• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/poison.h>
19 #include <linux/proc_ns.h>
20 #include <linux/security.h>
21 #include <linux/btf_ids.h>
22 
23 #include "../../lib/kstrtox.h"
24 
25 /* If kernel subsystem is allowing eBPF programs to call this function,
26  * inside its own verifier_ops->get_func_proto() callback it should return
27  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
28  *
29  * Different map implementations will rely on rcu in map methods
30  * lookup/update/delete, therefore eBPF programs must run under rcu lock
31  * if program is allowed to access maps, so check rcu_read_lock_held() or
32  * rcu_read_lock_trace_held() in all three functions.
33  */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)34 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
35 {
36 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
37 		     !rcu_read_lock_bh_held());
38 	return (unsigned long) map->ops->map_lookup_elem(map, key);
39 }
40 
41 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
42 	.func		= bpf_map_lookup_elem,
43 	.gpl_only	= false,
44 	.pkt_access	= true,
45 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
46 	.arg1_type	= ARG_CONST_MAP_PTR,
47 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
48 };
49 
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)50 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
51 	   void *, value, u64, flags)
52 {
53 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
54 		     !rcu_read_lock_bh_held());
55 	return map->ops->map_update_elem(map, key, value, flags);
56 }
57 
58 const struct bpf_func_proto bpf_map_update_elem_proto = {
59 	.func		= bpf_map_update_elem,
60 	.gpl_only	= false,
61 	.pkt_access	= true,
62 	.ret_type	= RET_INTEGER,
63 	.arg1_type	= ARG_CONST_MAP_PTR,
64 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
65 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
66 	.arg4_type	= ARG_ANYTHING,
67 };
68 
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)69 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
70 {
71 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
72 		     !rcu_read_lock_bh_held());
73 	return map->ops->map_delete_elem(map, key);
74 }
75 
76 const struct bpf_func_proto bpf_map_delete_elem_proto = {
77 	.func		= bpf_map_delete_elem,
78 	.gpl_only	= false,
79 	.pkt_access	= true,
80 	.ret_type	= RET_INTEGER,
81 	.arg1_type	= ARG_CONST_MAP_PTR,
82 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
83 };
84 
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)85 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
86 {
87 	return map->ops->map_push_elem(map, value, flags);
88 }
89 
90 const struct bpf_func_proto bpf_map_push_elem_proto = {
91 	.func		= bpf_map_push_elem,
92 	.gpl_only	= false,
93 	.pkt_access	= true,
94 	.ret_type	= RET_INTEGER,
95 	.arg1_type	= ARG_CONST_MAP_PTR,
96 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
97 	.arg3_type	= ARG_ANYTHING,
98 };
99 
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)100 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
101 {
102 	return map->ops->map_pop_elem(map, value);
103 }
104 
105 const struct bpf_func_proto bpf_map_pop_elem_proto = {
106 	.func		= bpf_map_pop_elem,
107 	.gpl_only	= false,
108 	.ret_type	= RET_INTEGER,
109 	.arg1_type	= ARG_CONST_MAP_PTR,
110 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
111 };
112 
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)113 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
114 {
115 	return map->ops->map_peek_elem(map, value);
116 }
117 
118 const struct bpf_func_proto bpf_map_peek_elem_proto = {
119 	.func		= bpf_map_peek_elem,
120 	.gpl_only	= false,
121 	.ret_type	= RET_INTEGER,
122 	.arg1_type	= ARG_CONST_MAP_PTR,
123 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
124 };
125 
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)126 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
127 {
128 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
129 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
130 }
131 
132 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
133 	.func		= bpf_map_lookup_percpu_elem,
134 	.gpl_only	= false,
135 	.pkt_access	= true,
136 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
137 	.arg1_type	= ARG_CONST_MAP_PTR,
138 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
139 	.arg3_type	= ARG_ANYTHING,
140 };
141 
142 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
143 	.func		= bpf_user_rnd_u32,
144 	.gpl_only	= false,
145 	.ret_type	= RET_INTEGER,
146 };
147 
BPF_CALL_0(bpf_get_smp_processor_id)148 BPF_CALL_0(bpf_get_smp_processor_id)
149 {
150 	return smp_processor_id();
151 }
152 
153 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
154 	.func		= bpf_get_smp_processor_id,
155 	.gpl_only	= false,
156 	.ret_type	= RET_INTEGER,
157 };
158 
BPF_CALL_0(bpf_get_numa_node_id)159 BPF_CALL_0(bpf_get_numa_node_id)
160 {
161 	return numa_node_id();
162 }
163 
164 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
165 	.func		= bpf_get_numa_node_id,
166 	.gpl_only	= false,
167 	.ret_type	= RET_INTEGER,
168 };
169 
BPF_CALL_0(bpf_ktime_get_ns)170 BPF_CALL_0(bpf_ktime_get_ns)
171 {
172 	/* NMI safe access to clock monotonic */
173 	return ktime_get_mono_fast_ns();
174 }
175 
176 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
177 	.func		= bpf_ktime_get_ns,
178 	.gpl_only	= false,
179 	.ret_type	= RET_INTEGER,
180 };
181 
BPF_CALL_0(bpf_ktime_get_boot_ns)182 BPF_CALL_0(bpf_ktime_get_boot_ns)
183 {
184 	/* NMI safe access to clock boottime */
185 	return ktime_get_boot_fast_ns();
186 }
187 
188 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
189 	.func		= bpf_ktime_get_boot_ns,
190 	.gpl_only	= false,
191 	.ret_type	= RET_INTEGER,
192 };
193 
BPF_CALL_0(bpf_ktime_get_coarse_ns)194 BPF_CALL_0(bpf_ktime_get_coarse_ns)
195 {
196 	return ktime_get_coarse_ns();
197 }
198 
199 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
200 	.func		= bpf_ktime_get_coarse_ns,
201 	.gpl_only	= false,
202 	.ret_type	= RET_INTEGER,
203 };
204 
BPF_CALL_0(bpf_ktime_get_tai_ns)205 BPF_CALL_0(bpf_ktime_get_tai_ns)
206 {
207 	/* NMI safe access to clock tai */
208 	return ktime_get_tai_fast_ns();
209 }
210 
211 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
212 	.func		= bpf_ktime_get_tai_ns,
213 	.gpl_only	= false,
214 	.ret_type	= RET_INTEGER,
215 };
216 
BPF_CALL_0(bpf_get_current_pid_tgid)217 BPF_CALL_0(bpf_get_current_pid_tgid)
218 {
219 	struct task_struct *task = current;
220 
221 	if (unlikely(!task))
222 		return -EINVAL;
223 
224 	return (u64) task->tgid << 32 | task->pid;
225 }
226 
227 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
228 	.func		= bpf_get_current_pid_tgid,
229 	.gpl_only	= false,
230 	.ret_type	= RET_INTEGER,
231 };
232 
BPF_CALL_0(bpf_get_current_uid_gid)233 BPF_CALL_0(bpf_get_current_uid_gid)
234 {
235 	struct task_struct *task = current;
236 	kuid_t uid;
237 	kgid_t gid;
238 
239 	if (unlikely(!task))
240 		return -EINVAL;
241 
242 	current_uid_gid(&uid, &gid);
243 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
244 		     from_kuid(&init_user_ns, uid);
245 }
246 
247 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
248 	.func		= bpf_get_current_uid_gid,
249 	.gpl_only	= false,
250 	.ret_type	= RET_INTEGER,
251 };
252 
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)253 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
254 {
255 	struct task_struct *task = current;
256 
257 	if (unlikely(!task))
258 		goto err_clear;
259 
260 	/* Verifier guarantees that size > 0 */
261 	strscpy(buf, task->comm, size);
262 	return 0;
263 err_clear:
264 	memset(buf, 0, size);
265 	return -EINVAL;
266 }
267 
268 const struct bpf_func_proto bpf_get_current_comm_proto = {
269 	.func		= bpf_get_current_comm,
270 	.gpl_only	= false,
271 	.ret_type	= RET_INTEGER,
272 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
273 	.arg2_type	= ARG_CONST_SIZE,
274 };
275 
276 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
277 
__bpf_spin_lock(struct bpf_spin_lock * lock)278 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
279 {
280 	arch_spinlock_t *l = (void *)lock;
281 	union {
282 		__u32 val;
283 		arch_spinlock_t lock;
284 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
285 
286 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
287 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
288 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
289 	arch_spin_lock(l);
290 }
291 
__bpf_spin_unlock(struct bpf_spin_lock * lock)292 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
293 {
294 	arch_spinlock_t *l = (void *)lock;
295 
296 	arch_spin_unlock(l);
297 }
298 
299 #else
300 
__bpf_spin_lock(struct bpf_spin_lock * lock)301 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
302 {
303 	atomic_t *l = (void *)lock;
304 
305 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
306 	do {
307 		atomic_cond_read_relaxed(l, !VAL);
308 	} while (atomic_xchg(l, 1));
309 }
310 
__bpf_spin_unlock(struct bpf_spin_lock * lock)311 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
312 {
313 	atomic_t *l = (void *)lock;
314 
315 	atomic_set_release(l, 0);
316 }
317 
318 #endif
319 
320 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
321 
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)322 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
323 {
324 	unsigned long flags;
325 
326 	local_irq_save(flags);
327 	__bpf_spin_lock(lock);
328 	__this_cpu_write(irqsave_flags, flags);
329 }
330 
BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)331 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
332 {
333 	__bpf_spin_lock_irqsave(lock);
334 	return 0;
335 }
336 
337 const struct bpf_func_proto bpf_spin_lock_proto = {
338 	.func		= bpf_spin_lock,
339 	.gpl_only	= false,
340 	.ret_type	= RET_VOID,
341 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
342 };
343 
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)344 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
345 {
346 	unsigned long flags;
347 
348 	flags = __this_cpu_read(irqsave_flags);
349 	__bpf_spin_unlock(lock);
350 	local_irq_restore(flags);
351 }
352 
BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)353 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
354 {
355 	__bpf_spin_unlock_irqrestore(lock);
356 	return 0;
357 }
358 
359 const struct bpf_func_proto bpf_spin_unlock_proto = {
360 	.func		= bpf_spin_unlock,
361 	.gpl_only	= false,
362 	.ret_type	= RET_VOID,
363 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
364 };
365 
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)366 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
367 			   bool lock_src)
368 {
369 	struct bpf_spin_lock *lock;
370 
371 	if (lock_src)
372 		lock = src + map->spin_lock_off;
373 	else
374 		lock = dst + map->spin_lock_off;
375 	preempt_disable();
376 	__bpf_spin_lock_irqsave(lock);
377 	copy_map_value(map, dst, src);
378 	__bpf_spin_unlock_irqrestore(lock);
379 	preempt_enable();
380 }
381 
BPF_CALL_0(bpf_jiffies64)382 BPF_CALL_0(bpf_jiffies64)
383 {
384 	return get_jiffies_64();
385 }
386 
387 const struct bpf_func_proto bpf_jiffies64_proto = {
388 	.func		= bpf_jiffies64,
389 	.gpl_only	= false,
390 	.ret_type	= RET_INTEGER,
391 };
392 
393 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)394 BPF_CALL_0(bpf_get_current_cgroup_id)
395 {
396 	struct cgroup *cgrp;
397 	u64 cgrp_id;
398 
399 	rcu_read_lock();
400 	cgrp = task_dfl_cgroup(current);
401 	cgrp_id = cgroup_id(cgrp);
402 	rcu_read_unlock();
403 
404 	return cgrp_id;
405 }
406 
407 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
408 	.func		= bpf_get_current_cgroup_id,
409 	.gpl_only	= false,
410 	.ret_type	= RET_INTEGER,
411 };
412 
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)413 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
414 {
415 	struct cgroup *cgrp;
416 	struct cgroup *ancestor;
417 	u64 cgrp_id;
418 
419 	rcu_read_lock();
420 	cgrp = task_dfl_cgroup(current);
421 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
422 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
423 	rcu_read_unlock();
424 
425 	return cgrp_id;
426 }
427 
428 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
429 	.func		= bpf_get_current_ancestor_cgroup_id,
430 	.gpl_only	= false,
431 	.ret_type	= RET_INTEGER,
432 	.arg1_type	= ARG_ANYTHING,
433 };
434 #endif /* CONFIG_CGROUPS */
435 
436 #define BPF_STRTOX_BASE_MASK 0x1F
437 
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)438 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
439 			  unsigned long long *res, bool *is_negative)
440 {
441 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
442 	const char *cur_buf = buf;
443 	size_t cur_len = buf_len;
444 	unsigned int consumed;
445 	size_t val_len;
446 	char str[64];
447 
448 	if (!buf || !buf_len || !res || !is_negative)
449 		return -EINVAL;
450 
451 	if (base != 0 && base != 8 && base != 10 && base != 16)
452 		return -EINVAL;
453 
454 	if (flags & ~BPF_STRTOX_BASE_MASK)
455 		return -EINVAL;
456 
457 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
458 		++cur_buf;
459 
460 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
461 	if (*is_negative)
462 		++cur_buf;
463 
464 	consumed = cur_buf - buf;
465 	cur_len -= consumed;
466 	if (!cur_len)
467 		return -EINVAL;
468 
469 	cur_len = min(cur_len, sizeof(str) - 1);
470 	memcpy(str, cur_buf, cur_len);
471 	str[cur_len] = '\0';
472 	cur_buf = str;
473 
474 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
475 	val_len = _parse_integer(cur_buf, base, res);
476 
477 	if (val_len & KSTRTOX_OVERFLOW)
478 		return -ERANGE;
479 
480 	if (val_len == 0)
481 		return -EINVAL;
482 
483 	cur_buf += val_len;
484 	consumed += cur_buf - str;
485 
486 	return consumed;
487 }
488 
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)489 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
490 			 long long *res)
491 {
492 	unsigned long long _res;
493 	bool is_negative;
494 	int err;
495 
496 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
497 	if (err < 0)
498 		return err;
499 	if (is_negative) {
500 		if ((long long)-_res > 0)
501 			return -ERANGE;
502 		*res = -_res;
503 	} else {
504 		if ((long long)_res < 0)
505 			return -ERANGE;
506 		*res = _res;
507 	}
508 	return err;
509 }
510 
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)511 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
512 	   long *, res)
513 {
514 	long long _res;
515 	int err;
516 
517 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
518 	if (err < 0)
519 		return err;
520 	if (_res != (long)_res)
521 		return -ERANGE;
522 	*res = _res;
523 	return err;
524 }
525 
526 const struct bpf_func_proto bpf_strtol_proto = {
527 	.func		= bpf_strtol,
528 	.gpl_only	= false,
529 	.ret_type	= RET_INTEGER,
530 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
531 	.arg2_type	= ARG_CONST_SIZE,
532 	.arg3_type	= ARG_ANYTHING,
533 	.arg4_type	= ARG_PTR_TO_LONG,
534 };
535 
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)536 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
537 	   unsigned long *, res)
538 {
539 	unsigned long long _res;
540 	bool is_negative;
541 	int err;
542 
543 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
544 	if (err < 0)
545 		return err;
546 	if (is_negative)
547 		return -EINVAL;
548 	if (_res != (unsigned long)_res)
549 		return -ERANGE;
550 	*res = _res;
551 	return err;
552 }
553 
554 const struct bpf_func_proto bpf_strtoul_proto = {
555 	.func		= bpf_strtoul,
556 	.gpl_only	= false,
557 	.ret_type	= RET_INTEGER,
558 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
559 	.arg2_type	= ARG_CONST_SIZE,
560 	.arg3_type	= ARG_ANYTHING,
561 	.arg4_type	= ARG_PTR_TO_LONG,
562 };
563 
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)564 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
565 {
566 	return strncmp(s1, s2, s1_sz);
567 }
568 
569 static const struct bpf_func_proto bpf_strncmp_proto = {
570 	.func		= bpf_strncmp,
571 	.gpl_only	= false,
572 	.ret_type	= RET_INTEGER,
573 	.arg1_type	= ARG_PTR_TO_MEM,
574 	.arg2_type	= ARG_CONST_SIZE,
575 	.arg3_type	= ARG_PTR_TO_CONST_STR,
576 };
577 
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)578 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
579 	   struct bpf_pidns_info *, nsdata, u32, size)
580 {
581 	struct task_struct *task = current;
582 	struct pid_namespace *pidns;
583 	int err = -EINVAL;
584 
585 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
586 		goto clear;
587 
588 	if (unlikely((u64)(dev_t)dev != dev))
589 		goto clear;
590 
591 	if (unlikely(!task))
592 		goto clear;
593 
594 	pidns = task_active_pid_ns(task);
595 	if (unlikely(!pidns)) {
596 		err = -ENOENT;
597 		goto clear;
598 	}
599 
600 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
601 		goto clear;
602 
603 	nsdata->pid = task_pid_nr_ns(task, pidns);
604 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
605 	return 0;
606 clear:
607 	memset((void *)nsdata, 0, (size_t) size);
608 	return err;
609 }
610 
611 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
612 	.func		= bpf_get_ns_current_pid_tgid,
613 	.gpl_only	= false,
614 	.ret_type	= RET_INTEGER,
615 	.arg1_type	= ARG_ANYTHING,
616 	.arg2_type	= ARG_ANYTHING,
617 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
618 	.arg4_type      = ARG_CONST_SIZE,
619 };
620 
621 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
622 	.func		= bpf_get_raw_cpu_id,
623 	.gpl_only	= false,
624 	.ret_type	= RET_INTEGER,
625 };
626 
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)627 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
628 	   u64, flags, void *, data, u64, size)
629 {
630 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
631 		return -EINVAL;
632 
633 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
634 }
635 
636 const struct bpf_func_proto bpf_event_output_data_proto =  {
637 	.func		= bpf_event_output_data,
638 	.gpl_only       = true,
639 	.ret_type       = RET_INTEGER,
640 	.arg1_type      = ARG_PTR_TO_CTX,
641 	.arg2_type      = ARG_CONST_MAP_PTR,
642 	.arg3_type      = ARG_ANYTHING,
643 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
644 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
645 };
646 
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)647 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
648 	   const void __user *, user_ptr)
649 {
650 	int ret = copy_from_user(dst, user_ptr, size);
651 
652 	if (unlikely(ret)) {
653 		memset(dst, 0, size);
654 		ret = -EFAULT;
655 	}
656 
657 	return ret;
658 }
659 
660 const struct bpf_func_proto bpf_copy_from_user_proto = {
661 	.func		= bpf_copy_from_user,
662 	.gpl_only	= false,
663 	.ret_type	= RET_INTEGER,
664 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
665 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
666 	.arg3_type	= ARG_ANYTHING,
667 };
668 
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)669 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
670 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
671 {
672 	int ret;
673 
674 	/* flags is not used yet */
675 	if (unlikely(flags))
676 		return -EINVAL;
677 
678 	if (unlikely(!size))
679 		return 0;
680 
681 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
682 	if (ret == size)
683 		return 0;
684 
685 	memset(dst, 0, size);
686 	/* Return -EFAULT for partial read */
687 	return ret < 0 ? ret : -EFAULT;
688 }
689 
690 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
691 	.func		= bpf_copy_from_user_task,
692 	.gpl_only	= true,
693 	.ret_type	= RET_INTEGER,
694 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
695 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
696 	.arg3_type	= ARG_ANYTHING,
697 	.arg4_type	= ARG_PTR_TO_BTF_ID,
698 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
699 	.arg5_type	= ARG_ANYTHING
700 };
701 
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)702 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
703 {
704 	if (cpu >= nr_cpu_ids)
705 		return (unsigned long)NULL;
706 
707 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
708 }
709 
710 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
711 	.func		= bpf_per_cpu_ptr,
712 	.gpl_only	= false,
713 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
714 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
715 	.arg2_type	= ARG_ANYTHING,
716 };
717 
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)718 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
719 {
720 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
721 }
722 
723 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
724 	.func		= bpf_this_cpu_ptr,
725 	.gpl_only	= false,
726 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
727 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
728 };
729 
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)730 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
731 		size_t bufsz)
732 {
733 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
734 
735 	buf[0] = 0;
736 
737 	switch (fmt_ptype) {
738 	case 's':
739 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
740 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
741 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
742 		fallthrough;
743 #endif
744 	case 'k':
745 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
746 	case 'u':
747 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
748 	}
749 
750 	return -EINVAL;
751 }
752 
753 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
754  * arguments representation.
755  */
756 #define MAX_BPRINTF_BIN_ARGS	512
757 
758 /* Support executing three nested bprintf helper calls on a given CPU */
759 #define MAX_BPRINTF_NEST_LEVEL	3
760 struct bpf_bprintf_buffers {
761 	char bin_args[MAX_BPRINTF_BIN_ARGS];
762 	char buf[MAX_BPRINTF_BUF];
763 };
764 
765 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
766 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
767 
try_get_buffers(struct bpf_bprintf_buffers ** bufs)768 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
769 {
770 	int nest_level;
771 
772 	preempt_disable();
773 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
774 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
775 		this_cpu_dec(bpf_bprintf_nest_level);
776 		preempt_enable();
777 		return -EBUSY;
778 	}
779 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
780 
781 	return 0;
782 }
783 
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)784 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
785 {
786 	if (!data->bin_args && !data->buf)
787 		return;
788 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
789 		return;
790 	this_cpu_dec(bpf_bprintf_nest_level);
791 	preempt_enable();
792 }
793 
794 /*
795  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
796  *
797  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
798  *
799  * This can be used in two ways:
800  * - Format string verification only: when data->get_bin_args is false
801  * - Arguments preparation: in addition to the above verification, it writes in
802  *   data->bin_args a binary representation of arguments usable by bstr_printf
803  *   where pointers from BPF have been sanitized.
804  *
805  * In argument preparation mode, if 0 is returned, safe temporary buffers are
806  * allocated and bpf_bprintf_cleanup should be called to free them after use.
807  */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)808 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
809 			u32 num_args, struct bpf_bprintf_data *data)
810 {
811 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
812 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
813 	struct bpf_bprintf_buffers *buffers = NULL;
814 	size_t sizeof_cur_arg, sizeof_cur_ip;
815 	int err, i, num_spec = 0;
816 	u64 cur_arg;
817 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
818 
819 	fmt_end = strnchr(fmt, fmt_size, 0);
820 	if (!fmt_end)
821 		return -EINVAL;
822 	fmt_size = fmt_end - fmt;
823 
824 	if (get_buffers && try_get_buffers(&buffers))
825 		return -EBUSY;
826 
827 	if (data->get_bin_args) {
828 		if (num_args)
829 			tmp_buf = buffers->bin_args;
830 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
831 		data->bin_args = (u32 *)tmp_buf;
832 	}
833 
834 	if (data->get_buf)
835 		data->buf = buffers->buf;
836 
837 	for (i = 0; i < fmt_size; i++) {
838 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
839 			err = -EINVAL;
840 			goto out;
841 		}
842 
843 		if (fmt[i] != '%')
844 			continue;
845 
846 		if (fmt[i + 1] == '%') {
847 			i++;
848 			continue;
849 		}
850 
851 		if (num_spec >= num_args) {
852 			err = -EINVAL;
853 			goto out;
854 		}
855 
856 		/* The string is zero-terminated so if fmt[i] != 0, we can
857 		 * always access fmt[i + 1], in the worst case it will be a 0
858 		 */
859 		i++;
860 
861 		/* skip optional "[0 +-][num]" width formatting field */
862 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
863 		       fmt[i] == ' ')
864 			i++;
865 		if (fmt[i] >= '1' && fmt[i] <= '9') {
866 			i++;
867 			while (fmt[i] >= '0' && fmt[i] <= '9')
868 				i++;
869 		}
870 
871 		if (fmt[i] == 'p') {
872 			sizeof_cur_arg = sizeof(long);
873 
874 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
875 			    fmt[i + 2] == 's') {
876 				fmt_ptype = fmt[i + 1];
877 				i += 2;
878 				goto fmt_str;
879 			}
880 
881 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
882 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
883 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
884 			    fmt[i + 1] == 'S') {
885 				/* just kernel pointers */
886 				if (tmp_buf)
887 					cur_arg = raw_args[num_spec];
888 				i++;
889 				goto nocopy_fmt;
890 			}
891 
892 			if (fmt[i + 1] == 'B') {
893 				if (tmp_buf)  {
894 					err = snprintf(tmp_buf,
895 						       (tmp_buf_end - tmp_buf),
896 						       "%pB",
897 						       (void *)(long)raw_args[num_spec]);
898 					tmp_buf += (err + 1);
899 				}
900 
901 				i++;
902 				num_spec++;
903 				continue;
904 			}
905 
906 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
907 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
908 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
909 				err = -EINVAL;
910 				goto out;
911 			}
912 
913 			i += 2;
914 			if (!tmp_buf)
915 				goto nocopy_fmt;
916 
917 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
918 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
919 				err = -ENOSPC;
920 				goto out;
921 			}
922 
923 			unsafe_ptr = (char *)(long)raw_args[num_spec];
924 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
925 						       sizeof_cur_ip);
926 			if (err < 0)
927 				memset(cur_ip, 0, sizeof_cur_ip);
928 
929 			/* hack: bstr_printf expects IP addresses to be
930 			 * pre-formatted as strings, ironically, the easiest way
931 			 * to do that is to call snprintf.
932 			 */
933 			ip_spec[2] = fmt[i - 1];
934 			ip_spec[3] = fmt[i];
935 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
936 				       ip_spec, &cur_ip);
937 
938 			tmp_buf += err + 1;
939 			num_spec++;
940 
941 			continue;
942 		} else if (fmt[i] == 's') {
943 			fmt_ptype = fmt[i];
944 fmt_str:
945 			if (fmt[i + 1] != 0 &&
946 			    !isspace(fmt[i + 1]) &&
947 			    !ispunct(fmt[i + 1])) {
948 				err = -EINVAL;
949 				goto out;
950 			}
951 
952 			if (!tmp_buf)
953 				goto nocopy_fmt;
954 
955 			if (tmp_buf_end == tmp_buf) {
956 				err = -ENOSPC;
957 				goto out;
958 			}
959 
960 			unsafe_ptr = (char *)(long)raw_args[num_spec];
961 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
962 						    fmt_ptype,
963 						    tmp_buf_end - tmp_buf);
964 			if (err < 0) {
965 				tmp_buf[0] = '\0';
966 				err = 1;
967 			}
968 
969 			tmp_buf += err;
970 			num_spec++;
971 
972 			continue;
973 		} else if (fmt[i] == 'c') {
974 			if (!tmp_buf)
975 				goto nocopy_fmt;
976 
977 			if (tmp_buf_end == tmp_buf) {
978 				err = -ENOSPC;
979 				goto out;
980 			}
981 
982 			*tmp_buf = raw_args[num_spec];
983 			tmp_buf++;
984 			num_spec++;
985 
986 			continue;
987 		}
988 
989 		sizeof_cur_arg = sizeof(int);
990 
991 		if (fmt[i] == 'l') {
992 			sizeof_cur_arg = sizeof(long);
993 			i++;
994 		}
995 		if (fmt[i] == 'l') {
996 			sizeof_cur_arg = sizeof(long long);
997 			i++;
998 		}
999 
1000 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1001 		    fmt[i] != 'x' && fmt[i] != 'X') {
1002 			err = -EINVAL;
1003 			goto out;
1004 		}
1005 
1006 		if (tmp_buf)
1007 			cur_arg = raw_args[num_spec];
1008 nocopy_fmt:
1009 		if (tmp_buf) {
1010 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1011 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1012 				err = -ENOSPC;
1013 				goto out;
1014 			}
1015 
1016 			if (sizeof_cur_arg == 8) {
1017 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1018 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1019 			} else {
1020 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1021 			}
1022 			tmp_buf += sizeof_cur_arg;
1023 		}
1024 		num_spec++;
1025 	}
1026 
1027 	err = 0;
1028 out:
1029 	if (err)
1030 		bpf_bprintf_cleanup(data);
1031 	return err;
1032 }
1033 
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1034 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1035 	   const void *, args, u32, data_len)
1036 {
1037 	struct bpf_bprintf_data data = {
1038 		.get_bin_args	= true,
1039 	};
1040 	int err, num_args;
1041 
1042 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1043 	    (data_len && !args))
1044 		return -EINVAL;
1045 	num_args = data_len / 8;
1046 
1047 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1048 	 * can safely give an unbounded size.
1049 	 */
1050 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1051 	if (err < 0)
1052 		return err;
1053 
1054 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1055 
1056 	bpf_bprintf_cleanup(&data);
1057 
1058 	return err + 1;
1059 }
1060 
1061 const struct bpf_func_proto bpf_snprintf_proto = {
1062 	.func		= bpf_snprintf,
1063 	.gpl_only	= true,
1064 	.ret_type	= RET_INTEGER,
1065 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1066 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1067 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1068 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1069 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1070 };
1071 
1072 /* BPF map elements can contain 'struct bpf_timer'.
1073  * Such map owns all of its BPF timers.
1074  * 'struct bpf_timer' is allocated as part of map element allocation
1075  * and it's zero initialized.
1076  * That space is used to keep 'struct bpf_timer_kern'.
1077  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1078  * remembers 'struct bpf_map *' pointer it's part of.
1079  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1080  * bpf_timer_start() arms the timer.
1081  * If user space reference to a map goes to zero at this point
1082  * ops->map_release_uref callback is responsible for cancelling the timers,
1083  * freeing their memory, and decrementing prog's refcnts.
1084  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1085  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1086  * freeing the timers when inner map is replaced or deleted by user space.
1087  */
1088 struct bpf_hrtimer {
1089 	struct hrtimer timer;
1090 	struct bpf_map *map;
1091 	struct bpf_prog *prog;
1092 	void __rcu *callback_fn;
1093 	void *value;
1094 	struct rcu_head rcu;
1095 };
1096 
1097 /* the actual struct hidden inside uapi struct bpf_timer */
1098 struct bpf_timer_kern {
1099 	struct bpf_hrtimer *timer;
1100 	/* bpf_spin_lock is used here instead of spinlock_t to make
1101 	 * sure that it always fits into space reserved by struct bpf_timer
1102 	 * regardless of LOCKDEP and spinlock debug flags.
1103 	 */
1104 	struct bpf_spin_lock lock;
1105 } __attribute__((aligned(8)));
1106 
1107 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1108 
bpf_timer_cb(struct hrtimer * hrtimer)1109 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1110 {
1111 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1112 	struct bpf_map *map = t->map;
1113 	void *value = t->value;
1114 	bpf_callback_t callback_fn;
1115 	void *key;
1116 	u32 idx;
1117 
1118 	BTF_TYPE_EMIT(struct bpf_timer);
1119 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1120 	if (!callback_fn)
1121 		goto out;
1122 
1123 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1124 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1125 	 * Remember the timer this callback is servicing to prevent
1126 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1127 	 * bpf_map_delete_elem() on the same timer.
1128 	 */
1129 	this_cpu_write(hrtimer_running, t);
1130 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1131 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1132 
1133 		/* compute the key */
1134 		idx = ((char *)value - array->value) / array->elem_size;
1135 		key = &idx;
1136 	} else { /* hash or lru */
1137 		key = value - round_up(map->key_size, 8);
1138 	}
1139 
1140 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1141 	/* The verifier checked that return value is zero. */
1142 
1143 	this_cpu_write(hrtimer_running, NULL);
1144 out:
1145 	return HRTIMER_NORESTART;
1146 }
1147 
BPF_CALL_3(bpf_timer_init,struct bpf_timer_kern *,timer,struct bpf_map *,map,u64,flags)1148 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1149 	   u64, flags)
1150 {
1151 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1152 	struct bpf_hrtimer *t;
1153 	int ret = 0;
1154 
1155 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1156 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1157 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1158 
1159 	if (in_nmi())
1160 		return -EOPNOTSUPP;
1161 
1162 	if (flags >= MAX_CLOCKS ||
1163 	    /* similar to timerfd except _ALARM variants are not supported */
1164 	    (clockid != CLOCK_MONOTONIC &&
1165 	     clockid != CLOCK_REALTIME &&
1166 	     clockid != CLOCK_BOOTTIME))
1167 		return -EINVAL;
1168 	__bpf_spin_lock_irqsave(&timer->lock);
1169 	t = timer->timer;
1170 	if (t) {
1171 		ret = -EBUSY;
1172 		goto out;
1173 	}
1174 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1175 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1176 	if (!t) {
1177 		ret = -ENOMEM;
1178 		goto out;
1179 	}
1180 	t->value = (void *)timer - map->timer_off;
1181 	t->map = map;
1182 	t->prog = NULL;
1183 	rcu_assign_pointer(t->callback_fn, NULL);
1184 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1185 	t->timer.function = bpf_timer_cb;
1186 	WRITE_ONCE(timer->timer, t);
1187 	/* Guarantee the order between timer->timer and map->usercnt. So
1188 	 * when there are concurrent uref release and bpf timer init, either
1189 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1190 	 * timer or atomic64_read() below returns a zero usercnt.
1191 	 */
1192 	smp_mb();
1193 	if (!atomic64_read(&map->usercnt)) {
1194 		/* maps with timers must be either held by user space
1195 		 * or pinned in bpffs.
1196 		 */
1197 		WRITE_ONCE(timer->timer, NULL);
1198 		kfree(t);
1199 		ret = -EPERM;
1200 	}
1201 out:
1202 	__bpf_spin_unlock_irqrestore(&timer->lock);
1203 	return ret;
1204 }
1205 
1206 static const struct bpf_func_proto bpf_timer_init_proto = {
1207 	.func		= bpf_timer_init,
1208 	.gpl_only	= true,
1209 	.ret_type	= RET_INTEGER,
1210 	.arg1_type	= ARG_PTR_TO_TIMER,
1211 	.arg2_type	= ARG_CONST_MAP_PTR,
1212 	.arg3_type	= ARG_ANYTHING,
1213 };
1214 
BPF_CALL_3(bpf_timer_set_callback,struct bpf_timer_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1215 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1216 	   struct bpf_prog_aux *, aux)
1217 {
1218 	struct bpf_prog *prev, *prog = aux->prog;
1219 	struct bpf_hrtimer *t;
1220 	int ret = 0;
1221 
1222 	if (in_nmi())
1223 		return -EOPNOTSUPP;
1224 	__bpf_spin_lock_irqsave(&timer->lock);
1225 	t = timer->timer;
1226 	if (!t) {
1227 		ret = -EINVAL;
1228 		goto out;
1229 	}
1230 	if (!atomic64_read(&t->map->usercnt)) {
1231 		/* maps with timers must be either held by user space
1232 		 * or pinned in bpffs. Otherwise timer might still be
1233 		 * running even when bpf prog is detached and user space
1234 		 * is gone, since map_release_uref won't ever be called.
1235 		 */
1236 		ret = -EPERM;
1237 		goto out;
1238 	}
1239 	prev = t->prog;
1240 	if (prev != prog) {
1241 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1242 		 * can pick different callback_fn-s within the same prog.
1243 		 */
1244 		prog = bpf_prog_inc_not_zero(prog);
1245 		if (IS_ERR(prog)) {
1246 			ret = PTR_ERR(prog);
1247 			goto out;
1248 		}
1249 		if (prev)
1250 			/* Drop prev prog refcnt when swapping with new prog */
1251 			bpf_prog_put(prev);
1252 		t->prog = prog;
1253 	}
1254 	rcu_assign_pointer(t->callback_fn, callback_fn);
1255 out:
1256 	__bpf_spin_unlock_irqrestore(&timer->lock);
1257 	return ret;
1258 }
1259 
1260 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1261 	.func		= bpf_timer_set_callback,
1262 	.gpl_only	= true,
1263 	.ret_type	= RET_INTEGER,
1264 	.arg1_type	= ARG_PTR_TO_TIMER,
1265 	.arg2_type	= ARG_PTR_TO_FUNC,
1266 };
1267 
BPF_CALL_3(bpf_timer_start,struct bpf_timer_kern *,timer,u64,nsecs,u64,flags)1268 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1269 {
1270 	struct bpf_hrtimer *t;
1271 	int ret = 0;
1272 
1273 	if (in_nmi())
1274 		return -EOPNOTSUPP;
1275 	if (flags)
1276 		return -EINVAL;
1277 	__bpf_spin_lock_irqsave(&timer->lock);
1278 	t = timer->timer;
1279 	if (!t || !t->prog) {
1280 		ret = -EINVAL;
1281 		goto out;
1282 	}
1283 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1284 out:
1285 	__bpf_spin_unlock_irqrestore(&timer->lock);
1286 	return ret;
1287 }
1288 
1289 static const struct bpf_func_proto bpf_timer_start_proto = {
1290 	.func		= bpf_timer_start,
1291 	.gpl_only	= true,
1292 	.ret_type	= RET_INTEGER,
1293 	.arg1_type	= ARG_PTR_TO_TIMER,
1294 	.arg2_type	= ARG_ANYTHING,
1295 	.arg3_type	= ARG_ANYTHING,
1296 };
1297 
drop_prog_refcnt(struct bpf_hrtimer * t)1298 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1299 {
1300 	struct bpf_prog *prog = t->prog;
1301 
1302 	if (prog) {
1303 		bpf_prog_put(prog);
1304 		t->prog = NULL;
1305 		rcu_assign_pointer(t->callback_fn, NULL);
1306 	}
1307 }
1308 
BPF_CALL_1(bpf_timer_cancel,struct bpf_timer_kern *,timer)1309 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1310 {
1311 	struct bpf_hrtimer *t;
1312 	int ret = 0;
1313 
1314 	if (in_nmi())
1315 		return -EOPNOTSUPP;
1316 	rcu_read_lock();
1317 	__bpf_spin_lock_irqsave(&timer->lock);
1318 	t = timer->timer;
1319 	if (!t) {
1320 		ret = -EINVAL;
1321 		goto out;
1322 	}
1323 	if (this_cpu_read(hrtimer_running) == t) {
1324 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1325 		 * its own timer the hrtimer_cancel() will deadlock
1326 		 * since it waits for callback_fn to finish
1327 		 */
1328 		ret = -EDEADLK;
1329 		goto out;
1330 	}
1331 	drop_prog_refcnt(t);
1332 out:
1333 	__bpf_spin_unlock_irqrestore(&timer->lock);
1334 	/* Cancel the timer and wait for associated callback to finish
1335 	 * if it was running.
1336 	 */
1337 	ret = ret ?: hrtimer_cancel(&t->timer);
1338 	rcu_read_unlock();
1339 	return ret;
1340 }
1341 
1342 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1343 	.func		= bpf_timer_cancel,
1344 	.gpl_only	= true,
1345 	.ret_type	= RET_INTEGER,
1346 	.arg1_type	= ARG_PTR_TO_TIMER,
1347 };
1348 
1349 /* This function is called by map_delete/update_elem for individual element and
1350  * by ops->map_release_uref when the user space reference to a map reaches zero.
1351  */
bpf_timer_cancel_and_free(void * val)1352 void bpf_timer_cancel_and_free(void *val)
1353 {
1354 	struct bpf_timer_kern *timer = val;
1355 	struct bpf_hrtimer *t;
1356 
1357 	/* Performance optimization: read timer->timer without lock first. */
1358 	if (!READ_ONCE(timer->timer))
1359 		return;
1360 
1361 	__bpf_spin_lock_irqsave(&timer->lock);
1362 	/* re-read it under lock */
1363 	t = timer->timer;
1364 	if (!t)
1365 		goto out;
1366 	drop_prog_refcnt(t);
1367 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1368 	 * this timer, since it won't be initialized.
1369 	 */
1370 	WRITE_ONCE(timer->timer, NULL);
1371 out:
1372 	__bpf_spin_unlock_irqrestore(&timer->lock);
1373 	if (!t)
1374 		return;
1375 	/* Cancel the timer and wait for callback to complete if it was running.
1376 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1377 	 * right after for both preallocated and non-preallocated maps.
1378 	 * The timer->timer = NULL was already done and no code path can
1379 	 * see address 't' anymore.
1380 	 *
1381 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1382 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1383 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1384 	 * return -1). Though callback_fn is still running on this cpu it's
1385 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1386 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1387 	 * since timer->timer = NULL was already done. The timer will be
1388 	 * effectively cancelled because bpf_timer_cb() will return
1389 	 * HRTIMER_NORESTART.
1390 	 */
1391 	if (this_cpu_read(hrtimer_running) != t)
1392 		hrtimer_cancel(&t->timer);
1393 	kfree_rcu(t, rcu);
1394 }
1395 
BPF_CALL_2(bpf_kptr_xchg,void *,map_value,void *,ptr)1396 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1397 {
1398 	unsigned long *kptr = map_value;
1399 
1400 	return xchg(kptr, (unsigned long)ptr);
1401 }
1402 
1403 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1404  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1405  * denote type that verifier will determine.
1406  */
1407 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1408 	.func         = bpf_kptr_xchg,
1409 	.gpl_only     = false,
1410 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1411 	.ret_btf_id   = BPF_PTR_POISON,
1412 	.arg1_type    = ARG_PTR_TO_KPTR,
1413 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1414 	.arg2_btf_id  = BPF_PTR_POISON,
1415 };
1416 
1417 /* Since the upper 8 bits of dynptr->size is reserved, the
1418  * maximum supported size is 2^24 - 1.
1419  */
1420 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1421 #define DYNPTR_TYPE_SHIFT	28
1422 #define DYNPTR_SIZE_MASK	0xFFFFFF
1423 #define DYNPTR_RDONLY_BIT	BIT(31)
1424 
bpf_dynptr_is_rdonly(struct bpf_dynptr_kern * ptr)1425 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1426 {
1427 	return ptr->size & DYNPTR_RDONLY_BIT;
1428 }
1429 
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1430 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1431 {
1432 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1433 }
1434 
bpf_dynptr_get_size(struct bpf_dynptr_kern * ptr)1435 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1436 {
1437 	return ptr->size & DYNPTR_SIZE_MASK;
1438 }
1439 
bpf_dynptr_check_size(u32 size)1440 int bpf_dynptr_check_size(u32 size)
1441 {
1442 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1443 }
1444 
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1445 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1446 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1447 {
1448 	ptr->data = data;
1449 	ptr->offset = offset;
1450 	ptr->size = size;
1451 	bpf_dynptr_set_type(ptr, type);
1452 }
1453 
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1454 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1455 {
1456 	memset(ptr, 0, sizeof(*ptr));
1457 }
1458 
bpf_dynptr_check_off_len(struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1459 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1460 {
1461 	u32 size = bpf_dynptr_get_size(ptr);
1462 
1463 	if (len > size || offset > size - len)
1464 		return -E2BIG;
1465 
1466 	return 0;
1467 }
1468 
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1469 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1470 {
1471 	int err;
1472 
1473 	BTF_TYPE_EMIT(struct bpf_dynptr);
1474 
1475 	err = bpf_dynptr_check_size(size);
1476 	if (err)
1477 		goto error;
1478 
1479 	/* flags is currently unsupported */
1480 	if (flags) {
1481 		err = -EINVAL;
1482 		goto error;
1483 	}
1484 
1485 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1486 
1487 	return 0;
1488 
1489 error:
1490 	bpf_dynptr_set_null(ptr);
1491 	return err;
1492 }
1493 
1494 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1495 	.func		= bpf_dynptr_from_mem,
1496 	.gpl_only	= false,
1497 	.ret_type	= RET_INTEGER,
1498 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1499 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1500 	.arg3_type	= ARG_ANYTHING,
1501 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1502 };
1503 
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1504 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
1505 	   u32, offset, u64, flags)
1506 {
1507 	int err;
1508 
1509 	if (!src->data || flags)
1510 		return -EINVAL;
1511 
1512 	err = bpf_dynptr_check_off_len(src, offset, len);
1513 	if (err)
1514 		return err;
1515 
1516 	memcpy(dst, src->data + src->offset + offset, len);
1517 
1518 	return 0;
1519 }
1520 
1521 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1522 	.func		= bpf_dynptr_read,
1523 	.gpl_only	= false,
1524 	.ret_type	= RET_INTEGER,
1525 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1526 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1527 	.arg3_type	= ARG_PTR_TO_DYNPTR,
1528 	.arg4_type	= ARG_ANYTHING,
1529 	.arg5_type	= ARG_ANYTHING,
1530 };
1531 
BPF_CALL_5(bpf_dynptr_write,struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1532 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1533 	   u32, len, u64, flags)
1534 {
1535 	int err;
1536 
1537 	if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
1538 		return -EINVAL;
1539 
1540 	err = bpf_dynptr_check_off_len(dst, offset, len);
1541 	if (err)
1542 		return err;
1543 
1544 	memcpy(dst->data + dst->offset + offset, src, len);
1545 
1546 	return 0;
1547 }
1548 
1549 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1550 	.func		= bpf_dynptr_write,
1551 	.gpl_only	= false,
1552 	.ret_type	= RET_INTEGER,
1553 	.arg1_type	= ARG_PTR_TO_DYNPTR,
1554 	.arg2_type	= ARG_ANYTHING,
1555 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1556 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1557 	.arg5_type	= ARG_ANYTHING,
1558 };
1559 
BPF_CALL_3(bpf_dynptr_data,struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1560 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1561 {
1562 	int err;
1563 
1564 	if (!ptr->data)
1565 		return 0;
1566 
1567 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1568 	if (err)
1569 		return 0;
1570 
1571 	if (bpf_dynptr_is_rdonly(ptr))
1572 		return 0;
1573 
1574 	return (unsigned long)(ptr->data + ptr->offset + offset);
1575 }
1576 
1577 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1578 	.func		= bpf_dynptr_data,
1579 	.gpl_only	= false,
1580 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1581 	.arg1_type	= ARG_PTR_TO_DYNPTR,
1582 	.arg2_type	= ARG_ANYTHING,
1583 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1584 };
1585 
1586 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1587 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1588 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1589 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1590 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1591 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1592 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1593 
1594 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)1595 bpf_base_func_proto(enum bpf_func_id func_id)
1596 {
1597 	switch (func_id) {
1598 	case BPF_FUNC_map_lookup_elem:
1599 		return &bpf_map_lookup_elem_proto;
1600 	case BPF_FUNC_map_update_elem:
1601 		return &bpf_map_update_elem_proto;
1602 	case BPF_FUNC_map_delete_elem:
1603 		return &bpf_map_delete_elem_proto;
1604 	case BPF_FUNC_map_push_elem:
1605 		return &bpf_map_push_elem_proto;
1606 	case BPF_FUNC_map_pop_elem:
1607 		return &bpf_map_pop_elem_proto;
1608 	case BPF_FUNC_map_peek_elem:
1609 		return &bpf_map_peek_elem_proto;
1610 	case BPF_FUNC_map_lookup_percpu_elem:
1611 		return &bpf_map_lookup_percpu_elem_proto;
1612 	case BPF_FUNC_get_prandom_u32:
1613 		return &bpf_get_prandom_u32_proto;
1614 	case BPF_FUNC_get_smp_processor_id:
1615 		return &bpf_get_raw_smp_processor_id_proto;
1616 	case BPF_FUNC_get_numa_node_id:
1617 		return &bpf_get_numa_node_id_proto;
1618 	case BPF_FUNC_tail_call:
1619 		return &bpf_tail_call_proto;
1620 	case BPF_FUNC_ktime_get_ns:
1621 		return &bpf_ktime_get_ns_proto;
1622 	case BPF_FUNC_ktime_get_boot_ns:
1623 		return &bpf_ktime_get_boot_ns_proto;
1624 	case BPF_FUNC_ktime_get_tai_ns:
1625 		return &bpf_ktime_get_tai_ns_proto;
1626 	case BPF_FUNC_ringbuf_output:
1627 		return &bpf_ringbuf_output_proto;
1628 	case BPF_FUNC_ringbuf_reserve:
1629 		return &bpf_ringbuf_reserve_proto;
1630 	case BPF_FUNC_ringbuf_submit:
1631 		return &bpf_ringbuf_submit_proto;
1632 	case BPF_FUNC_ringbuf_discard:
1633 		return &bpf_ringbuf_discard_proto;
1634 	case BPF_FUNC_ringbuf_query:
1635 		return &bpf_ringbuf_query_proto;
1636 	case BPF_FUNC_strncmp:
1637 		return &bpf_strncmp_proto;
1638 	case BPF_FUNC_strtol:
1639 		return &bpf_strtol_proto;
1640 	case BPF_FUNC_strtoul:
1641 		return &bpf_strtoul_proto;
1642 	default:
1643 		break;
1644 	}
1645 
1646 	if (!bpf_capable())
1647 		return NULL;
1648 
1649 	switch (func_id) {
1650 	case BPF_FUNC_spin_lock:
1651 		return &bpf_spin_lock_proto;
1652 	case BPF_FUNC_spin_unlock:
1653 		return &bpf_spin_unlock_proto;
1654 	case BPF_FUNC_jiffies64:
1655 		return &bpf_jiffies64_proto;
1656 	case BPF_FUNC_per_cpu_ptr:
1657 		return &bpf_per_cpu_ptr_proto;
1658 	case BPF_FUNC_this_cpu_ptr:
1659 		return &bpf_this_cpu_ptr_proto;
1660 	case BPF_FUNC_timer_init:
1661 		return &bpf_timer_init_proto;
1662 	case BPF_FUNC_timer_set_callback:
1663 		return &bpf_timer_set_callback_proto;
1664 	case BPF_FUNC_timer_start:
1665 		return &bpf_timer_start_proto;
1666 	case BPF_FUNC_timer_cancel:
1667 		return &bpf_timer_cancel_proto;
1668 	case BPF_FUNC_kptr_xchg:
1669 		return &bpf_kptr_xchg_proto;
1670 	case BPF_FUNC_for_each_map_elem:
1671 		return &bpf_for_each_map_elem_proto;
1672 	case BPF_FUNC_loop:
1673 		return &bpf_loop_proto;
1674 	case BPF_FUNC_user_ringbuf_drain:
1675 		return &bpf_user_ringbuf_drain_proto;
1676 	case BPF_FUNC_ringbuf_reserve_dynptr:
1677 		return &bpf_ringbuf_reserve_dynptr_proto;
1678 	case BPF_FUNC_ringbuf_submit_dynptr:
1679 		return &bpf_ringbuf_submit_dynptr_proto;
1680 	case BPF_FUNC_ringbuf_discard_dynptr:
1681 		return &bpf_ringbuf_discard_dynptr_proto;
1682 	case BPF_FUNC_dynptr_from_mem:
1683 		return &bpf_dynptr_from_mem_proto;
1684 	case BPF_FUNC_dynptr_read:
1685 		return &bpf_dynptr_read_proto;
1686 	case BPF_FUNC_dynptr_write:
1687 		return &bpf_dynptr_write_proto;
1688 	case BPF_FUNC_dynptr_data:
1689 		return &bpf_dynptr_data_proto;
1690 	default:
1691 		break;
1692 	}
1693 
1694 	if (!perfmon_capable())
1695 		return NULL;
1696 
1697 	switch (func_id) {
1698 	case BPF_FUNC_trace_printk:
1699 		return bpf_get_trace_printk_proto();
1700 	case BPF_FUNC_get_current_task:
1701 		return &bpf_get_current_task_proto;
1702 	case BPF_FUNC_get_current_task_btf:
1703 		return &bpf_get_current_task_btf_proto;
1704 	case BPF_FUNC_probe_read_user:
1705 		return &bpf_probe_read_user_proto;
1706 	case BPF_FUNC_probe_read_kernel:
1707 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1708 		       NULL : &bpf_probe_read_kernel_proto;
1709 	case BPF_FUNC_probe_read_user_str:
1710 		return &bpf_probe_read_user_str_proto;
1711 	case BPF_FUNC_probe_read_kernel_str:
1712 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1713 		       NULL : &bpf_probe_read_kernel_str_proto;
1714 	case BPF_FUNC_snprintf_btf:
1715 		return &bpf_snprintf_btf_proto;
1716 	case BPF_FUNC_snprintf:
1717 		return &bpf_snprintf_proto;
1718 	case BPF_FUNC_task_pt_regs:
1719 		return &bpf_task_pt_regs_proto;
1720 	case BPF_FUNC_trace_vprintk:
1721 		return bpf_get_trace_vprintk_proto();
1722 	default:
1723 		return NULL;
1724 	}
1725 }
1726 
1727 BTF_SET8_START(tracing_btf_ids)
1728 #ifdef CONFIG_KEXEC_CORE
1729 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
1730 #endif
1731 BTF_SET8_END(tracing_btf_ids)
1732 
1733 static const struct btf_kfunc_id_set tracing_kfunc_set = {
1734 	.owner = THIS_MODULE,
1735 	.set   = &tracing_btf_ids,
1736 };
1737 
kfunc_init(void)1738 static int __init kfunc_init(void)
1739 {
1740 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set);
1741 }
1742 
1743 late_initcall(kfunc_init);
1744