1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
22 */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27 {
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31 }
32
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35 {
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 EXPORT_SYMBOL_GPL(dma_direct_get_required_mask);
47
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49 u64 *phys_limit)
50 {
51 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52
53 /*
54 * Optimistically try the zone that the physical address mask falls
55 * into first. If that returns memory that isn't actually addressable
56 * we will fallback to the next lower zone and try again.
57 *
58 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 * zones.
60 */
61 *phys_limit = dma_to_phys(dev, dma_limit);
62 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 return GFP_DMA;
64 if (*phys_limit <= DMA_BIT_MASK(32) &&
65 !zone_dma32_are_empty())
66 return GFP_DMA32;
67 return 0;
68 }
69
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)70 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71 {
72 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73
74 if (dma_addr == DMA_MAPPING_ERROR)
75 return false;
76 return dma_addr + size - 1 <=
77 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78 }
79
dma_set_decrypted(struct device * dev,void * vaddr,size_t size)80 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
81 {
82 if (!force_dma_unencrypted(dev))
83 return 0;
84 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
85 }
86
dma_set_encrypted(struct device * dev,void * vaddr,size_t size)87 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
88 {
89 int ret;
90
91 if (!force_dma_unencrypted(dev))
92 return 0;
93 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
94 if (ret)
95 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
96 return ret;
97 }
98
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)99 static void __dma_direct_free_pages(struct device *dev, struct page *page,
100 size_t size)
101 {
102 if (swiotlb_free(dev, page, size))
103 return;
104 dma_free_contiguous(dev, page, size);
105 }
106
dma_direct_alloc_swiotlb(struct device * dev,size_t size)107 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
108 {
109 struct page *page = swiotlb_alloc(dev, size);
110
111 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 swiotlb_free(dev, page, size);
113 return NULL;
114 }
115
116 return page;
117 }
118
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp,bool allow_highmem)119 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
120 gfp_t gfp, bool allow_highmem)
121 {
122 int node = dev_to_node(dev);
123 struct page *page = NULL;
124 u64 phys_limit;
125
126 WARN_ON_ONCE(!PAGE_ALIGNED(size));
127
128 if (is_swiotlb_for_alloc(dev))
129 return dma_direct_alloc_swiotlb(dev, size);
130
131 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
132 &phys_limit);
133 page = dma_alloc_contiguous(dev, size, gfp);
134 if (page) {
135 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
136 (!allow_highmem && PageHighMem(page))) {
137 dma_free_contiguous(dev, page, size);
138 page = NULL;
139 }
140 }
141 again:
142 if (!page)
143 page = alloc_pages_node(node, gfp, get_order(size));
144 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
145 dma_free_contiguous(dev, page, size);
146 page = NULL;
147
148 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
149 phys_limit < DMA_BIT_MASK(64) &&
150 !(gfp & (GFP_DMA32 | GFP_DMA)) &&
151 !zone_dma32_are_empty()) {
152 gfp |= GFP_DMA32;
153 goto again;
154 }
155
156 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
157 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
158 goto again;
159 }
160 }
161
162 return page;
163 }
164
165 /*
166 * Check if a potentially blocking operations needs to dip into the atomic
167 * pools for the given device/gfp.
168 */
dma_direct_use_pool(struct device * dev,gfp_t gfp)169 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
170 {
171 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
172 }
173
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)174 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
175 dma_addr_t *dma_handle, gfp_t gfp)
176 {
177 struct page *page;
178 u64 phys_mask;
179 void *ret;
180
181 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
182 return NULL;
183
184 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
185 &phys_mask);
186 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
187 if (!page)
188 return NULL;
189 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
190 return ret;
191 }
192
dma_direct_alloc_no_mapping(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)193 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
194 dma_addr_t *dma_handle, gfp_t gfp)
195 {
196 struct page *page;
197
198 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
199 if (!page)
200 return NULL;
201
202 /* remove any dirty cache lines on the kernel alias */
203 if (!PageHighMem(page))
204 arch_dma_prep_coherent(page, size);
205
206 /* return the page pointer as the opaque cookie */
207 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
208 return page;
209 }
210
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)211 void *dma_direct_alloc(struct device *dev, size_t size,
212 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
213 {
214 bool remap = false, set_uncached = false;
215 struct page *page;
216 void *ret;
217
218 size = PAGE_ALIGN(size);
219 if (attrs & DMA_ATTR_NO_WARN)
220 gfp |= __GFP_NOWARN;
221
222 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
223 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
224 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
225
226 if (!dev_is_dma_coherent(dev)) {
227 /*
228 * Fallback to the arch handler if it exists. This should
229 * eventually go away.
230 */
231 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
232 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
233 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
234 !is_swiotlb_for_alloc(dev))
235 return arch_dma_alloc(dev, size, dma_handle, gfp,
236 attrs);
237
238 /*
239 * If there is a global pool, always allocate from it for
240 * non-coherent devices.
241 */
242 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
243 return dma_alloc_from_global_coherent(dev, size,
244 dma_handle);
245
246 /*
247 * Otherwise remap if the architecture is asking for it. But
248 * given that remapping memory is a blocking operation we'll
249 * instead have to dip into the atomic pools.
250 */
251 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
252 if (remap) {
253 if (dma_direct_use_pool(dev, gfp))
254 return dma_direct_alloc_from_pool(dev, size,
255 dma_handle, gfp);
256 } else {
257 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
258 return NULL;
259 set_uncached = true;
260 }
261 }
262
263 /*
264 * Decrypting memory may block, so allocate the memory from the atomic
265 * pools if we can't block.
266 */
267 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
268 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
269
270 /* we always manually zero the memory once we are done */
271 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
272 if (!page)
273 return NULL;
274
275 /*
276 * dma_alloc_contiguous can return highmem pages depending on a
277 * combination the cma= arguments and per-arch setup. These need to be
278 * remapped to return a kernel virtual address.
279 */
280 if (PageHighMem(page)) {
281 remap = true;
282 set_uncached = false;
283 }
284
285 if (remap) {
286 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
287
288 if (force_dma_unencrypted(dev))
289 prot = pgprot_decrypted(prot);
290
291 /* remove any dirty cache lines on the kernel alias */
292 arch_dma_prep_coherent(page, size);
293
294 /* create a coherent mapping */
295 ret = dma_common_contiguous_remap(page, size, prot,
296 __builtin_return_address(0));
297 if (!ret)
298 goto out_free_pages;
299 } else {
300 ret = page_address(page);
301 if (dma_set_decrypted(dev, ret, size))
302 goto out_free_pages;
303 }
304
305 memset(ret, 0, size);
306
307 if (set_uncached) {
308 arch_dma_prep_coherent(page, size);
309 ret = arch_dma_set_uncached(ret, size);
310 if (IS_ERR(ret))
311 goto out_encrypt_pages;
312 }
313
314 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
315 return ret;
316
317 out_encrypt_pages:
318 if (dma_set_encrypted(dev, page_address(page), size))
319 return NULL;
320 out_free_pages:
321 __dma_direct_free_pages(dev, page, size);
322 return NULL;
323 }
324 EXPORT_SYMBOL_GPL(dma_direct_alloc);
325
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)326 void dma_direct_free(struct device *dev, size_t size,
327 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
328 {
329 unsigned int page_order = get_order(size);
330
331 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
332 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
333 /* cpu_addr is a struct page cookie, not a kernel address */
334 dma_free_contiguous(dev, cpu_addr, size);
335 return;
336 }
337
338 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
339 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
340 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
341 !dev_is_dma_coherent(dev) &&
342 !is_swiotlb_for_alloc(dev)) {
343 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
344 return;
345 }
346
347 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
348 !dev_is_dma_coherent(dev)) {
349 if (!dma_release_from_global_coherent(page_order, cpu_addr))
350 WARN_ON_ONCE(1);
351 return;
352 }
353
354 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
355 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
356 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
357 return;
358
359 if (is_vmalloc_addr(cpu_addr)) {
360 vunmap(cpu_addr);
361 } else {
362 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
363 arch_dma_clear_uncached(cpu_addr, size);
364 if (dma_set_encrypted(dev, cpu_addr, size))
365 return;
366 }
367
368 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
369 }
370 EXPORT_SYMBOL_GPL(dma_direct_free);
371
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)372 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
373 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
374 {
375 struct page *page;
376 void *ret;
377
378 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
379 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
380
381 page = __dma_direct_alloc_pages(dev, size, gfp, false);
382 if (!page)
383 return NULL;
384
385 ret = page_address(page);
386 if (dma_set_decrypted(dev, ret, size))
387 goto out_free_pages;
388 memset(ret, 0, size);
389 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
390 return page;
391 out_free_pages:
392 __dma_direct_free_pages(dev, page, size);
393 return NULL;
394 }
395
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)396 void dma_direct_free_pages(struct device *dev, size_t size,
397 struct page *page, dma_addr_t dma_addr,
398 enum dma_data_direction dir)
399 {
400 void *vaddr = page_address(page);
401
402 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
403 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
404 dma_free_from_pool(dev, vaddr, size))
405 return;
406
407 if (dma_set_encrypted(dev, vaddr, size))
408 return;
409 __dma_direct_free_pages(dev, page, size);
410 }
411
412 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
413 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)414 void dma_direct_sync_sg_for_device(struct device *dev,
415 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
416 {
417 struct scatterlist *sg;
418 int i;
419
420 for_each_sg(sgl, sg, nents, i) {
421 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
422
423 if (unlikely(is_swiotlb_buffer(dev, paddr)))
424 swiotlb_sync_single_for_device(dev, paddr, sg->length,
425 dir);
426
427 if (!dev_is_dma_coherent(dev))
428 arch_sync_dma_for_device(paddr, sg->length,
429 dir);
430 }
431 }
432 #endif
433
434 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
435 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
436 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)437 void dma_direct_sync_sg_for_cpu(struct device *dev,
438 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
439 {
440 struct scatterlist *sg;
441 int i;
442
443 for_each_sg(sgl, sg, nents, i) {
444 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
445
446 if (!dev_is_dma_coherent(dev))
447 arch_sync_dma_for_cpu(paddr, sg->length, dir);
448
449 if (unlikely(is_swiotlb_buffer(dev, paddr)))
450 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
451 dir);
452
453 if (dir == DMA_FROM_DEVICE)
454 arch_dma_mark_clean(paddr, sg->length);
455 }
456
457 if (!dev_is_dma_coherent(dev))
458 arch_sync_dma_for_cpu_all();
459 }
460
461 /*
462 * Unmaps segments, except for ones marked as pci_p2pdma which do not
463 * require any further action as they contain a bus address.
464 */
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)465 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
466 int nents, enum dma_data_direction dir, unsigned long attrs)
467 {
468 struct scatterlist *sg;
469 int i;
470
471 for_each_sg(sgl, sg, nents, i) {
472 if (sg_is_dma_bus_address(sg))
473 sg_dma_unmark_bus_address(sg);
474 else
475 dma_direct_unmap_page(dev, sg->dma_address,
476 sg_dma_len(sg), dir, attrs);
477 }
478 }
479 #endif
480
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)481 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
482 enum dma_data_direction dir, unsigned long attrs)
483 {
484 struct pci_p2pdma_map_state p2pdma_state = {};
485 enum pci_p2pdma_map_type map;
486 struct scatterlist *sg;
487 int i, ret;
488
489 for_each_sg(sgl, sg, nents, i) {
490 if (is_pci_p2pdma_page(sg_page(sg))) {
491 map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
492 switch (map) {
493 case PCI_P2PDMA_MAP_BUS_ADDR:
494 continue;
495 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
496 /*
497 * Any P2P mapping that traverses the PCI
498 * host bridge must be mapped with CPU physical
499 * address and not PCI bus addresses. This is
500 * done with dma_direct_map_page() below.
501 */
502 break;
503 default:
504 ret = -EREMOTEIO;
505 goto out_unmap;
506 }
507 }
508
509 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
510 sg->offset, sg->length, dir, attrs);
511 if (sg->dma_address == DMA_MAPPING_ERROR) {
512 ret = -EIO;
513 goto out_unmap;
514 }
515 sg_dma_len(sg) = sg->length;
516 }
517
518 return nents;
519
520 out_unmap:
521 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
522 return ret;
523 }
524
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)525 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
526 size_t size, enum dma_data_direction dir, unsigned long attrs)
527 {
528 dma_addr_t dma_addr = paddr;
529
530 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
531 dev_err_once(dev,
532 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
533 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
534 WARN_ON_ONCE(1);
535 return DMA_MAPPING_ERROR;
536 }
537
538 return dma_addr;
539 }
540
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)541 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
542 void *cpu_addr, dma_addr_t dma_addr, size_t size,
543 unsigned long attrs)
544 {
545 struct page *page = dma_direct_to_page(dev, dma_addr);
546 int ret;
547
548 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
549 if (!ret)
550 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
551 return ret;
552 }
553
dma_direct_can_mmap(struct device * dev)554 bool dma_direct_can_mmap(struct device *dev)
555 {
556 return dev_is_dma_coherent(dev) ||
557 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
558 }
559
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)560 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
561 void *cpu_addr, dma_addr_t dma_addr, size_t size,
562 unsigned long attrs)
563 {
564 unsigned long user_count = vma_pages(vma);
565 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
566 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
567 int ret = -ENXIO;
568
569 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
570 if (force_dma_unencrypted(dev))
571 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
572
573 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
574 return ret;
575 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
576 return ret;
577
578 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
579 return -ENXIO;
580 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
581 user_count << PAGE_SHIFT, vma->vm_page_prot);
582 }
583
dma_direct_supported(struct device * dev,u64 mask)584 int dma_direct_supported(struct device *dev, u64 mask)
585 {
586 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
587
588 /*
589 * Because 32-bit DMA masks are so common we expect every architecture
590 * to be able to satisfy them - either by not supporting more physical
591 * memory, or by providing a ZONE_DMA32. If neither is the case, the
592 * architecture needs to use an IOMMU instead of the direct mapping.
593 */
594 if (mask >= DMA_BIT_MASK(32))
595 return 1;
596
597 /*
598 * This check needs to be against the actual bit mask value, so use
599 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
600 * part of the check.
601 */
602 if (IS_ENABLED(CONFIG_ZONE_DMA))
603 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
604 return mask >= phys_to_dma_unencrypted(dev, min_mask);
605 }
606
dma_direct_max_mapping_size(struct device * dev)607 size_t dma_direct_max_mapping_size(struct device *dev)
608 {
609 /* If SWIOTLB is active, use its maximum mapping size */
610 if (is_swiotlb_active(dev) &&
611 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
612 return swiotlb_max_mapping_size(dev);
613 return SIZE_MAX;
614 }
615
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)616 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
617 {
618 return !dev_is_dma_coherent(dev) ||
619 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
620 }
621
622 /**
623 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
624 * @dev: device pointer; needed to "own" the alloced memory.
625 * @cpu_start: beginning of memory region covered by this offset.
626 * @dma_start: beginning of DMA/PCI region covered by this offset.
627 * @size: size of the region.
628 *
629 * This is for the simple case of a uniform offset which cannot
630 * be discovered by "dma-ranges".
631 *
632 * It returns -ENOMEM if out of memory, -EINVAL if a map
633 * already exists, 0 otherwise.
634 *
635 * Note: any call to this from a driver is a bug. The mapping needs
636 * to be described by the device tree or other firmware interfaces.
637 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)638 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
639 dma_addr_t dma_start, u64 size)
640 {
641 struct bus_dma_region *map;
642 u64 offset = (u64)cpu_start - (u64)dma_start;
643
644 if (dev->dma_range_map) {
645 dev_err(dev, "attempt to add DMA range to existing map\n");
646 return -EINVAL;
647 }
648
649 if (!offset)
650 return 0;
651
652 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
653 if (!map)
654 return -ENOMEM;
655 map[0].cpu_start = cpu_start;
656 map[0].dma_start = dma_start;
657 map[0].offset = offset;
658 map[0].size = size;
659 dev->dma_range_map = map;
660 return 0;
661 }
662