1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20 #include <trace/hooks/cgroup.h>
21
22 /*
23 * pidlists linger the following amount before being destroyed. The goal
24 * is avoiding frequent destruction in the middle of consecutive read calls
25 * Expiring in the middle is a performance problem not a correctness one.
26 * 1 sec should be enough.
27 */
28 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
29
30 /* Controllers blocked by the commandline in v1 */
31 static u16 cgroup_no_v1_mask;
32
33 /* disable named v1 mounts */
34 static bool cgroup_no_v1_named;
35
36 /*
37 * pidlist destructions need to be flushed on cgroup destruction. Use a
38 * separate workqueue as flush domain.
39 */
40 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
41
42 /* protects cgroup_subsys->release_agent_path */
43 static DEFINE_SPINLOCK(release_agent_path_lock);
44
cgroup1_ssid_disabled(int ssid)45 bool cgroup1_ssid_disabled(int ssid)
46 {
47 return cgroup_no_v1_mask & (1 << ssid);
48 }
49
50 /**
51 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
52 * @from: attach to all cgroups of a given task
53 * @tsk: the task to be attached
54 *
55 * Return: %0 on success or a negative errno code on failure
56 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)57 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
58 {
59 struct cgroup_root *root;
60 int retval = 0;
61
62 cgroup_lock();
63 cgroup_attach_lock(true);
64 for_each_root(root) {
65 struct cgroup *from_cgrp;
66
67 spin_lock_irq(&css_set_lock);
68 from_cgrp = task_cgroup_from_root(from, root);
69 spin_unlock_irq(&css_set_lock);
70
71 retval = cgroup_attach_task(from_cgrp, tsk, false);
72 if (retval)
73 break;
74 }
75 cgroup_attach_unlock(true);
76 cgroup_unlock();
77
78 return retval;
79 }
80 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
81
82 /**
83 * cgroup_transfer_tasks - move tasks from one cgroup to another
84 * @to: cgroup to which the tasks will be moved
85 * @from: cgroup in which the tasks currently reside
86 *
87 * Locking rules between cgroup_post_fork() and the migration path
88 * guarantee that, if a task is forking while being migrated, the new child
89 * is guaranteed to be either visible in the source cgroup after the
90 * parent's migration is complete or put into the target cgroup. No task
91 * can slip out of migration through forking.
92 *
93 * Return: %0 on success or a negative errno code on failure
94 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)95 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
96 {
97 DEFINE_CGROUP_MGCTX(mgctx);
98 struct cgrp_cset_link *link;
99 struct css_task_iter it;
100 struct task_struct *task;
101 int ret;
102
103 if (cgroup_on_dfl(to))
104 return -EINVAL;
105
106 ret = cgroup_migrate_vet_dst(to);
107 if (ret)
108 return ret;
109
110 cgroup_lock();
111
112 cgroup_attach_lock(true);
113
114 /* all tasks in @from are being moved, all csets are source */
115 spin_lock_irq(&css_set_lock);
116 list_for_each_entry(link, &from->cset_links, cset_link)
117 cgroup_migrate_add_src(link->cset, to, &mgctx);
118 spin_unlock_irq(&css_set_lock);
119
120 ret = cgroup_migrate_prepare_dst(&mgctx);
121 if (ret)
122 goto out_err;
123
124 /*
125 * Migrate tasks one-by-one until @from is empty. This fails iff
126 * ->can_attach() fails.
127 */
128 do {
129 css_task_iter_start(&from->self, 0, &it);
130
131 do {
132 task = css_task_iter_next(&it);
133 } while (task && (task->flags & PF_EXITING));
134
135 if (task)
136 get_task_struct(task);
137 css_task_iter_end(&it);
138
139 if (task) {
140 ret = cgroup_migrate(task, false, &mgctx);
141 if (!ret)
142 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
143 put_task_struct(task);
144 }
145 } while (task && !ret);
146 out_err:
147 cgroup_migrate_finish(&mgctx);
148 cgroup_attach_unlock(true);
149 cgroup_unlock();
150 return ret;
151 }
152
153 /*
154 * Stuff for reading the 'tasks'/'procs' files.
155 *
156 * Reading this file can return large amounts of data if a cgroup has
157 * *lots* of attached tasks. So it may need several calls to read(),
158 * but we cannot guarantee that the information we produce is correct
159 * unless we produce it entirely atomically.
160 *
161 */
162
163 /* which pidlist file are we talking about? */
164 enum cgroup_filetype {
165 CGROUP_FILE_PROCS,
166 CGROUP_FILE_TASKS,
167 };
168
169 /*
170 * A pidlist is a list of pids that virtually represents the contents of one
171 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
172 * a pair (one each for procs, tasks) for each pid namespace that's relevant
173 * to the cgroup.
174 */
175 struct cgroup_pidlist {
176 /*
177 * used to find which pidlist is wanted. doesn't change as long as
178 * this particular list stays in the list.
179 */
180 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
181 /* array of xids */
182 pid_t *list;
183 /* how many elements the above list has */
184 int length;
185 /* each of these stored in a list by its cgroup */
186 struct list_head links;
187 /* pointer to the cgroup we belong to, for list removal purposes */
188 struct cgroup *owner;
189 /* for delayed destruction */
190 struct delayed_work destroy_dwork;
191 };
192
193 /*
194 * Used to destroy all pidlists lingering waiting for destroy timer. None
195 * should be left afterwards.
196 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)197 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
198 {
199 struct cgroup_pidlist *l, *tmp_l;
200
201 mutex_lock(&cgrp->pidlist_mutex);
202 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
203 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
204 mutex_unlock(&cgrp->pidlist_mutex);
205
206 flush_workqueue(cgroup_pidlist_destroy_wq);
207 BUG_ON(!list_empty(&cgrp->pidlists));
208 }
209
cgroup_pidlist_destroy_work_fn(struct work_struct * work)210 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
211 {
212 struct delayed_work *dwork = to_delayed_work(work);
213 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
214 destroy_dwork);
215 struct cgroup_pidlist *tofree = NULL;
216
217 mutex_lock(&l->owner->pidlist_mutex);
218
219 /*
220 * Destroy iff we didn't get queued again. The state won't change
221 * as destroy_dwork can only be queued while locked.
222 */
223 if (!delayed_work_pending(dwork)) {
224 list_del(&l->links);
225 kvfree(l->list);
226 put_pid_ns(l->key.ns);
227 tofree = l;
228 }
229
230 mutex_unlock(&l->owner->pidlist_mutex);
231 kfree(tofree);
232 }
233
234 /*
235 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
236 * Returns the number of unique elements.
237 */
pidlist_uniq(pid_t * list,int length)238 static int pidlist_uniq(pid_t *list, int length)
239 {
240 int src, dest = 1;
241
242 /*
243 * we presume the 0th element is unique, so i starts at 1. trivial
244 * edge cases first; no work needs to be done for either
245 */
246 if (length == 0 || length == 1)
247 return length;
248 /* src and dest walk down the list; dest counts unique elements */
249 for (src = 1; src < length; src++) {
250 /* find next unique element */
251 while (list[src] == list[src-1]) {
252 src++;
253 if (src == length)
254 goto after;
255 }
256 /* dest always points to where the next unique element goes */
257 list[dest] = list[src];
258 dest++;
259 }
260 after:
261 return dest;
262 }
263
264 /*
265 * The two pid files - task and cgroup.procs - guaranteed that the result
266 * is sorted, which forced this whole pidlist fiasco. As pid order is
267 * different per namespace, each namespace needs differently sorted list,
268 * making it impossible to use, for example, single rbtree of member tasks
269 * sorted by task pointer. As pidlists can be fairly large, allocating one
270 * per open file is dangerous, so cgroup had to implement shared pool of
271 * pidlists keyed by cgroup and namespace.
272 */
cmppid(const void * a,const void * b)273 static int cmppid(const void *a, const void *b)
274 {
275 return *(pid_t *)a - *(pid_t *)b;
276 }
277
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)278 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
279 enum cgroup_filetype type)
280 {
281 struct cgroup_pidlist *l;
282 /* don't need task_nsproxy() if we're looking at ourself */
283 struct pid_namespace *ns = task_active_pid_ns(current);
284
285 lockdep_assert_held(&cgrp->pidlist_mutex);
286
287 list_for_each_entry(l, &cgrp->pidlists, links)
288 if (l->key.type == type && l->key.ns == ns)
289 return l;
290 return NULL;
291 }
292
293 /*
294 * find the appropriate pidlist for our purpose (given procs vs tasks)
295 * returns with the lock on that pidlist already held, and takes care
296 * of the use count, or returns NULL with no locks held if we're out of
297 * memory.
298 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)299 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
300 enum cgroup_filetype type)
301 {
302 struct cgroup_pidlist *l;
303
304 lockdep_assert_held(&cgrp->pidlist_mutex);
305
306 l = cgroup_pidlist_find(cgrp, type);
307 if (l)
308 return l;
309
310 /* entry not found; create a new one */
311 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
312 if (!l)
313 return l;
314
315 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
316 l->key.type = type;
317 /* don't need task_nsproxy() if we're looking at ourself */
318 l->key.ns = get_pid_ns(task_active_pid_ns(current));
319 l->owner = cgrp;
320 list_add(&l->links, &cgrp->pidlists);
321 return l;
322 }
323
324 /*
325 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
326 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)327 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
328 struct cgroup_pidlist **lp)
329 {
330 pid_t *array;
331 int length;
332 int pid, n = 0; /* used for populating the array */
333 struct css_task_iter it;
334 struct task_struct *tsk;
335 struct cgroup_pidlist *l;
336
337 lockdep_assert_held(&cgrp->pidlist_mutex);
338
339 /*
340 * If cgroup gets more users after we read count, we won't have
341 * enough space - tough. This race is indistinguishable to the
342 * caller from the case that the additional cgroup users didn't
343 * show up until sometime later on.
344 */
345 length = cgroup_task_count(cgrp);
346 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
347 if (!array)
348 return -ENOMEM;
349 /* now, populate the array */
350 css_task_iter_start(&cgrp->self, 0, &it);
351 while ((tsk = css_task_iter_next(&it))) {
352 if (unlikely(n == length))
353 break;
354 /* get tgid or pid for procs or tasks file respectively */
355 if (type == CGROUP_FILE_PROCS)
356 pid = task_tgid_vnr(tsk);
357 else
358 pid = task_pid_vnr(tsk);
359 if (pid > 0) /* make sure to only use valid results */
360 array[n++] = pid;
361 }
362 css_task_iter_end(&it);
363 length = n;
364 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */
365 sort(array, length, sizeof(pid_t), cmppid, NULL);
366 length = pidlist_uniq(array, length);
367
368 l = cgroup_pidlist_find_create(cgrp, type);
369 if (!l) {
370 kvfree(array);
371 return -ENOMEM;
372 }
373
374 /* store array, freeing old if necessary */
375 kvfree(l->list);
376 l->list = array;
377 l->length = length;
378 *lp = l;
379 return 0;
380 }
381
382 /*
383 * seq_file methods for the tasks/procs files. The seq_file position is the
384 * next pid to display; the seq_file iterator is a pointer to the pid
385 * in the cgroup->l->list array.
386 */
387
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389 {
390 /*
391 * Initially we receive a position value that corresponds to
392 * one more than the last pid shown (or 0 on the first call or
393 * after a seek to the start). Use a binary-search to find the
394 * next pid to display, if any
395 */
396 struct kernfs_open_file *of = s->private;
397 struct cgroup_file_ctx *ctx = of->priv;
398 struct cgroup *cgrp = seq_css(s)->cgroup;
399 struct cgroup_pidlist *l;
400 enum cgroup_filetype type = seq_cft(s)->private;
401 int index = 0, pid = *pos;
402 int *iter, ret;
403
404 mutex_lock(&cgrp->pidlist_mutex);
405
406 /*
407 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
408 * start() after open. If the matching pidlist is around, we can use
409 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
410 * directly. It could already have been destroyed.
411 */
412 if (ctx->procs1.pidlist)
413 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
414
415 /*
416 * Either this is the first start() after open or the matching
417 * pidlist has been destroyed inbetween. Create a new one.
418 */
419 if (!ctx->procs1.pidlist) {
420 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
421 if (ret)
422 return ERR_PTR(ret);
423 }
424 l = ctx->procs1.pidlist;
425
426 if (pid) {
427 int end = l->length;
428
429 while (index < end) {
430 int mid = (index + end) / 2;
431 if (l->list[mid] == pid) {
432 index = mid;
433 break;
434 } else if (l->list[mid] <= pid)
435 index = mid + 1;
436 else
437 end = mid;
438 }
439 }
440 /* If we're off the end of the array, we're done */
441 if (index >= l->length)
442 return NULL;
443 /* Update the abstract position to be the actual pid that we found */
444 iter = l->list + index;
445 *pos = *iter;
446 return iter;
447 }
448
cgroup_pidlist_stop(struct seq_file * s,void * v)449 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450 {
451 struct kernfs_open_file *of = s->private;
452 struct cgroup_file_ctx *ctx = of->priv;
453 struct cgroup_pidlist *l = ctx->procs1.pidlist;
454
455 if (l)
456 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
457 CGROUP_PIDLIST_DESTROY_DELAY);
458 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
459 }
460
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
462 {
463 struct kernfs_open_file *of = s->private;
464 struct cgroup_file_ctx *ctx = of->priv;
465 struct cgroup_pidlist *l = ctx->procs1.pidlist;
466 pid_t *p = v;
467 pid_t *end = l->list + l->length;
468 /*
469 * Advance to the next pid in the array. If this goes off the
470 * end, we're done
471 */
472 p++;
473 if (p >= end) {
474 (*pos)++;
475 return NULL;
476 } else {
477 *pos = *p;
478 return p;
479 }
480 }
481
cgroup_pidlist_show(struct seq_file * s,void * v)482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
483 {
484 seq_printf(s, "%d\n", *(int *)v);
485
486 return 0;
487 }
488
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 char *buf, size_t nbytes, loff_t off,
491 bool threadgroup)
492 {
493 struct cgroup *cgrp;
494 struct task_struct *task;
495 const struct cred *cred, *tcred;
496 ssize_t ret;
497 bool locked;
498
499 cgrp = cgroup_kn_lock_live(of->kn, false);
500 if (!cgrp)
501 return -ENODEV;
502
503 task = cgroup_procs_write_start(buf, threadgroup, &locked, cgrp);
504 ret = PTR_ERR_OR_ZERO(task);
505 if (ret)
506 goto out_unlock;
507
508 /*
509 * Even if we're attaching all tasks in the thread group, we only need
510 * to check permissions on one of them. Check permissions using the
511 * credentials from file open to protect against inherited fd attacks.
512 */
513 cred = of->file->f_cred;
514 tcred = get_task_cred(task);
515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
516 !uid_eq(cred->euid, tcred->uid) &&
517 !uid_eq(cred->euid, tcred->suid) &&
518 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
519 ret = -EACCES;
520 put_cred(tcred);
521 if (ret)
522 goto out_finish;
523
524 ret = cgroup_attach_task(cgrp, task, threadgroup);
525 trace_android_vh_cgroup_set_task(ret, task);
526
527 out_finish:
528 cgroup_procs_write_finish(task, locked);
529 out_unlock:
530 cgroup_kn_unlock(of->kn);
531
532 return ret ?: nbytes;
533 }
534
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)535 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
536 char *buf, size_t nbytes, loff_t off)
537 {
538 return __cgroup1_procs_write(of, buf, nbytes, off, true);
539 }
540
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)541 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
542 char *buf, size_t nbytes, loff_t off)
543 {
544 return __cgroup1_procs_write(of, buf, nbytes, off, false);
545 }
546
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)547 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
548 char *buf, size_t nbytes, loff_t off)
549 {
550 struct cgroup *cgrp;
551 struct cgroup_file_ctx *ctx;
552
553 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
554
555 /*
556 * Release agent gets called with all capabilities,
557 * require capabilities to set release agent.
558 */
559 ctx = of->priv;
560 if ((ctx->ns->user_ns != &init_user_ns) ||
561 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
562 return -EPERM;
563
564 cgrp = cgroup_kn_lock_live(of->kn, false);
565 if (!cgrp)
566 return -ENODEV;
567 spin_lock(&release_agent_path_lock);
568 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
569 sizeof(cgrp->root->release_agent_path));
570 spin_unlock(&release_agent_path_lock);
571 cgroup_kn_unlock(of->kn);
572 return nbytes;
573 }
574
cgroup_release_agent_show(struct seq_file * seq,void * v)575 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
576 {
577 struct cgroup *cgrp = seq_css(seq)->cgroup;
578
579 spin_lock(&release_agent_path_lock);
580 seq_puts(seq, cgrp->root->release_agent_path);
581 spin_unlock(&release_agent_path_lock);
582 seq_putc(seq, '\n');
583 return 0;
584 }
585
cgroup_sane_behavior_show(struct seq_file * seq,void * v)586 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
587 {
588 seq_puts(seq, "0\n");
589 return 0;
590 }
591
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)592 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
593 struct cftype *cft)
594 {
595 return notify_on_release(css->cgroup);
596 }
597
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)598 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
599 struct cftype *cft, u64 val)
600 {
601 if (val)
602 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
603 else
604 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
605 return 0;
606 }
607
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)608 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
609 struct cftype *cft)
610 {
611 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
612 }
613
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)614 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
615 struct cftype *cft, u64 val)
616 {
617 if (val)
618 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
619 else
620 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
621 return 0;
622 }
623
624 /* cgroup core interface files for the legacy hierarchies */
625 struct cftype cgroup1_base_files[] = {
626 {
627 .name = "cgroup.procs",
628 .seq_start = cgroup_pidlist_start,
629 .seq_next = cgroup_pidlist_next,
630 .seq_stop = cgroup_pidlist_stop,
631 .seq_show = cgroup_pidlist_show,
632 .private = CGROUP_FILE_PROCS,
633 .write = cgroup1_procs_write,
634 },
635 {
636 .name = "cgroup.clone_children",
637 .read_u64 = cgroup_clone_children_read,
638 .write_u64 = cgroup_clone_children_write,
639 },
640 {
641 .name = "cgroup.sane_behavior",
642 .flags = CFTYPE_ONLY_ON_ROOT,
643 .seq_show = cgroup_sane_behavior_show,
644 },
645 {
646 .name = "tasks",
647 .seq_start = cgroup_pidlist_start,
648 .seq_next = cgroup_pidlist_next,
649 .seq_stop = cgroup_pidlist_stop,
650 .seq_show = cgroup_pidlist_show,
651 .private = CGROUP_FILE_TASKS,
652 .write = cgroup1_tasks_write,
653 },
654 {
655 .name = "notify_on_release",
656 .read_u64 = cgroup_read_notify_on_release,
657 .write_u64 = cgroup_write_notify_on_release,
658 },
659 {
660 .name = "release_agent",
661 .flags = CFTYPE_ONLY_ON_ROOT,
662 .seq_show = cgroup_release_agent_show,
663 .write = cgroup_release_agent_write,
664 .max_write_len = PATH_MAX - 1,
665 },
666 { } /* terminate */
667 };
668
669 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)670 int proc_cgroupstats_show(struct seq_file *m, void *v)
671 {
672 struct cgroup_subsys *ss;
673 int i;
674
675 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
676 /*
677 * Grab the subsystems state racily. No need to add avenue to
678 * cgroup_mutex contention.
679 */
680
681 for_each_subsys(ss, i)
682 seq_printf(m, "%s\t%d\t%d\t%d\n",
683 ss->legacy_name, ss->root->hierarchy_id,
684 atomic_read(&ss->root->nr_cgrps),
685 cgroup_ssid_enabled(i));
686
687 return 0;
688 }
689
690 /**
691 * cgroupstats_build - build and fill cgroupstats
692 * @stats: cgroupstats to fill information into
693 * @dentry: A dentry entry belonging to the cgroup for which stats have
694 * been requested.
695 *
696 * Build and fill cgroupstats so that taskstats can export it to user
697 * space.
698 *
699 * Return: %0 on success or a negative errno code on failure
700 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)701 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
702 {
703 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
704 struct cgroup *cgrp;
705 struct css_task_iter it;
706 struct task_struct *tsk;
707
708 /* it should be kernfs_node belonging to cgroupfs and is a directory */
709 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
710 kernfs_type(kn) != KERNFS_DIR)
711 return -EINVAL;
712
713 /*
714 * We aren't being called from kernfs and there's no guarantee on
715 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
716 * @kn->priv is RCU safe. Let's do the RCU dancing.
717 */
718 rcu_read_lock();
719 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
720 if (!cgrp || !cgroup_tryget(cgrp)) {
721 rcu_read_unlock();
722 return -ENOENT;
723 }
724 rcu_read_unlock();
725
726 css_task_iter_start(&cgrp->self, 0, &it);
727 while ((tsk = css_task_iter_next(&it))) {
728 switch (READ_ONCE(tsk->__state)) {
729 case TASK_RUNNING:
730 stats->nr_running++;
731 break;
732 case TASK_INTERRUPTIBLE:
733 stats->nr_sleeping++;
734 break;
735 case TASK_UNINTERRUPTIBLE:
736 stats->nr_uninterruptible++;
737 break;
738 case TASK_STOPPED:
739 stats->nr_stopped++;
740 break;
741 default:
742 if (tsk->in_iowait)
743 stats->nr_io_wait++;
744 break;
745 }
746 }
747 css_task_iter_end(&it);
748
749 cgroup_put(cgrp);
750 return 0;
751 }
752
cgroup1_check_for_release(struct cgroup * cgrp)753 void cgroup1_check_for_release(struct cgroup *cgrp)
754 {
755 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
756 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
757 schedule_work(&cgrp->release_agent_work);
758 }
759
760 /*
761 * Notify userspace when a cgroup is released, by running the
762 * configured release agent with the name of the cgroup (path
763 * relative to the root of cgroup file system) as the argument.
764 *
765 * Most likely, this user command will try to rmdir this cgroup.
766 *
767 * This races with the possibility that some other task will be
768 * attached to this cgroup before it is removed, or that some other
769 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
770 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
771 * unused, and this cgroup will be reprieved from its death sentence,
772 * to continue to serve a useful existence. Next time it's released,
773 * we will get notified again, if it still has 'notify_on_release' set.
774 *
775 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
776 * means only wait until the task is successfully execve()'d. The
777 * separate release agent task is forked by call_usermodehelper(),
778 * then control in this thread returns here, without waiting for the
779 * release agent task. We don't bother to wait because the caller of
780 * this routine has no use for the exit status of the release agent
781 * task, so no sense holding our caller up for that.
782 */
cgroup1_release_agent(struct work_struct * work)783 void cgroup1_release_agent(struct work_struct *work)
784 {
785 struct cgroup *cgrp =
786 container_of(work, struct cgroup, release_agent_work);
787 char *pathbuf, *agentbuf;
788 char *argv[3], *envp[3];
789 int ret;
790
791 /* snoop agent path and exit early if empty */
792 if (!cgrp->root->release_agent_path[0])
793 return;
794
795 /* prepare argument buffers */
796 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
797 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
798 if (!pathbuf || !agentbuf)
799 goto out_free;
800
801 spin_lock(&release_agent_path_lock);
802 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
803 spin_unlock(&release_agent_path_lock);
804 if (!agentbuf[0])
805 goto out_free;
806
807 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
808 if (ret < 0 || ret >= PATH_MAX)
809 goto out_free;
810
811 argv[0] = agentbuf;
812 argv[1] = pathbuf;
813 argv[2] = NULL;
814
815 /* minimal command environment */
816 envp[0] = "HOME=/";
817 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
818 envp[2] = NULL;
819
820 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
821 out_free:
822 kfree(agentbuf);
823 kfree(pathbuf);
824 }
825
826 /*
827 * cgroup_rename - Only allow simple rename of directories in place.
828 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)829 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
830 const char *new_name_str)
831 {
832 struct cgroup *cgrp = kn->priv;
833 int ret;
834
835 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
836 if (strchr(new_name_str, '\n'))
837 return -EINVAL;
838
839 if (kernfs_type(kn) != KERNFS_DIR)
840 return -ENOTDIR;
841 if (kn->parent != new_parent)
842 return -EIO;
843
844 /*
845 * We're gonna grab cgroup_mutex which nests outside kernfs
846 * active_ref. kernfs_rename() doesn't require active_ref
847 * protection. Break them before grabbing cgroup_mutex.
848 */
849 kernfs_break_active_protection(new_parent);
850 kernfs_break_active_protection(kn);
851
852 cgroup_lock();
853
854 ret = kernfs_rename(kn, new_parent, new_name_str);
855 if (!ret)
856 TRACE_CGROUP_PATH(rename, cgrp);
857
858 cgroup_unlock();
859
860 kernfs_unbreak_active_protection(kn);
861 kernfs_unbreak_active_protection(new_parent);
862 return ret;
863 }
864
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)865 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
866 {
867 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
868 struct cgroup_subsys *ss;
869 int ssid;
870
871 for_each_subsys(ss, ssid)
872 if (root->subsys_mask & (1 << ssid))
873 seq_show_option(seq, ss->legacy_name, NULL);
874 if (root->flags & CGRP_ROOT_NOPREFIX)
875 seq_puts(seq, ",noprefix");
876 if (root->flags & CGRP_ROOT_XATTR)
877 seq_puts(seq, ",xattr");
878 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
879 seq_puts(seq, ",cpuset_v2_mode");
880 if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
881 seq_puts(seq, ",favordynmods");
882
883 spin_lock(&release_agent_path_lock);
884 if (strlen(root->release_agent_path))
885 seq_show_option(seq, "release_agent",
886 root->release_agent_path);
887 spin_unlock(&release_agent_path_lock);
888
889 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
890 seq_puts(seq, ",clone_children");
891 if (strlen(root->name))
892 seq_show_option(seq, "name", root->name);
893 return 0;
894 }
895
896 enum cgroup1_param {
897 Opt_all,
898 Opt_clone_children,
899 Opt_cpuset_v2_mode,
900 Opt_name,
901 Opt_none,
902 Opt_noprefix,
903 Opt_release_agent,
904 Opt_xattr,
905 Opt_favordynmods,
906 Opt_nofavordynmods,
907 };
908
909 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
910 fsparam_flag ("all", Opt_all),
911 fsparam_flag ("clone_children", Opt_clone_children),
912 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
913 fsparam_string("name", Opt_name),
914 fsparam_flag ("none", Opt_none),
915 fsparam_flag ("noprefix", Opt_noprefix),
916 fsparam_string("release_agent", Opt_release_agent),
917 fsparam_flag ("xattr", Opt_xattr),
918 fsparam_flag ("favordynmods", Opt_favordynmods),
919 fsparam_flag ("nofavordynmods", Opt_nofavordynmods),
920 {}
921 };
922
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)923 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
924 {
925 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
926 struct cgroup_subsys *ss;
927 struct fs_parse_result result;
928 int opt, i;
929
930 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
931 if (opt == -ENOPARAM) {
932 int ret;
933
934 ret = vfs_parse_fs_param_source(fc, param);
935 if (ret != -ENOPARAM)
936 return ret;
937 for_each_subsys(ss, i) {
938 if (strcmp(param->key, ss->legacy_name))
939 continue;
940 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
941 return invalfc(fc, "Disabled controller '%s'",
942 param->key);
943 ctx->subsys_mask |= (1 << i);
944 return 0;
945 }
946 return invalfc(fc, "Unknown subsys name '%s'", param->key);
947 }
948 if (opt < 0)
949 return opt;
950
951 switch (opt) {
952 case Opt_none:
953 /* Explicitly have no subsystems */
954 ctx->none = true;
955 break;
956 case Opt_all:
957 ctx->all_ss = true;
958 break;
959 case Opt_noprefix:
960 ctx->flags |= CGRP_ROOT_NOPREFIX;
961 break;
962 case Opt_clone_children:
963 ctx->cpuset_clone_children = true;
964 break;
965 case Opt_cpuset_v2_mode:
966 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
967 break;
968 case Opt_xattr:
969 ctx->flags |= CGRP_ROOT_XATTR;
970 break;
971 case Opt_favordynmods:
972 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
973 break;
974 case Opt_nofavordynmods:
975 ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
976 break;
977 case Opt_release_agent:
978 /* Specifying two release agents is forbidden */
979 if (ctx->release_agent)
980 return invalfc(fc, "release_agent respecified");
981 /*
982 * Release agent gets called with all capabilities,
983 * require capabilities to set release agent.
984 */
985 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
986 return invalfc(fc, "Setting release_agent not allowed");
987 ctx->release_agent = param->string;
988 param->string = NULL;
989 break;
990 case Opt_name:
991 /* blocked by boot param? */
992 if (cgroup_no_v1_named)
993 return -ENOENT;
994 /* Can't specify an empty name */
995 if (!param->size)
996 return invalfc(fc, "Empty name");
997 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
998 return invalfc(fc, "Name too long");
999 /* Must match [\w.-]+ */
1000 for (i = 0; i < param->size; i++) {
1001 char c = param->string[i];
1002 if (isalnum(c))
1003 continue;
1004 if ((c == '.') || (c == '-') || (c == '_'))
1005 continue;
1006 return invalfc(fc, "Invalid name");
1007 }
1008 /* Specifying two names is forbidden */
1009 if (ctx->name)
1010 return invalfc(fc, "name respecified");
1011 ctx->name = param->string;
1012 param->string = NULL;
1013 break;
1014 }
1015 return 0;
1016 }
1017
check_cgroupfs_options(struct fs_context * fc)1018 static int check_cgroupfs_options(struct fs_context *fc)
1019 {
1020 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1021 u16 mask = U16_MAX;
1022 u16 enabled = 0;
1023 struct cgroup_subsys *ss;
1024 int i;
1025
1026 #ifdef CONFIG_CPUSETS
1027 mask = ~((u16)1 << cpuset_cgrp_id);
1028 #endif
1029 for_each_subsys(ss, i)
1030 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1031 enabled |= 1 << i;
1032
1033 ctx->subsys_mask &= enabled;
1034
1035 /*
1036 * In absence of 'none', 'name=' and subsystem name options,
1037 * let's default to 'all'.
1038 */
1039 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1040 ctx->all_ss = true;
1041
1042 if (ctx->all_ss) {
1043 /* Mutually exclusive option 'all' + subsystem name */
1044 if (ctx->subsys_mask)
1045 return invalfc(fc, "subsys name conflicts with all");
1046 /* 'all' => select all the subsystems */
1047 ctx->subsys_mask = enabled;
1048 }
1049
1050 /*
1051 * We either have to specify by name or by subsystems. (So all
1052 * empty hierarchies must have a name).
1053 */
1054 if (!ctx->subsys_mask && !ctx->name)
1055 return invalfc(fc, "Need name or subsystem set");
1056
1057 /*
1058 * Option noprefix was introduced just for backward compatibility
1059 * with the old cpuset, so we allow noprefix only if mounting just
1060 * the cpuset subsystem.
1061 */
1062 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1063 return invalfc(fc, "noprefix used incorrectly");
1064
1065 /* Can't specify "none" and some subsystems */
1066 if (ctx->subsys_mask && ctx->none)
1067 return invalfc(fc, "none used incorrectly");
1068
1069 return 0;
1070 }
1071
cgroup1_reconfigure(struct fs_context * fc)1072 int cgroup1_reconfigure(struct fs_context *fc)
1073 {
1074 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1075 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1076 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1077 int ret = 0;
1078 u16 added_mask, removed_mask;
1079
1080 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1081
1082 /* See what subsystems are wanted */
1083 ret = check_cgroupfs_options(fc);
1084 if (ret)
1085 goto out_unlock;
1086
1087 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1088 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1089 task_tgid_nr(current), current->comm);
1090
1091 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1092 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1093
1094 /* Don't allow flags or name to change at remount */
1095 if ((ctx->flags ^ root->flags) ||
1096 (ctx->name && strcmp(ctx->name, root->name))) {
1097 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1098 ctx->flags, ctx->name ?: "", root->flags, root->name);
1099 ret = -EINVAL;
1100 goto out_unlock;
1101 }
1102
1103 /* remounting is not allowed for populated hierarchies */
1104 if (!list_empty(&root->cgrp.self.children)) {
1105 ret = -EBUSY;
1106 goto out_unlock;
1107 }
1108
1109 ret = rebind_subsystems(root, added_mask);
1110 if (ret)
1111 goto out_unlock;
1112
1113 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1114
1115 if (ctx->release_agent) {
1116 spin_lock(&release_agent_path_lock);
1117 strcpy(root->release_agent_path, ctx->release_agent);
1118 spin_unlock(&release_agent_path_lock);
1119 }
1120
1121 trace_cgroup_remount(root);
1122
1123 out_unlock:
1124 cgroup_unlock();
1125 return ret;
1126 }
1127
1128 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1129 .rename = cgroup1_rename,
1130 .show_options = cgroup1_show_options,
1131 .mkdir = cgroup_mkdir,
1132 .rmdir = cgroup_rmdir,
1133 .show_path = cgroup_show_path,
1134 };
1135
1136 /*
1137 * The guts of cgroup1 mount - find or create cgroup_root to use.
1138 * Called with cgroup_mutex held; returns 0 on success, -E... on
1139 * error and positive - in case when the candidate is busy dying.
1140 * On success it stashes a reference to cgroup_root into given
1141 * cgroup_fs_context; that reference is *NOT* counting towards the
1142 * cgroup_root refcount.
1143 */
cgroup1_root_to_use(struct fs_context * fc)1144 static int cgroup1_root_to_use(struct fs_context *fc)
1145 {
1146 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1147 struct cgroup_root *root;
1148 struct cgroup_subsys *ss;
1149 int i, ret;
1150
1151 /* First find the desired set of subsystems */
1152 ret = check_cgroupfs_options(fc);
1153 if (ret)
1154 return ret;
1155
1156 /*
1157 * Destruction of cgroup root is asynchronous, so subsystems may
1158 * still be dying after the previous unmount. Let's drain the
1159 * dying subsystems. We just need to ensure that the ones
1160 * unmounted previously finish dying and don't care about new ones
1161 * starting. Testing ref liveliness is good enough.
1162 */
1163 for_each_subsys(ss, i) {
1164 if (!(ctx->subsys_mask & (1 << i)) ||
1165 ss->root == &cgrp_dfl_root)
1166 continue;
1167
1168 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1169 return 1; /* restart */
1170 cgroup_put(&ss->root->cgrp);
1171 }
1172
1173 for_each_root(root) {
1174 bool name_match = false;
1175
1176 if (root == &cgrp_dfl_root)
1177 continue;
1178
1179 /*
1180 * If we asked for a name then it must match. Also, if
1181 * name matches but sybsys_mask doesn't, we should fail.
1182 * Remember whether name matched.
1183 */
1184 if (ctx->name) {
1185 if (strcmp(ctx->name, root->name))
1186 continue;
1187 name_match = true;
1188 }
1189
1190 /*
1191 * If we asked for subsystems (or explicitly for no
1192 * subsystems) then they must match.
1193 */
1194 if ((ctx->subsys_mask || ctx->none) &&
1195 (ctx->subsys_mask != root->subsys_mask)) {
1196 if (!name_match)
1197 continue;
1198 return -EBUSY;
1199 }
1200
1201 if (root->flags ^ ctx->flags)
1202 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1203
1204 ctx->root = root;
1205 return 0;
1206 }
1207
1208 /*
1209 * No such thing, create a new one. name= matching without subsys
1210 * specification is allowed for already existing hierarchies but we
1211 * can't create new one without subsys specification.
1212 */
1213 if (!ctx->subsys_mask && !ctx->none)
1214 return invalfc(fc, "No subsys list or none specified");
1215
1216 /* Hierarchies may only be created in the initial cgroup namespace. */
1217 if (ctx->ns != &init_cgroup_ns)
1218 return -EPERM;
1219
1220 root = kzalloc(sizeof(*root), GFP_KERNEL);
1221 if (!root)
1222 return -ENOMEM;
1223
1224 ctx->root = root;
1225 init_cgroup_root(ctx);
1226
1227 ret = cgroup_setup_root(root, ctx->subsys_mask);
1228 if (!ret)
1229 cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1230 else
1231 cgroup_free_root(root);
1232
1233 return ret;
1234 }
1235
cgroup1_get_tree(struct fs_context * fc)1236 int cgroup1_get_tree(struct fs_context *fc)
1237 {
1238 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1239 int ret;
1240
1241 /* Check if the caller has permission to mount. */
1242 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1243 return -EPERM;
1244
1245 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1246
1247 ret = cgroup1_root_to_use(fc);
1248 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1249 ret = 1; /* restart */
1250
1251 cgroup_unlock();
1252
1253 if (!ret)
1254 ret = cgroup_do_get_tree(fc);
1255
1256 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1257 fc_drop_locked(fc);
1258 ret = 1;
1259 }
1260
1261 if (unlikely(ret > 0)) {
1262 msleep(10);
1263 return restart_syscall();
1264 }
1265 return ret;
1266 }
1267
cgroup1_wq_init(void)1268 static int __init cgroup1_wq_init(void)
1269 {
1270 /*
1271 * Used to destroy pidlists and separate to serve as flush domain.
1272 * Cap @max_active to 1 too.
1273 */
1274 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1275 0, 1);
1276 BUG_ON(!cgroup_pidlist_destroy_wq);
1277 return 0;
1278 }
1279 core_initcall(cgroup1_wq_init);
1280
cgroup_no_v1(char * str)1281 static int __init cgroup_no_v1(char *str)
1282 {
1283 struct cgroup_subsys *ss;
1284 char *token;
1285 int i;
1286
1287 while ((token = strsep(&str, ",")) != NULL) {
1288 if (!*token)
1289 continue;
1290
1291 if (!strcmp(token, "all")) {
1292 cgroup_no_v1_mask = U16_MAX;
1293 continue;
1294 }
1295
1296 if (!strcmp(token, "named")) {
1297 cgroup_no_v1_named = true;
1298 continue;
1299 }
1300
1301 for_each_subsys(ss, i) {
1302 if (strcmp(token, ss->name) &&
1303 strcmp(token, ss->legacy_name))
1304 continue;
1305
1306 cgroup_no_v1_mask |= 1 << i;
1307 }
1308 }
1309 return 1;
1310 }
1311 __setup("cgroup_no_v1=", cgroup_no_v1);
1312