• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/cpufreq_times.h>
101 
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107 
108 #include <trace/events/sched.h>
109 
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112 
113 #undef CREATE_TRACE_POINTS
114 #include <trace/hooks/sched.h>
115 /*
116  * Minimum number of threads to boot the kernel
117  */
118 #define MIN_THREADS 20
119 
120 /*
121  * Maximum number of threads
122  */
123 #define MAX_THREADS FUTEX_TID_MASK
124 
125 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
126 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
127 
128 /*
129  * Protected counters by write_lock_irq(&tasklist_lock)
130  */
131 unsigned long total_forks;	/* Handle normal Linux uptimes. */
132 int nr_threads;			/* The idle threads do not count.. */
133 
134 static int max_threads;		/* tunable limit on nr_threads */
135 
136 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
137 
138 static const char * const resident_page_types[] = {
139 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
140 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
141 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
142 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144 
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146 
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148 EXPORT_SYMBOL_GPL(tasklist_lock);
149 
150 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)151 int lockdep_tasklist_lock_is_held(void)
152 {
153 	return lockdep_is_held(&tasklist_lock);
154 }
155 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
156 #endif /* #ifdef CONFIG_PROVE_RCU */
157 
nr_processes(void)158 int nr_processes(void)
159 {
160 	int cpu;
161 	int total = 0;
162 
163 	for_each_possible_cpu(cpu)
164 		total += per_cpu(process_counts, cpu);
165 
166 	return total;
167 }
168 
arch_release_task_struct(struct task_struct * tsk)169 void __weak arch_release_task_struct(struct task_struct *tsk)
170 {
171 }
172 
173 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
174 static struct kmem_cache *task_struct_cachep;
175 
alloc_task_struct_node(int node)176 static inline struct task_struct *alloc_task_struct_node(int node)
177 {
178 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
179 }
180 
free_task_struct(struct task_struct * tsk)181 static inline void free_task_struct(struct task_struct *tsk)
182 {
183 	kmem_cache_free(task_struct_cachep, tsk);
184 }
185 #endif
186 
187 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
188 
189 /*
190  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
191  * kmemcache based allocator.
192  */
193 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
194 
195 #  ifdef CONFIG_VMAP_STACK
196 /*
197  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
198  * flush.  Try to minimize the number of calls by caching stacks.
199  */
200 #define NR_CACHED_STACKS 2
201 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
202 
203 struct vm_stack {
204 	struct rcu_head rcu;
205 	struct vm_struct *stack_vm_area;
206 };
207 
try_release_thread_stack_to_cache(struct vm_struct * vm)208 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
209 {
210 	unsigned int i;
211 
212 	for (i = 0; i < NR_CACHED_STACKS; i++) {
213 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
214 			continue;
215 		return true;
216 	}
217 	return false;
218 }
219 
thread_stack_free_rcu(struct rcu_head * rh)220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
thread_stack_delayed_free(struct task_struct * tsk)230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
free_vm_stack_cache(unsigned int cpu)238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
memcg_charge_kernel_stack(struct vm_struct * vm)256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 
261 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 	}
269 	return 0;
270 err:
271 	/*
272 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
273 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
274 	 * ignore this page.
275 	 */
276 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
277 		memcg_kmem_uncharge_page(vm->pages[i], 0);
278 	return ret;
279 }
280 
alloc_thread_stack_node(struct task_struct * tsk,int node)281 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
282 {
283 	struct vm_struct *vm;
284 	void *stack;
285 	int i;
286 
287 	for (i = 0; i < NR_CACHED_STACKS; i++) {
288 		struct vm_struct *s;
289 
290 		s = this_cpu_xchg(cached_stacks[i], NULL);
291 
292 		if (!s)
293 			continue;
294 
295 		/* Reset stack metadata. */
296 		kasan_unpoison_range(s->addr, THREAD_SIZE);
297 
298 		stack = kasan_reset_tag(s->addr);
299 
300 		/* Clear stale pointers from reused stack. */
301 		memset(stack, 0, THREAD_SIZE);
302 
303 		if (memcg_charge_kernel_stack(s)) {
304 			vfree(s->addr);
305 			return -ENOMEM;
306 		}
307 
308 		tsk->stack_vm_area = s;
309 		tsk->stack = stack;
310 		return 0;
311 	}
312 
313 	/*
314 	 * Allocated stacks are cached and later reused by new threads,
315 	 * so memcg accounting is performed manually on assigning/releasing
316 	 * stacks to tasks. Drop __GFP_ACCOUNT.
317 	 */
318 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
319 				     VMALLOC_START, VMALLOC_END,
320 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
321 				     PAGE_KERNEL,
322 				     0, node, __builtin_return_address(0));
323 	if (!stack)
324 		return -ENOMEM;
325 
326 	vm = find_vm_area(stack);
327 	if (memcg_charge_kernel_stack(vm)) {
328 		vfree(stack);
329 		return -ENOMEM;
330 	}
331 	/*
332 	 * We can't call find_vm_area() in interrupt context, and
333 	 * free_thread_stack() can be called in interrupt context,
334 	 * so cache the vm_struct.
335 	 */
336 	tsk->stack_vm_area = vm;
337 	stack = kasan_reset_tag(stack);
338 	tsk->stack = stack;
339 	return 0;
340 }
341 
free_thread_stack(struct task_struct * tsk)342 static void free_thread_stack(struct task_struct *tsk)
343 {
344 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
345 		thread_stack_delayed_free(tsk);
346 
347 	tsk->stack = NULL;
348 	tsk->stack_vm_area = NULL;
349 }
350 
351 #  else /* !CONFIG_VMAP_STACK */
352 
thread_stack_free_rcu(struct rcu_head * rh)353 static void thread_stack_free_rcu(struct rcu_head *rh)
354 {
355 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
356 }
357 
thread_stack_delayed_free(struct task_struct * tsk)358 static void thread_stack_delayed_free(struct task_struct *tsk)
359 {
360 	struct rcu_head *rh = tsk->stack;
361 
362 	call_rcu(rh, thread_stack_free_rcu);
363 }
364 
alloc_thread_stack_node(struct task_struct * tsk,int node)365 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
366 {
367 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
368 					     THREAD_SIZE_ORDER);
369 
370 	if (likely(page)) {
371 		tsk->stack = kasan_reset_tag(page_address(page));
372 		return 0;
373 	}
374 	return -ENOMEM;
375 }
376 
free_thread_stack(struct task_struct * tsk)377 static void free_thread_stack(struct task_struct *tsk)
378 {
379 	thread_stack_delayed_free(tsk);
380 	tsk->stack = NULL;
381 }
382 
383 #  endif /* CONFIG_VMAP_STACK */
384 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
385 
386 static struct kmem_cache *thread_stack_cache;
387 
thread_stack_free_rcu(struct rcu_head * rh)388 static void thread_stack_free_rcu(struct rcu_head *rh)
389 {
390 	kmem_cache_free(thread_stack_cache, rh);
391 }
392 
thread_stack_delayed_free(struct task_struct * tsk)393 static void thread_stack_delayed_free(struct task_struct *tsk)
394 {
395 	struct rcu_head *rh = tsk->stack;
396 
397 	call_rcu(rh, thread_stack_free_rcu);
398 }
399 
alloc_thread_stack_node(struct task_struct * tsk,int node)400 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
401 {
402 	unsigned long *stack;
403 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
404 	stack = kasan_reset_tag(stack);
405 	tsk->stack = stack;
406 	return stack ? 0 : -ENOMEM;
407 }
408 
free_thread_stack(struct task_struct * tsk)409 static void free_thread_stack(struct task_struct *tsk)
410 {
411 	thread_stack_delayed_free(tsk);
412 	tsk->stack = NULL;
413 }
414 
thread_stack_cache_init(void)415 void thread_stack_cache_init(void)
416 {
417 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
418 					THREAD_SIZE, THREAD_SIZE, 0, 0,
419 					THREAD_SIZE, NULL);
420 	BUG_ON(thread_stack_cache == NULL);
421 }
422 
423 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
424 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
425 
alloc_thread_stack_node(struct task_struct * tsk,int node)426 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
427 {
428 	unsigned long *stack;
429 
430 	stack = arch_alloc_thread_stack_node(tsk, node);
431 	tsk->stack = stack;
432 	return stack ? 0 : -ENOMEM;
433 }
434 
free_thread_stack(struct task_struct * tsk)435 static void free_thread_stack(struct task_struct *tsk)
436 {
437 	arch_free_thread_stack(tsk);
438 	tsk->stack = NULL;
439 }
440 
441 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
442 
443 /* SLAB cache for signal_struct structures (tsk->signal) */
444 static struct kmem_cache *signal_cachep;
445 
446 /* SLAB cache for sighand_struct structures (tsk->sighand) */
447 struct kmem_cache *sighand_cachep;
448 
449 /* SLAB cache for files_struct structures (tsk->files) */
450 struct kmem_cache *files_cachep;
451 
452 /* SLAB cache for fs_struct structures (tsk->fs) */
453 struct kmem_cache *fs_cachep;
454 
455 /* SLAB cache for vm_area_struct structures */
456 static struct kmem_cache *vm_area_cachep;
457 
458 /* SLAB cache for mm_struct structures (tsk->mm) */
459 static struct kmem_cache *mm_cachep;
460 
461 #ifdef CONFIG_PER_VMA_LOCK
462 
463 /* SLAB cache for vm_area_struct.lock */
464 static struct kmem_cache *vma_lock_cachep;
465 
vma_lock_alloc(struct vm_area_struct * vma)466 static bool vma_lock_alloc(struct vm_area_struct *vma)
467 {
468 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
469 	if (!vma->vm_lock)
470 		return false;
471 
472 	init_rwsem(&vma->vm_lock->lock);
473 	vma->vm_lock_seq = -1;
474 
475 	return true;
476 }
477 
vma_lock_free(struct vm_area_struct * vma)478 static inline void vma_lock_free(struct vm_area_struct *vma)
479 {
480 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
481 }
482 
483 #else /* CONFIG_PER_VMA_LOCK */
484 
vma_lock_alloc(struct vm_area_struct * vma)485 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)486 static inline void vma_lock_free(struct vm_area_struct *vma) {}
487 
488 #endif /* CONFIG_PER_VMA_LOCK */
489 
vm_area_alloc(struct mm_struct * mm)490 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
491 {
492 	struct vm_area_struct *vma;
493 
494 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
495 	if (!vma)
496 		return NULL;
497 
498 	vma_init(vma, mm);
499 	if (!vma_lock_alloc(vma)) {
500 		kmem_cache_free(vm_area_cachep, vma);
501 		return NULL;
502 	}
503 
504 	return vma;
505 }
506 
vm_area_dup(struct vm_area_struct * orig)507 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
508 {
509 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
510 
511 	if (!new)
512 		return NULL;
513 
514 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
515 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
516 	/*
517 	 * orig->shared.rb may be modified concurrently, but the clone
518 	 * will be reinitialized.
519 	 */
520 	data_race(memcpy(new, orig, sizeof(*new)));
521 	if (!vma_lock_alloc(new)) {
522 		kmem_cache_free(vm_area_cachep, new);
523 		return NULL;
524 	}
525 	INIT_LIST_HEAD(&new->anon_vma_chain);
526 	dup_anon_vma_name(orig, new);
527 
528 	return new;
529 }
530 
__vm_area_free(struct vm_area_struct * vma)531 void __vm_area_free(struct vm_area_struct *vma)
532 {
533 	free_anon_vma_name(vma);
534 	vma_lock_free(vma);
535 	kmem_cache_free(vm_area_cachep, vma);
536 }
537 
538 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)539 static void vm_area_free_rcu_cb(struct rcu_head *head)
540 {
541 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
542 						  vm_rcu);
543 
544 	/* The vma should not be locked while being destroyed. */
545 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
546 	__vm_area_free(vma);
547 }
548 #endif
549 
vm_area_free(struct vm_area_struct * vma)550 void vm_area_free(struct vm_area_struct *vma)
551 {
552 #ifdef CONFIG_PER_VMA_LOCK
553 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
554 #else
555 	__vm_area_free(vma);
556 #endif
557 }
558 
account_kernel_stack(struct task_struct * tsk,int account)559 static void account_kernel_stack(struct task_struct *tsk, int account)
560 {
561 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 		struct vm_struct *vm = task_stack_vm_area(tsk);
563 		int i;
564 
565 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
566 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
567 					      account * (PAGE_SIZE / 1024));
568 	} else {
569 		void *stack = task_stack_page(tsk);
570 
571 		/* All stack pages are in the same node. */
572 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
573 				      account * (THREAD_SIZE / 1024));
574 	}
575 }
576 
exit_task_stack_account(struct task_struct * tsk)577 void exit_task_stack_account(struct task_struct *tsk)
578 {
579 	account_kernel_stack(tsk, -1);
580 
581 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
582 		struct vm_struct *vm;
583 		int i;
584 
585 		vm = task_stack_vm_area(tsk);
586 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
587 			memcg_kmem_uncharge_page(vm->pages[i], 0);
588 	}
589 }
590 
release_task_stack(struct task_struct * tsk)591 static void release_task_stack(struct task_struct *tsk)
592 {
593 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
594 		return;  /* Better to leak the stack than to free prematurely */
595 
596 	free_thread_stack(tsk);
597 }
598 
599 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)600 void put_task_stack(struct task_struct *tsk)
601 {
602 	if (refcount_dec_and_test(&tsk->stack_refcount))
603 		release_task_stack(tsk);
604 }
605 #endif
606 
free_task(struct task_struct * tsk)607 void free_task(struct task_struct *tsk)
608 {
609 #ifdef CONFIG_SECCOMP
610 	WARN_ON_ONCE(tsk->seccomp.filter);
611 #endif
612 	cpufreq_task_times_exit(tsk);
613 	release_user_cpus_ptr(tsk);
614 	scs_release(tsk);
615 
616 	trace_android_vh_free_task(tsk);
617 #ifndef CONFIG_THREAD_INFO_IN_TASK
618 	/*
619 	 * The task is finally done with both the stack and thread_info,
620 	 * so free both.
621 	 */
622 	release_task_stack(tsk);
623 #else
624 	/*
625 	 * If the task had a separate stack allocation, it should be gone
626 	 * by now.
627 	 */
628 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
629 #endif
630 	rt_mutex_debug_task_free(tsk);
631 	ftrace_graph_exit_task(tsk);
632 	arch_release_task_struct(tsk);
633 	if (tsk->flags & PF_KTHREAD)
634 		free_kthread_struct(tsk);
635 	bpf_task_storage_free(tsk);
636 	free_task_struct(tsk);
637 }
638 EXPORT_SYMBOL(free_task);
639 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)640 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
641 {
642 	struct file *exe_file;
643 
644 	exe_file = get_mm_exe_file(oldmm);
645 	RCU_INIT_POINTER(mm->exe_file, exe_file);
646 	/*
647 	 * We depend on the oldmm having properly denied write access to the
648 	 * exe_file already.
649 	 */
650 	if (exe_file && deny_write_access(exe_file))
651 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
652 }
653 
654 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)655 static __latent_entropy int dup_mmap(struct mm_struct *mm,
656 					struct mm_struct *oldmm)
657 {
658 	struct vm_area_struct *mpnt, *tmp;
659 	int retval;
660 	unsigned long charge = 0;
661 	LIST_HEAD(uf);
662 	MA_STATE(mas, &mm->mm_mt, 0, 0);
663 
664 	uprobe_start_dup_mmap();
665 	if (mmap_write_lock_killable(oldmm)) {
666 		retval = -EINTR;
667 		goto fail_uprobe_end;
668 	}
669 	flush_cache_dup_mm(oldmm);
670 	uprobe_dup_mmap(oldmm, mm);
671 	/*
672 	 * Not linked in yet - no deadlock potential:
673 	 */
674 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
675 
676 	/* No ordering required: file already has been exposed. */
677 	dup_mm_exe_file(mm, oldmm);
678 
679 	mm->total_vm = oldmm->total_vm;
680 	mm->data_vm = oldmm->data_vm;
681 	mm->exec_vm = oldmm->exec_vm;
682 	mm->stack_vm = oldmm->stack_vm;
683 
684 	retval = ksm_fork(mm, oldmm);
685 	if (retval)
686 		goto out;
687 	khugepaged_fork(mm, oldmm);
688 
689 	/* Use __mt_dup() to efficiently build an identical maple tree. */
690 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
691 	if (unlikely(retval))
692 		goto out;
693 
694 	mt_clear_in_rcu(mas.tree);
695 	mas_for_each(&mas, mpnt, ULONG_MAX) {
696 		struct file *file;
697 
698 		vma_start_write(mpnt);
699 		if (mpnt->vm_flags & VM_DONTCOPY) {
700 			__mas_set_range(&mas, mpnt->vm_start, mpnt->vm_end - 1);
701 			mas_store_gfp(&mas, NULL, GFP_KERNEL);
702 			if (unlikely(mas_is_err(&mas))) {
703 				retval = -ENOMEM;
704 				goto loop_out;
705 			}
706 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
707 			continue;
708 		}
709 		charge = 0;
710 		/*
711 		 * Don't duplicate many vmas if we've been oom-killed (for
712 		 * example)
713 		 */
714 		if (fatal_signal_pending(current)) {
715 			retval = -EINTR;
716 			goto loop_out;
717 		}
718 		if (mpnt->vm_flags & VM_ACCOUNT) {
719 			unsigned long len = vma_pages(mpnt);
720 
721 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
722 				goto fail_nomem;
723 			charge = len;
724 		}
725 		tmp = vm_area_dup(mpnt);
726 		if (!tmp)
727 			goto fail_nomem;
728 		retval = vma_dup_policy(mpnt, tmp);
729 		if (retval)
730 			goto fail_nomem_policy;
731 		tmp->vm_mm = mm;
732 		retval = dup_userfaultfd(tmp, &uf);
733 		if (retval)
734 			goto fail_nomem_anon_vma_fork;
735 		if (tmp->vm_flags & VM_WIPEONFORK) {
736 			/*
737 			 * VM_WIPEONFORK gets a clean slate in the child.
738 			 * Don't prepare anon_vma until fault since we don't
739 			 * copy page for current vma.
740 			 */
741 			tmp->anon_vma = NULL;
742 		} else if (anon_vma_fork(tmp, mpnt))
743 			goto fail_nomem_anon_vma_fork;
744 		vm_flags_clear(tmp, VM_LOCKED_MASK);
745 		file = tmp->vm_file;
746 		if (file) {
747 			struct address_space *mapping = file->f_mapping;
748 
749 			get_file(file);
750 			i_mmap_lock_write(mapping);
751 			if (tmp->vm_flags & VM_SHARED)
752 				mapping_allow_writable(mapping);
753 			flush_dcache_mmap_lock(mapping);
754 			/* insert tmp into the share list, just after mpnt */
755 			vma_interval_tree_insert_after(tmp, mpnt,
756 					&mapping->i_mmap);
757 			flush_dcache_mmap_unlock(mapping);
758 			i_mmap_unlock_write(mapping);
759 		}
760 
761 		/*
762 		 * Copy/update hugetlb private vma information.
763 		 */
764 		if (is_vm_hugetlb_page(tmp))
765 			hugetlb_dup_vma_private(tmp);
766 
767 		/*
768 		 * Link the vma into the MT. After using __mt_dup(), memory
769 		 * allocation is not necessary here, so it cannot fail.
770 		 */
771 		mas.index = tmp->vm_start;
772 		mas.last = tmp->vm_end - 1;
773 		mas_store(&mas, tmp);
774 
775 		mm->map_count++;
776 		if (!(tmp->vm_flags & VM_WIPEONFORK))
777 			retval = copy_page_range(tmp, mpnt);
778 
779 		if (tmp->vm_ops && tmp->vm_ops->open)
780 			tmp->vm_ops->open(tmp);
781 
782 		if (retval) {
783 			mpnt = mas_find(&mas, ULONG_MAX);
784 			goto loop_out;
785 		}
786 	}
787 	/* a new mm has just been created */
788 	retval = arch_dup_mmap(oldmm, mm);
789 loop_out:
790 	mas_destroy(&mas);
791 	if (!retval) {
792 		mt_set_in_rcu(mas.tree);
793 	} else if (mpnt) {
794 		/*
795 		 * The entire maple tree has already been duplicated. If the
796 		 * mmap duplication fails, mark the failure point with
797 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
798 		 * stop releasing VMAs that have not been duplicated after this
799 		 * point.
800 		 */
801 		mas_set_range(&mas, mpnt->vm_start, mpnt->vm_end - 1);
802 		mas_store(&mas, XA_ZERO_ENTRY);
803 	}
804 out:
805 	mmap_write_unlock(mm);
806 	flush_tlb_mm(oldmm);
807 	mmap_write_unlock(oldmm);
808 	dup_userfaultfd_complete(&uf);
809 fail_uprobe_end:
810 	uprobe_end_dup_mmap();
811 	return retval;
812 
813 fail_nomem_anon_vma_fork:
814 	mpol_put(vma_policy(tmp));
815 fail_nomem_policy:
816 	vm_area_free(tmp);
817 fail_nomem:
818 	retval = -ENOMEM;
819 	vm_unacct_memory(charge);
820 	goto loop_out;
821 }
822 
mm_alloc_pgd(struct mm_struct * mm)823 static inline int mm_alloc_pgd(struct mm_struct *mm)
824 {
825 	mm->pgd = pgd_alloc(mm);
826 	if (unlikely(!mm->pgd))
827 		return -ENOMEM;
828 	return 0;
829 }
830 
mm_free_pgd(struct mm_struct * mm)831 static inline void mm_free_pgd(struct mm_struct *mm)
832 {
833 	pgd_free(mm, mm->pgd);
834 }
835 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)836 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
837 {
838 	mmap_write_lock(oldmm);
839 	dup_mm_exe_file(mm, oldmm);
840 	mmap_write_unlock(oldmm);
841 	return 0;
842 }
843 #define mm_alloc_pgd(mm)	(0)
844 #define mm_free_pgd(mm)
845 #endif /* CONFIG_MMU */
846 
check_mm(struct mm_struct * mm)847 static void check_mm(struct mm_struct *mm)
848 {
849 	int i;
850 
851 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
852 			 "Please make sure 'struct resident_page_types[]' is updated as well");
853 
854 	for (i = 0; i < NR_MM_COUNTERS; i++) {
855 		long x = atomic_long_read(&mm->rss_stat.count[i]);
856 
857 		if (unlikely(x))
858 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
859 				 mm, resident_page_types[i], x);
860 	}
861 
862 	if (mm_pgtables_bytes(mm))
863 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
864 				mm_pgtables_bytes(mm));
865 
866 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
867 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
868 #endif
869 }
870 
871 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
872 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
873 
874 /*
875  * Called when the last reference to the mm
876  * is dropped: either by a lazy thread or by
877  * mmput. Free the page directory and the mm.
878  */
__mmdrop(struct mm_struct * mm)879 void __mmdrop(struct mm_struct *mm)
880 {
881 	BUG_ON(mm == &init_mm);
882 	WARN_ON_ONCE(mm == current->mm);
883 	WARN_ON_ONCE(mm == current->active_mm);
884 	mm_free_pgd(mm);
885 	destroy_context(mm);
886 	mmu_notifier_subscriptions_destroy(mm);
887 	check_mm(mm);
888 	put_user_ns(mm->user_ns);
889 	mm_pasid_drop(mm);
890 	free_mm(mm);
891 }
892 EXPORT_SYMBOL_GPL(__mmdrop);
893 
mmdrop_async_fn(struct work_struct * work)894 static void mmdrop_async_fn(struct work_struct *work)
895 {
896 	struct mm_struct *mm;
897 
898 	mm = container_of(work, struct mm_struct, async_put_work);
899 	__mmdrop(mm);
900 }
901 
mmdrop_async(struct mm_struct * mm)902 static void mmdrop_async(struct mm_struct *mm)
903 {
904 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
905 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
906 		schedule_work(&mm->async_put_work);
907 	}
908 }
909 
free_signal_struct(struct signal_struct * sig)910 static inline void free_signal_struct(struct signal_struct *sig)
911 {
912 	taskstats_tgid_free(sig);
913 	sched_autogroup_exit(sig);
914 	/*
915 	 * __mmdrop is not safe to call from softirq context on x86 due to
916 	 * pgd_dtor so postpone it to the async context
917 	 */
918 	if (sig->oom_mm)
919 		mmdrop_async(sig->oom_mm);
920 	kmem_cache_free(signal_cachep, sig);
921 }
922 
put_signal_struct(struct signal_struct * sig)923 static inline void put_signal_struct(struct signal_struct *sig)
924 {
925 	if (refcount_dec_and_test(&sig->sigcnt))
926 		free_signal_struct(sig);
927 }
928 
__put_task_struct(struct task_struct * tsk)929 void __put_task_struct(struct task_struct *tsk)
930 {
931 	WARN_ON(!tsk->exit_state);
932 	WARN_ON(refcount_read(&tsk->usage));
933 	WARN_ON(tsk == current);
934 
935 	io_uring_free(tsk);
936 	cgroup_free(tsk);
937 	task_numa_free(tsk, true);
938 	security_task_free(tsk);
939 	exit_creds(tsk);
940 	delayacct_tsk_free(tsk);
941 	put_signal_struct(tsk->signal);
942 	sched_core_free(tsk);
943 	free_task(tsk);
944 }
945 EXPORT_SYMBOL_GPL(__put_task_struct);
946 
__put_task_struct_rcu_cb(struct rcu_head * rhp)947 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
948 {
949 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
950 
951 	__put_task_struct(task);
952 }
953 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
954 
arch_task_cache_init(void)955 void __init __weak arch_task_cache_init(void) { }
956 
957 /*
958  * set_max_threads
959  */
set_max_threads(unsigned int max_threads_suggested)960 static void set_max_threads(unsigned int max_threads_suggested)
961 {
962 	u64 threads;
963 	unsigned long nr_pages = totalram_pages();
964 
965 	/*
966 	 * The number of threads shall be limited such that the thread
967 	 * structures may only consume a small part of the available memory.
968 	 */
969 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
970 		threads = MAX_THREADS;
971 	else
972 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
973 				    (u64) THREAD_SIZE * 8UL);
974 
975 	if (threads > max_threads_suggested)
976 		threads = max_threads_suggested;
977 
978 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
979 }
980 
981 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
982 /* Initialized by the architecture: */
983 int arch_task_struct_size __read_mostly;
984 #endif
985 
986 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)987 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
988 {
989 	/* Fetch thread_struct whitelist for the architecture. */
990 	arch_thread_struct_whitelist(offset, size);
991 
992 	/*
993 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
994 	 * adjust offset to position of thread_struct in task_struct.
995 	 */
996 	if (unlikely(*size == 0))
997 		*offset = 0;
998 	else
999 		*offset += offsetof(struct task_struct, thread);
1000 }
1001 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1002 
fork_init(void)1003 void __init fork_init(void)
1004 {
1005 	int i;
1006 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1007 #ifndef ARCH_MIN_TASKALIGN
1008 #define ARCH_MIN_TASKALIGN	0
1009 #endif
1010 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1011 	unsigned long useroffset, usersize;
1012 
1013 	/* create a slab on which task_structs can be allocated */
1014 	task_struct_whitelist(&useroffset, &usersize);
1015 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1016 			arch_task_struct_size, align,
1017 			SLAB_PANIC|SLAB_ACCOUNT,
1018 			useroffset, usersize, NULL);
1019 #endif
1020 
1021 	/* do the arch specific task caches init */
1022 	arch_task_cache_init();
1023 
1024 	set_max_threads(MAX_THREADS);
1025 
1026 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1027 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1028 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1029 		init_task.signal->rlim[RLIMIT_NPROC];
1030 
1031 	for (i = 0; i < UCOUNT_COUNTS; i++)
1032 		init_user_ns.ucount_max[i] = max_threads/2;
1033 
1034 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1035 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1036 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1037 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1038 
1039 #ifdef CONFIG_VMAP_STACK
1040 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1041 			  NULL, free_vm_stack_cache);
1042 #endif
1043 
1044 	scs_init();
1045 
1046 	lockdep_init_task(&init_task);
1047 	uprobes_init();
1048 }
1049 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1050 int __weak arch_dup_task_struct(struct task_struct *dst,
1051 					       struct task_struct *src)
1052 {
1053 	*dst = *src;
1054 	return 0;
1055 }
1056 
set_task_stack_end_magic(struct task_struct * tsk)1057 void set_task_stack_end_magic(struct task_struct *tsk)
1058 {
1059 	unsigned long *stackend;
1060 
1061 	stackend = end_of_stack(tsk);
1062 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1063 }
1064 
dup_task_struct(struct task_struct * orig,int node)1065 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1066 {
1067 	struct task_struct *tsk;
1068 	int err;
1069 
1070 	if (node == NUMA_NO_NODE)
1071 		node = tsk_fork_get_node(orig);
1072 	tsk = alloc_task_struct_node(node);
1073 	if (!tsk)
1074 		return NULL;
1075 
1076 	err = arch_dup_task_struct(tsk, orig);
1077 	if (err)
1078 		goto free_tsk;
1079 
1080 	err = alloc_thread_stack_node(tsk, node);
1081 	if (err)
1082 		goto free_tsk;
1083 
1084 #ifdef CONFIG_THREAD_INFO_IN_TASK
1085 	refcount_set(&tsk->stack_refcount, 1);
1086 #endif
1087 	account_kernel_stack(tsk, 1);
1088 
1089 	err = scs_prepare(tsk, node);
1090 	if (err)
1091 		goto free_stack;
1092 
1093 #ifdef CONFIG_SECCOMP
1094 	/*
1095 	 * We must handle setting up seccomp filters once we're under
1096 	 * the sighand lock in case orig has changed between now and
1097 	 * then. Until then, filter must be NULL to avoid messing up
1098 	 * the usage counts on the error path calling free_task.
1099 	 */
1100 	tsk->seccomp.filter = NULL;
1101 #endif
1102 
1103 	setup_thread_stack(tsk, orig);
1104 	clear_user_return_notifier(tsk);
1105 	clear_tsk_need_resched(tsk);
1106 	set_task_stack_end_magic(tsk);
1107 	clear_syscall_work_syscall_user_dispatch(tsk);
1108 
1109 #ifdef CONFIG_STACKPROTECTOR
1110 	tsk->stack_canary = get_random_canary();
1111 #endif
1112 	if (orig->cpus_ptr == &orig->cpus_mask)
1113 		tsk->cpus_ptr = &tsk->cpus_mask;
1114 	dup_user_cpus_ptr(tsk, orig, node);
1115 
1116 	/*
1117 	 * One for the user space visible state that goes away when reaped.
1118 	 * One for the scheduler.
1119 	 */
1120 	refcount_set(&tsk->rcu_users, 2);
1121 	/* One for the rcu users */
1122 	refcount_set(&tsk->usage, 1);
1123 #ifdef CONFIG_BLK_DEV_IO_TRACE
1124 	tsk->btrace_seq = 0;
1125 #endif
1126 	tsk->splice_pipe = NULL;
1127 	tsk->task_frag.page = NULL;
1128 	tsk->wake_q.next = NULL;
1129 	tsk->worker_private = NULL;
1130 
1131 	kcov_task_init(tsk);
1132 	kmsan_task_create(tsk);
1133 	kmap_local_fork(tsk);
1134 
1135 #ifdef CONFIG_FAULT_INJECTION
1136 	tsk->fail_nth = 0;
1137 #endif
1138 
1139 #ifdef CONFIG_BLK_CGROUP
1140 	tsk->throttle_queue = NULL;
1141 	tsk->use_memdelay = 0;
1142 #endif
1143 
1144 #ifdef CONFIG_IOMMU_SVA
1145 	tsk->pasid_activated = 0;
1146 #endif
1147 
1148 #ifdef CONFIG_MEMCG
1149 	tsk->active_memcg = NULL;
1150 #endif
1151 
1152 #ifdef CONFIG_CPU_SUP_INTEL
1153 	tsk->reported_split_lock = 0;
1154 #endif
1155 
1156 	android_init_vendor_data(tsk, 1);
1157 	android_init_oem_data(tsk, 1);
1158 
1159 	trace_android_vh_dup_task_struct(tsk, orig);
1160 	return tsk;
1161 
1162 free_stack:
1163 	exit_task_stack_account(tsk);
1164 	free_thread_stack(tsk);
1165 free_tsk:
1166 	free_task_struct(tsk);
1167 	return NULL;
1168 }
1169 
1170 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1171 
1172 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1173 
coredump_filter_setup(char * s)1174 static int __init coredump_filter_setup(char *s)
1175 {
1176 	default_dump_filter =
1177 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1178 		MMF_DUMP_FILTER_MASK;
1179 	return 1;
1180 }
1181 
1182 __setup("coredump_filter=", coredump_filter_setup);
1183 
1184 #include <linux/init_task.h>
1185 
mm_init_aio(struct mm_struct * mm)1186 static void mm_init_aio(struct mm_struct *mm)
1187 {
1188 #ifdef CONFIG_AIO
1189 	spin_lock_init(&mm->ioctx_lock);
1190 	mm->ioctx_table = NULL;
1191 #endif
1192 }
1193 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1194 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1195 					   struct task_struct *p)
1196 {
1197 #ifdef CONFIG_MEMCG
1198 	if (mm->owner == p)
1199 		WRITE_ONCE(mm->owner, NULL);
1200 #endif
1201 }
1202 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1203 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1204 {
1205 #ifdef CONFIG_MEMCG
1206 	mm->owner = p;
1207 #endif
1208 }
1209 
mm_init_uprobes_state(struct mm_struct * mm)1210 static void mm_init_uprobes_state(struct mm_struct *mm)
1211 {
1212 #ifdef CONFIG_UPROBES
1213 	mm->uprobes_state.xol_area = NULL;
1214 #endif
1215 }
1216 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1217 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1218 	struct user_namespace *user_ns)
1219 {
1220 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1221 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1222 	atomic_set(&mm->mm_users, 1);
1223 	atomic_set(&mm->mm_count, 1);
1224 	seqcount_init(&mm->write_protect_seq);
1225 	mmap_init_lock(mm);
1226 	INIT_LIST_HEAD(&mm->mmlist);
1227 #ifdef CONFIG_PER_VMA_LOCK
1228 	mm->mm_lock_seq = 0;
1229 #endif
1230 	mm_pgtables_bytes_init(mm);
1231 	mm->map_count = 0;
1232 	mm->locked_vm = 0;
1233 	atomic64_set(&mm->pinned_vm, 0);
1234 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1235 	spin_lock_init(&mm->page_table_lock);
1236 	spin_lock_init(&mm->arg_lock);
1237 	mm_init_cpumask(mm);
1238 	mm_init_aio(mm);
1239 	mm_init_owner(mm, p);
1240 	mm_pasid_init(mm);
1241 	RCU_INIT_POINTER(mm->exe_file, NULL);
1242 	mmu_notifier_subscriptions_init(mm);
1243 	init_tlb_flush_pending(mm);
1244 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1245 	mm->pmd_huge_pte = NULL;
1246 #endif
1247 	mm_init_uprobes_state(mm);
1248 	hugetlb_count_init(mm);
1249 
1250 	if (current->mm) {
1251 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1252 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1253 	} else {
1254 		mm->flags = default_dump_filter;
1255 		mm->def_flags = 0;
1256 	}
1257 
1258 	if (mm_alloc_pgd(mm))
1259 		goto fail_nopgd;
1260 
1261 	if (init_new_context(p, mm))
1262 		goto fail_nocontext;
1263 
1264 	mm->user_ns = get_user_ns(user_ns);
1265 	lru_gen_init_mm(mm);
1266 	return mm;
1267 
1268 fail_nocontext:
1269 	mm_free_pgd(mm);
1270 fail_nopgd:
1271 	free_mm(mm);
1272 	return NULL;
1273 }
1274 
1275 /*
1276  * Allocate and initialize an mm_struct.
1277  */
mm_alloc(void)1278 struct mm_struct *mm_alloc(void)
1279 {
1280 	struct mm_struct *mm;
1281 
1282 	mm = allocate_mm();
1283 	if (!mm)
1284 		return NULL;
1285 
1286 	memset(mm, 0, sizeof(*mm));
1287 	return mm_init(mm, current, current_user_ns());
1288 }
1289 
__mmput(struct mm_struct * mm)1290 static inline void __mmput(struct mm_struct *mm)
1291 {
1292 	VM_BUG_ON(atomic_read(&mm->mm_users));
1293 
1294 	uprobe_clear_state(mm);
1295 	exit_aio(mm);
1296 	ksm_exit(mm);
1297 	khugepaged_exit(mm); /* must run before exit_mmap */
1298 	exit_mmap(mm);
1299 	mm_put_huge_zero_page(mm);
1300 	set_mm_exe_file(mm, NULL);
1301 	if (!list_empty(&mm->mmlist)) {
1302 		spin_lock(&mmlist_lock);
1303 		list_del(&mm->mmlist);
1304 		spin_unlock(&mmlist_lock);
1305 	}
1306 	if (mm->binfmt)
1307 		module_put(mm->binfmt->module);
1308 	lru_gen_del_mm(mm);
1309 	mmdrop(mm);
1310 }
1311 
1312 /*
1313  * Decrement the use count and release all resources for an mm.
1314  */
mmput(struct mm_struct * mm)1315 void mmput(struct mm_struct *mm)
1316 {
1317 	might_sleep();
1318 
1319 	if (atomic_dec_and_test(&mm->mm_users)) {
1320 		trace_android_vh_mmput(mm);
1321 		__mmput(mm);
1322 	}
1323 }
1324 EXPORT_SYMBOL_GPL(mmput);
1325 
1326 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1327 static void mmput_async_fn(struct work_struct *work)
1328 {
1329 	struct mm_struct *mm = container_of(work, struct mm_struct,
1330 					    async_put_work);
1331 
1332 	__mmput(mm);
1333 }
1334 
mmput_async(struct mm_struct * mm)1335 void mmput_async(struct mm_struct *mm)
1336 {
1337 	if (atomic_dec_and_test(&mm->mm_users)) {
1338 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1339 		schedule_work(&mm->async_put_work);
1340 	}
1341 }
1342 EXPORT_SYMBOL_GPL(mmput_async);
1343 #endif
1344 
1345 /**
1346  * set_mm_exe_file - change a reference to the mm's executable file
1347  *
1348  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1349  *
1350  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1351  * invocations: in mmput() nobody alive left, in execve task is single
1352  * threaded.
1353  *
1354  * Can only fail if new_exe_file != NULL.
1355  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1356 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1357 {
1358 	struct file *old_exe_file;
1359 
1360 	/*
1361 	 * It is safe to dereference the exe_file without RCU as
1362 	 * this function is only called if nobody else can access
1363 	 * this mm -- see comment above for justification.
1364 	 */
1365 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1366 
1367 	if (new_exe_file) {
1368 		/*
1369 		 * We expect the caller (i.e., sys_execve) to already denied
1370 		 * write access, so this is unlikely to fail.
1371 		 */
1372 		if (unlikely(deny_write_access(new_exe_file)))
1373 			return -EACCES;
1374 		get_file(new_exe_file);
1375 	}
1376 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1377 	if (old_exe_file) {
1378 		allow_write_access(old_exe_file);
1379 		fput(old_exe_file);
1380 	}
1381 	return 0;
1382 }
1383 
1384 /**
1385  * replace_mm_exe_file - replace a reference to the mm's executable file
1386  *
1387  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1388  * dealing with concurrent invocation and without grabbing the mmap lock in
1389  * write mode.
1390  *
1391  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1392  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1393 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1394 {
1395 	struct vm_area_struct *vma;
1396 	struct file *old_exe_file;
1397 	int ret = 0;
1398 
1399 	/* Forbid mm->exe_file change if old file still mapped. */
1400 	old_exe_file = get_mm_exe_file(mm);
1401 	if (old_exe_file) {
1402 		VMA_ITERATOR(vmi, mm, 0);
1403 		mmap_read_lock(mm);
1404 		for_each_vma(vmi, vma) {
1405 			if (!vma->vm_file)
1406 				continue;
1407 			if (path_equal(&vma->vm_file->f_path,
1408 				       &old_exe_file->f_path)) {
1409 				ret = -EBUSY;
1410 				break;
1411 			}
1412 		}
1413 		mmap_read_unlock(mm);
1414 		fput(old_exe_file);
1415 		if (ret)
1416 			return ret;
1417 	}
1418 
1419 	/* set the new file, lockless */
1420 	ret = deny_write_access(new_exe_file);
1421 	if (ret)
1422 		return -EACCES;
1423 	get_file(new_exe_file);
1424 
1425 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1426 	if (old_exe_file) {
1427 		/*
1428 		 * Don't race with dup_mmap() getting the file and disallowing
1429 		 * write access while someone might open the file writable.
1430 		 */
1431 		mmap_read_lock(mm);
1432 		allow_write_access(old_exe_file);
1433 		fput(old_exe_file);
1434 		mmap_read_unlock(mm);
1435 	}
1436 	return 0;
1437 }
1438 
1439 /**
1440  * get_mm_exe_file - acquire a reference to the mm's executable file
1441  *
1442  * Returns %NULL if mm has no associated executable file.
1443  * User must release file via fput().
1444  */
get_mm_exe_file(struct mm_struct * mm)1445 struct file *get_mm_exe_file(struct mm_struct *mm)
1446 {
1447 	struct file *exe_file;
1448 
1449 	rcu_read_lock();
1450 	exe_file = rcu_dereference(mm->exe_file);
1451 	if (exe_file && !get_file_rcu(exe_file))
1452 		exe_file = NULL;
1453 	rcu_read_unlock();
1454 	return exe_file;
1455 }
1456 
1457 /**
1458  * get_task_exe_file - acquire a reference to the task's executable file
1459  *
1460  * Returns %NULL if task's mm (if any) has no associated executable file or
1461  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1462  * User must release file via fput().
1463  */
get_task_exe_file(struct task_struct * task)1464 struct file *get_task_exe_file(struct task_struct *task)
1465 {
1466 	struct file *exe_file = NULL;
1467 	struct mm_struct *mm;
1468 
1469 	task_lock(task);
1470 	mm = task->mm;
1471 	if (mm) {
1472 		if (!(task->flags & PF_KTHREAD))
1473 			exe_file = get_mm_exe_file(mm);
1474 	}
1475 	task_unlock(task);
1476 	return exe_file;
1477 }
1478 
1479 /**
1480  * get_task_mm - acquire a reference to the task's mm
1481  *
1482  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1483  * this kernel workthread has transiently adopted a user mm with use_mm,
1484  * to do its AIO) is not set and if so returns a reference to it, after
1485  * bumping up the use count.  User must release the mm via mmput()
1486  * after use.  Typically used by /proc and ptrace.
1487  */
get_task_mm(struct task_struct * task)1488 struct mm_struct *get_task_mm(struct task_struct *task)
1489 {
1490 	struct mm_struct *mm;
1491 
1492 	task_lock(task);
1493 	mm = task->mm;
1494 	if (mm) {
1495 		if (task->flags & PF_KTHREAD)
1496 			mm = NULL;
1497 		else
1498 			mmget(mm);
1499 	}
1500 	task_unlock(task);
1501 	return mm;
1502 }
1503 EXPORT_SYMBOL_GPL(get_task_mm);
1504 
mm_access(struct task_struct * task,unsigned int mode)1505 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1506 {
1507 	struct mm_struct *mm;
1508 	int err;
1509 
1510 	err =  down_read_killable(&task->signal->exec_update_lock);
1511 	if (err)
1512 		return ERR_PTR(err);
1513 
1514 	mm = get_task_mm(task);
1515 	if (mm && mm != current->mm &&
1516 			!ptrace_may_access(task, mode)) {
1517 		mmput(mm);
1518 		mm = ERR_PTR(-EACCES);
1519 	}
1520 	up_read(&task->signal->exec_update_lock);
1521 
1522 	return mm;
1523 }
1524 
complete_vfork_done(struct task_struct * tsk)1525 static void complete_vfork_done(struct task_struct *tsk)
1526 {
1527 	struct completion *vfork;
1528 
1529 	task_lock(tsk);
1530 	vfork = tsk->vfork_done;
1531 	if (likely(vfork)) {
1532 		tsk->vfork_done = NULL;
1533 		complete(vfork);
1534 	}
1535 	task_unlock(tsk);
1536 }
1537 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1538 static int wait_for_vfork_done(struct task_struct *child,
1539 				struct completion *vfork)
1540 {
1541 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1542 	int killed;
1543 
1544 	cgroup_enter_frozen();
1545 	killed = wait_for_completion_state(vfork, state);
1546 	cgroup_leave_frozen(false);
1547 
1548 	if (killed) {
1549 		task_lock(child);
1550 		child->vfork_done = NULL;
1551 		task_unlock(child);
1552 	}
1553 
1554 	put_task_struct(child);
1555 	return killed;
1556 }
1557 
1558 /* Please note the differences between mmput and mm_release.
1559  * mmput is called whenever we stop holding onto a mm_struct,
1560  * error success whatever.
1561  *
1562  * mm_release is called after a mm_struct has been removed
1563  * from the current process.
1564  *
1565  * This difference is important for error handling, when we
1566  * only half set up a mm_struct for a new process and need to restore
1567  * the old one.  Because we mmput the new mm_struct before
1568  * restoring the old one. . .
1569  * Eric Biederman 10 January 1998
1570  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1571 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1572 {
1573 	uprobe_free_utask(tsk);
1574 
1575 	/* Get rid of any cached register state */
1576 	deactivate_mm(tsk, mm);
1577 
1578 	/*
1579 	 * Signal userspace if we're not exiting with a core dump
1580 	 * because we want to leave the value intact for debugging
1581 	 * purposes.
1582 	 */
1583 	if (tsk->clear_child_tid) {
1584 		if (atomic_read(&mm->mm_users) > 1) {
1585 			/*
1586 			 * We don't check the error code - if userspace has
1587 			 * not set up a proper pointer then tough luck.
1588 			 */
1589 			put_user(0, tsk->clear_child_tid);
1590 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1591 					1, NULL, NULL, 0, 0);
1592 		}
1593 		tsk->clear_child_tid = NULL;
1594 	}
1595 
1596 	/*
1597 	 * All done, finally we can wake up parent and return this mm to him.
1598 	 * Also kthread_stop() uses this completion for synchronization.
1599 	 */
1600 	if (tsk->vfork_done)
1601 		complete_vfork_done(tsk);
1602 }
1603 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1604 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1605 {
1606 	futex_exit_release(tsk);
1607 	mm_release(tsk, mm);
1608 }
1609 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1610 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1611 {
1612 	futex_exec_release(tsk);
1613 	mm_release(tsk, mm);
1614 }
1615 
1616 /**
1617  * dup_mm() - duplicates an existing mm structure
1618  * @tsk: the task_struct with which the new mm will be associated.
1619  * @oldmm: the mm to duplicate.
1620  *
1621  * Allocates a new mm structure and duplicates the provided @oldmm structure
1622  * content into it.
1623  *
1624  * Return: the duplicated mm or NULL on failure.
1625  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1626 static struct mm_struct *dup_mm(struct task_struct *tsk,
1627 				struct mm_struct *oldmm)
1628 {
1629 	struct mm_struct *mm;
1630 	int err;
1631 
1632 	mm = allocate_mm();
1633 	if (!mm)
1634 		goto fail_nomem;
1635 
1636 	memcpy(mm, oldmm, sizeof(*mm));
1637 
1638 	if (!mm_init(mm, tsk, mm->user_ns))
1639 		goto fail_nomem;
1640 
1641 	err = dup_mmap(mm, oldmm);
1642 	if (err)
1643 		goto free_pt;
1644 
1645 	mm->hiwater_rss = get_mm_rss(mm);
1646 	mm->hiwater_vm = mm->total_vm;
1647 
1648 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1649 		goto free_pt;
1650 
1651 	return mm;
1652 
1653 free_pt:
1654 	/* don't put binfmt in mmput, we haven't got module yet */
1655 	mm->binfmt = NULL;
1656 	mm_init_owner(mm, NULL);
1657 	mmput(mm);
1658 
1659 fail_nomem:
1660 	return NULL;
1661 }
1662 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1663 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1664 {
1665 	struct mm_struct *mm, *oldmm;
1666 
1667 	tsk->min_flt = tsk->maj_flt = 0;
1668 	tsk->nvcsw = tsk->nivcsw = 0;
1669 #ifdef CONFIG_DETECT_HUNG_TASK
1670 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1671 	tsk->last_switch_time = 0;
1672 #endif
1673 
1674 	tsk->mm = NULL;
1675 	tsk->active_mm = NULL;
1676 
1677 	/*
1678 	 * Are we cloning a kernel thread?
1679 	 *
1680 	 * We need to steal a active VM for that..
1681 	 */
1682 	oldmm = current->mm;
1683 	if (!oldmm)
1684 		return 0;
1685 
1686 	if (clone_flags & CLONE_VM) {
1687 		mmget(oldmm);
1688 		mm = oldmm;
1689 	} else {
1690 		mm = dup_mm(tsk, current->mm);
1691 		if (!mm)
1692 			return -ENOMEM;
1693 	}
1694 
1695 	tsk->mm = mm;
1696 	tsk->active_mm = mm;
1697 	return 0;
1698 }
1699 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1700 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1701 {
1702 	struct fs_struct *fs = current->fs;
1703 	if (clone_flags & CLONE_FS) {
1704 		/* tsk->fs is already what we want */
1705 		spin_lock(&fs->lock);
1706 		if (fs->in_exec) {
1707 			spin_unlock(&fs->lock);
1708 			return -EAGAIN;
1709 		}
1710 		fs->users++;
1711 		spin_unlock(&fs->lock);
1712 		return 0;
1713 	}
1714 	tsk->fs = copy_fs_struct(fs);
1715 	if (!tsk->fs)
1716 		return -ENOMEM;
1717 	return 0;
1718 }
1719 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1720 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1721 {
1722 	struct files_struct *oldf, *newf;
1723 	int error = 0;
1724 
1725 	/*
1726 	 * A background process may not have any files ...
1727 	 */
1728 	oldf = current->files;
1729 	if (!oldf)
1730 		goto out;
1731 
1732 	if (clone_flags & CLONE_FILES) {
1733 		atomic_inc(&oldf->count);
1734 		goto out;
1735 	}
1736 
1737 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1738 	if (!newf)
1739 		goto out;
1740 
1741 	tsk->files = newf;
1742 	error = 0;
1743 out:
1744 	return error;
1745 }
1746 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1747 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1748 {
1749 	struct sighand_struct *sig;
1750 
1751 	if (clone_flags & CLONE_SIGHAND) {
1752 		refcount_inc(&current->sighand->count);
1753 		return 0;
1754 	}
1755 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1756 	RCU_INIT_POINTER(tsk->sighand, sig);
1757 	if (!sig)
1758 		return -ENOMEM;
1759 
1760 	refcount_set(&sig->count, 1);
1761 	spin_lock_irq(&current->sighand->siglock);
1762 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1763 	spin_unlock_irq(&current->sighand->siglock);
1764 
1765 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1766 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1767 		flush_signal_handlers(tsk, 0);
1768 
1769 	return 0;
1770 }
1771 
__cleanup_sighand(struct sighand_struct * sighand)1772 void __cleanup_sighand(struct sighand_struct *sighand)
1773 {
1774 	if (refcount_dec_and_test(&sighand->count)) {
1775 		signalfd_cleanup(sighand);
1776 		/*
1777 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1778 		 * without an RCU grace period, see __lock_task_sighand().
1779 		 */
1780 		kmem_cache_free(sighand_cachep, sighand);
1781 	}
1782 }
1783 
1784 /*
1785  * Initialize POSIX timer handling for a thread group.
1786  */
posix_cpu_timers_init_group(struct signal_struct * sig)1787 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1788 {
1789 	struct posix_cputimers *pct = &sig->posix_cputimers;
1790 	unsigned long cpu_limit;
1791 
1792 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1793 	posix_cputimers_group_init(pct, cpu_limit);
1794 }
1795 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1796 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1797 {
1798 	struct signal_struct *sig;
1799 
1800 	if (clone_flags & CLONE_THREAD)
1801 		return 0;
1802 
1803 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1804 	tsk->signal = sig;
1805 	if (!sig)
1806 		return -ENOMEM;
1807 
1808 	sig->nr_threads = 1;
1809 	sig->quick_threads = 1;
1810 	atomic_set(&sig->live, 1);
1811 	refcount_set(&sig->sigcnt, 1);
1812 
1813 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1814 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1815 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1816 
1817 	init_waitqueue_head(&sig->wait_chldexit);
1818 	sig->curr_target = tsk;
1819 	init_sigpending(&sig->shared_pending);
1820 	INIT_HLIST_HEAD(&sig->multiprocess);
1821 	seqlock_init(&sig->stats_lock);
1822 	prev_cputime_init(&sig->prev_cputime);
1823 
1824 #ifdef CONFIG_POSIX_TIMERS
1825 	INIT_LIST_HEAD(&sig->posix_timers);
1826 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1827 	sig->real_timer.function = it_real_fn;
1828 #endif
1829 
1830 	task_lock(current->group_leader);
1831 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1832 	task_unlock(current->group_leader);
1833 
1834 	posix_cpu_timers_init_group(sig);
1835 
1836 	tty_audit_fork(sig);
1837 	sched_autogroup_fork(sig);
1838 
1839 	sig->oom_score_adj = current->signal->oom_score_adj;
1840 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1841 
1842 	mutex_init(&sig->cred_guard_mutex);
1843 	init_rwsem(&sig->exec_update_lock);
1844 
1845 	return 0;
1846 }
1847 
copy_seccomp(struct task_struct * p)1848 static void copy_seccomp(struct task_struct *p)
1849 {
1850 #ifdef CONFIG_SECCOMP
1851 	/*
1852 	 * Must be called with sighand->lock held, which is common to
1853 	 * all threads in the group. Holding cred_guard_mutex is not
1854 	 * needed because this new task is not yet running and cannot
1855 	 * be racing exec.
1856 	 */
1857 	assert_spin_locked(&current->sighand->siglock);
1858 
1859 	/* Ref-count the new filter user, and assign it. */
1860 	get_seccomp_filter(current);
1861 	p->seccomp = current->seccomp;
1862 
1863 	/*
1864 	 * Explicitly enable no_new_privs here in case it got set
1865 	 * between the task_struct being duplicated and holding the
1866 	 * sighand lock. The seccomp state and nnp must be in sync.
1867 	 */
1868 	if (task_no_new_privs(current))
1869 		task_set_no_new_privs(p);
1870 
1871 	/*
1872 	 * If the parent gained a seccomp mode after copying thread
1873 	 * flags and between before we held the sighand lock, we have
1874 	 * to manually enable the seccomp thread flag here.
1875 	 */
1876 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1877 		set_task_syscall_work(p, SECCOMP);
1878 #endif
1879 }
1880 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1881 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1882 {
1883 	current->clear_child_tid = tidptr;
1884 
1885 	return task_pid_vnr(current);
1886 }
1887 
rt_mutex_init_task(struct task_struct * p)1888 static void rt_mutex_init_task(struct task_struct *p)
1889 {
1890 	raw_spin_lock_init(&p->pi_lock);
1891 #ifdef CONFIG_RT_MUTEXES
1892 	p->pi_waiters = RB_ROOT_CACHED;
1893 	p->pi_top_task = NULL;
1894 	p->pi_blocked_on = NULL;
1895 #endif
1896 }
1897 
init_task_pid_links(struct task_struct * task)1898 static inline void init_task_pid_links(struct task_struct *task)
1899 {
1900 	enum pid_type type;
1901 
1902 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1903 		INIT_HLIST_NODE(&task->pid_links[type]);
1904 }
1905 
1906 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1907 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1908 {
1909 	if (type == PIDTYPE_PID)
1910 		task->thread_pid = pid;
1911 	else
1912 		task->signal->pids[type] = pid;
1913 }
1914 
rcu_copy_process(struct task_struct * p)1915 static inline void rcu_copy_process(struct task_struct *p)
1916 {
1917 #ifdef CONFIG_PREEMPT_RCU
1918 	p->rcu_read_lock_nesting = 0;
1919 	p->rcu_read_unlock_special.s = 0;
1920 	p->rcu_blocked_node = NULL;
1921 	INIT_LIST_HEAD(&p->rcu_node_entry);
1922 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1923 #ifdef CONFIG_TASKS_RCU
1924 	p->rcu_tasks_holdout = false;
1925 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1926 	p->rcu_tasks_idle_cpu = -1;
1927 #endif /* #ifdef CONFIG_TASKS_RCU */
1928 #ifdef CONFIG_TASKS_TRACE_RCU
1929 	p->trc_reader_nesting = 0;
1930 	p->trc_reader_special.s = 0;
1931 	INIT_LIST_HEAD(&p->trc_holdout_list);
1932 	INIT_LIST_HEAD(&p->trc_blkd_node);
1933 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1934 }
1935 
pidfd_pid(const struct file * file)1936 struct pid *pidfd_pid(const struct file *file)
1937 {
1938 	if (file->f_op == &pidfd_fops)
1939 		return file->private_data;
1940 
1941 	return ERR_PTR(-EBADF);
1942 }
1943 
pidfd_release(struct inode * inode,struct file * file)1944 static int pidfd_release(struct inode *inode, struct file *file)
1945 {
1946 	struct pid *pid = file->private_data;
1947 
1948 	file->private_data = NULL;
1949 	put_pid(pid);
1950 	return 0;
1951 }
1952 
1953 #ifdef CONFIG_PROC_FS
1954 /**
1955  * pidfd_show_fdinfo - print information about a pidfd
1956  * @m: proc fdinfo file
1957  * @f: file referencing a pidfd
1958  *
1959  * Pid:
1960  * This function will print the pid that a given pidfd refers to in the
1961  * pid namespace of the procfs instance.
1962  * If the pid namespace of the process is not a descendant of the pid
1963  * namespace of the procfs instance 0 will be shown as its pid. This is
1964  * similar to calling getppid() on a process whose parent is outside of
1965  * its pid namespace.
1966  *
1967  * NSpid:
1968  * If pid namespaces are supported then this function will also print
1969  * the pid of a given pidfd refers to for all descendant pid namespaces
1970  * starting from the current pid namespace of the instance, i.e. the
1971  * Pid field and the first entry in the NSpid field will be identical.
1972  * If the pid namespace of the process is not a descendant of the pid
1973  * namespace of the procfs instance 0 will be shown as its first NSpid
1974  * entry and no others will be shown.
1975  * Note that this differs from the Pid and NSpid fields in
1976  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1977  * the  pid namespace of the procfs instance. The difference becomes
1978  * obvious when sending around a pidfd between pid namespaces from a
1979  * different branch of the tree, i.e. where no ancestral relation is
1980  * present between the pid namespaces:
1981  * - create two new pid namespaces ns1 and ns2 in the initial pid
1982  *   namespace (also take care to create new mount namespaces in the
1983  *   new pid namespace and mount procfs)
1984  * - create a process with a pidfd in ns1
1985  * - send pidfd from ns1 to ns2
1986  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1987  *   have exactly one entry, which is 0
1988  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1989 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1990 {
1991 	struct pid *pid = f->private_data;
1992 	struct pid_namespace *ns;
1993 	pid_t nr = -1;
1994 
1995 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1996 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1997 		nr = pid_nr_ns(pid, ns);
1998 	}
1999 
2000 	seq_put_decimal_ll(m, "Pid:\t", nr);
2001 
2002 #ifdef CONFIG_PID_NS
2003 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2004 	if (nr > 0) {
2005 		int i;
2006 
2007 		/* If nr is non-zero it means that 'pid' is valid and that
2008 		 * ns, i.e. the pid namespace associated with the procfs
2009 		 * instance, is in the pid namespace hierarchy of pid.
2010 		 * Start at one below the already printed level.
2011 		 */
2012 		for (i = ns->level + 1; i <= pid->level; i++)
2013 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2014 	}
2015 #endif
2016 	seq_putc(m, '\n');
2017 }
2018 #endif
2019 
2020 /*
2021  * Poll support for process exit notification.
2022  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2023 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2024 {
2025 	struct pid *pid = file->private_data;
2026 	__poll_t poll_flags = 0;
2027 
2028 	poll_wait(file, &pid->wait_pidfd, pts);
2029 
2030 	/*
2031 	 * Inform pollers only when the whole thread group exits.
2032 	 * If the thread group leader exits before all other threads in the
2033 	 * group, then poll(2) should block, similar to the wait(2) family.
2034 	 */
2035 	if (thread_group_exited(pid))
2036 		poll_flags = EPOLLIN | EPOLLRDNORM;
2037 
2038 	return poll_flags;
2039 }
2040 
2041 const struct file_operations pidfd_fops = {
2042 	.release = pidfd_release,
2043 	.poll = pidfd_poll,
2044 #ifdef CONFIG_PROC_FS
2045 	.show_fdinfo = pidfd_show_fdinfo,
2046 #endif
2047 };
2048 
__delayed_free_task(struct rcu_head * rhp)2049 static void __delayed_free_task(struct rcu_head *rhp)
2050 {
2051 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2052 
2053 	free_task(tsk);
2054 }
2055 
delayed_free_task(struct task_struct * tsk)2056 static __always_inline void delayed_free_task(struct task_struct *tsk)
2057 {
2058 	if (IS_ENABLED(CONFIG_MEMCG))
2059 		call_rcu(&tsk->rcu, __delayed_free_task);
2060 	else
2061 		free_task(tsk);
2062 }
2063 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2064 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2065 {
2066 	/* Skip if kernel thread */
2067 	if (!tsk->mm)
2068 		return;
2069 
2070 	/* Skip if spawning a thread or using vfork */
2071 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2072 		return;
2073 
2074 	/* We need to synchronize with __set_oom_adj */
2075 	mutex_lock(&oom_adj_mutex);
2076 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2077 	/* Update the values in case they were changed after copy_signal */
2078 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2079 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2080 	mutex_unlock(&oom_adj_mutex);
2081 }
2082 
2083 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2084 static void rv_task_fork(struct task_struct *p)
2085 {
2086 	int i;
2087 
2088 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2089 		p->rv[i].da_mon.monitoring = false;
2090 }
2091 #else
2092 #define rv_task_fork(p) do {} while (0)
2093 #endif
2094 
2095 /*
2096  * This creates a new process as a copy of the old one,
2097  * but does not actually start it yet.
2098  *
2099  * It copies the registers, and all the appropriate
2100  * parts of the process environment (as per the clone
2101  * flags). The actual kick-off is left to the caller.
2102  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2103 static __latent_entropy struct task_struct *copy_process(
2104 					struct pid *pid,
2105 					int trace,
2106 					int node,
2107 					struct kernel_clone_args *args)
2108 {
2109 	int pidfd = -1, retval;
2110 	struct task_struct *p;
2111 	struct multiprocess_signals delayed;
2112 	struct file *pidfile = NULL;
2113 	const u64 clone_flags = args->flags;
2114 	struct nsproxy *nsp = current->nsproxy;
2115 
2116 	/*
2117 	 * Don't allow sharing the root directory with processes in a different
2118 	 * namespace
2119 	 */
2120 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2121 		return ERR_PTR(-EINVAL);
2122 
2123 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2124 		return ERR_PTR(-EINVAL);
2125 
2126 	/*
2127 	 * Thread groups must share signals as well, and detached threads
2128 	 * can only be started up within the thread group.
2129 	 */
2130 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2131 		return ERR_PTR(-EINVAL);
2132 
2133 	/*
2134 	 * Shared signal handlers imply shared VM. By way of the above,
2135 	 * thread groups also imply shared VM. Blocking this case allows
2136 	 * for various simplifications in other code.
2137 	 */
2138 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2139 		return ERR_PTR(-EINVAL);
2140 
2141 	/*
2142 	 * Siblings of global init remain as zombies on exit since they are
2143 	 * not reaped by their parent (swapper). To solve this and to avoid
2144 	 * multi-rooted process trees, prevent global and container-inits
2145 	 * from creating siblings.
2146 	 */
2147 	if ((clone_flags & CLONE_PARENT) &&
2148 				current->signal->flags & SIGNAL_UNKILLABLE)
2149 		return ERR_PTR(-EINVAL);
2150 
2151 	/*
2152 	 * If the new process will be in a different pid or user namespace
2153 	 * do not allow it to share a thread group with the forking task.
2154 	 */
2155 	if (clone_flags & CLONE_THREAD) {
2156 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2157 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2158 			return ERR_PTR(-EINVAL);
2159 	}
2160 
2161 	/*
2162 	 * If the new process will be in a different time namespace
2163 	 * do not allow it to share VM or a thread group with the forking task.
2164 	 */
2165 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2166 		if (nsp->time_ns != nsp->time_ns_for_children)
2167 			return ERR_PTR(-EINVAL);
2168 	}
2169 
2170 	if (clone_flags & CLONE_PIDFD) {
2171 		/*
2172 		 * - CLONE_DETACHED is blocked so that we can potentially
2173 		 *   reuse it later for CLONE_PIDFD.
2174 		 * - CLONE_THREAD is blocked until someone really needs it.
2175 		 */
2176 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2177 			return ERR_PTR(-EINVAL);
2178 	}
2179 
2180 	/*
2181 	 * Force any signals received before this point to be delivered
2182 	 * before the fork happens.  Collect up signals sent to multiple
2183 	 * processes that happen during the fork and delay them so that
2184 	 * they appear to happen after the fork.
2185 	 */
2186 	sigemptyset(&delayed.signal);
2187 	INIT_HLIST_NODE(&delayed.node);
2188 
2189 	spin_lock_irq(&current->sighand->siglock);
2190 	if (!(clone_flags & CLONE_THREAD))
2191 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2192 	recalc_sigpending();
2193 	spin_unlock_irq(&current->sighand->siglock);
2194 	retval = -ERESTARTNOINTR;
2195 	if (task_sigpending(current))
2196 		goto fork_out;
2197 
2198 	retval = -ENOMEM;
2199 	p = dup_task_struct(current, node);
2200 	if (!p)
2201 		goto fork_out;
2202 	p->flags &= ~PF_KTHREAD;
2203 	if (args->kthread)
2204 		p->flags |= PF_KTHREAD;
2205 	if (args->io_thread) {
2206 		/*
2207 		 * Mark us an IO worker, and block any signal that isn't
2208 		 * fatal or STOP
2209 		 */
2210 		p->flags |= PF_IO_WORKER;
2211 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2212 	}
2213 
2214 	cpufreq_task_times_init(p);
2215 
2216 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2217 	/*
2218 	 * Clear TID on mm_release()?
2219 	 */
2220 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2221 
2222 	ftrace_graph_init_task(p);
2223 
2224 	rt_mutex_init_task(p);
2225 
2226 	lockdep_assert_irqs_enabled();
2227 #ifdef CONFIG_PROVE_LOCKING
2228 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2229 #endif
2230 	retval = copy_creds(p, clone_flags);
2231 	if (retval < 0)
2232 		goto bad_fork_free;
2233 
2234 	retval = -EAGAIN;
2235 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2236 		if (p->real_cred->user != INIT_USER &&
2237 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2238 			goto bad_fork_cleanup_count;
2239 	}
2240 	current->flags &= ~PF_NPROC_EXCEEDED;
2241 
2242 	/*
2243 	 * If multiple threads are within copy_process(), then this check
2244 	 * triggers too late. This doesn't hurt, the check is only there
2245 	 * to stop root fork bombs.
2246 	 */
2247 	retval = -EAGAIN;
2248 	if (data_race(nr_threads >= max_threads))
2249 		goto bad_fork_cleanup_count;
2250 
2251 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2252 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2253 	p->flags |= PF_FORKNOEXEC;
2254 	INIT_LIST_HEAD(&p->children);
2255 	INIT_LIST_HEAD(&p->sibling);
2256 	rcu_copy_process(p);
2257 	p->vfork_done = NULL;
2258 	spin_lock_init(&p->alloc_lock);
2259 
2260 	init_sigpending(&p->pending);
2261 
2262 	p->utime = p->stime = p->gtime = 0;
2263 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2264 	p->utimescaled = p->stimescaled = 0;
2265 #endif
2266 	prev_cputime_init(&p->prev_cputime);
2267 
2268 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2269 	seqcount_init(&p->vtime.seqcount);
2270 	p->vtime.starttime = 0;
2271 	p->vtime.state = VTIME_INACTIVE;
2272 #endif
2273 
2274 #ifdef CONFIG_IO_URING
2275 	p->io_uring = NULL;
2276 #endif
2277 
2278 #if defined(SPLIT_RSS_COUNTING)
2279 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2280 #endif
2281 
2282 	p->default_timer_slack_ns = current->timer_slack_ns;
2283 
2284 #ifdef CONFIG_PSI
2285 	p->psi_flags = 0;
2286 #endif
2287 
2288 	task_io_accounting_init(&p->ioac);
2289 	acct_clear_integrals(p);
2290 
2291 	posix_cputimers_init(&p->posix_cputimers);
2292 
2293 	p->io_context = NULL;
2294 	audit_set_context(p, NULL);
2295 	cgroup_fork(p);
2296 	if (args->kthread) {
2297 		if (!set_kthread_struct(p))
2298 			goto bad_fork_cleanup_delayacct;
2299 	}
2300 #ifdef CONFIG_NUMA
2301 	p->mempolicy = mpol_dup(p->mempolicy);
2302 	if (IS_ERR(p->mempolicy)) {
2303 		retval = PTR_ERR(p->mempolicy);
2304 		p->mempolicy = NULL;
2305 		goto bad_fork_cleanup_delayacct;
2306 	}
2307 #endif
2308 #ifdef CONFIG_CPUSETS
2309 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2310 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2311 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2312 #endif
2313 #ifdef CONFIG_TRACE_IRQFLAGS
2314 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2315 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2316 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2317 	p->softirqs_enabled		= 1;
2318 	p->softirq_context		= 0;
2319 #endif
2320 
2321 	p->pagefault_disabled = 0;
2322 
2323 #ifdef CONFIG_LOCKDEP
2324 	lockdep_init_task(p);
2325 #endif
2326 
2327 #ifdef CONFIG_DEBUG_MUTEXES
2328 	p->blocked_on = NULL; /* not blocked yet */
2329 #endif
2330 #ifdef CONFIG_BCACHE
2331 	p->sequential_io	= 0;
2332 	p->sequential_io_avg	= 0;
2333 #endif
2334 #ifdef CONFIG_BPF_SYSCALL
2335 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2336 	p->bpf_ctx = NULL;
2337 #endif
2338 
2339 	/* Perform scheduler related setup. Assign this task to a CPU. */
2340 	retval = sched_fork(clone_flags, p);
2341 	if (retval)
2342 		goto bad_fork_cleanup_policy;
2343 
2344 	retval = perf_event_init_task(p, clone_flags);
2345 	if (retval)
2346 		goto bad_fork_cleanup_policy;
2347 	retval = audit_alloc(p);
2348 	if (retval)
2349 		goto bad_fork_cleanup_perf;
2350 	/* copy all the process information */
2351 	shm_init_task(p);
2352 	retval = security_task_alloc(p, clone_flags);
2353 	if (retval)
2354 		goto bad_fork_cleanup_audit;
2355 	retval = copy_semundo(clone_flags, p);
2356 	if (retval)
2357 		goto bad_fork_cleanup_security;
2358 	retval = copy_files(clone_flags, p);
2359 	if (retval)
2360 		goto bad_fork_cleanup_semundo;
2361 	retval = copy_fs(clone_flags, p);
2362 	if (retval)
2363 		goto bad_fork_cleanup_files;
2364 	retval = copy_sighand(clone_flags, p);
2365 	if (retval)
2366 		goto bad_fork_cleanup_fs;
2367 	retval = copy_signal(clone_flags, p);
2368 	if (retval)
2369 		goto bad_fork_cleanup_sighand;
2370 	retval = copy_mm(clone_flags, p);
2371 	if (retval)
2372 		goto bad_fork_cleanup_signal;
2373 	retval = copy_namespaces(clone_flags, p);
2374 	if (retval)
2375 		goto bad_fork_cleanup_mm;
2376 	retval = copy_io(clone_flags, p);
2377 	if (retval)
2378 		goto bad_fork_cleanup_namespaces;
2379 	retval = copy_thread(p, args);
2380 	if (retval)
2381 		goto bad_fork_cleanup_io;
2382 
2383 	stackleak_task_init(p);
2384 
2385 	if (pid != &init_struct_pid) {
2386 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2387 				args->set_tid_size);
2388 		if (IS_ERR(pid)) {
2389 			retval = PTR_ERR(pid);
2390 			goto bad_fork_cleanup_thread;
2391 		}
2392 	}
2393 
2394 	/*
2395 	 * This has to happen after we've potentially unshared the file
2396 	 * descriptor table (so that the pidfd doesn't leak into the child
2397 	 * if the fd table isn't shared).
2398 	 */
2399 	if (clone_flags & CLONE_PIDFD) {
2400 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2401 		if (retval < 0)
2402 			goto bad_fork_free_pid;
2403 
2404 		pidfd = retval;
2405 
2406 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2407 					      O_RDWR | O_CLOEXEC);
2408 		if (IS_ERR(pidfile)) {
2409 			put_unused_fd(pidfd);
2410 			retval = PTR_ERR(pidfile);
2411 			goto bad_fork_free_pid;
2412 		}
2413 		get_pid(pid);	/* held by pidfile now */
2414 
2415 		retval = put_user(pidfd, args->pidfd);
2416 		if (retval)
2417 			goto bad_fork_put_pidfd;
2418 	}
2419 
2420 #ifdef CONFIG_BLOCK
2421 	p->plug = NULL;
2422 #endif
2423 	futex_init_task(p);
2424 
2425 	/*
2426 	 * sigaltstack should be cleared when sharing the same VM
2427 	 */
2428 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2429 		sas_ss_reset(p);
2430 
2431 	/*
2432 	 * Syscall tracing and stepping should be turned off in the
2433 	 * child regardless of CLONE_PTRACE.
2434 	 */
2435 	user_disable_single_step(p);
2436 	clear_task_syscall_work(p, SYSCALL_TRACE);
2437 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2438 	clear_task_syscall_work(p, SYSCALL_EMU);
2439 #endif
2440 	clear_tsk_latency_tracing(p);
2441 
2442 	/* ok, now we should be set up.. */
2443 	p->pid = pid_nr(pid);
2444 	if (clone_flags & CLONE_THREAD) {
2445 		p->group_leader = current->group_leader;
2446 		p->tgid = current->tgid;
2447 	} else {
2448 		p->group_leader = p;
2449 		p->tgid = p->pid;
2450 	}
2451 
2452 	p->nr_dirtied = 0;
2453 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2454 	p->dirty_paused_when = 0;
2455 
2456 	p->pdeath_signal = 0;
2457 	INIT_LIST_HEAD(&p->thread_group);
2458 	p->task_works = NULL;
2459 	clear_posix_cputimers_work(p);
2460 
2461 #ifdef CONFIG_KRETPROBES
2462 	p->kretprobe_instances.first = NULL;
2463 #endif
2464 #ifdef CONFIG_RETHOOK
2465 	p->rethooks.first = NULL;
2466 #endif
2467 
2468 	/*
2469 	 * Ensure that the cgroup subsystem policies allow the new process to be
2470 	 * forked. It should be noted that the new process's css_set can be changed
2471 	 * between here and cgroup_post_fork() if an organisation operation is in
2472 	 * progress.
2473 	 */
2474 	retval = cgroup_can_fork(p, args);
2475 	if (retval)
2476 		goto bad_fork_put_pidfd;
2477 
2478 	/*
2479 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2480 	 * the new task on the correct runqueue. All this *before* the task
2481 	 * becomes visible.
2482 	 *
2483 	 * This isn't part of ->can_fork() because while the re-cloning is
2484 	 * cgroup specific, it unconditionally needs to place the task on a
2485 	 * runqueue.
2486 	 */
2487 	sched_cgroup_fork(p, args);
2488 
2489 	/*
2490 	 * From this point on we must avoid any synchronous user-space
2491 	 * communication until we take the tasklist-lock. In particular, we do
2492 	 * not want user-space to be able to predict the process start-time by
2493 	 * stalling fork(2) after we recorded the start_time but before it is
2494 	 * visible to the system.
2495 	 */
2496 
2497 	p->start_time = ktime_get_ns();
2498 	p->start_boottime = ktime_get_boottime_ns();
2499 
2500 	/*
2501 	 * Make it visible to the rest of the system, but dont wake it up yet.
2502 	 * Need tasklist lock for parent etc handling!
2503 	 */
2504 	write_lock_irq(&tasklist_lock);
2505 
2506 	/* CLONE_PARENT re-uses the old parent */
2507 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2508 		p->real_parent = current->real_parent;
2509 		p->parent_exec_id = current->parent_exec_id;
2510 		if (clone_flags & CLONE_THREAD)
2511 			p->exit_signal = -1;
2512 		else
2513 			p->exit_signal = current->group_leader->exit_signal;
2514 	} else {
2515 		p->real_parent = current;
2516 		p->parent_exec_id = current->self_exec_id;
2517 		p->exit_signal = args->exit_signal;
2518 	}
2519 
2520 	klp_copy_process(p);
2521 
2522 	sched_core_fork(p);
2523 
2524 	spin_lock(&current->sighand->siglock);
2525 
2526 	rv_task_fork(p);
2527 
2528 	rseq_fork(p, clone_flags);
2529 
2530 	/* Don't start children in a dying pid namespace */
2531 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2532 		retval = -ENOMEM;
2533 		goto bad_fork_cancel_cgroup;
2534 	}
2535 
2536 	/* Let kill terminate clone/fork in the middle */
2537 	if (fatal_signal_pending(current)) {
2538 		retval = -EINTR;
2539 		goto bad_fork_cancel_cgroup;
2540 	}
2541 
2542 	/* No more failure paths after this point. */
2543 
2544 	/*
2545 	 * Copy seccomp details explicitly here, in case they were changed
2546 	 * before holding sighand lock.
2547 	 */
2548 	copy_seccomp(p);
2549 
2550 	init_task_pid_links(p);
2551 	if (likely(p->pid)) {
2552 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2553 
2554 		init_task_pid(p, PIDTYPE_PID, pid);
2555 		if (thread_group_leader(p)) {
2556 			init_task_pid(p, PIDTYPE_TGID, pid);
2557 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2558 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2559 
2560 			if (is_child_reaper(pid)) {
2561 				ns_of_pid(pid)->child_reaper = p;
2562 				p->signal->flags |= SIGNAL_UNKILLABLE;
2563 			}
2564 			p->signal->shared_pending.signal = delayed.signal;
2565 			p->signal->tty = tty_kref_get(current->signal->tty);
2566 			/*
2567 			 * Inherit has_child_subreaper flag under the same
2568 			 * tasklist_lock with adding child to the process tree
2569 			 * for propagate_has_child_subreaper optimization.
2570 			 */
2571 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2572 							 p->real_parent->signal->is_child_subreaper;
2573 			list_add_tail(&p->sibling, &p->real_parent->children);
2574 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2575 			attach_pid(p, PIDTYPE_TGID);
2576 			attach_pid(p, PIDTYPE_PGID);
2577 			attach_pid(p, PIDTYPE_SID);
2578 			__this_cpu_inc(process_counts);
2579 		} else {
2580 			current->signal->nr_threads++;
2581 			current->signal->quick_threads++;
2582 			atomic_inc(&current->signal->live);
2583 			refcount_inc(&current->signal->sigcnt);
2584 			task_join_group_stop(p);
2585 			list_add_tail_rcu(&p->thread_group,
2586 					  &p->group_leader->thread_group);
2587 			list_add_tail_rcu(&p->thread_node,
2588 					  &p->signal->thread_head);
2589 		}
2590 		attach_pid(p, PIDTYPE_PID);
2591 		nr_threads++;
2592 	}
2593 	trace_android_vh_copy_process(current, nr_threads, current->signal->nr_threads);
2594 	total_forks++;
2595 	hlist_del_init(&delayed.node);
2596 	spin_unlock(&current->sighand->siglock);
2597 	syscall_tracepoint_update(p);
2598 	write_unlock_irq(&tasklist_lock);
2599 
2600 	if (pidfile)
2601 		fd_install(pidfd, pidfile);
2602 
2603 	proc_fork_connector(p);
2604 	sched_post_fork(p);
2605 	cgroup_post_fork(p, args);
2606 	perf_event_fork(p);
2607 
2608 	trace_task_newtask(p, clone_flags);
2609 	uprobe_copy_process(p, clone_flags);
2610 
2611 	copy_oom_score_adj(clone_flags, p);
2612 
2613 	return p;
2614 
2615 bad_fork_cancel_cgroup:
2616 	sched_core_free(p);
2617 	spin_unlock(&current->sighand->siglock);
2618 	write_unlock_irq(&tasklist_lock);
2619 	cgroup_cancel_fork(p, args);
2620 bad_fork_put_pidfd:
2621 	if (clone_flags & CLONE_PIDFD) {
2622 		fput(pidfile);
2623 		put_unused_fd(pidfd);
2624 	}
2625 bad_fork_free_pid:
2626 	if (pid != &init_struct_pid)
2627 		free_pid(pid);
2628 bad_fork_cleanup_thread:
2629 	exit_thread(p);
2630 bad_fork_cleanup_io:
2631 	if (p->io_context)
2632 		exit_io_context(p);
2633 bad_fork_cleanup_namespaces:
2634 	exit_task_namespaces(p);
2635 bad_fork_cleanup_mm:
2636 	if (p->mm) {
2637 		mm_clear_owner(p->mm, p);
2638 		mmput(p->mm);
2639 	}
2640 bad_fork_cleanup_signal:
2641 	if (!(clone_flags & CLONE_THREAD))
2642 		free_signal_struct(p->signal);
2643 bad_fork_cleanup_sighand:
2644 	__cleanup_sighand(p->sighand);
2645 bad_fork_cleanup_fs:
2646 	exit_fs(p); /* blocking */
2647 bad_fork_cleanup_files:
2648 	exit_files(p); /* blocking */
2649 bad_fork_cleanup_semundo:
2650 	exit_sem(p);
2651 bad_fork_cleanup_security:
2652 	security_task_free(p);
2653 bad_fork_cleanup_audit:
2654 	audit_free(p);
2655 bad_fork_cleanup_perf:
2656 	perf_event_free_task(p);
2657 bad_fork_cleanup_policy:
2658 	lockdep_free_task(p);
2659 #ifdef CONFIG_NUMA
2660 	mpol_put(p->mempolicy);
2661 #endif
2662 bad_fork_cleanup_delayacct:
2663 	delayacct_tsk_free(p);
2664 bad_fork_cleanup_count:
2665 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2666 	exit_creds(p);
2667 bad_fork_free:
2668 	WRITE_ONCE(p->__state, TASK_DEAD);
2669 	exit_task_stack_account(p);
2670 	put_task_stack(p);
2671 	delayed_free_task(p);
2672 fork_out:
2673 	spin_lock_irq(&current->sighand->siglock);
2674 	hlist_del_init(&delayed.node);
2675 	spin_unlock_irq(&current->sighand->siglock);
2676 	return ERR_PTR(retval);
2677 }
2678 
init_idle_pids(struct task_struct * idle)2679 static inline void init_idle_pids(struct task_struct *idle)
2680 {
2681 	enum pid_type type;
2682 
2683 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2684 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2685 		init_task_pid(idle, type, &init_struct_pid);
2686 	}
2687 }
2688 
idle_dummy(void * dummy)2689 static int idle_dummy(void *dummy)
2690 {
2691 	/* This function is never called */
2692 	return 0;
2693 }
2694 
fork_idle(int cpu)2695 struct task_struct * __init fork_idle(int cpu)
2696 {
2697 	struct task_struct *task;
2698 	struct kernel_clone_args args = {
2699 		.flags		= CLONE_VM,
2700 		.fn		= &idle_dummy,
2701 		.fn_arg		= NULL,
2702 		.kthread	= 1,
2703 		.idle		= 1,
2704 	};
2705 
2706 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2707 	if (!IS_ERR(task)) {
2708 		init_idle_pids(task);
2709 		init_idle(task, cpu);
2710 	}
2711 
2712 	return task;
2713 }
2714 
2715 /*
2716  * This is like kernel_clone(), but shaved down and tailored to just
2717  * creating io_uring workers. It returns a created task, or an error pointer.
2718  * The returned task is inactive, and the caller must fire it up through
2719  * wake_up_new_task(p). All signals are blocked in the created task.
2720  */
create_io_thread(int (* fn)(void *),void * arg,int node)2721 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2722 {
2723 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2724 				CLONE_IO;
2725 	struct kernel_clone_args args = {
2726 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2727 				    CLONE_UNTRACED) & ~CSIGNAL),
2728 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2729 		.fn		= fn,
2730 		.fn_arg		= arg,
2731 		.io_thread	= 1,
2732 	};
2733 
2734 	return copy_process(NULL, 0, node, &args);
2735 }
2736 
2737 /*
2738  *  Ok, this is the main fork-routine.
2739  *
2740  * It copies the process, and if successful kick-starts
2741  * it and waits for it to finish using the VM if required.
2742  *
2743  * args->exit_signal is expected to be checked for sanity by the caller.
2744  */
kernel_clone(struct kernel_clone_args * args)2745 pid_t kernel_clone(struct kernel_clone_args *args)
2746 {
2747 	u64 clone_flags = args->flags;
2748 	struct completion vfork;
2749 	struct pid *pid;
2750 	struct task_struct *p;
2751 	int trace = 0;
2752 	pid_t nr;
2753 
2754 	/*
2755 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2756 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2757 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2758 	 * field in struct clone_args and it still doesn't make sense to have
2759 	 * them both point at the same memory location. Performing this check
2760 	 * here has the advantage that we don't need to have a separate helper
2761 	 * to check for legacy clone().
2762 	 */
2763 	if ((args->flags & CLONE_PIDFD) &&
2764 	    (args->flags & CLONE_PARENT_SETTID) &&
2765 	    (args->pidfd == args->parent_tid))
2766 		return -EINVAL;
2767 
2768 	/*
2769 	 * Determine whether and which event to report to ptracer.  When
2770 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2771 	 * requested, no event is reported; otherwise, report if the event
2772 	 * for the type of forking is enabled.
2773 	 */
2774 	if (!(clone_flags & CLONE_UNTRACED)) {
2775 		if (clone_flags & CLONE_VFORK)
2776 			trace = PTRACE_EVENT_VFORK;
2777 		else if (args->exit_signal != SIGCHLD)
2778 			trace = PTRACE_EVENT_CLONE;
2779 		else
2780 			trace = PTRACE_EVENT_FORK;
2781 
2782 		if (likely(!ptrace_event_enabled(current, trace)))
2783 			trace = 0;
2784 	}
2785 
2786 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2787 	add_latent_entropy();
2788 
2789 	if (IS_ERR(p))
2790 		return PTR_ERR(p);
2791 
2792 	cpufreq_task_times_alloc(p);
2793 
2794 	/*
2795 	 * Do this prior waking up the new thread - the thread pointer
2796 	 * might get invalid after that point, if the thread exits quickly.
2797 	 */
2798 	trace_sched_process_fork(current, p);
2799 
2800 	pid = get_task_pid(p, PIDTYPE_PID);
2801 	nr = pid_vnr(pid);
2802 
2803 	if (clone_flags & CLONE_PARENT_SETTID)
2804 		put_user(nr, args->parent_tid);
2805 
2806 	if (clone_flags & CLONE_VFORK) {
2807 		p->vfork_done = &vfork;
2808 		init_completion(&vfork);
2809 		get_task_struct(p);
2810 	}
2811 
2812 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2813 		/* lock the task to synchronize with memcg migration */
2814 		task_lock(p);
2815 		lru_gen_add_mm(p->mm);
2816 		task_unlock(p);
2817 	}
2818 
2819 	wake_up_new_task(p);
2820 
2821 	/* forking complete and child started to run, tell ptracer */
2822 	if (unlikely(trace))
2823 		ptrace_event_pid(trace, pid);
2824 
2825 	if (clone_flags & CLONE_VFORK) {
2826 		if (!wait_for_vfork_done(p, &vfork))
2827 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2828 	}
2829 
2830 	put_pid(pid);
2831 	return nr;
2832 }
2833 
2834 /*
2835  * Create a kernel thread.
2836  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2837 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2838 {
2839 	struct kernel_clone_args args = {
2840 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2841 				    CLONE_UNTRACED) & ~CSIGNAL),
2842 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2843 		.fn		= fn,
2844 		.fn_arg		= arg,
2845 		.kthread	= 1,
2846 	};
2847 
2848 	return kernel_clone(&args);
2849 }
2850 
2851 /*
2852  * Create a user mode thread.
2853  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2854 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2855 {
2856 	struct kernel_clone_args args = {
2857 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2858 				    CLONE_UNTRACED) & ~CSIGNAL),
2859 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2860 		.fn		= fn,
2861 		.fn_arg		= arg,
2862 	};
2863 
2864 	return kernel_clone(&args);
2865 }
2866 
2867 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2868 SYSCALL_DEFINE0(fork)
2869 {
2870 #ifdef CONFIG_MMU
2871 	struct kernel_clone_args args = {
2872 		.exit_signal = SIGCHLD,
2873 	};
2874 
2875 	return kernel_clone(&args);
2876 #else
2877 	/* can not support in nommu mode */
2878 	return -EINVAL;
2879 #endif
2880 }
2881 #endif
2882 
2883 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2884 SYSCALL_DEFINE0(vfork)
2885 {
2886 	struct kernel_clone_args args = {
2887 		.flags		= CLONE_VFORK | CLONE_VM,
2888 		.exit_signal	= SIGCHLD,
2889 	};
2890 
2891 	return kernel_clone(&args);
2892 }
2893 #endif
2894 
2895 #ifdef __ARCH_WANT_SYS_CLONE
2896 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2897 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2898 		 int __user *, parent_tidptr,
2899 		 unsigned long, tls,
2900 		 int __user *, child_tidptr)
2901 #elif defined(CONFIG_CLONE_BACKWARDS2)
2902 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2903 		 int __user *, parent_tidptr,
2904 		 int __user *, child_tidptr,
2905 		 unsigned long, tls)
2906 #elif defined(CONFIG_CLONE_BACKWARDS3)
2907 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2908 		int, stack_size,
2909 		int __user *, parent_tidptr,
2910 		int __user *, child_tidptr,
2911 		unsigned long, tls)
2912 #else
2913 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2914 		 int __user *, parent_tidptr,
2915 		 int __user *, child_tidptr,
2916 		 unsigned long, tls)
2917 #endif
2918 {
2919 	struct kernel_clone_args args = {
2920 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2921 		.pidfd		= parent_tidptr,
2922 		.child_tid	= child_tidptr,
2923 		.parent_tid	= parent_tidptr,
2924 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2925 		.stack		= newsp,
2926 		.tls		= tls,
2927 	};
2928 
2929 	return kernel_clone(&args);
2930 }
2931 #endif
2932 
2933 #ifdef __ARCH_WANT_SYS_CLONE3
2934 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2935 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2936 					      struct clone_args __user *uargs,
2937 					      size_t usize)
2938 {
2939 	int err;
2940 	struct clone_args args;
2941 	pid_t *kset_tid = kargs->set_tid;
2942 
2943 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2944 		     CLONE_ARGS_SIZE_VER0);
2945 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2946 		     CLONE_ARGS_SIZE_VER1);
2947 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2948 		     CLONE_ARGS_SIZE_VER2);
2949 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2950 
2951 	if (unlikely(usize > PAGE_SIZE))
2952 		return -E2BIG;
2953 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2954 		return -EINVAL;
2955 
2956 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2957 	if (err)
2958 		return err;
2959 
2960 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2961 		return -EINVAL;
2962 
2963 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2964 		return -EINVAL;
2965 
2966 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2967 		return -EINVAL;
2968 
2969 	/*
2970 	 * Verify that higher 32bits of exit_signal are unset and that
2971 	 * it is a valid signal
2972 	 */
2973 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2974 		     !valid_signal(args.exit_signal)))
2975 		return -EINVAL;
2976 
2977 	if ((args.flags & CLONE_INTO_CGROUP) &&
2978 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2979 		return -EINVAL;
2980 
2981 	*kargs = (struct kernel_clone_args){
2982 		.flags		= args.flags,
2983 		.pidfd		= u64_to_user_ptr(args.pidfd),
2984 		.child_tid	= u64_to_user_ptr(args.child_tid),
2985 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2986 		.exit_signal	= args.exit_signal,
2987 		.stack		= args.stack,
2988 		.stack_size	= args.stack_size,
2989 		.tls		= args.tls,
2990 		.set_tid_size	= args.set_tid_size,
2991 		.cgroup		= args.cgroup,
2992 	};
2993 
2994 	if (args.set_tid &&
2995 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2996 			(kargs->set_tid_size * sizeof(pid_t))))
2997 		return -EFAULT;
2998 
2999 	kargs->set_tid = kset_tid;
3000 
3001 	return 0;
3002 }
3003 
3004 /**
3005  * clone3_stack_valid - check and prepare stack
3006  * @kargs: kernel clone args
3007  *
3008  * Verify that the stack arguments userspace gave us are sane.
3009  * In addition, set the stack direction for userspace since it's easy for us to
3010  * determine.
3011  */
clone3_stack_valid(struct kernel_clone_args * kargs)3012 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3013 {
3014 	if (kargs->stack == 0) {
3015 		if (kargs->stack_size > 0)
3016 			return false;
3017 	} else {
3018 		if (kargs->stack_size == 0)
3019 			return false;
3020 
3021 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3022 			return false;
3023 
3024 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3025 		kargs->stack += kargs->stack_size;
3026 #endif
3027 	}
3028 
3029 	return true;
3030 }
3031 
clone3_args_valid(struct kernel_clone_args * kargs)3032 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3033 {
3034 	/* Verify that no unknown flags are passed along. */
3035 	if (kargs->flags &
3036 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3037 		return false;
3038 
3039 	/*
3040 	 * - make the CLONE_DETACHED bit reusable for clone3
3041 	 * - make the CSIGNAL bits reusable for clone3
3042 	 */
3043 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3044 		return false;
3045 
3046 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3047 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3048 		return false;
3049 
3050 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3051 	    kargs->exit_signal)
3052 		return false;
3053 
3054 	if (!clone3_stack_valid(kargs))
3055 		return false;
3056 
3057 	return true;
3058 }
3059 
3060 /**
3061  * clone3 - create a new process with specific properties
3062  * @uargs: argument structure
3063  * @size:  size of @uargs
3064  *
3065  * clone3() is the extensible successor to clone()/clone2().
3066  * It takes a struct as argument that is versioned by its size.
3067  *
3068  * Return: On success, a positive PID for the child process.
3069  *         On error, a negative errno number.
3070  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3071 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3072 {
3073 	int err;
3074 
3075 	struct kernel_clone_args kargs;
3076 	pid_t set_tid[MAX_PID_NS_LEVEL];
3077 
3078 	kargs.set_tid = set_tid;
3079 
3080 	err = copy_clone_args_from_user(&kargs, uargs, size);
3081 	if (err)
3082 		return err;
3083 
3084 	if (!clone3_args_valid(&kargs))
3085 		return -EINVAL;
3086 
3087 	return kernel_clone(&kargs);
3088 }
3089 #endif
3090 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3091 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3092 {
3093 	struct task_struct *leader, *parent, *child;
3094 	int res;
3095 
3096 	read_lock(&tasklist_lock);
3097 	leader = top = top->group_leader;
3098 down:
3099 	for_each_thread(leader, parent) {
3100 		list_for_each_entry(child, &parent->children, sibling) {
3101 			res = visitor(child, data);
3102 			if (res) {
3103 				if (res < 0)
3104 					goto out;
3105 				leader = child;
3106 				goto down;
3107 			}
3108 up:
3109 			;
3110 		}
3111 	}
3112 
3113 	if (leader != top) {
3114 		child = leader;
3115 		parent = child->real_parent;
3116 		leader = parent->group_leader;
3117 		goto up;
3118 	}
3119 out:
3120 	read_unlock(&tasklist_lock);
3121 }
3122 
3123 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3124 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3125 #endif
3126 
sighand_ctor(void * data)3127 static void sighand_ctor(void *data)
3128 {
3129 	struct sighand_struct *sighand = data;
3130 
3131 	spin_lock_init(&sighand->siglock);
3132 	init_waitqueue_head(&sighand->signalfd_wqh);
3133 }
3134 
mm_cache_init(void)3135 void __init mm_cache_init(void)
3136 {
3137 	unsigned int mm_size;
3138 
3139 	/*
3140 	 * The mm_cpumask is located at the end of mm_struct, and is
3141 	 * dynamically sized based on the maximum CPU number this system
3142 	 * can have, taking hotplug into account (nr_cpu_ids).
3143 	 */
3144 	mm_size = sizeof(struct mm_struct) + cpumask_size();
3145 
3146 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3147 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3148 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3149 			offsetof(struct mm_struct, saved_auxv),
3150 			sizeof_field(struct mm_struct, saved_auxv),
3151 			NULL);
3152 }
3153 
proc_caches_init(void)3154 void __init proc_caches_init(void)
3155 {
3156 	sighand_cachep = kmem_cache_create("sighand_cache",
3157 			sizeof(struct sighand_struct), 0,
3158 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3159 			SLAB_ACCOUNT, sighand_ctor);
3160 	signal_cachep = kmem_cache_create("signal_cache",
3161 			sizeof(struct signal_struct), 0,
3162 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3163 			NULL);
3164 	files_cachep = kmem_cache_create("files_cache",
3165 			sizeof(struct files_struct), 0,
3166 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3167 			NULL);
3168 	fs_cachep = kmem_cache_create("fs_cache",
3169 			sizeof(struct fs_struct), 0,
3170 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3171 			NULL);
3172 
3173 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3174 #ifdef CONFIG_PER_VMA_LOCK
3175 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3176 #endif
3177 	mmap_init();
3178 	nsproxy_cache_init();
3179 }
3180 
3181 /*
3182  * Check constraints on flags passed to the unshare system call.
3183  */
check_unshare_flags(unsigned long unshare_flags)3184 static int check_unshare_flags(unsigned long unshare_flags)
3185 {
3186 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3187 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3188 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3189 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3190 				CLONE_NEWTIME))
3191 		return -EINVAL;
3192 	/*
3193 	 * Not implemented, but pretend it works if there is nothing
3194 	 * to unshare.  Note that unsharing the address space or the
3195 	 * signal handlers also need to unshare the signal queues (aka
3196 	 * CLONE_THREAD).
3197 	 */
3198 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3199 		if (!thread_group_empty(current))
3200 			return -EINVAL;
3201 	}
3202 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3203 		if (refcount_read(&current->sighand->count) > 1)
3204 			return -EINVAL;
3205 	}
3206 	if (unshare_flags & CLONE_VM) {
3207 		if (!current_is_single_threaded())
3208 			return -EINVAL;
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * Unshare the filesystem structure if it is being shared
3216  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3217 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3218 {
3219 	struct fs_struct *fs = current->fs;
3220 
3221 	if (!(unshare_flags & CLONE_FS) || !fs)
3222 		return 0;
3223 
3224 	/* don't need lock here; in the worst case we'll do useless copy */
3225 	if (fs->users == 1)
3226 		return 0;
3227 
3228 	*new_fsp = copy_fs_struct(fs);
3229 	if (!*new_fsp)
3230 		return -ENOMEM;
3231 
3232 	return 0;
3233 }
3234 
3235 /*
3236  * Unshare file descriptor table if it is being shared
3237  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)3238 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3239 	       struct files_struct **new_fdp)
3240 {
3241 	struct files_struct *fd = current->files;
3242 	int error = 0;
3243 
3244 	if ((unshare_flags & CLONE_FILES) &&
3245 	    (fd && atomic_read(&fd->count) > 1)) {
3246 		*new_fdp = dup_fd(fd, max_fds, &error);
3247 		if (!*new_fdp)
3248 			return error;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 /*
3255  * unshare allows a process to 'unshare' part of the process
3256  * context which was originally shared using clone.  copy_*
3257  * functions used by kernel_clone() cannot be used here directly
3258  * because they modify an inactive task_struct that is being
3259  * constructed. Here we are modifying the current, active,
3260  * task_struct.
3261  */
ksys_unshare(unsigned long unshare_flags)3262 int ksys_unshare(unsigned long unshare_flags)
3263 {
3264 	struct fs_struct *fs, *new_fs = NULL;
3265 	struct files_struct *new_fd = NULL;
3266 	struct cred *new_cred = NULL;
3267 	struct nsproxy *new_nsproxy = NULL;
3268 	int do_sysvsem = 0;
3269 	int err;
3270 
3271 	/*
3272 	 * If unsharing a user namespace must also unshare the thread group
3273 	 * and unshare the filesystem root and working directories.
3274 	 */
3275 	if (unshare_flags & CLONE_NEWUSER)
3276 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3277 	/*
3278 	 * If unsharing vm, must also unshare signal handlers.
3279 	 */
3280 	if (unshare_flags & CLONE_VM)
3281 		unshare_flags |= CLONE_SIGHAND;
3282 	/*
3283 	 * If unsharing a signal handlers, must also unshare the signal queues.
3284 	 */
3285 	if (unshare_flags & CLONE_SIGHAND)
3286 		unshare_flags |= CLONE_THREAD;
3287 	/*
3288 	 * If unsharing namespace, must also unshare filesystem information.
3289 	 */
3290 	if (unshare_flags & CLONE_NEWNS)
3291 		unshare_flags |= CLONE_FS;
3292 
3293 	err = check_unshare_flags(unshare_flags);
3294 	if (err)
3295 		goto bad_unshare_out;
3296 	/*
3297 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3298 	 * to a new ipc namespace, the semaphore arrays from the old
3299 	 * namespace are unreachable.
3300 	 */
3301 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3302 		do_sysvsem = 1;
3303 	err = unshare_fs(unshare_flags, &new_fs);
3304 	if (err)
3305 		goto bad_unshare_out;
3306 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3307 	if (err)
3308 		goto bad_unshare_cleanup_fs;
3309 	err = unshare_userns(unshare_flags, &new_cred);
3310 	if (err)
3311 		goto bad_unshare_cleanup_fd;
3312 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3313 					 new_cred, new_fs);
3314 	if (err)
3315 		goto bad_unshare_cleanup_cred;
3316 
3317 	if (new_cred) {
3318 		err = set_cred_ucounts(new_cred);
3319 		if (err)
3320 			goto bad_unshare_cleanup_cred;
3321 	}
3322 
3323 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3324 		if (do_sysvsem) {
3325 			/*
3326 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3327 			 */
3328 			exit_sem(current);
3329 		}
3330 		if (unshare_flags & CLONE_NEWIPC) {
3331 			/* Orphan segments in old ns (see sem above). */
3332 			exit_shm(current);
3333 			shm_init_task(current);
3334 		}
3335 
3336 		if (new_nsproxy)
3337 			switch_task_namespaces(current, new_nsproxy);
3338 
3339 		task_lock(current);
3340 
3341 		if (new_fs) {
3342 			fs = current->fs;
3343 			spin_lock(&fs->lock);
3344 			current->fs = new_fs;
3345 			if (--fs->users)
3346 				new_fs = NULL;
3347 			else
3348 				new_fs = fs;
3349 			spin_unlock(&fs->lock);
3350 		}
3351 
3352 		if (new_fd)
3353 			swap(current->files, new_fd);
3354 
3355 		task_unlock(current);
3356 
3357 		if (new_cred) {
3358 			/* Install the new user namespace */
3359 			commit_creds(new_cred);
3360 			new_cred = NULL;
3361 		}
3362 	}
3363 
3364 	perf_event_namespaces(current);
3365 
3366 bad_unshare_cleanup_cred:
3367 	if (new_cred)
3368 		put_cred(new_cred);
3369 bad_unshare_cleanup_fd:
3370 	if (new_fd)
3371 		put_files_struct(new_fd);
3372 
3373 bad_unshare_cleanup_fs:
3374 	if (new_fs)
3375 		free_fs_struct(new_fs);
3376 
3377 bad_unshare_out:
3378 	return err;
3379 }
3380 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3381 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3382 {
3383 	return ksys_unshare(unshare_flags);
3384 }
3385 
3386 /*
3387  *	Helper to unshare the files of the current task.
3388  *	We don't want to expose copy_files internals to
3389  *	the exec layer of the kernel.
3390  */
3391 
unshare_files(void)3392 int unshare_files(void)
3393 {
3394 	struct task_struct *task = current;
3395 	struct files_struct *old, *copy = NULL;
3396 	int error;
3397 
3398 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3399 	if (error || !copy)
3400 		return error;
3401 
3402 	old = task->files;
3403 	task_lock(task);
3404 	task->files = copy;
3405 	task_unlock(task);
3406 	put_files_struct(old);
3407 	return 0;
3408 }
3409 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3410 int sysctl_max_threads(struct ctl_table *table, int write,
3411 		       void *buffer, size_t *lenp, loff_t *ppos)
3412 {
3413 	struct ctl_table t;
3414 	int ret;
3415 	int threads = max_threads;
3416 	int min = 1;
3417 	int max = MAX_THREADS;
3418 
3419 	t = *table;
3420 	t.data = &threads;
3421 	t.extra1 = &min;
3422 	t.extra2 = &max;
3423 
3424 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3425 	if (ret || !write)
3426 		return ret;
3427 
3428 	max_threads = threads;
3429 
3430 	return 0;
3431 }
3432