 goto out;
2337 }
2338 }
2339
2340 list_for_each_entry_reverse(n, &context->names_list, list) {
2341 if (n->ino) {
2342 /* valid inode number, use that for the comparison */
2343 if (n->ino != inode->i_ino ||
2344 n->dev != inode->i_sb->s_dev)
2345 continue;
2346 } else if (n->name) {
2347 /* inode number has not been set, check the name */
2348 if (strcmp(n->name->name, name->name))
2349 continue;
2350 } else
2351 /* no inode and no name (?!) ... this is odd ... */
2352 continue;
2353
2354 /* match the correct record type */
2355 if (parent) {
2356 if (n->type == AUDIT_TYPE_PARENT ||
2357 n->type == AUDIT_TYPE_UNKNOWN)
2358 goto out;
2359 } else {
2360 if (n->type != AUDIT_TYPE_PARENT)
2361 goto out;
2362 }
2363 }
2364
2365 out_alloc:
2366 /* unable to find an entry with both a matching name and type */
2367 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2368 if (!n)
2369 return;
2370 if (name) {
2371 n->name = name;
2372 name->refcnt++;
2373 }
2374
2375 out:
2376 if (parent) {
2377 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2378 n->type = AUDIT_TYPE_PARENT;
2379 if (flags & AUDIT_INODE_HIDDEN)
2380 n->hidden = true;
2381 } else {
2382 n->name_len = AUDIT_NAME_FULL;
2383 n->type = AUDIT_TYPE_NORMAL;
2384 }
2385 handle_path(dentry);
2386 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2387 }
2388
__audit_file(const struct file * file)2389 void __audit_file(const struct file *file)
2390 {
2391 __audit_inode(NULL, file->f_path.dentry, 0);
2392 }
2393
2394 /**
2395 * __audit_inode_child - collect inode info for created/removed objects
2396 * @parent: inode of dentry parent
2397 * @dentry: dentry being audited
2398 * @type: AUDIT_TYPE_* value that we're looking for
2399 *
2400 * For syscalls that create or remove filesystem objects, audit_inode
2401 * can only collect information for the filesystem object's parent.
2402 * This call updates the audit context with the child's information.
2403 * Syscalls that create a new filesystem object must be hooked after
2404 * the object is created. Syscalls that remove a filesystem object
2405 * must be hooked prior, in order to capture the target inode during
2406 * unsuccessful attempts.
2407 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2408 void __audit_inode_child(struct inode *parent,
2409 const struct dentry *dentry,
2410 const unsigned char type)
2411 {
2412 struct audit_context *context = audit_context();
2413 struct inode *inode = d_backing_inode(dentry);
2414 const struct qstr *dname = &dentry->d_name;
2415 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2416 struct audit_entry *e;
2417 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2418 int i;
2419
2420 if (context->context == AUDIT_CTX_UNUSED)
2421 return;
2422
2423 rcu_read_lock();
2424 list_for_each_entry_rcu(e, list, list) {
2425 for (i = 0; i < e->rule.field_count; i++) {
2426 struct audit_field *f = &e->rule.fields[i];
2427
2428 if (f->type == AUDIT_FSTYPE
2429 && audit_comparator(parent->i_sb->s_magic,
2430 f->op, f->val)
2431 && e->rule.action == AUDIT_NEVER) {
2432 rcu_read_unlock();
2433 return;
2434 }
2435 }
2436 }
2437 rcu_read_unlock();
2438
2439 if (inode)
2440 handle_one(inode);
2441
2442 /* look for a parent entry first */
2443 list_for_each_entry(n, &context->names_list, list) {
2444 if (!n->name ||
2445 (n->type != AUDIT_TYPE_PARENT &&
2446 n->type != AUDIT_TYPE_UNKNOWN))
2447 continue;
2448
2449 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2450 !audit_compare_dname_path(dname,
2451 n->name->name, n->name_len)) {
2452 if (n->type == AUDIT_TYPE_UNKNOWN)
2453 n->type = AUDIT_TYPE_PARENT;
2454 found_parent = n;
2455 break;
2456 }
2457 }
2458
2459 cond_resched();
2460
2461 /* is there a matching child entry? */
2462 list_for_each_entry(n, &context->names_list, list) {
2463 /* can only match entries that have a name */
2464 if (!n->name ||
2465 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2466 continue;
2467
2468 if (!strcmp(dname->name, n->name->name) ||
2469 !audit_compare_dname_path(dname, n->name->name,
2470 found_parent ?
2471 found_parent->name_len :
2472 AUDIT_NAME_FULL)) {
2473 if (n->type == AUDIT_TYPE_UNKNOWN)
2474 n->type = type;
2475 found_child = n;
2476 break;
2477 }
2478 }
2479
2480 if (!found_parent) {
2481 /* create a new, "anonymous" parent record */
2482 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2483 if (!n)
2484 return;
2485 audit_copy_inode(n, NULL, parent, 0);
2486 }
2487
2488 if (!found_child) {
2489 found_child = audit_alloc_name(context, type);
2490 if (!found_child)
2491 return;
2492
2493 /* Re-use the name belonging to the slot for a matching parent
2494 * directory. All names for this context are relinquished in
2495 * audit_free_names() */
2496 if (found_parent) {
2497 found_child->name = found_parent->name;
2498 found_child->name_len = AUDIT_NAME_FULL;
2499 found_child->name->refcnt++;
2500 }
2501 }
2502
2503 if (inode)
2504 audit_copy_inode(found_child, dentry, inode, 0);
2505 else
2506 found_child->ino = AUDIT_INO_UNSET;
2507 }
2508 EXPORT_SYMBOL_GPL(__audit_inode_child);
2509
2510 /**
2511 * auditsc_get_stamp - get local copies of audit_context values
2512 * @ctx: audit_context for the task
2513 * @t: timespec64 to store time recorded in the audit_context
2514 * @serial: serial value that is recorded in the audit_context
2515 *
2516 * Also sets the context as auditable.
2517 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2518 int auditsc_get_stamp(struct audit_context *ctx,
2519 struct timespec64 *t, unsigned int *serial)
2520 {
2521 if (ctx->context == AUDIT_CTX_UNUSED)
2522 return 0;
2523 if (!ctx->serial)
2524 ctx->serial = audit_serial();
2525 t->tv_sec = ctx->ctime.tv_sec;
2526 t->tv_nsec = ctx->ctime.tv_nsec;
2527 *serial = ctx->serial;
2528 if (!ctx->prio) {
2529 ctx->prio = 1;
2530 ctx->current_state = AUDIT_STATE_RECORD;
2531 }
2532 return 1;
2533 }
2534
2535 /**
2536 * __audit_mq_open - record audit data for a POSIX MQ open
2537 * @oflag: open flag
2538 * @mode: mode bits
2539 * @attr: queue attributes
2540 *
2541 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2542 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2543 {
2544 struct audit_context *context = audit_context();
2545
2546 if (attr)
2547 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2548 else
2549 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2550
2551 context->mq_open.oflag = oflag;
2552 context->mq_open.mode = mode;
2553
2554 context->type = AUDIT_MQ_OPEN;
2555 }
2556
2557 /**
2558 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2559 * @mqdes: MQ descriptor
2560 * @msg_len: Message length
2561 * @msg_prio: Message priority
2562 * @abs_timeout: Message timeout in absolute time
2563 *
2564 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2565 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2566 const struct timespec64 *abs_timeout)
2567 {
2568 struct audit_context *context = audit_context();
2569 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2570
2571 if (abs_timeout)
2572 memcpy(p, abs_timeout, sizeof(*p));
2573 else
2574 memset(p, 0, sizeof(*p));
2575
2576 context->mq_sendrecv.mqdes = mqdes;
2577 context->mq_sendrecv.msg_len = msg_len;
2578 context->mq_sendrecv.msg_prio = msg_prio;
2579
2580 context->type = AUDIT_MQ_SENDRECV;
2581 }
2582
2583 /**
2584 * __audit_mq_notify - record audit data for a POSIX MQ notify
2585 * @mqdes: MQ descriptor
2586 * @notification: Notification event
2587 *
2588 */
2589
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2590 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2591 {
2592 struct audit_context *context = audit_context();
2593
2594 if (notification)
2595 context->mq_notify.sigev_signo = notification->sigev_signo;
2596 else
2597 context->mq_notify.sigev_signo = 0;
2598
2599 context->mq_notify.mqdes = mqdes;
2600 context->type = AUDIT_MQ_NOTIFY;
2601 }
2602
2603 /**
2604 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2605 * @mqdes: MQ descriptor
2606 * @mqstat: MQ flags
2607 *
2608 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2609 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2610 {
2611 struct audit_context *context = audit_context();
2612
2613 context->mq_getsetattr.mqdes = mqdes;
2614 context->mq_getsetattr.mqstat = *mqstat;
2615 context->type = AUDIT_MQ_GETSETATTR;
2616 }
2617
2618 /**
2619 * __audit_ipc_obj - record audit data for ipc object
2620 * @ipcp: ipc permissions
2621 *
2622 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2623 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2624 {
2625 struct audit_context *context = audit_context();
2626
2627 context->ipc.uid = ipcp->uid;
2628 context->ipc.gid = ipcp->gid;
2629 context->ipc.mode = ipcp->mode;
2630 context->ipc.has_perm = 0;
2631 security_ipc_getsecid(ipcp, &context->ipc.osid);
2632 context->type = AUDIT_IPC;
2633 }
2634
2635 /**
2636 * __audit_ipc_set_perm - record audit data for new ipc permissions
2637 * @qbytes: msgq bytes
2638 * @uid: msgq user id
2639 * @gid: msgq group id
2640 * @mode: msgq mode (permissions)
2641 *
2642 * Called only after audit_ipc_obj().
2643 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2644 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2645 {
2646 struct audit_context *context = audit_context();
2647
2648 context->ipc.qbytes = qbytes;
2649 context->ipc.perm_uid = uid;
2650 context->ipc.perm_gid = gid;
2651 context->ipc.perm_mode = mode;
2652 context->ipc.has_perm = 1;
2653 }
2654
__audit_bprm(struct linux_binprm * bprm)2655 void __audit_bprm(struct linux_binprm *bprm)
2656 {
2657 struct audit_context *context = audit_context();
2658
2659 context->type = AUDIT_EXECVE;
2660 context->execve.argc = bprm->argc;
2661 }
2662
2663
2664 /**
2665 * __audit_socketcall - record audit data for sys_socketcall
2666 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2667 * @args: args array
2668 *
2669 */
__audit_socketcall(int nargs,unsigned long * args)2670 int __audit_socketcall(int nargs, unsigned long *args)
2671 {
2672 struct audit_context *context = audit_context();
2673
2674 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2675 return -EINVAL;
2676 context->type = AUDIT_SOCKETCALL;
2677 context->socketcall.nargs = nargs;
2678 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2679 return 0;
2680 }
2681
2682 /**
2683 * __audit_fd_pair - record audit data for pipe and socketpair
2684 * @fd1: the first file descriptor
2685 * @fd2: the second file descriptor
2686 *
2687 */
__audit_fd_pair(int fd1,int fd2)2688 void __audit_fd_pair(int fd1, int fd2)
2689 {
2690 struct audit_context *context = audit_context();
2691
2692 context->fds[0] = fd1;
2693 context->fds[1] = fd2;
2694 }
2695
2696 /**
2697 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2698 * @len: data length in user space
2699 * @a: data address in kernel space
2700 *
2701 * Returns 0 for success or NULL context or < 0 on error.
2702 */
__audit_sockaddr(int len,void * a)2703 int __audit_sockaddr(int len, void *a)
2704 {
2705 struct audit_context *context = audit_context();
2706
2707 if (!context->sockaddr) {
2708 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2709
2710 if (!p)
2711 return -ENOMEM;
2712 context->sockaddr = p;
2713 }
2714
2715 context->sockaddr_len = len;
2716 memcpy(context->sockaddr, a, len);
2717 return 0;
2718 }
2719
__audit_ptrace(struct task_struct * t)2720 void __audit_ptrace(struct task_struct *t)
2721 {
2722 struct audit_context *context = audit_context();
2723
2724 context->target_pid = task_tgid_nr(t);
2725 context->target_auid = audit_get_loginuid(t);
2726 context->target_uid = task_uid(t);
2727 context->target_sessionid = audit_get_sessionid(t);
2728 security_task_getsecid_obj(t, &context->target_sid);
2729 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2730 }
2731
2732 /**
2733 * audit_signal_info_syscall - record signal info for syscalls
2734 * @t: task being signaled
2735 *
2736 * If the audit subsystem is being terminated, record the task (pid)
2737 * and uid that is doing that.
2738 */
audit_signal_info_syscall(struct task_struct * t)2739 int audit_signal_info_syscall(struct task_struct *t)
2740 {
2741 struct audit_aux_data_pids *axp;
2742 struct audit_context *ctx = audit_context();
2743 kuid_t t_uid = task_uid(t);
2744
2745 if (!audit_signals || audit_dummy_context())
2746 return 0;
2747
2748 /* optimize the common case by putting first signal recipient directly
2749 * in audit_context */
2750 if (!ctx->target_pid) {
2751 ctx->target_pid = task_tgid_nr(t);
2752 ctx->target_auid = audit_get_loginuid(t);
2753 ctx->target_uid = t_uid;
2754 ctx->target_sessionid = audit_get_sessionid(t);
2755 security_task_getsecid_obj(t, &ctx->target_sid);
2756 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2757 return 0;
2758 }
2759
2760 axp = (void *)ctx->aux_pids;
2761 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2762 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2763 if (!axp)
2764 return -ENOMEM;
2765
2766 axp->d.type = AUDIT_OBJ_PID;
2767 axp->d.next = ctx->aux_pids;
2768 ctx->aux_pids = (void *)axp;
2769 }
2770 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2771
2772 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2773 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2774 axp->target_uid[axp->pid_count] = t_uid;
2775 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2776 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2777 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2778 axp->pid_count++;
2779
2780 return 0;
2781 }
2782
2783 /**
2784 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2785 * @bprm: pointer to the bprm being processed
2786 * @new: the proposed new credentials
2787 * @old: the old credentials
2788 *
2789 * Simply check if the proc already has the caps given by the file and if not
2790 * store the priv escalation info for later auditing at the end of the syscall
2791 *
2792 * -Eric
2793 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2794 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2795 const struct cred *new, const struct cred *old)
2796 {
2797 struct audit_aux_data_bprm_fcaps *ax;
2798 struct audit_context *context = audit_context();
2799 struct cpu_vfs_cap_data vcaps;
2800
2801 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2802 if (!ax)
2803 return -ENOMEM;
2804
2805 ax->d.type = AUDIT_BPRM_FCAPS;
2806 ax->d.next = context->aux;
2807 context->aux = (void *)ax;
2808
2809 get_vfs_caps_from_disk(&init_user_ns,
2810 bprm->file->f_path.dentry, &vcaps);
2811
2812 ax->fcap.permitted = vcaps.permitted;
2813 ax->fcap.inheritable = vcaps.inheritable;
2814 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2815 ax->fcap.rootid = vcaps.rootid;
2816 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2817
2818 ax->old_pcap.permitted = old->cap_permitted;
2819 ax->old_pcap.inheritable = old->cap_inheritable;
2820 ax->old_pcap.effective = old->cap_effective;
2821 ax->old_pcap.ambient = old->cap_ambient;
2822
2823 ax->new_pcap.permitted = new->cap_permitted;
2824 ax->new_pcap.inheritable = new->cap_inheritable;
2825 ax->new_pcap.effective = new->cap_effective;
2826 ax->new_pcap.ambient = new->cap_ambient;
2827 return 0;
2828 }
2829
2830 /**
2831 * __audit_log_capset - store information about the arguments to the capset syscall
2832 * @new: the new credentials
2833 * @old: the old (current) credentials
2834 *
2835 * Record the arguments userspace sent to sys_capset for later printing by the
2836 * audit system if applicable
2837 */
__audit_log_capset(const struct cred * new,const struct cred * old)2838 void __audit_log_capset(const struct cred *new, const struct cred *old)
2839 {
2840 struct audit_context *context = audit_context();
2841
2842 context->capset.pid = task_tgid_nr(current);
2843 context->capset.cap.effective = new->cap_effective;
2844 context->capset.cap.inheritable = new->cap_effective;
2845 context->capset.cap.permitted = new->cap_permitted;
2846 context->capset.cap.ambient = new->cap_ambient;
2847 context->type = AUDIT_CAPSET;
2848 }
2849
__audit_mmap_fd(int fd,int flags)2850 void __audit_mmap_fd(int fd, int flags)
2851 {
2852 struct audit_context *context = audit_context();
2853
2854 context->mmap.fd = fd;
2855 context->mmap.flags = flags;
2856 context->type = AUDIT_MMAP;
2857 }
2858
__audit_openat2_how(struct open_how * how)2859 void __audit_openat2_how(struct open_how *how)
2860 {
2861 struct audit_context *context = audit_context();
2862
2863 context->openat2.flags = how->flags;
2864 context->openat2.mode = how->mode;
2865 context->openat2.resolve = how->resolve;
2866 context->type = AUDIT_OPENAT2;
2867 }
2868
__audit_log_kern_module(char * name)2869 void __audit_log_kern_module(char *name)
2870 {
2871 struct audit_context *context = audit_context();
2872
2873 context->module.name = kstrdup(name, GFP_KERNEL);
2874 if (!context->module.name)
2875 audit_log_lost("out of memory in __audit_log_kern_module");
2876 context->type = AUDIT_KERN_MODULE;
2877 }
2878
__audit_fanotify(unsigned int response)2879 void __audit_fanotify(unsigned int response)
2880 {
2881 audit_log(audit_context(), GFP_KERNEL,
2882 AUDIT_FANOTIFY, "resp=%u", response);
2883 }
2884
__audit_tk_injoffset(struct timespec64 offset)2885 void __audit_tk_injoffset(struct timespec64 offset)
2886 {
2887 struct audit_context *context = audit_context();
2888
2889 /* only set type if not already set by NTP */
2890 if (!context->type)
2891 context->type = AUDIT_TIME_INJOFFSET;
2892 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2893 }
2894
__audit_ntp_log(const struct audit_ntp_data * ad)2895 void __audit_ntp_log(const struct audit_ntp_data *ad)
2896 {
2897 struct audit_context *context = audit_context();
2898 int type;
2899
2900 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2901 if (ad->vals[type].newval != ad->vals[type].oldval) {
2902 /* unconditionally set type, overwriting TK */
2903 context->type = AUDIT_TIME_ADJNTPVAL;
2904 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2905 break;
2906 }
2907 }
2908
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2909 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2910 enum audit_nfcfgop op, gfp_t gfp)
2911 {
2912 struct audit_buffer *ab;
2913 char comm[sizeof(current->comm)];
2914
2915 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2916 if (!ab)
2917 return;
2918 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2919 name, af, nentries, audit_nfcfgs[op].s);
2920
2921 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2922 audit_log_task_context(ab); /* subj= */
2923 audit_log_format(ab, " comm=");
2924 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2925 audit_log_end(ab);
2926 }
2927 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2928
audit_log_task(struct audit_buffer * ab)2929 static void audit_log_task(struct audit_buffer *ab)
2930 {
2931 kuid_t auid, uid;
2932 kgid_t gid;
2933 unsigned int sessionid;
2934 char comm[sizeof(current->comm)];
2935
2936 auid = audit_get_loginuid(current);
2937 sessionid = audit_get_sessionid(current);
2938 current_uid_gid(&uid, &gid);
2939
2940 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2941 from_kuid(&init_user_ns, auid),
2942 from_kuid(&init_user_ns, uid),
2943 from_kgid(&init_user_ns, gid),
2944 sessionid);
2945 audit_log_task_context(ab);
2946 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2947 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2948 audit_log_d_path_exe(ab, current->mm);
2949 }
2950
2951 /**
2952 * audit_core_dumps - record information about processes that end abnormally
2953 * @signr: signal value
2954 *
2955 * If a process ends with a core dump, something fishy is going on and we
2956 * should record the event for investigation.
2957 */
audit_core_dumps(long signr)2958 void audit_core_dumps(long signr)
2959 {
2960 struct audit_buffer *ab;
2961
2962 if (!audit_enabled)
2963 return;
2964
2965 if (signr == SIGQUIT) /* don't care for those */
2966 return;
2967
2968 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2969 if (unlikely(!ab))
2970 return;
2971 audit_log_task(ab);
2972 audit_log_format(ab, " sig=%ld res=1", signr);
2973 audit_log_end(ab);
2974 }
2975
2976 /**
2977 * audit_seccomp - record information about a seccomp action
2978 * @syscall: syscall number
2979 * @signr: signal value
2980 * @code: the seccomp action
2981 *
2982 * Record the information associated with a seccomp action. Event filtering for
2983 * seccomp actions that are not to be logged is done in seccomp_log().
2984 * Therefore, this function forces auditing independent of the audit_enabled
2985 * and dummy context state because seccomp actions should be logged even when
2986 * audit is not in use.
2987 */
audit_seccomp(unsigned long syscall,long signr,int code)2988 void audit_seccomp(unsigned long syscall, long signr, int code)
2989 {
2990 struct audit_buffer *ab;
2991
2992 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2993 if (unlikely(!ab))
2994 return;
2995 audit_log_task(ab);
2996 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2997 signr, syscall_get_arch(current), syscall,
2998 in_compat_syscall(), KSTK_EIP(current), code);
2999 audit_log_end(ab);
3000 }
3001
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)3002 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3003 int res)
3004 {
3005 struct audit_buffer *ab;
3006
3007 if (!audit_enabled)
3008 return;
3009
3010 ab = audit_log_start(audit_context(), GFP_KERNEL,
3011 AUDIT_CONFIG_CHANGE);
3012 if (unlikely(!ab))
3013 return;
3014
3015 audit_log_format(ab,
3016 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3017 names, old_names, res);
3018 audit_log_end(ab);
3019 }
3020
audit_killed_trees(void)3021 struct list_head *audit_killed_trees(void)
3022 {
3023 struct audit_context *ctx = audit_context();
3024 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3025 return NULL;
3026 return &ctx->killed_trees;
3027 }
3028