• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 
72 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
74 #include <asm/mmu_context.h>
75 #include <trace/hooks/mm.h>
76 #include <trace/hooks/dtask.h>
77 
78 /*
79  * The default value should be high enough to not crash a system that randomly
80  * crashes its kernel from time to time, but low enough to at least not permit
81  * overflowing 32-bit refcounts or the ldsem writer count.
82  */
83 static unsigned int oops_limit = 10000;
84 
85 #ifdef CONFIG_SYSCTL
86 static struct ctl_table kern_exit_table[] = {
87 	{
88 		.procname       = "oops_limit",
89 		.data           = &oops_limit,
90 		.maxlen         = sizeof(oops_limit),
91 		.mode           = 0644,
92 		.proc_handler   = proc_douintvec,
93 	},
94 	{ }
95 };
96 
kernel_exit_sysctls_init(void)97 static __init int kernel_exit_sysctls_init(void)
98 {
99 	register_sysctl_init("kernel", kern_exit_table);
100 	return 0;
101 }
102 late_initcall(kernel_exit_sysctls_init);
103 #endif
104 
105 static atomic_t oops_count = ATOMIC_INIT(0);
106 
107 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)108 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
109 			       char *page)
110 {
111 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
112 }
113 
114 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
115 
kernel_exit_sysfs_init(void)116 static __init int kernel_exit_sysfs_init(void)
117 {
118 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
119 	return 0;
120 }
121 late_initcall(kernel_exit_sysfs_init);
122 #endif
123 
__unhash_process(struct task_struct * p,bool group_dead)124 static void __unhash_process(struct task_struct *p, bool group_dead)
125 {
126 	nr_threads--;
127 	detach_pid(p, PIDTYPE_PID);
128 	if (group_dead) {
129 		detach_pid(p, PIDTYPE_TGID);
130 		detach_pid(p, PIDTYPE_PGID);
131 		detach_pid(p, PIDTYPE_SID);
132 
133 		list_del_rcu(&p->tasks);
134 		list_del_init(&p->sibling);
135 		__this_cpu_dec(process_counts);
136 	}
137 	list_del_rcu(&p->thread_group);
138 	list_del_rcu(&p->thread_node);
139 }
140 
141 /*
142  * This function expects the tasklist_lock write-locked.
143  */
__exit_signal(struct task_struct * tsk)144 static void __exit_signal(struct task_struct *tsk)
145 {
146 	struct signal_struct *sig = tsk->signal;
147 	bool group_dead = thread_group_leader(tsk);
148 	struct sighand_struct *sighand;
149 	struct tty_struct *tty;
150 	u64 utime, stime;
151 
152 	sighand = rcu_dereference_check(tsk->sighand,
153 					lockdep_tasklist_lock_is_held());
154 	spin_lock(&sighand->siglock);
155 
156 #ifdef CONFIG_POSIX_TIMERS
157 	posix_cpu_timers_exit(tsk);
158 	if (group_dead)
159 		posix_cpu_timers_exit_group(tsk);
160 #endif
161 
162 	if (group_dead) {
163 		tty = sig->tty;
164 		sig->tty = NULL;
165 	} else {
166 		/*
167 		 * If there is any task waiting for the group exit
168 		 * then notify it:
169 		 */
170 		if (sig->notify_count > 0 && !--sig->notify_count)
171 			wake_up_process(sig->group_exec_task);
172 
173 		if (tsk == sig->curr_target)
174 			sig->curr_target = next_thread(tsk);
175 	}
176 
177 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
178 			      sizeof(unsigned long long));
179 
180 	/*
181 	 * Accumulate here the counters for all threads as they die. We could
182 	 * skip the group leader because it is the last user of signal_struct,
183 	 * but we want to avoid the race with thread_group_cputime() which can
184 	 * see the empty ->thread_head list.
185 	 */
186 	task_cputime(tsk, &utime, &stime);
187 	write_seqlock(&sig->stats_lock);
188 	sig->utime += utime;
189 	sig->stime += stime;
190 	sig->gtime += task_gtime(tsk);
191 	sig->min_flt += tsk->min_flt;
192 	sig->maj_flt += tsk->maj_flt;
193 	sig->nvcsw += tsk->nvcsw;
194 	sig->nivcsw += tsk->nivcsw;
195 	sig->inblock += task_io_get_inblock(tsk);
196 	sig->oublock += task_io_get_oublock(tsk);
197 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
198 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
199 	sig->nr_threads--;
200 	__unhash_process(tsk, group_dead);
201 	write_sequnlock(&sig->stats_lock);
202 
203 	/*
204 	 * Do this under ->siglock, we can race with another thread
205 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
206 	 */
207 	flush_sigqueue(&tsk->pending);
208 	tsk->sighand = NULL;
209 	spin_unlock(&sighand->siglock);
210 
211 	__cleanup_sighand(sighand);
212 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
213 	if (group_dead) {
214 		flush_sigqueue(&sig->shared_pending);
215 		tty_kref_put(tty);
216 	}
217 }
218 
delayed_put_task_struct(struct rcu_head * rhp)219 static void delayed_put_task_struct(struct rcu_head *rhp)
220 {
221 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
222 
223 	kprobe_flush_task(tsk);
224 	rethook_flush_task(tsk);
225 	perf_event_delayed_put(tsk);
226 	trace_sched_process_free(tsk);
227 	put_task_struct(tsk);
228 }
229 
put_task_struct_rcu_user(struct task_struct * task)230 void put_task_struct_rcu_user(struct task_struct *task)
231 {
232 	if (refcount_dec_and_test(&task->rcu_users))
233 		call_rcu(&task->rcu, delayed_put_task_struct);
234 }
235 
release_thread(struct task_struct * dead_task)236 void __weak release_thread(struct task_struct *dead_task)
237 {
238 }
239 
release_task(struct task_struct * p)240 void release_task(struct task_struct *p)
241 {
242 	struct task_struct *leader;
243 	struct pid *thread_pid;
244 	int zap_leader;
245 repeat:
246 	/* don't need to get the RCU readlock here - the process is dead and
247 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
248 	rcu_read_lock();
249 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
250 	rcu_read_unlock();
251 
252 	cgroup_release(p);
253 
254 	write_lock_irq(&tasklist_lock);
255 	ptrace_release_task(p);
256 	thread_pid = get_pid(p->thread_pid);
257 	__exit_signal(p);
258 
259 	/*
260 	 * If we are the last non-leader member of the thread
261 	 * group, and the leader is zombie, then notify the
262 	 * group leader's parent process. (if it wants notification.)
263 	 */
264 	zap_leader = 0;
265 	leader = p->group_leader;
266 	if (leader != p && thread_group_empty(leader)
267 			&& leader->exit_state == EXIT_ZOMBIE) {
268 		/*
269 		 * If we were the last child thread and the leader has
270 		 * exited already, and the leader's parent ignores SIGCHLD,
271 		 * then we are the one who should release the leader.
272 		 */
273 		zap_leader = do_notify_parent(leader, leader->exit_signal);
274 		if (zap_leader)
275 			leader->exit_state = EXIT_DEAD;
276 	}
277 
278 	write_unlock_irq(&tasklist_lock);
279 	seccomp_filter_release(p);
280 	proc_flush_pid(thread_pid);
281 	put_pid(thread_pid);
282 	release_thread(p);
283 	put_task_struct_rcu_user(p);
284 
285 	p = leader;
286 	if (unlikely(zap_leader))
287 		goto repeat;
288 }
289 
rcuwait_wake_up(struct rcuwait * w)290 int rcuwait_wake_up(struct rcuwait *w)
291 {
292 	int ret = 0;
293 	struct task_struct *task;
294 
295 	rcu_read_lock();
296 
297 	/*
298 	 * Order condition vs @task, such that everything prior to the load
299 	 * of @task is visible. This is the condition as to why the user called
300 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
301 	 * barrier (A) in rcuwait_wait_event().
302 	 *
303 	 *    WAIT                WAKE
304 	 *    [S] tsk = current	  [S] cond = true
305 	 *        MB (A)	      MB (B)
306 	 *    [L] cond		  [L] tsk
307 	 */
308 	smp_mb(); /* (B) */
309 
310 	task = rcu_dereference(w->task);
311 	if (task)
312 		ret = wake_up_process(task);
313 	rcu_read_unlock();
314 
315 	return ret;
316 }
317 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
318 
319 /*
320  * Determine if a process group is "orphaned", according to the POSIX
321  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
322  * by terminal-generated stop signals.  Newly orphaned process groups are
323  * to receive a SIGHUP and a SIGCONT.
324  *
325  * "I ask you, have you ever known what it is to be an orphan?"
326  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)327 static int will_become_orphaned_pgrp(struct pid *pgrp,
328 					struct task_struct *ignored_task)
329 {
330 	struct task_struct *p;
331 
332 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
333 		if ((p == ignored_task) ||
334 		    (p->exit_state && thread_group_empty(p)) ||
335 		    is_global_init(p->real_parent))
336 			continue;
337 
338 		if (task_pgrp(p->real_parent) != pgrp &&
339 		    task_session(p->real_parent) == task_session(p))
340 			return 0;
341 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
342 
343 	return 1;
344 }
345 
is_current_pgrp_orphaned(void)346 int is_current_pgrp_orphaned(void)
347 {
348 	int retval;
349 
350 	read_lock(&tasklist_lock);
351 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
352 	read_unlock(&tasklist_lock);
353 
354 	return retval;
355 }
356 
has_stopped_jobs(struct pid * pgrp)357 static bool has_stopped_jobs(struct pid *pgrp)
358 {
359 	struct task_struct *p;
360 
361 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
362 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
363 			return true;
364 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
365 
366 	return false;
367 }
368 
369 /*
370  * Check to see if any process groups have become orphaned as
371  * a result of our exiting, and if they have any stopped jobs,
372  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
373  */
374 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
376 {
377 	struct pid *pgrp = task_pgrp(tsk);
378 	struct task_struct *ignored_task = tsk;
379 
380 	if (!parent)
381 		/* exit: our father is in a different pgrp than
382 		 * we are and we were the only connection outside.
383 		 */
384 		parent = tsk->real_parent;
385 	else
386 		/* reparent: our child is in a different pgrp than
387 		 * we are, and it was the only connection outside.
388 		 */
389 		ignored_task = NULL;
390 
391 	if (task_pgrp(parent) != pgrp &&
392 	    task_session(parent) == task_session(tsk) &&
393 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
394 	    has_stopped_jobs(pgrp)) {
395 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
396 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
397 	}
398 }
399 
coredump_task_exit(struct task_struct * tsk)400 static void coredump_task_exit(struct task_struct *tsk)
401 {
402 	struct core_state *core_state;
403 
404 	/*
405 	 * Serialize with any possible pending coredump.
406 	 * We must hold siglock around checking core_state
407 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
408 	 * will increment ->nr_threads for each thread in the
409 	 * group without PF_POSTCOREDUMP set.
410 	 */
411 	spin_lock_irq(&tsk->sighand->siglock);
412 	tsk->flags |= PF_POSTCOREDUMP;
413 	core_state = tsk->signal->core_state;
414 	spin_unlock_irq(&tsk->sighand->siglock);
415 	if (core_state) {
416 		struct core_thread self;
417 
418 		self.task = current;
419 		if (self.task->flags & PF_SIGNALED)
420 			self.next = xchg(&core_state->dumper.next, &self);
421 		else
422 			self.task = NULL;
423 		/*
424 		 * Implies mb(), the result of xchg() must be visible
425 		 * to core_state->dumper.
426 		 */
427 		if (atomic_dec_and_test(&core_state->nr_threads))
428 			complete(&core_state->startup);
429 
430 		for (;;) {
431 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
432 			if (!self.task) /* see coredump_finish() */
433 				break;
434 			schedule();
435 		}
436 		__set_current_state(TASK_RUNNING);
437 	}
438 }
439 
440 #ifdef CONFIG_MEMCG
441 /*
442  * A task is exiting.   If it owned this mm, find a new owner for the mm.
443  */
mm_update_next_owner(struct mm_struct * mm)444 void mm_update_next_owner(struct mm_struct *mm)
445 {
446 	struct task_struct *c, *g, *p = current;
447 
448 retry:
449 	/*
450 	 * If the exiting or execing task is not the owner, it's
451 	 * someone else's problem.
452 	 */
453 	if (mm->owner != p)
454 		return;
455 	/*
456 	 * The current owner is exiting/execing and there are no other
457 	 * candidates.  Do not leave the mm pointing to a possibly
458 	 * freed task structure.
459 	 */
460 	if (atomic_read(&mm->mm_users) <= 1) {
461 		WRITE_ONCE(mm->owner, NULL);
462 		return;
463 	}
464 
465 	read_lock(&tasklist_lock);
466 	/*
467 	 * Search in the children
468 	 */
469 	list_for_each_entry(c, &p->children, sibling) {
470 		if (c->mm == mm)
471 			goto assign_new_owner;
472 	}
473 
474 	/*
475 	 * Search in the siblings
476 	 */
477 	list_for_each_entry(c, &p->real_parent->children, sibling) {
478 		if (c->mm == mm)
479 			goto assign_new_owner;
480 	}
481 
482 	/*
483 	 * Search through everything else, we should not get here often.
484 	 */
485 	for_each_process(g) {
486 		if (g->flags & PF_KTHREAD)
487 			continue;
488 		for_each_thread(g, c) {
489 			if (c->mm == mm)
490 				goto assign_new_owner;
491 			if (c->mm)
492 				break;
493 		}
494 	}
495 	read_unlock(&tasklist_lock);
496 	/*
497 	 * We found no owner yet mm_users > 1: this implies that we are
498 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
499 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
500 	 */
501 	WRITE_ONCE(mm->owner, NULL);
502 	return;
503 
504 assign_new_owner:
505 	BUG_ON(c == p);
506 	get_task_struct(c);
507 	/*
508 	 * The task_lock protects c->mm from changing.
509 	 * We always want mm->owner->mm == mm
510 	 */
511 	task_lock(c);
512 	/*
513 	 * Delay read_unlock() till we have the task_lock()
514 	 * to ensure that c does not slip away underneath us
515 	 */
516 	read_unlock(&tasklist_lock);
517 	if (c->mm != mm) {
518 		task_unlock(c);
519 		put_task_struct(c);
520 		goto retry;
521 	}
522 	WRITE_ONCE(mm->owner, c);
523 	lru_gen_migrate_mm(mm);
524 	task_unlock(c);
525 	put_task_struct(c);
526 }
527 #endif /* CONFIG_MEMCG */
528 
529 /*
530  * Turn us into a lazy TLB process if we
531  * aren't already..
532  */
exit_mm(void)533 static void exit_mm(void)
534 {
535 	struct mm_struct *mm = current->mm;
536 
537 	exit_mm_release(current, mm);
538 	if (!mm)
539 		return;
540 	sync_mm_rss(mm);
541 	mmap_read_lock(mm);
542 	mmgrab(mm);
543 	BUG_ON(mm != current->active_mm);
544 	/* more a memory barrier than a real lock */
545 	task_lock(current);
546 	/*
547 	 * When a thread stops operating on an address space, the loop
548 	 * in membarrier_private_expedited() may not observe that
549 	 * tsk->mm, and the loop in membarrier_global_expedited() may
550 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
551 	 * rq->membarrier_state, so those would not issue an IPI.
552 	 * Membarrier requires a memory barrier after accessing
553 	 * user-space memory, before clearing tsk->mm or the
554 	 * rq->membarrier_state.
555 	 */
556 	smp_mb__after_spinlock();
557 	local_irq_disable();
558 	current->mm = NULL;
559 	membarrier_update_current_mm(NULL);
560 	enter_lazy_tlb(mm, current);
561 	local_irq_enable();
562 	task_unlock(current);
563 	mmap_read_unlock(mm);
564 	mm_update_next_owner(mm);
565 	trace_android_vh_exit_mm(mm);
566 	mmput(mm);
567 	if (test_thread_flag(TIF_MEMDIE))
568 		exit_oom_victim();
569 }
570 
find_alive_thread(struct task_struct * p)571 static struct task_struct *find_alive_thread(struct task_struct *p)
572 {
573 	struct task_struct *t;
574 
575 	for_each_thread(p, t) {
576 		if (!(t->flags & PF_EXITING))
577 			return t;
578 	}
579 	return NULL;
580 }
581 
find_child_reaper(struct task_struct * father,struct list_head * dead)582 static struct task_struct *find_child_reaper(struct task_struct *father,
583 						struct list_head *dead)
584 	__releases(&tasklist_lock)
585 	__acquires(&tasklist_lock)
586 {
587 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
588 	struct task_struct *reaper = pid_ns->child_reaper;
589 	struct task_struct *p, *n;
590 
591 	if (likely(reaper != father))
592 		return reaper;
593 
594 	reaper = find_alive_thread(father);
595 	if (reaper) {
596 		pid_ns->child_reaper = reaper;
597 		return reaper;
598 	}
599 
600 	write_unlock_irq(&tasklist_lock);
601 
602 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
603 		list_del_init(&p->ptrace_entry);
604 		release_task(p);
605 	}
606 
607 	zap_pid_ns_processes(pid_ns);
608 	write_lock_irq(&tasklist_lock);
609 
610 	return father;
611 }
612 
613 /*
614  * When we die, we re-parent all our children, and try to:
615  * 1. give them to another thread in our thread group, if such a member exists
616  * 2. give it to the first ancestor process which prctl'd itself as a
617  *    child_subreaper for its children (like a service manager)
618  * 3. give it to the init process (PID 1) in our pid namespace
619  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)620 static struct task_struct *find_new_reaper(struct task_struct *father,
621 					   struct task_struct *child_reaper)
622 {
623 	struct task_struct *thread, *reaper;
624 
625 	thread = find_alive_thread(father);
626 	if (thread)
627 		return thread;
628 
629 	if (father->signal->has_child_subreaper) {
630 		unsigned int ns_level = task_pid(father)->level;
631 		/*
632 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
633 		 * We can't check reaper != child_reaper to ensure we do not
634 		 * cross the namespaces, the exiting parent could be injected
635 		 * by setns() + fork().
636 		 * We check pid->level, this is slightly more efficient than
637 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
638 		 */
639 		for (reaper = father->real_parent;
640 		     task_pid(reaper)->level == ns_level;
641 		     reaper = reaper->real_parent) {
642 			if (reaper == &init_task)
643 				break;
644 			if (!reaper->signal->is_child_subreaper)
645 				continue;
646 			thread = find_alive_thread(reaper);
647 			if (thread)
648 				return thread;
649 		}
650 	}
651 
652 	return child_reaper;
653 }
654 
655 /*
656 * Any that need to be release_task'd are put on the @dead list.
657  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)658 static void reparent_leader(struct task_struct *father, struct task_struct *p,
659 				struct list_head *dead)
660 {
661 	if (unlikely(p->exit_state == EXIT_DEAD))
662 		return;
663 
664 	/* We don't want people slaying init. */
665 	p->exit_signal = SIGCHLD;
666 
667 	/* If it has exited notify the new parent about this child's death. */
668 	if (!p->ptrace &&
669 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
670 		if (do_notify_parent(p, p->exit_signal)) {
671 			p->exit_state = EXIT_DEAD;
672 			list_add(&p->ptrace_entry, dead);
673 		}
674 	}
675 
676 	kill_orphaned_pgrp(p, father);
677 }
678 
679 /*
680  * This does two things:
681  *
682  * A.  Make init inherit all the child processes
683  * B.  Check to see if any process groups have become orphaned
684  *	as a result of our exiting, and if they have any stopped
685  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
686  */
forget_original_parent(struct task_struct * father,struct list_head * dead)687 static void forget_original_parent(struct task_struct *father,
688 					struct list_head *dead)
689 {
690 	struct task_struct *p, *t, *reaper;
691 
692 	if (unlikely(!list_empty(&father->ptraced)))
693 		exit_ptrace(father, dead);
694 
695 	/* Can drop and reacquire tasklist_lock */
696 	reaper = find_child_reaper(father, dead);
697 	if (list_empty(&father->children))
698 		return;
699 
700 	reaper = find_new_reaper(father, reaper);
701 	list_for_each_entry(p, &father->children, sibling) {
702 		for_each_thread(p, t) {
703 			RCU_INIT_POINTER(t->real_parent, reaper);
704 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
705 			if (likely(!t->ptrace))
706 				t->parent = t->real_parent;
707 			if (t->pdeath_signal)
708 				group_send_sig_info(t->pdeath_signal,
709 						    SEND_SIG_NOINFO, t,
710 						    PIDTYPE_TGID);
711 		}
712 		/*
713 		 * If this is a threaded reparent there is no need to
714 		 * notify anyone anything has happened.
715 		 */
716 		if (!same_thread_group(reaper, father))
717 			reparent_leader(father, p, dead);
718 	}
719 	list_splice_tail_init(&father->children, &reaper->children);
720 }
721 
722 /*
723  * Send signals to all our closest relatives so that they know
724  * to properly mourn us..
725  */
exit_notify(struct task_struct * tsk,int group_dead)726 static void exit_notify(struct task_struct *tsk, int group_dead)
727 {
728 	bool autoreap;
729 	struct task_struct *p, *n;
730 	LIST_HEAD(dead);
731 
732 	write_lock_irq(&tasklist_lock);
733 	forget_original_parent(tsk, &dead);
734 
735 	if (group_dead)
736 		kill_orphaned_pgrp(tsk->group_leader, NULL);
737 
738 	tsk->exit_state = EXIT_ZOMBIE;
739 	if (unlikely(tsk->ptrace)) {
740 		int sig = thread_group_leader(tsk) &&
741 				thread_group_empty(tsk) &&
742 				!ptrace_reparented(tsk) ?
743 			tsk->exit_signal : SIGCHLD;
744 		autoreap = do_notify_parent(tsk, sig);
745 	} else if (thread_group_leader(tsk)) {
746 		autoreap = thread_group_empty(tsk) &&
747 			do_notify_parent(tsk, tsk->exit_signal);
748 	} else {
749 		autoreap = true;
750 	}
751 
752 	if (autoreap) {
753 		tsk->exit_state = EXIT_DEAD;
754 		list_add(&tsk->ptrace_entry, &dead);
755 	}
756 
757 	/* mt-exec, de_thread() is waiting for group leader */
758 	if (unlikely(tsk->signal->notify_count < 0))
759 		wake_up_process(tsk->signal->group_exec_task);
760 	write_unlock_irq(&tasklist_lock);
761 
762 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
763 		list_del_init(&p->ptrace_entry);
764 		release_task(p);
765 	}
766 }
767 
768 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)769 static void check_stack_usage(void)
770 {
771 	static DEFINE_SPINLOCK(low_water_lock);
772 	static int lowest_to_date = THREAD_SIZE;
773 	unsigned long free;
774 
775 	free = stack_not_used(current);
776 
777 	if (free >= lowest_to_date)
778 		return;
779 
780 	spin_lock(&low_water_lock);
781 	if (free < lowest_to_date) {
782 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
783 			current->comm, task_pid_nr(current), free);
784 		lowest_to_date = free;
785 	}
786 	spin_unlock(&low_water_lock);
787 }
788 #else
check_stack_usage(void)789 static inline void check_stack_usage(void) {}
790 #endif
791 
synchronize_group_exit(struct task_struct * tsk,long code)792 static void synchronize_group_exit(struct task_struct *tsk, long code)
793 {
794 	struct sighand_struct *sighand = tsk->sighand;
795 	struct signal_struct *signal = tsk->signal;
796 
797 	spin_lock_irq(&sighand->siglock);
798 	signal->quick_threads--;
799 	if ((signal->quick_threads == 0) &&
800 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
801 		signal->flags = SIGNAL_GROUP_EXIT;
802 		signal->group_exit_code = code;
803 		signal->group_stop_count = 0;
804 	}
805 	spin_unlock_irq(&sighand->siglock);
806 }
807 
do_exit(long code)808 void __noreturn do_exit(long code)
809 {
810 	struct task_struct *tsk = current;
811 	int group_dead;
812 
813 	WARN_ON(irqs_disabled());
814 
815 	synchronize_group_exit(tsk, code);
816 
817 	WARN_ON(tsk->plug);
818 
819 	profile_task_exit(tsk);
820 	kcov_task_exit(tsk);
821 	kmsan_task_exit(tsk);
822 
823 	coredump_task_exit(tsk);
824 	ptrace_event(PTRACE_EVENT_EXIT, code);
825 
826 	validate_creds_for_do_exit(tsk);
827 
828 	io_uring_files_cancel();
829 	exit_signals(tsk);  /* sets PF_EXITING */
830 
831 	trace_android_vh_exit_check(current);
832 
833 	/* sync mm's RSS info before statistics gathering */
834 	if (tsk->mm)
835 		sync_mm_rss(tsk->mm);
836 	acct_update_integrals(tsk);
837 	group_dead = atomic_dec_and_test(&tsk->signal->live);
838 	if (group_dead) {
839 		/*
840 		 * If the last thread of global init has exited, panic
841 		 * immediately to get a useable coredump.
842 		 */
843 		if (unlikely(is_global_init(tsk)))
844 			panic("Attempted to kill init! exitcode=0x%08x\n",
845 				tsk->signal->group_exit_code ?: (int)code);
846 
847 #ifdef CONFIG_POSIX_TIMERS
848 		hrtimer_cancel(&tsk->signal->real_timer);
849 		exit_itimers(tsk);
850 #endif
851 		if (tsk->mm)
852 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
853 	}
854 	acct_collect(code, group_dead);
855 	if (group_dead)
856 		tty_audit_exit();
857 	audit_free(tsk);
858 
859 	tsk->exit_code = code;
860 	taskstats_exit(tsk, group_dead);
861 
862 	exit_mm();
863 
864 	if (group_dead)
865 		acct_process();
866 	trace_sched_process_exit(tsk);
867 
868 	exit_sem(tsk);
869 	exit_shm(tsk);
870 	exit_files(tsk);
871 	exit_fs(tsk);
872 	if (group_dead)
873 		disassociate_ctty(1);
874 	exit_task_namespaces(tsk);
875 	exit_task_work(tsk);
876 	exit_thread(tsk);
877 
878 	/*
879 	 * Flush inherited counters to the parent - before the parent
880 	 * gets woken up by child-exit notifications.
881 	 *
882 	 * because of cgroup mode, must be called before cgroup_exit()
883 	 */
884 	perf_event_exit_task(tsk);
885 
886 	sched_autogroup_exit_task(tsk);
887 	cgroup_exit(tsk);
888 
889 	/*
890 	 * FIXME: do that only when needed, using sched_exit tracepoint
891 	 */
892 	flush_ptrace_hw_breakpoint(tsk);
893 
894 	exit_tasks_rcu_start();
895 	exit_notify(tsk, group_dead);
896 	proc_exit_connector(tsk);
897 	mpol_put_task_policy(tsk);
898 #ifdef CONFIG_FUTEX
899 	if (unlikely(current->pi_state_cache))
900 		kfree(current->pi_state_cache);
901 #endif
902 	/*
903 	 * Make sure we are holding no locks:
904 	 */
905 	debug_check_no_locks_held();
906 
907 	if (tsk->io_context)
908 		exit_io_context(tsk);
909 
910 	if (tsk->splice_pipe)
911 		free_pipe_info(tsk->splice_pipe);
912 
913 	if (tsk->task_frag.page)
914 		put_page(tsk->task_frag.page);
915 
916 	validate_creds_for_do_exit(tsk);
917 	exit_task_stack_account(tsk);
918 
919 	check_stack_usage();
920 	preempt_disable();
921 	if (tsk->nr_dirtied)
922 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
923 	exit_rcu();
924 	exit_tasks_rcu_finish();
925 
926 	lockdep_free_task(tsk);
927 	do_task_dead();
928 }
929 
make_task_dead(int signr)930 void __noreturn make_task_dead(int signr)
931 {
932 	/*
933 	 * Take the task off the cpu after something catastrophic has
934 	 * happened.
935 	 *
936 	 * We can get here from a kernel oops, sometimes with preemption off.
937 	 * Start by checking for critical errors.
938 	 * Then fix up important state like USER_DS and preemption.
939 	 * Then do everything else.
940 	 */
941 	struct task_struct *tsk = current;
942 	unsigned int limit;
943 
944 	if (unlikely(in_interrupt()))
945 		panic("Aiee, killing interrupt handler!");
946 	if (unlikely(!tsk->pid))
947 		panic("Attempted to kill the idle task!");
948 
949 	if (unlikely(irqs_disabled())) {
950 		pr_info("note: %s[%d] exited with irqs disabled\n",
951 			current->comm, task_pid_nr(current));
952 		local_irq_enable();
953 	}
954 	if (unlikely(in_atomic())) {
955 		pr_info("note: %s[%d] exited with preempt_count %d\n",
956 			current->comm, task_pid_nr(current),
957 			preempt_count());
958 		preempt_count_set(PREEMPT_ENABLED);
959 	}
960 
961 	/*
962 	 * Every time the system oopses, if the oops happens while a reference
963 	 * to an object was held, the reference leaks.
964 	 * If the oops doesn't also leak memory, repeated oopsing can cause
965 	 * reference counters to wrap around (if they're not using refcount_t).
966 	 * This means that repeated oopsing can make unexploitable-looking bugs
967 	 * exploitable through repeated oopsing.
968 	 * To make sure this can't happen, place an upper bound on how often the
969 	 * kernel may oops without panic().
970 	 */
971 	limit = READ_ONCE(oops_limit);
972 	if (atomic_inc_return(&oops_count) >= limit && limit)
973 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
974 
975 	/*
976 	 * We're taking recursive faults here in make_task_dead. Safest is to just
977 	 * leave this task alone and wait for reboot.
978 	 */
979 	if (unlikely(tsk->flags & PF_EXITING)) {
980 		pr_alert("Fixing recursive fault but reboot is needed!\n");
981 		futex_exit_recursive(tsk);
982 		tsk->exit_state = EXIT_DEAD;
983 		refcount_inc(&tsk->rcu_users);
984 		do_task_dead();
985 	}
986 
987 	do_exit(signr);
988 }
989 
SYSCALL_DEFINE1(exit,int,error_code)990 SYSCALL_DEFINE1(exit, int, error_code)
991 {
992 	do_exit((error_code&0xff)<<8);
993 }
994 
995 /*
996  * Take down every thread in the group.  This is called by fatal signals
997  * as well as by sys_exit_group (below).
998  */
999 void __noreturn
do_group_exit(int exit_code)1000 do_group_exit(int exit_code)
1001 {
1002 	struct signal_struct *sig = current->signal;
1003 
1004 	if (sig->flags & SIGNAL_GROUP_EXIT)
1005 		exit_code = sig->group_exit_code;
1006 	else if (sig->group_exec_task)
1007 		exit_code = 0;
1008 	else {
1009 		struct sighand_struct *const sighand = current->sighand;
1010 
1011 		spin_lock_irq(&sighand->siglock);
1012 		if (sig->flags & SIGNAL_GROUP_EXIT)
1013 			/* Another thread got here before we took the lock.  */
1014 			exit_code = sig->group_exit_code;
1015 		else if (sig->group_exec_task)
1016 			exit_code = 0;
1017 		else {
1018 			sig->group_exit_code = exit_code;
1019 			sig->flags = SIGNAL_GROUP_EXIT;
1020 			zap_other_threads(current);
1021 		}
1022 		spin_unlock_irq(&sighand->siglock);
1023 	}
1024 
1025 	do_exit(exit_code);
1026 	/* NOTREACHED */
1027 }
1028 
1029 /*
1030  * this kills every thread in the thread group. Note that any externally
1031  * wait4()-ing process will get the correct exit code - even if this
1032  * thread is not the thread group leader.
1033  */
SYSCALL_DEFINE1(exit_group,int,error_code)1034 SYSCALL_DEFINE1(exit_group, int, error_code)
1035 {
1036 	do_group_exit((error_code & 0xff) << 8);
1037 	/* NOTREACHED */
1038 	return 0;
1039 }
1040 
1041 struct waitid_info {
1042 	pid_t pid;
1043 	uid_t uid;
1044 	int status;
1045 	int cause;
1046 };
1047 
1048 struct wait_opts {
1049 	enum pid_type		wo_type;
1050 	int			wo_flags;
1051 	struct pid		*wo_pid;
1052 
1053 	struct waitid_info	*wo_info;
1054 	int			wo_stat;
1055 	struct rusage		*wo_rusage;
1056 
1057 	wait_queue_entry_t		child_wait;
1058 	int			notask_error;
1059 };
1060 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1061 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1062 {
1063 	return	wo->wo_type == PIDTYPE_MAX ||
1064 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1065 }
1066 
1067 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1068 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1069 {
1070 	if (!eligible_pid(wo, p))
1071 		return 0;
1072 
1073 	/*
1074 	 * Wait for all children (clone and not) if __WALL is set or
1075 	 * if it is traced by us.
1076 	 */
1077 	if (ptrace || (wo->wo_flags & __WALL))
1078 		return 1;
1079 
1080 	/*
1081 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1082 	 * otherwise, wait for non-clone children *only*.
1083 	 *
1084 	 * Note: a "clone" child here is one that reports to its parent
1085 	 * using a signal other than SIGCHLD, or a non-leader thread which
1086 	 * we can only see if it is traced by us.
1087 	 */
1088 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1089 		return 0;
1090 
1091 	return 1;
1092 }
1093 
1094 /*
1095  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1096  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1097  * the lock and this task is uninteresting.  If we return nonzero, we have
1098  * released the lock and the system call should return.
1099  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1100 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1101 {
1102 	int state, status;
1103 	pid_t pid = task_pid_vnr(p);
1104 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1105 	struct waitid_info *infop;
1106 
1107 	if (!likely(wo->wo_flags & WEXITED))
1108 		return 0;
1109 
1110 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1111 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1112 			? p->signal->group_exit_code : p->exit_code;
1113 		get_task_struct(p);
1114 		read_unlock(&tasklist_lock);
1115 		sched_annotate_sleep();
1116 		if (wo->wo_rusage)
1117 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1118 		put_task_struct(p);
1119 		goto out_info;
1120 	}
1121 	/*
1122 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1123 	 */
1124 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1125 		EXIT_TRACE : EXIT_DEAD;
1126 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1127 		return 0;
1128 	/*
1129 	 * We own this thread, nobody else can reap it.
1130 	 */
1131 	read_unlock(&tasklist_lock);
1132 	sched_annotate_sleep();
1133 
1134 	/*
1135 	 * Check thread_group_leader() to exclude the traced sub-threads.
1136 	 */
1137 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1138 		struct signal_struct *sig = p->signal;
1139 		struct signal_struct *psig = current->signal;
1140 		unsigned long maxrss;
1141 		u64 tgutime, tgstime;
1142 
1143 		/*
1144 		 * The resource counters for the group leader are in its
1145 		 * own task_struct.  Those for dead threads in the group
1146 		 * are in its signal_struct, as are those for the child
1147 		 * processes it has previously reaped.  All these
1148 		 * accumulate in the parent's signal_struct c* fields.
1149 		 *
1150 		 * We don't bother to take a lock here to protect these
1151 		 * p->signal fields because the whole thread group is dead
1152 		 * and nobody can change them.
1153 		 *
1154 		 * psig->stats_lock also protects us from our sub-threads
1155 		 * which can reap other children at the same time. Until
1156 		 * we change k_getrusage()-like users to rely on this lock
1157 		 * we have to take ->siglock as well.
1158 		 *
1159 		 * We use thread_group_cputime_adjusted() to get times for
1160 		 * the thread group, which consolidates times for all threads
1161 		 * in the group including the group leader.
1162 		 */
1163 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1164 		spin_lock_irq(&current->sighand->siglock);
1165 		write_seqlock(&psig->stats_lock);
1166 		psig->cutime += tgutime + sig->cutime;
1167 		psig->cstime += tgstime + sig->cstime;
1168 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1169 		psig->cmin_flt +=
1170 			p->min_flt + sig->min_flt + sig->cmin_flt;
1171 		psig->cmaj_flt +=
1172 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1173 		psig->cnvcsw +=
1174 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1175 		psig->cnivcsw +=
1176 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1177 		psig->cinblock +=
1178 			task_io_get_inblock(p) +
1179 			sig->inblock + sig->cinblock;
1180 		psig->coublock +=
1181 			task_io_get_oublock(p) +
1182 			sig->oublock + sig->coublock;
1183 		maxrss = max(sig->maxrss, sig->cmaxrss);
1184 		if (psig->cmaxrss < maxrss)
1185 			psig->cmaxrss = maxrss;
1186 		task_io_accounting_add(&psig->ioac, &p->ioac);
1187 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1188 		write_sequnlock(&psig->stats_lock);
1189 		spin_unlock_irq(&current->sighand->siglock);
1190 	}
1191 
1192 	if (wo->wo_rusage)
1193 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1194 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1195 		? p->signal->group_exit_code : p->exit_code;
1196 	wo->wo_stat = status;
1197 
1198 	if (state == EXIT_TRACE) {
1199 		write_lock_irq(&tasklist_lock);
1200 		/* We dropped tasklist, ptracer could die and untrace */
1201 		ptrace_unlink(p);
1202 
1203 		/* If parent wants a zombie, don't release it now */
1204 		state = EXIT_ZOMBIE;
1205 		if (do_notify_parent(p, p->exit_signal))
1206 			state = EXIT_DEAD;
1207 		p->exit_state = state;
1208 		write_unlock_irq(&tasklist_lock);
1209 	}
1210 	if (state == EXIT_DEAD)
1211 		release_task(p);
1212 
1213 out_info:
1214 	infop = wo->wo_info;
1215 	if (infop) {
1216 		if ((status & 0x7f) == 0) {
1217 			infop->cause = CLD_EXITED;
1218 			infop->status = status >> 8;
1219 		} else {
1220 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1221 			infop->status = status & 0x7f;
1222 		}
1223 		infop->pid = pid;
1224 		infop->uid = uid;
1225 	}
1226 
1227 	return pid;
1228 }
1229 
task_stopped_code(struct task_struct * p,bool ptrace)1230 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1231 {
1232 	if (ptrace) {
1233 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1234 			return &p->exit_code;
1235 	} else {
1236 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1237 			return &p->signal->group_exit_code;
1238 	}
1239 	return NULL;
1240 }
1241 
1242 /**
1243  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1244  * @wo: wait options
1245  * @ptrace: is the wait for ptrace
1246  * @p: task to wait for
1247  *
1248  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1249  *
1250  * CONTEXT:
1251  * read_lock(&tasklist_lock), which is released if return value is
1252  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1253  *
1254  * RETURNS:
1255  * 0 if wait condition didn't exist and search for other wait conditions
1256  * should continue.  Non-zero return, -errno on failure and @p's pid on
1257  * success, implies that tasklist_lock is released and wait condition
1258  * search should terminate.
1259  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1260 static int wait_task_stopped(struct wait_opts *wo,
1261 				int ptrace, struct task_struct *p)
1262 {
1263 	struct waitid_info *infop;
1264 	int exit_code, *p_code, why;
1265 	uid_t uid = 0; /* unneeded, required by compiler */
1266 	pid_t pid;
1267 
1268 	/*
1269 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1270 	 */
1271 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1272 		return 0;
1273 
1274 	if (!task_stopped_code(p, ptrace))
1275 		return 0;
1276 
1277 	exit_code = 0;
1278 	spin_lock_irq(&p->sighand->siglock);
1279 
1280 	p_code = task_stopped_code(p, ptrace);
1281 	if (unlikely(!p_code))
1282 		goto unlock_sig;
1283 
1284 	exit_code = *p_code;
1285 	if (!exit_code)
1286 		goto unlock_sig;
1287 
1288 	if (!unlikely(wo->wo_flags & WNOWAIT))
1289 		*p_code = 0;
1290 
1291 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1292 unlock_sig:
1293 	spin_unlock_irq(&p->sighand->siglock);
1294 	if (!exit_code)
1295 		return 0;
1296 
1297 	/*
1298 	 * Now we are pretty sure this task is interesting.
1299 	 * Make sure it doesn't get reaped out from under us while we
1300 	 * give up the lock and then examine it below.  We don't want to
1301 	 * keep holding onto the tasklist_lock while we call getrusage and
1302 	 * possibly take page faults for user memory.
1303 	 */
1304 	get_task_struct(p);
1305 	pid = task_pid_vnr(p);
1306 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1307 	read_unlock(&tasklist_lock);
1308 	sched_annotate_sleep();
1309 	if (wo->wo_rusage)
1310 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1311 	put_task_struct(p);
1312 
1313 	if (likely(!(wo->wo_flags & WNOWAIT)))
1314 		wo->wo_stat = (exit_code << 8) | 0x7f;
1315 
1316 	infop = wo->wo_info;
1317 	if (infop) {
1318 		infop->cause = why;
1319 		infop->status = exit_code;
1320 		infop->pid = pid;
1321 		infop->uid = uid;
1322 	}
1323 	return pid;
1324 }
1325 
1326 /*
1327  * Handle do_wait work for one task in a live, non-stopped state.
1328  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1329  * the lock and this task is uninteresting.  If we return nonzero, we have
1330  * released the lock and the system call should return.
1331  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1332 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1333 {
1334 	struct waitid_info *infop;
1335 	pid_t pid;
1336 	uid_t uid;
1337 
1338 	if (!unlikely(wo->wo_flags & WCONTINUED))
1339 		return 0;
1340 
1341 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1342 		return 0;
1343 
1344 	spin_lock_irq(&p->sighand->siglock);
1345 	/* Re-check with the lock held.  */
1346 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1347 		spin_unlock_irq(&p->sighand->siglock);
1348 		return 0;
1349 	}
1350 	if (!unlikely(wo->wo_flags & WNOWAIT))
1351 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1352 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1353 	spin_unlock_irq(&p->sighand->siglock);
1354 
1355 	pid = task_pid_vnr(p);
1356 	get_task_struct(p);
1357 	read_unlock(&tasklist_lock);
1358 	sched_annotate_sleep();
1359 	if (wo->wo_rusage)
1360 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1361 	put_task_struct(p);
1362 
1363 	infop = wo->wo_info;
1364 	if (!infop) {
1365 		wo->wo_stat = 0xffff;
1366 	} else {
1367 		infop->cause = CLD_CONTINUED;
1368 		infop->pid = pid;
1369 		infop->uid = uid;
1370 		infop->status = SIGCONT;
1371 	}
1372 	return pid;
1373 }
1374 
1375 /*
1376  * Consider @p for a wait by @parent.
1377  *
1378  * -ECHILD should be in ->notask_error before the first call.
1379  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1380  * Returns zero if the search for a child should continue;
1381  * then ->notask_error is 0 if @p is an eligible child,
1382  * or still -ECHILD.
1383  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1384 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1385 				struct task_struct *p)
1386 {
1387 	/*
1388 	 * We can race with wait_task_zombie() from another thread.
1389 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1390 	 * can't confuse the checks below.
1391 	 */
1392 	int exit_state = READ_ONCE(p->exit_state);
1393 	int ret;
1394 
1395 	if (unlikely(exit_state == EXIT_DEAD))
1396 		return 0;
1397 
1398 	ret = eligible_child(wo, ptrace, p);
1399 	if (!ret)
1400 		return ret;
1401 
1402 	if (unlikely(exit_state == EXIT_TRACE)) {
1403 		/*
1404 		 * ptrace == 0 means we are the natural parent. In this case
1405 		 * we should clear notask_error, debugger will notify us.
1406 		 */
1407 		if (likely(!ptrace))
1408 			wo->notask_error = 0;
1409 		return 0;
1410 	}
1411 
1412 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1413 		/*
1414 		 * If it is traced by its real parent's group, just pretend
1415 		 * the caller is ptrace_do_wait() and reap this child if it
1416 		 * is zombie.
1417 		 *
1418 		 * This also hides group stop state from real parent; otherwise
1419 		 * a single stop can be reported twice as group and ptrace stop.
1420 		 * If a ptracer wants to distinguish these two events for its
1421 		 * own children it should create a separate process which takes
1422 		 * the role of real parent.
1423 		 */
1424 		if (!ptrace_reparented(p))
1425 			ptrace = 1;
1426 	}
1427 
1428 	/* slay zombie? */
1429 	if (exit_state == EXIT_ZOMBIE) {
1430 		/* we don't reap group leaders with subthreads */
1431 		if (!delay_group_leader(p)) {
1432 			/*
1433 			 * A zombie ptracee is only visible to its ptracer.
1434 			 * Notification and reaping will be cascaded to the
1435 			 * real parent when the ptracer detaches.
1436 			 */
1437 			if (unlikely(ptrace) || likely(!p->ptrace))
1438 				return wait_task_zombie(wo, p);
1439 		}
1440 
1441 		/*
1442 		 * Allow access to stopped/continued state via zombie by
1443 		 * falling through.  Clearing of notask_error is complex.
1444 		 *
1445 		 * When !@ptrace:
1446 		 *
1447 		 * If WEXITED is set, notask_error should naturally be
1448 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1449 		 * so, if there are live subthreads, there are events to
1450 		 * wait for.  If all subthreads are dead, it's still safe
1451 		 * to clear - this function will be called again in finite
1452 		 * amount time once all the subthreads are released and
1453 		 * will then return without clearing.
1454 		 *
1455 		 * When @ptrace:
1456 		 *
1457 		 * Stopped state is per-task and thus can't change once the
1458 		 * target task dies.  Only continued and exited can happen.
1459 		 * Clear notask_error if WCONTINUED | WEXITED.
1460 		 */
1461 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1462 			wo->notask_error = 0;
1463 	} else {
1464 		/*
1465 		 * @p is alive and it's gonna stop, continue or exit, so
1466 		 * there always is something to wait for.
1467 		 */
1468 		wo->notask_error = 0;
1469 	}
1470 
1471 	/*
1472 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1473 	 * is used and the two don't interact with each other.
1474 	 */
1475 	ret = wait_task_stopped(wo, ptrace, p);
1476 	if (ret)
1477 		return ret;
1478 
1479 	/*
1480 	 * Wait for continued.  There's only one continued state and the
1481 	 * ptracer can consume it which can confuse the real parent.  Don't
1482 	 * use WCONTINUED from ptracer.  You don't need or want it.
1483 	 */
1484 	return wait_task_continued(wo, p);
1485 }
1486 
1487 /*
1488  * Do the work of do_wait() for one thread in the group, @tsk.
1489  *
1490  * -ECHILD should be in ->notask_error before the first call.
1491  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1492  * Returns zero if the search for a child should continue; then
1493  * ->notask_error is 0 if there were any eligible children,
1494  * or still -ECHILD.
1495  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1496 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1497 {
1498 	struct task_struct *p;
1499 
1500 	list_for_each_entry(p, &tsk->children, sibling) {
1501 		int ret = wait_consider_task(wo, 0, p);
1502 
1503 		if (ret)
1504 			return ret;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1510 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1511 {
1512 	struct task_struct *p;
1513 
1514 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1515 		int ret = wait_consider_task(wo, 1, p);
1516 
1517 		if (ret)
1518 			return ret;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1524 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1525 				int sync, void *key)
1526 {
1527 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1528 						child_wait);
1529 	struct task_struct *p = key;
1530 
1531 	if (!eligible_pid(wo, p))
1532 		return 0;
1533 
1534 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1535 		return 0;
1536 
1537 	return default_wake_function(wait, mode, sync, key);
1538 }
1539 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1540 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1541 {
1542 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1543 			   TASK_INTERRUPTIBLE, p);
1544 }
1545 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1546 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1547 				 struct task_struct *target)
1548 {
1549 	struct task_struct *parent =
1550 		!ptrace ? target->real_parent : target->parent;
1551 
1552 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1553 				     same_thread_group(current, parent));
1554 }
1555 
1556 /*
1557  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1558  * and tracee lists to find the target task.
1559  */
do_wait_pid(struct wait_opts * wo)1560 static int do_wait_pid(struct wait_opts *wo)
1561 {
1562 	bool ptrace;
1563 	struct task_struct *target;
1564 	int retval;
1565 
1566 	ptrace = false;
1567 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1568 	if (target && is_effectively_child(wo, ptrace, target)) {
1569 		retval = wait_consider_task(wo, ptrace, target);
1570 		if (retval)
1571 			return retval;
1572 	}
1573 
1574 	ptrace = true;
1575 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1576 	if (target && target->ptrace &&
1577 	    is_effectively_child(wo, ptrace, target)) {
1578 		retval = wait_consider_task(wo, ptrace, target);
1579 		if (retval)
1580 			return retval;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
do_wait(struct wait_opts * wo)1586 static long do_wait(struct wait_opts *wo)
1587 {
1588 	int retval;
1589 
1590 	trace_sched_process_wait(wo->wo_pid);
1591 
1592 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1593 	wo->child_wait.private = current;
1594 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1595 repeat:
1596 	/*
1597 	 * If there is nothing that can match our criteria, just get out.
1598 	 * We will clear ->notask_error to zero if we see any child that
1599 	 * might later match our criteria, even if we are not able to reap
1600 	 * it yet.
1601 	 */
1602 	wo->notask_error = -ECHILD;
1603 	if ((wo->wo_type < PIDTYPE_MAX) &&
1604 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1605 		goto notask;
1606 
1607 	set_current_state(TASK_INTERRUPTIBLE);
1608 	read_lock(&tasklist_lock);
1609 
1610 	if (wo->wo_type == PIDTYPE_PID) {
1611 		retval = do_wait_pid(wo);
1612 		if (retval)
1613 			goto end;
1614 	} else {
1615 		struct task_struct *tsk = current;
1616 
1617 		do {
1618 			retval = do_wait_thread(wo, tsk);
1619 			if (retval)
1620 				goto end;
1621 
1622 			retval = ptrace_do_wait(wo, tsk);
1623 			if (retval)
1624 				goto end;
1625 
1626 			if (wo->wo_flags & __WNOTHREAD)
1627 				break;
1628 		} while_each_thread(current, tsk);
1629 	}
1630 	read_unlock(&tasklist_lock);
1631 
1632 notask:
1633 	retval = wo->notask_error;
1634 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1635 		retval = -ERESTARTSYS;
1636 		if (!signal_pending(current)) {
1637 			schedule();
1638 			goto repeat;
1639 		}
1640 	}
1641 end:
1642 	__set_current_state(TASK_RUNNING);
1643 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1644 	return retval;
1645 }
1646 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1647 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1648 			  int options, struct rusage *ru)
1649 {
1650 	struct wait_opts wo;
1651 	struct pid *pid = NULL;
1652 	enum pid_type type;
1653 	long ret;
1654 	unsigned int f_flags = 0;
1655 
1656 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1657 			__WNOTHREAD|__WCLONE|__WALL))
1658 		return -EINVAL;
1659 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1660 		return -EINVAL;
1661 
1662 	switch (which) {
1663 	case P_ALL:
1664 		type = PIDTYPE_MAX;
1665 		break;
1666 	case P_PID:
1667 		type = PIDTYPE_PID;
1668 		if (upid <= 0)
1669 			return -EINVAL;
1670 
1671 		pid = find_get_pid(upid);
1672 		break;
1673 	case P_PGID:
1674 		type = PIDTYPE_PGID;
1675 		if (upid < 0)
1676 			return -EINVAL;
1677 
1678 		if (upid)
1679 			pid = find_get_pid(upid);
1680 		else
1681 			pid = get_task_pid(current, PIDTYPE_PGID);
1682 		break;
1683 	case P_PIDFD:
1684 		type = PIDTYPE_PID;
1685 		if (upid < 0)
1686 			return -EINVAL;
1687 
1688 		pid = pidfd_get_pid(upid, &f_flags);
1689 		if (IS_ERR(pid))
1690 			return PTR_ERR(pid);
1691 
1692 		break;
1693 	default:
1694 		return -EINVAL;
1695 	}
1696 
1697 	wo.wo_type	= type;
1698 	wo.wo_pid	= pid;
1699 	wo.wo_flags	= options;
1700 	wo.wo_info	= infop;
1701 	wo.wo_rusage	= ru;
1702 	if (f_flags & O_NONBLOCK)
1703 		wo.wo_flags |= WNOHANG;
1704 
1705 	ret = do_wait(&wo);
1706 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1707 		ret = -EAGAIN;
1708 
1709 	put_pid(pid);
1710 	return ret;
1711 }
1712 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1713 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1714 		infop, int, options, struct rusage __user *, ru)
1715 {
1716 	struct rusage r;
1717 	struct waitid_info info = {.status = 0};
1718 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1719 	int signo = 0;
1720 
1721 	if (err > 0) {
1722 		signo = SIGCHLD;
1723 		err = 0;
1724 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1725 			return -EFAULT;
1726 	}
1727 	if (!infop)
1728 		return err;
1729 
1730 	if (!user_write_access_begin(infop, sizeof(*infop)))
1731 		return -EFAULT;
1732 
1733 	unsafe_put_user(signo, &infop->si_signo, Efault);
1734 	unsafe_put_user(0, &infop->si_errno, Efault);
1735 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1736 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1737 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1738 	unsafe_put_user(info.status, &infop->si_status, Efault);
1739 	user_write_access_end();
1740 	return err;
1741 Efault:
1742 	user_write_access_end();
1743 	return -EFAULT;
1744 }
1745 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1746 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1747 		  struct rusage *ru)
1748 {
1749 	struct wait_opts wo;
1750 	struct pid *pid = NULL;
1751 	enum pid_type type;
1752 	long ret;
1753 
1754 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1755 			__WNOTHREAD|__WCLONE|__WALL))
1756 		return -EINVAL;
1757 
1758 	/* -INT_MIN is not defined */
1759 	if (upid == INT_MIN)
1760 		return -ESRCH;
1761 
1762 	if (upid == -1)
1763 		type = PIDTYPE_MAX;
1764 	else if (upid < 0) {
1765 		type = PIDTYPE_PGID;
1766 		pid = find_get_pid(-upid);
1767 	} else if (upid == 0) {
1768 		type = PIDTYPE_PGID;
1769 		pid = get_task_pid(current, PIDTYPE_PGID);
1770 	} else /* upid > 0 */ {
1771 		type = PIDTYPE_PID;
1772 		pid = find_get_pid(upid);
1773 	}
1774 
1775 	wo.wo_type	= type;
1776 	wo.wo_pid	= pid;
1777 	wo.wo_flags	= options | WEXITED;
1778 	wo.wo_info	= NULL;
1779 	wo.wo_stat	= 0;
1780 	wo.wo_rusage	= ru;
1781 	ret = do_wait(&wo);
1782 	put_pid(pid);
1783 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1784 		ret = -EFAULT;
1785 
1786 	return ret;
1787 }
1788 
kernel_wait(pid_t pid,int * stat)1789 int kernel_wait(pid_t pid, int *stat)
1790 {
1791 	struct wait_opts wo = {
1792 		.wo_type	= PIDTYPE_PID,
1793 		.wo_pid		= find_get_pid(pid),
1794 		.wo_flags	= WEXITED,
1795 	};
1796 	int ret;
1797 
1798 	ret = do_wait(&wo);
1799 	if (ret > 0 && wo.wo_stat)
1800 		*stat = wo.wo_stat;
1801 	put_pid(wo.wo_pid);
1802 	return ret;
1803 }
1804 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1805 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1806 		int, options, struct rusage __user *, ru)
1807 {
1808 	struct rusage r;
1809 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1810 
1811 	if (err > 0) {
1812 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1813 			return -EFAULT;
1814 	}
1815 	return err;
1816 }
1817 
1818 #ifdef __ARCH_WANT_SYS_WAITPID
1819 
1820 /*
1821  * sys_waitpid() remains for compatibility. waitpid() should be
1822  * implemented by calling sys_wait4() from libc.a.
1823  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1824 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1825 {
1826 	return kernel_wait4(pid, stat_addr, options, NULL);
1827 }
1828 
1829 #endif
1830 
1831 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1832 COMPAT_SYSCALL_DEFINE4(wait4,
1833 	compat_pid_t, pid,
1834 	compat_uint_t __user *, stat_addr,
1835 	int, options,
1836 	struct compat_rusage __user *, ru)
1837 {
1838 	struct rusage r;
1839 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1840 	if (err > 0) {
1841 		if (ru && put_compat_rusage(&r, ru))
1842 			return -EFAULT;
1843 	}
1844 	return err;
1845 }
1846 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1847 COMPAT_SYSCALL_DEFINE5(waitid,
1848 		int, which, compat_pid_t, pid,
1849 		struct compat_siginfo __user *, infop, int, options,
1850 		struct compat_rusage __user *, uru)
1851 {
1852 	struct rusage ru;
1853 	struct waitid_info info = {.status = 0};
1854 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1855 	int signo = 0;
1856 	if (err > 0) {
1857 		signo = SIGCHLD;
1858 		err = 0;
1859 		if (uru) {
1860 			/* kernel_waitid() overwrites everything in ru */
1861 			if (COMPAT_USE_64BIT_TIME)
1862 				err = copy_to_user(uru, &ru, sizeof(ru));
1863 			else
1864 				err = put_compat_rusage(&ru, uru);
1865 			if (err)
1866 				return -EFAULT;
1867 		}
1868 	}
1869 
1870 	if (!infop)
1871 		return err;
1872 
1873 	if (!user_write_access_begin(infop, sizeof(*infop)))
1874 		return -EFAULT;
1875 
1876 	unsafe_put_user(signo, &infop->si_signo, Efault);
1877 	unsafe_put_user(0, &infop->si_errno, Efault);
1878 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1879 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1880 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1881 	unsafe_put_user(info.status, &infop->si_status, Efault);
1882 	user_write_access_end();
1883 	return err;
1884 Efault:
1885 	user_write_access_end();
1886 	return -EFAULT;
1887 }
1888 #endif
1889 
1890 /**
1891  * thread_group_exited - check that a thread group has exited
1892  * @pid: tgid of thread group to be checked.
1893  *
1894  * Test if the thread group represented by tgid has exited (all
1895  * threads are zombies, dead or completely gone).
1896  *
1897  * Return: true if the thread group has exited. false otherwise.
1898  */
thread_group_exited(struct pid * pid)1899 bool thread_group_exited(struct pid *pid)
1900 {
1901 	struct task_struct *task;
1902 	bool exited;
1903 
1904 	rcu_read_lock();
1905 	task = pid_task(pid, PIDTYPE_PID);
1906 	exited = !task ||
1907 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1908 	rcu_read_unlock();
1909 
1910 	return exited;
1911 }
1912 EXPORT_SYMBOL(thread_group_exited);
1913 
abort(void)1914 __weak void abort(void)
1915 {
1916 	BUG();
1917 
1918 	/* if that doesn't kill us, halt */
1919 	panic("Oops failed to kill thread");
1920 }
1921 EXPORT_SYMBOL(abort);
1922