• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int result;
56 	int (*threadfn)(void *);
57 	void *data;
58 	struct completion parked;
59 	struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 	struct cgroup_subsys_state *blkcg_css;
62 #endif
63 	/* To store the full name if task comm is truncated. */
64 	char *full_name;
65 };
66 
67 enum KTHREAD_BITS {
68 	KTHREAD_IS_PER_CPU = 0,
69 	KTHREAD_SHOULD_STOP,
70 	KTHREAD_SHOULD_PARK,
71 };
72 
to_kthread(struct task_struct * k)73 static inline struct kthread *to_kthread(struct task_struct *k)
74 {
75 	WARN_ON(!(k->flags & PF_KTHREAD));
76 	return k->worker_private;
77 }
78 
79 /*
80  * Variant of to_kthread() that doesn't assume @p is a kthread.
81  *
82  * Per construction; when:
83  *
84  *   (p->flags & PF_KTHREAD) && p->worker_private
85  *
86  * the task is both a kthread and struct kthread is persistent. However
87  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
88  * begin_new_exec()).
89  */
__to_kthread(struct task_struct * p)90 static inline struct kthread *__to_kthread(struct task_struct *p)
91 {
92 	void *kthread = p->worker_private;
93 	if (kthread && !(p->flags & PF_KTHREAD))
94 		kthread = NULL;
95 	return kthread;
96 }
97 
get_kthread_comm(char * buf,size_t buf_size,struct task_struct * tsk)98 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
99 {
100 	struct kthread *kthread = to_kthread(tsk);
101 
102 	if (!kthread || !kthread->full_name) {
103 		__get_task_comm(buf, buf_size, tsk);
104 		return;
105 	}
106 
107 	strscpy_pad(buf, kthread->full_name, buf_size);
108 }
109 
set_kthread_struct(struct task_struct * p)110 bool set_kthread_struct(struct task_struct *p)
111 {
112 	struct kthread *kthread;
113 
114 	if (WARN_ON_ONCE(to_kthread(p)))
115 		return false;
116 
117 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
118 	if (!kthread)
119 		return false;
120 
121 	init_completion(&kthread->exited);
122 	init_completion(&kthread->parked);
123 	p->vfork_done = &kthread->exited;
124 
125 	p->worker_private = kthread;
126 	return true;
127 }
128 
free_kthread_struct(struct task_struct * k)129 void free_kthread_struct(struct task_struct *k)
130 {
131 	struct kthread *kthread;
132 
133 	/*
134 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
135 	 */
136 	kthread = to_kthread(k);
137 	if (!kthread)
138 		return;
139 
140 #ifdef CONFIG_BLK_CGROUP
141 	WARN_ON_ONCE(kthread->blkcg_css);
142 #endif
143 	k->worker_private = NULL;
144 	kfree(kthread->full_name);
145 	kfree(kthread);
146 }
147 
148 /**
149  * kthread_should_stop - should this kthread return now?
150  *
151  * When someone calls kthread_stop() on your kthread, it will be woken
152  * and this will return true.  You should then return, and your return
153  * value will be passed through to kthread_stop().
154  */
kthread_should_stop(void)155 bool kthread_should_stop(void)
156 {
157 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
158 }
159 EXPORT_SYMBOL(kthread_should_stop);
160 
__kthread_should_park(struct task_struct * k)161 bool __kthread_should_park(struct task_struct *k)
162 {
163 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
164 }
165 EXPORT_SYMBOL_GPL(__kthread_should_park);
166 
167 /**
168  * kthread_should_park - should this kthread park now?
169  *
170  * When someone calls kthread_park() on your kthread, it will be woken
171  * and this will return true.  You should then do the necessary
172  * cleanup and call kthread_parkme()
173  *
174  * Similar to kthread_should_stop(), but this keeps the thread alive
175  * and in a park position. kthread_unpark() "restarts" the thread and
176  * calls the thread function again.
177  */
kthread_should_park(void)178 bool kthread_should_park(void)
179 {
180 	return __kthread_should_park(current);
181 }
182 EXPORT_SYMBOL_GPL(kthread_should_park);
183 
kthread_should_stop_or_park(void)184 bool kthread_should_stop_or_park(void)
185 {
186 	struct kthread *kthread = __to_kthread(current);
187 
188 	if (!kthread)
189 		return false;
190 
191 	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
192 }
193 
194 /**
195  * kthread_freezable_should_stop - should this freezable kthread return now?
196  * @was_frozen: optional out parameter, indicates whether %current was frozen
197  *
198  * kthread_should_stop() for freezable kthreads, which will enter
199  * refrigerator if necessary.  This function is safe from kthread_stop() /
200  * freezer deadlock and freezable kthreads should use this function instead
201  * of calling try_to_freeze() directly.
202  */
kthread_freezable_should_stop(bool * was_frozen)203 bool kthread_freezable_should_stop(bool *was_frozen)
204 {
205 	bool frozen = false;
206 
207 	might_sleep();
208 
209 	if (unlikely(freezing(current)))
210 		frozen = __refrigerator(true);
211 
212 	if (was_frozen)
213 		*was_frozen = frozen;
214 
215 	return kthread_should_stop();
216 }
217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
218 
219 /**
220  * kthread_func - return the function specified on kthread creation
221  * @task: kthread task in question
222  *
223  * Returns NULL if the task is not a kthread.
224  */
kthread_func(struct task_struct * task)225 void *kthread_func(struct task_struct *task)
226 {
227 	struct kthread *kthread = __to_kthread(task);
228 	if (kthread)
229 		return kthread->threadfn;
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(kthread_func);
233 
234 /**
235  * kthread_data - return data value specified on kthread creation
236  * @task: kthread task in question
237  *
238  * Return the data value specified when kthread @task was created.
239  * The caller is responsible for ensuring the validity of @task when
240  * calling this function.
241  */
kthread_data(struct task_struct * task)242 void *kthread_data(struct task_struct *task)
243 {
244 	return to_kthread(task)->data;
245 }
246 EXPORT_SYMBOL_GPL(kthread_data);
247 
248 /**
249  * kthread_probe_data - speculative version of kthread_data()
250  * @task: possible kthread task in question
251  *
252  * @task could be a kthread task.  Return the data value specified when it
253  * was created if accessible.  If @task isn't a kthread task or its data is
254  * inaccessible for any reason, %NULL is returned.  This function requires
255  * that @task itself is safe to dereference.
256  */
kthread_probe_data(struct task_struct * task)257 void *kthread_probe_data(struct task_struct *task)
258 {
259 	struct kthread *kthread = __to_kthread(task);
260 	void *data = NULL;
261 
262 	if (kthread)
263 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
264 	return data;
265 }
266 
__kthread_parkme(struct kthread * self)267 static void __kthread_parkme(struct kthread *self)
268 {
269 	for (;;) {
270 		/*
271 		 * TASK_PARKED is a special state; we must serialize against
272 		 * possible pending wakeups to avoid store-store collisions on
273 		 * task->state.
274 		 *
275 		 * Such a collision might possibly result in the task state
276 		 * changin from TASK_PARKED and us failing the
277 		 * wait_task_inactive() in kthread_park().
278 		 */
279 		set_special_state(TASK_PARKED);
280 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
281 			break;
282 
283 		/*
284 		 * Thread is going to call schedule(), do not preempt it,
285 		 * or the caller of kthread_park() may spend more time in
286 		 * wait_task_inactive().
287 		 */
288 		preempt_disable();
289 		complete(&self->parked);
290 		schedule_preempt_disabled();
291 		preempt_enable();
292 	}
293 	__set_current_state(TASK_RUNNING);
294 }
295 
kthread_parkme(void)296 void kthread_parkme(void)
297 {
298 	__kthread_parkme(to_kthread(current));
299 }
300 EXPORT_SYMBOL_GPL(kthread_parkme);
301 
302 /**
303  * kthread_exit - Cause the current kthread return @result to kthread_stop().
304  * @result: The integer value to return to kthread_stop().
305  *
306  * While kthread_exit can be called directly, it exists so that
307  * functions which do some additional work in non-modular code such as
308  * module_put_and_kthread_exit can be implemented.
309  *
310  * Does not return.
311  */
kthread_exit(long result)312 void __noreturn kthread_exit(long result)
313 {
314 	struct kthread *kthread = to_kthread(current);
315 	kthread->result = result;
316 	do_exit(0);
317 }
318 
319 /**
320  * kthread_complete_and_exit - Exit the current kthread.
321  * @comp: Completion to complete
322  * @code: The integer value to return to kthread_stop().
323  *
324  * If present complete @comp and the reuturn code to kthread_stop().
325  *
326  * A kernel thread whose module may be removed after the completion of
327  * @comp can use this function exit safely.
328  *
329  * Does not return.
330  */
kthread_complete_and_exit(struct completion * comp,long code)331 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
332 {
333 	if (comp)
334 		complete(comp);
335 
336 	kthread_exit(code);
337 }
338 EXPORT_SYMBOL(kthread_complete_and_exit);
339 
kthread(void * _create)340 static int kthread(void *_create)
341 {
342 	static const struct sched_param param = { .sched_priority = 0 };
343 	/* Copy data: it's on kthread's stack */
344 	struct kthread_create_info *create = _create;
345 	int (*threadfn)(void *data) = create->threadfn;
346 	void *data = create->data;
347 	struct completion *done;
348 	struct kthread *self;
349 	int ret;
350 
351 	self = to_kthread(current);
352 
353 	/* Release the structure when caller killed by a fatal signal. */
354 	done = xchg(&create->done, NULL);
355 	if (!done) {
356 		kfree(create);
357 		kthread_exit(-EINTR);
358 	}
359 
360 	self->threadfn = threadfn;
361 	self->data = data;
362 
363 	/*
364 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
365 	 * back to default in case they have been changed.
366 	 */
367 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
368 	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
369 
370 	/* OK, tell user we're spawned, wait for stop or wakeup */
371 	__set_current_state(TASK_UNINTERRUPTIBLE);
372 	create->result = current;
373 	/*
374 	 * Thread is going to call schedule(), do not preempt it,
375 	 * or the creator may spend more time in wait_task_inactive().
376 	 */
377 	preempt_disable();
378 	complete(done);
379 	schedule_preempt_disabled();
380 	preempt_enable();
381 
382 	ret = -EINTR;
383 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
384 		cgroup_kthread_ready();
385 		__kthread_parkme(self);
386 		ret = threadfn(data);
387 	}
388 	kthread_exit(ret);
389 }
390 
391 /* called from kernel_clone() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)392 int tsk_fork_get_node(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_NUMA
395 	if (tsk == kthreadd_task)
396 		return tsk->pref_node_fork;
397 #endif
398 	return NUMA_NO_NODE;
399 }
400 
create_kthread(struct kthread_create_info * create)401 static void create_kthread(struct kthread_create_info *create)
402 {
403 	int pid;
404 
405 #ifdef CONFIG_NUMA
406 	current->pref_node_fork = create->node;
407 #endif
408 	/* We want our own signal handler (we take no signals by default). */
409 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
410 	if (pid < 0) {
411 		/* Release the structure when caller killed by a fatal signal. */
412 		struct completion *done = xchg(&create->done, NULL);
413 
414 		if (!done) {
415 			kfree(create);
416 			return;
417 		}
418 		create->result = ERR_PTR(pid);
419 		complete(done);
420 	}
421 }
422 
423 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)424 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
425 						    void *data, int node,
426 						    const char namefmt[],
427 						    va_list args)
428 {
429 	DECLARE_COMPLETION_ONSTACK(done);
430 	struct task_struct *task;
431 	struct kthread_create_info *create = kmalloc(sizeof(*create),
432 						     GFP_KERNEL);
433 
434 	if (!create)
435 		return ERR_PTR(-ENOMEM);
436 	create->threadfn = threadfn;
437 	create->data = data;
438 	create->node = node;
439 	create->done = &done;
440 
441 	spin_lock(&kthread_create_lock);
442 	list_add_tail(&create->list, &kthread_create_list);
443 	spin_unlock(&kthread_create_lock);
444 
445 	wake_up_process(kthreadd_task);
446 	/*
447 	 * Wait for completion in killable state, for I might be chosen by
448 	 * the OOM killer while kthreadd is trying to allocate memory for
449 	 * new kernel thread.
450 	 */
451 	if (unlikely(wait_for_completion_killable(&done))) {
452 		/*
453 		 * If I was killed by a fatal signal before kthreadd (or new
454 		 * kernel thread) calls complete(), leave the cleanup of this
455 		 * structure to that thread.
456 		 */
457 		if (xchg(&create->done, NULL))
458 			return ERR_PTR(-EINTR);
459 		/*
460 		 * kthreadd (or new kernel thread) will call complete()
461 		 * shortly.
462 		 */
463 		wait_for_completion(&done);
464 	}
465 	task = create->result;
466 	if (!IS_ERR(task)) {
467 		char name[TASK_COMM_LEN];
468 		va_list aq;
469 		int len;
470 
471 		/*
472 		 * task is already visible to other tasks, so updating
473 		 * COMM must be protected.
474 		 */
475 		va_copy(aq, args);
476 		len = vsnprintf(name, sizeof(name), namefmt, aq);
477 		va_end(aq);
478 		if (len >= TASK_COMM_LEN) {
479 			struct kthread *kthread = to_kthread(task);
480 
481 			/* leave it truncated when out of memory. */
482 			kthread->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
483 		}
484 		set_task_comm(task, name);
485 	}
486 	kfree(create);
487 	return task;
488 }
489 
490 /**
491  * kthread_create_on_node - create a kthread.
492  * @threadfn: the function to run until signal_pending(current).
493  * @data: data ptr for @threadfn.
494  * @node: task and thread structures for the thread are allocated on this node
495  * @namefmt: printf-style name for the thread.
496  *
497  * Description: This helper function creates and names a kernel
498  * thread.  The thread will be stopped: use wake_up_process() to start
499  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
500  * is affine to all CPUs.
501  *
502  * If thread is going to be bound on a particular cpu, give its node
503  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
504  * When woken, the thread will run @threadfn() with @data as its
505  * argument. @threadfn() can either return directly if it is a
506  * standalone thread for which no one will call kthread_stop(), or
507  * return when 'kthread_should_stop()' is true (which means
508  * kthread_stop() has been called).  The return value should be zero
509  * or a negative error number; it will be passed to kthread_stop().
510  *
511  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
512  */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)513 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
514 					   void *data, int node,
515 					   const char namefmt[],
516 					   ...)
517 {
518 	struct task_struct *task;
519 	va_list args;
520 
521 	va_start(args, namefmt);
522 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
523 	va_end(args);
524 
525 	return task;
526 }
527 EXPORT_SYMBOL(kthread_create_on_node);
528 
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,unsigned int state)529 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
530 {
531 	unsigned long flags;
532 
533 	if (!wait_task_inactive(p, state)) {
534 		WARN_ON(1);
535 		return;
536 	}
537 
538 	/* It's safe because the task is inactive. */
539 	raw_spin_lock_irqsave(&p->pi_lock, flags);
540 	do_set_cpus_allowed(p, mask);
541 	p->flags |= PF_NO_SETAFFINITY;
542 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
543 }
544 
__kthread_bind(struct task_struct * p,unsigned int cpu,unsigned int state)545 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
546 {
547 	__kthread_bind_mask(p, cpumask_of(cpu), state);
548 }
549 
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)550 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
551 {
552 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
553 }
554 EXPORT_SYMBOL_GPL(kthread_bind_mask);
555 
556 /**
557  * kthread_bind - bind a just-created kthread to a cpu.
558  * @p: thread created by kthread_create().
559  * @cpu: cpu (might not be online, must be possible) for @k to run on.
560  *
561  * Description: This function is equivalent to set_cpus_allowed(),
562  * except that @cpu doesn't need to be online, and the thread must be
563  * stopped (i.e., just returned from kthread_create()).
564  */
kthread_bind(struct task_struct * p,unsigned int cpu)565 void kthread_bind(struct task_struct *p, unsigned int cpu)
566 {
567 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
568 }
569 EXPORT_SYMBOL(kthread_bind);
570 
571 /**
572  * kthread_create_on_cpu - Create a cpu bound kthread
573  * @threadfn: the function to run until signal_pending(current).
574  * @data: data ptr for @threadfn.
575  * @cpu: The cpu on which the thread should be bound,
576  * @namefmt: printf-style name for the thread. Format is restricted
577  *	     to "name.*%u". Code fills in cpu number.
578  *
579  * Description: This helper function creates and names a kernel thread
580  */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)581 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
582 					  void *data, unsigned int cpu,
583 					  const char *namefmt)
584 {
585 	struct task_struct *p;
586 
587 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
588 				   cpu);
589 	if (IS_ERR(p))
590 		return p;
591 	kthread_bind(p, cpu);
592 	/* CPU hotplug need to bind once again when unparking the thread. */
593 	to_kthread(p)->cpu = cpu;
594 	return p;
595 }
596 EXPORT_SYMBOL(kthread_create_on_cpu);
597 
kthread_set_per_cpu(struct task_struct * k,int cpu)598 void kthread_set_per_cpu(struct task_struct *k, int cpu)
599 {
600 	struct kthread *kthread = to_kthread(k);
601 	if (!kthread)
602 		return;
603 
604 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
605 
606 	if (cpu < 0) {
607 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
608 		return;
609 	}
610 
611 	kthread->cpu = cpu;
612 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
613 }
614 EXPORT_SYMBOL_GPL(kthread_set_per_cpu);
615 
kthread_is_per_cpu(struct task_struct * p)616 bool kthread_is_per_cpu(struct task_struct *p)
617 {
618 	struct kthread *kthread = __to_kthread(p);
619 	if (!kthread)
620 		return false;
621 
622 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
623 }
624 
625 /**
626  * kthread_unpark - unpark a thread created by kthread_create().
627  * @k:		thread created by kthread_create().
628  *
629  * Sets kthread_should_park() for @k to return false, wakes it, and
630  * waits for it to return. If the thread is marked percpu then its
631  * bound to the cpu again.
632  */
kthread_unpark(struct task_struct * k)633 void kthread_unpark(struct task_struct *k)
634 {
635 	struct kthread *kthread = to_kthread(k);
636 
637 	/*
638 	 * Newly created kthread was parked when the CPU was offline.
639 	 * The binding was lost and we need to set it again.
640 	 */
641 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
642 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
643 
644 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
645 	/*
646 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
647 	 */
648 	wake_up_state(k, TASK_PARKED);
649 }
650 EXPORT_SYMBOL_GPL(kthread_unpark);
651 
652 /**
653  * kthread_park - park a thread created by kthread_create().
654  * @k: thread created by kthread_create().
655  *
656  * Sets kthread_should_park() for @k to return true, wakes it, and
657  * waits for it to return. This can also be called after kthread_create()
658  * instead of calling wake_up_process(): the thread will park without
659  * calling threadfn().
660  *
661  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
662  * If called by the kthread itself just the park bit is set.
663  */
kthread_park(struct task_struct * k)664 int kthread_park(struct task_struct *k)
665 {
666 	struct kthread *kthread = to_kthread(k);
667 
668 	if (WARN_ON(k->flags & PF_EXITING))
669 		return -ENOSYS;
670 
671 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
672 		return -EBUSY;
673 
674 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
675 	if (k != current) {
676 		wake_up_process(k);
677 		/*
678 		 * Wait for __kthread_parkme() to complete(), this means we
679 		 * _will_ have TASK_PARKED and are about to call schedule().
680 		 */
681 		wait_for_completion(&kthread->parked);
682 		/*
683 		 * Now wait for that schedule() to complete and the task to
684 		 * get scheduled out.
685 		 */
686 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
687 	}
688 
689 	return 0;
690 }
691 EXPORT_SYMBOL_GPL(kthread_park);
692 
693 /**
694  * kthread_stop - stop a thread created by kthread_create().
695  * @k: thread created by kthread_create().
696  *
697  * Sets kthread_should_stop() for @k to return true, wakes it, and
698  * waits for it to exit. This can also be called after kthread_create()
699  * instead of calling wake_up_process(): the thread will exit without
700  * calling threadfn().
701  *
702  * If threadfn() may call kthread_exit() itself, the caller must ensure
703  * task_struct can't go away.
704  *
705  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
706  * was never called.
707  */
kthread_stop(struct task_struct * k)708 int kthread_stop(struct task_struct *k)
709 {
710 	struct kthread *kthread;
711 	int ret;
712 
713 	trace_sched_kthread_stop(k);
714 
715 	get_task_struct(k);
716 	kthread = to_kthread(k);
717 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
718 	kthread_unpark(k);
719 	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
720 	wake_up_process(k);
721 	wait_for_completion(&kthread->exited);
722 	ret = kthread->result;
723 	put_task_struct(k);
724 
725 	trace_sched_kthread_stop_ret(ret);
726 	return ret;
727 }
728 EXPORT_SYMBOL(kthread_stop);
729 
kthreadd(void * unused)730 int kthreadd(void *unused)
731 {
732 	struct task_struct *tsk = current;
733 
734 	/* Setup a clean context for our children to inherit. */
735 	set_task_comm(tsk, "kthreadd");
736 	ignore_signals(tsk);
737 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
738 	set_mems_allowed(node_states[N_MEMORY]);
739 
740 	current->flags |= PF_NOFREEZE;
741 	cgroup_init_kthreadd();
742 
743 	for (;;) {
744 		set_current_state(TASK_INTERRUPTIBLE);
745 		if (list_empty(&kthread_create_list))
746 			schedule();
747 		__set_current_state(TASK_RUNNING);
748 
749 		spin_lock(&kthread_create_lock);
750 		while (!list_empty(&kthread_create_list)) {
751 			struct kthread_create_info *create;
752 
753 			create = list_entry(kthread_create_list.next,
754 					    struct kthread_create_info, list);
755 			list_del_init(&create->list);
756 			spin_unlock(&kthread_create_lock);
757 
758 			create_kthread(create);
759 
760 			spin_lock(&kthread_create_lock);
761 		}
762 		spin_unlock(&kthread_create_lock);
763 	}
764 
765 	return 0;
766 }
767 
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)768 void __kthread_init_worker(struct kthread_worker *worker,
769 				const char *name,
770 				struct lock_class_key *key)
771 {
772 	memset(worker, 0, sizeof(struct kthread_worker));
773 	raw_spin_lock_init(&worker->lock);
774 	lockdep_set_class_and_name(&worker->lock, key, name);
775 	INIT_LIST_HEAD(&worker->work_list);
776 	INIT_LIST_HEAD(&worker->delayed_work_list);
777 }
778 EXPORT_SYMBOL_GPL(__kthread_init_worker);
779 
780 /**
781  * kthread_worker_fn - kthread function to process kthread_worker
782  * @worker_ptr: pointer to initialized kthread_worker
783  *
784  * This function implements the main cycle of kthread worker. It processes
785  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
786  * is empty.
787  *
788  * The works are not allowed to keep any locks, disable preemption or interrupts
789  * when they finish. There is defined a safe point for freezing when one work
790  * finishes and before a new one is started.
791  *
792  * Also the works must not be handled by more than one worker at the same time,
793  * see also kthread_queue_work().
794  */
kthread_worker_fn(void * worker_ptr)795 int kthread_worker_fn(void *worker_ptr)
796 {
797 	struct kthread_worker *worker = worker_ptr;
798 	struct kthread_work *work;
799 
800 	/*
801 	 * FIXME: Update the check and remove the assignment when all kthread
802 	 * worker users are created using kthread_create_worker*() functions.
803 	 */
804 	WARN_ON(worker->task && worker->task != current);
805 	worker->task = current;
806 
807 	if (worker->flags & KTW_FREEZABLE)
808 		set_freezable();
809 
810 repeat:
811 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
812 
813 	if (kthread_should_stop()) {
814 		__set_current_state(TASK_RUNNING);
815 		raw_spin_lock_irq(&worker->lock);
816 		worker->task = NULL;
817 		raw_spin_unlock_irq(&worker->lock);
818 		return 0;
819 	}
820 
821 	work = NULL;
822 	raw_spin_lock_irq(&worker->lock);
823 	if (!list_empty(&worker->work_list)) {
824 		work = list_first_entry(&worker->work_list,
825 					struct kthread_work, node);
826 		list_del_init(&work->node);
827 	}
828 	worker->current_work = work;
829 	raw_spin_unlock_irq(&worker->lock);
830 
831 	if (work) {
832 		kthread_work_func_t func = work->func;
833 		__set_current_state(TASK_RUNNING);
834 		trace_sched_kthread_work_execute_start(work);
835 		work->func(work);
836 		/*
837 		 * Avoid dereferencing work after this point.  The trace
838 		 * event only cares about the address.
839 		 */
840 		trace_sched_kthread_work_execute_end(work, func);
841 	} else if (!freezing(current))
842 		schedule();
843 
844 	try_to_freeze();
845 	cond_resched();
846 	goto repeat;
847 }
848 EXPORT_SYMBOL_GPL(kthread_worker_fn);
849 
850 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker(int cpu,unsigned int flags,const char namefmt[],va_list args)851 __kthread_create_worker(int cpu, unsigned int flags,
852 			const char namefmt[], va_list args)
853 {
854 	struct kthread_worker *worker;
855 	struct task_struct *task;
856 	int node = NUMA_NO_NODE;
857 
858 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
859 	if (!worker)
860 		return ERR_PTR(-ENOMEM);
861 
862 	kthread_init_worker(worker);
863 
864 	if (cpu >= 0)
865 		node = cpu_to_node(cpu);
866 
867 	task = __kthread_create_on_node(kthread_worker_fn, worker,
868 						node, namefmt, args);
869 	if (IS_ERR(task))
870 		goto fail_task;
871 
872 	if (cpu >= 0)
873 		kthread_bind(task, cpu);
874 
875 	worker->flags = flags;
876 	worker->task = task;
877 	wake_up_process(task);
878 	return worker;
879 
880 fail_task:
881 	kfree(worker);
882 	return ERR_CAST(task);
883 }
884 
885 /**
886  * kthread_create_worker - create a kthread worker
887  * @flags: flags modifying the default behavior of the worker
888  * @namefmt: printf-style name for the kthread worker (task).
889  *
890  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
891  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
892  * when the caller was killed by a fatal signal.
893  */
894 struct kthread_worker *
kthread_create_worker(unsigned int flags,const char namefmt[],...)895 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
896 {
897 	struct kthread_worker *worker;
898 	va_list args;
899 
900 	va_start(args, namefmt);
901 	worker = __kthread_create_worker(-1, flags, namefmt, args);
902 	va_end(args);
903 
904 	return worker;
905 }
906 EXPORT_SYMBOL(kthread_create_worker);
907 
908 /**
909  * kthread_create_worker_on_cpu - create a kthread worker and bind it
910  *	to a given CPU and the associated NUMA node.
911  * @cpu: CPU number
912  * @flags: flags modifying the default behavior of the worker
913  * @namefmt: printf-style name for the kthread worker (task).
914  *
915  * Use a valid CPU number if you want to bind the kthread worker
916  * to the given CPU and the associated NUMA node.
917  *
918  * A good practice is to add the cpu number also into the worker name.
919  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
920  *
921  * CPU hotplug:
922  * The kthread worker API is simple and generic. It just provides a way
923  * to create, use, and destroy workers.
924  *
925  * It is up to the API user how to handle CPU hotplug. They have to decide
926  * how to handle pending work items, prevent queuing new ones, and
927  * restore the functionality when the CPU goes off and on. There are a
928  * few catches:
929  *
930  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
931  *
932  *    - The worker might not exist when the CPU was off when the user
933  *      created the workers.
934  *
935  * Good practice is to implement two CPU hotplug callbacks and to
936  * destroy/create the worker when the CPU goes down/up.
937  *
938  * Return:
939  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
940  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
941  * when the caller was killed by a fatal signal.
942  */
943 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[],...)944 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
945 			     const char namefmt[], ...)
946 {
947 	struct kthread_worker *worker;
948 	va_list args;
949 
950 	va_start(args, namefmt);
951 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
952 	va_end(args);
953 
954 	return worker;
955 }
956 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
957 
958 /*
959  * Returns true when the work could not be queued at the moment.
960  * It happens when it is already pending in a worker list
961  * or when it is being cancelled.
962  */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)963 static inline bool queuing_blocked(struct kthread_worker *worker,
964 				   struct kthread_work *work)
965 {
966 	lockdep_assert_held(&worker->lock);
967 
968 	return !list_empty(&work->node) || work->canceling;
969 }
970 
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)971 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
972 					     struct kthread_work *work)
973 {
974 	lockdep_assert_held(&worker->lock);
975 	WARN_ON_ONCE(!list_empty(&work->node));
976 	/* Do not use a work with >1 worker, see kthread_queue_work() */
977 	WARN_ON_ONCE(work->worker && work->worker != worker);
978 }
979 
980 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)981 static void kthread_insert_work(struct kthread_worker *worker,
982 				struct kthread_work *work,
983 				struct list_head *pos)
984 {
985 	kthread_insert_work_sanity_check(worker, work);
986 
987 	trace_sched_kthread_work_queue_work(worker, work);
988 
989 	list_add_tail(&work->node, pos);
990 	work->worker = worker;
991 	if (!worker->current_work && likely(worker->task))
992 		wake_up_process(worker->task);
993 }
994 
995 /**
996  * kthread_queue_work - queue a kthread_work
997  * @worker: target kthread_worker
998  * @work: kthread_work to queue
999  *
1000  * Queue @work to work processor @task for async execution.  @task
1001  * must have been created with kthread_worker_create().  Returns %true
1002  * if @work was successfully queued, %false if it was already pending.
1003  *
1004  * Reinitialize the work if it needs to be used by another worker.
1005  * For example, when the worker was stopped and started again.
1006  */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)1007 bool kthread_queue_work(struct kthread_worker *worker,
1008 			struct kthread_work *work)
1009 {
1010 	bool ret = false;
1011 	unsigned long flags;
1012 
1013 	raw_spin_lock_irqsave(&worker->lock, flags);
1014 	if (!queuing_blocked(worker, work)) {
1015 		kthread_insert_work(worker, work, &worker->work_list);
1016 		ret = true;
1017 	}
1018 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(kthread_queue_work);
1022 
1023 /**
1024  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1025  *	delayed work when the timer expires.
1026  * @t: pointer to the expired timer
1027  *
1028  * The format of the function is defined by struct timer_list.
1029  * It should have been called from irqsafe timer with irq already off.
1030  */
kthread_delayed_work_timer_fn(struct timer_list * t)1031 void kthread_delayed_work_timer_fn(struct timer_list *t)
1032 {
1033 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1034 	struct kthread_work *work = &dwork->work;
1035 	struct kthread_worker *worker = work->worker;
1036 	unsigned long flags;
1037 
1038 	/*
1039 	 * This might happen when a pending work is reinitialized.
1040 	 * It means that it is used a wrong way.
1041 	 */
1042 	if (WARN_ON_ONCE(!worker))
1043 		return;
1044 
1045 	raw_spin_lock_irqsave(&worker->lock, flags);
1046 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1047 	WARN_ON_ONCE(work->worker != worker);
1048 
1049 	/* Move the work from worker->delayed_work_list. */
1050 	WARN_ON_ONCE(list_empty(&work->node));
1051 	list_del_init(&work->node);
1052 	if (!work->canceling)
1053 		kthread_insert_work(worker, work, &worker->work_list);
1054 
1055 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1056 }
1057 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1058 
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1059 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1060 					 struct kthread_delayed_work *dwork,
1061 					 unsigned long delay)
1062 {
1063 	struct timer_list *timer = &dwork->timer;
1064 	struct kthread_work *work = &dwork->work;
1065 
1066 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1067 
1068 	/*
1069 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1070 	 * both optimization and correctness.  The earliest @timer can
1071 	 * expire is on the closest next tick and delayed_work users depend
1072 	 * on that there's no such delay when @delay is 0.
1073 	 */
1074 	if (!delay) {
1075 		kthread_insert_work(worker, work, &worker->work_list);
1076 		return;
1077 	}
1078 
1079 	/* Be paranoid and try to detect possible races already now. */
1080 	kthread_insert_work_sanity_check(worker, work);
1081 
1082 	list_add(&work->node, &worker->delayed_work_list);
1083 	work->worker = worker;
1084 	timer->expires = jiffies + delay;
1085 	add_timer(timer);
1086 }
1087 
1088 /**
1089  * kthread_queue_delayed_work - queue the associated kthread work
1090  *	after a delay.
1091  * @worker: target kthread_worker
1092  * @dwork: kthread_delayed_work to queue
1093  * @delay: number of jiffies to wait before queuing
1094  *
1095  * If the work has not been pending it starts a timer that will queue
1096  * the work after the given @delay. If @delay is zero, it queues the
1097  * work immediately.
1098  *
1099  * Return: %false if the @work has already been pending. It means that
1100  * either the timer was running or the work was queued. It returns %true
1101  * otherwise.
1102  */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1103 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1104 				struct kthread_delayed_work *dwork,
1105 				unsigned long delay)
1106 {
1107 	struct kthread_work *work = &dwork->work;
1108 	unsigned long flags;
1109 	bool ret = false;
1110 
1111 	raw_spin_lock_irqsave(&worker->lock, flags);
1112 
1113 	if (!queuing_blocked(worker, work)) {
1114 		__kthread_queue_delayed_work(worker, dwork, delay);
1115 		ret = true;
1116 	}
1117 
1118 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1122 
1123 struct kthread_flush_work {
1124 	struct kthread_work	work;
1125 	struct completion	done;
1126 };
1127 
kthread_flush_work_fn(struct kthread_work * work)1128 static void kthread_flush_work_fn(struct kthread_work *work)
1129 {
1130 	struct kthread_flush_work *fwork =
1131 		container_of(work, struct kthread_flush_work, work);
1132 	complete(&fwork->done);
1133 }
1134 
1135 /**
1136  * kthread_flush_work - flush a kthread_work
1137  * @work: work to flush
1138  *
1139  * If @work is queued or executing, wait for it to finish execution.
1140  */
kthread_flush_work(struct kthread_work * work)1141 void kthread_flush_work(struct kthread_work *work)
1142 {
1143 	struct kthread_flush_work fwork = {
1144 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1145 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1146 	};
1147 	struct kthread_worker *worker;
1148 	bool noop = false;
1149 
1150 	worker = work->worker;
1151 	if (!worker)
1152 		return;
1153 
1154 	raw_spin_lock_irq(&worker->lock);
1155 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1156 	WARN_ON_ONCE(work->worker != worker);
1157 
1158 	if (!list_empty(&work->node))
1159 		kthread_insert_work(worker, &fwork.work, work->node.next);
1160 	else if (worker->current_work == work)
1161 		kthread_insert_work(worker, &fwork.work,
1162 				    worker->work_list.next);
1163 	else
1164 		noop = true;
1165 
1166 	raw_spin_unlock_irq(&worker->lock);
1167 
1168 	if (!noop)
1169 		wait_for_completion(&fwork.done);
1170 }
1171 EXPORT_SYMBOL_GPL(kthread_flush_work);
1172 
1173 /*
1174  * Make sure that the timer is neither set nor running and could
1175  * not manipulate the work list_head any longer.
1176  *
1177  * The function is called under worker->lock. The lock is temporary
1178  * released but the timer can't be set again in the meantime.
1179  */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1180 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1181 					      unsigned long *flags)
1182 {
1183 	struct kthread_delayed_work *dwork =
1184 		container_of(work, struct kthread_delayed_work, work);
1185 	struct kthread_worker *worker = work->worker;
1186 
1187 	/*
1188 	 * del_timer_sync() must be called to make sure that the timer
1189 	 * callback is not running. The lock must be temporary released
1190 	 * to avoid a deadlock with the callback. In the meantime,
1191 	 * any queuing is blocked by setting the canceling counter.
1192 	 */
1193 	work->canceling++;
1194 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1195 	del_timer_sync(&dwork->timer);
1196 	raw_spin_lock_irqsave(&worker->lock, *flags);
1197 	work->canceling--;
1198 }
1199 
1200 /*
1201  * This function removes the work from the worker queue.
1202  *
1203  * It is called under worker->lock. The caller must make sure that
1204  * the timer used by delayed work is not running, e.g. by calling
1205  * kthread_cancel_delayed_work_timer().
1206  *
1207  * The work might still be in use when this function finishes. See the
1208  * current_work proceed by the worker.
1209  *
1210  * Return: %true if @work was pending and successfully canceled,
1211  *	%false if @work was not pending
1212  */
__kthread_cancel_work(struct kthread_work * work)1213 static bool __kthread_cancel_work(struct kthread_work *work)
1214 {
1215 	/*
1216 	 * Try to remove the work from a worker list. It might either
1217 	 * be from worker->work_list or from worker->delayed_work_list.
1218 	 */
1219 	if (!list_empty(&work->node)) {
1220 		list_del_init(&work->node);
1221 		return true;
1222 	}
1223 
1224 	return false;
1225 }
1226 
1227 /**
1228  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1229  * @worker: kthread worker to use
1230  * @dwork: kthread delayed work to queue
1231  * @delay: number of jiffies to wait before queuing
1232  *
1233  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1234  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1235  * @work is guaranteed to be queued immediately.
1236  *
1237  * Return: %false if @dwork was idle and queued, %true otherwise.
1238  *
1239  * A special case is when the work is being canceled in parallel.
1240  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1241  * or yet another kthread_mod_delayed_work() call. We let the other command
1242  * win and return %true here. The return value can be used for reference
1243  * counting and the number of queued works stays the same. Anyway, the caller
1244  * is supposed to synchronize these operations a reasonable way.
1245  *
1246  * This function is safe to call from any context including IRQ handler.
1247  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1248  * for details.
1249  */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1250 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1251 			      struct kthread_delayed_work *dwork,
1252 			      unsigned long delay)
1253 {
1254 	struct kthread_work *work = &dwork->work;
1255 	unsigned long flags;
1256 	int ret;
1257 
1258 	raw_spin_lock_irqsave(&worker->lock, flags);
1259 
1260 	/* Do not bother with canceling when never queued. */
1261 	if (!work->worker) {
1262 		ret = false;
1263 		goto fast_queue;
1264 	}
1265 
1266 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1267 	WARN_ON_ONCE(work->worker != worker);
1268 
1269 	/*
1270 	 * Temporary cancel the work but do not fight with another command
1271 	 * that is canceling the work as well.
1272 	 *
1273 	 * It is a bit tricky because of possible races with another
1274 	 * mod_delayed_work() and cancel_delayed_work() callers.
1275 	 *
1276 	 * The timer must be canceled first because worker->lock is released
1277 	 * when doing so. But the work can be removed from the queue (list)
1278 	 * only when it can be queued again so that the return value can
1279 	 * be used for reference counting.
1280 	 */
1281 	kthread_cancel_delayed_work_timer(work, &flags);
1282 	if (work->canceling) {
1283 		/* The number of works in the queue does not change. */
1284 		ret = true;
1285 		goto out;
1286 	}
1287 	ret = __kthread_cancel_work(work);
1288 
1289 fast_queue:
1290 	__kthread_queue_delayed_work(worker, dwork, delay);
1291 out:
1292 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1293 	return ret;
1294 }
1295 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1296 
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1297 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1298 {
1299 	struct kthread_worker *worker = work->worker;
1300 	unsigned long flags;
1301 	int ret = false;
1302 
1303 	if (!worker)
1304 		goto out;
1305 
1306 	raw_spin_lock_irqsave(&worker->lock, flags);
1307 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1308 	WARN_ON_ONCE(work->worker != worker);
1309 
1310 	if (is_dwork)
1311 		kthread_cancel_delayed_work_timer(work, &flags);
1312 
1313 	ret = __kthread_cancel_work(work);
1314 
1315 	if (worker->current_work != work)
1316 		goto out_fast;
1317 
1318 	/*
1319 	 * The work is in progress and we need to wait with the lock released.
1320 	 * In the meantime, block any queuing by setting the canceling counter.
1321 	 */
1322 	work->canceling++;
1323 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1324 	kthread_flush_work(work);
1325 	raw_spin_lock_irqsave(&worker->lock, flags);
1326 	work->canceling--;
1327 
1328 out_fast:
1329 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1330 out:
1331 	return ret;
1332 }
1333 
1334 /**
1335  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1336  * @work: the kthread work to cancel
1337  *
1338  * Cancel @work and wait for its execution to finish.  This function
1339  * can be used even if the work re-queues itself. On return from this
1340  * function, @work is guaranteed to be not pending or executing on any CPU.
1341  *
1342  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1343  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1344  *
1345  * The caller must ensure that the worker on which @work was last
1346  * queued can't be destroyed before this function returns.
1347  *
1348  * Return: %true if @work was pending, %false otherwise.
1349  */
kthread_cancel_work_sync(struct kthread_work * work)1350 bool kthread_cancel_work_sync(struct kthread_work *work)
1351 {
1352 	return __kthread_cancel_work_sync(work, false);
1353 }
1354 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1355 
1356 /**
1357  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1358  *	wait for it to finish.
1359  * @dwork: the kthread delayed work to cancel
1360  *
1361  * This is kthread_cancel_work_sync() for delayed works.
1362  *
1363  * Return: %true if @dwork was pending, %false otherwise.
1364  */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1365 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1366 {
1367 	return __kthread_cancel_work_sync(&dwork->work, true);
1368 }
1369 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1370 
1371 /**
1372  * kthread_flush_worker - flush all current works on a kthread_worker
1373  * @worker: worker to flush
1374  *
1375  * Wait until all currently executing or pending works on @worker are
1376  * finished.
1377  */
kthread_flush_worker(struct kthread_worker * worker)1378 void kthread_flush_worker(struct kthread_worker *worker)
1379 {
1380 	struct kthread_flush_work fwork = {
1381 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1382 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1383 	};
1384 
1385 	kthread_queue_work(worker, &fwork.work);
1386 	wait_for_completion(&fwork.done);
1387 }
1388 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1389 
1390 /**
1391  * kthread_destroy_worker - destroy a kthread worker
1392  * @worker: worker to be destroyed
1393  *
1394  * Flush and destroy @worker.  The simple flush is enough because the kthread
1395  * worker API is used only in trivial scenarios.  There are no multi-step state
1396  * machines needed.
1397  */
kthread_destroy_worker(struct kthread_worker * worker)1398 void kthread_destroy_worker(struct kthread_worker *worker)
1399 {
1400 	struct task_struct *task;
1401 
1402 	task = worker->task;
1403 	if (WARN_ON(!task))
1404 		return;
1405 
1406 	kthread_flush_worker(worker);
1407 	kthread_stop(task);
1408 	WARN_ON(!list_empty(&worker->work_list));
1409 	kfree(worker);
1410 }
1411 EXPORT_SYMBOL(kthread_destroy_worker);
1412 
1413 /**
1414  * kthread_use_mm - make the calling kthread operate on an address space
1415  * @mm: address space to operate on
1416  */
kthread_use_mm(struct mm_struct * mm)1417 void kthread_use_mm(struct mm_struct *mm)
1418 {
1419 	struct mm_struct *active_mm;
1420 	struct task_struct *tsk = current;
1421 
1422 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1423 	WARN_ON_ONCE(tsk->mm);
1424 
1425 	task_lock(tsk);
1426 	/* Hold off tlb flush IPIs while switching mm's */
1427 	local_irq_disable();
1428 	active_mm = tsk->active_mm;
1429 	if (active_mm != mm) {
1430 		mmgrab(mm);
1431 		tsk->active_mm = mm;
1432 	}
1433 	tsk->mm = mm;
1434 	membarrier_update_current_mm(mm);
1435 	switch_mm_irqs_off(active_mm, mm, tsk);
1436 	local_irq_enable();
1437 	task_unlock(tsk);
1438 #ifdef finish_arch_post_lock_switch
1439 	finish_arch_post_lock_switch();
1440 #endif
1441 
1442 	/*
1443 	 * When a kthread starts operating on an address space, the loop
1444 	 * in membarrier_{private,global}_expedited() may not observe
1445 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1446 	 * memory barrier after storing to tsk->mm, before accessing
1447 	 * user-space memory. A full memory barrier for membarrier
1448 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1449 	 * mmdrop(), or explicitly with smp_mb().
1450 	 */
1451 	if (active_mm != mm)
1452 		mmdrop(active_mm);
1453 	else
1454 		smp_mb();
1455 }
1456 EXPORT_SYMBOL_GPL(kthread_use_mm);
1457 
1458 /**
1459  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1460  * @mm: address space to operate on
1461  */
kthread_unuse_mm(struct mm_struct * mm)1462 void kthread_unuse_mm(struct mm_struct *mm)
1463 {
1464 	struct task_struct *tsk = current;
1465 
1466 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1467 	WARN_ON_ONCE(!tsk->mm);
1468 
1469 	task_lock(tsk);
1470 	/*
1471 	 * When a kthread stops operating on an address space, the loop
1472 	 * in membarrier_{private,global}_expedited() may not observe
1473 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1474 	 * memory barrier after accessing user-space memory, before
1475 	 * clearing tsk->mm.
1476 	 */
1477 	smp_mb__after_spinlock();
1478 	sync_mm_rss(mm);
1479 	local_irq_disable();
1480 	tsk->mm = NULL;
1481 	membarrier_update_current_mm(NULL);
1482 	/* active_mm is still 'mm' */
1483 	enter_lazy_tlb(mm, tsk);
1484 	local_irq_enable();
1485 	task_unlock(tsk);
1486 }
1487 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1488 
1489 #ifdef CONFIG_BLK_CGROUP
1490 /**
1491  * kthread_associate_blkcg - associate blkcg to current kthread
1492  * @css: the cgroup info
1493  *
1494  * Current thread must be a kthread. The thread is running jobs on behalf of
1495  * other threads. In some cases, we expect the jobs attach cgroup info of
1496  * original threads instead of that of current thread. This function stores
1497  * original thread's cgroup info in current kthread context for later
1498  * retrieval.
1499  */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1500 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1501 {
1502 	struct kthread *kthread;
1503 
1504 	if (!(current->flags & PF_KTHREAD))
1505 		return;
1506 	kthread = to_kthread(current);
1507 	if (!kthread)
1508 		return;
1509 
1510 	if (kthread->blkcg_css) {
1511 		css_put(kthread->blkcg_css);
1512 		kthread->blkcg_css = NULL;
1513 	}
1514 	if (css) {
1515 		css_get(css);
1516 		kthread->blkcg_css = css;
1517 	}
1518 }
1519 EXPORT_SYMBOL(kthread_associate_blkcg);
1520 
1521 /**
1522  * kthread_blkcg - get associated blkcg css of current kthread
1523  *
1524  * Current thread must be a kthread.
1525  */
kthread_blkcg(void)1526 struct cgroup_subsys_state *kthread_blkcg(void)
1527 {
1528 	struct kthread *kthread;
1529 
1530 	if (current->flags & PF_KTHREAD) {
1531 		kthread = to_kthread(current);
1532 		if (kthread)
1533 			return kthread->blkcg_css;
1534 	}
1535 	return NULL;
1536 }
1537 #endif
1538