• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *				     and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26 
27 #include <trace/events/lock.h>
28 #include <trace/hooks/dtask.h>
29 
30 #include "rtmutex_common.h"
31 
32 #ifndef WW_RT
33 # define build_ww_mutex()	(false)
34 # define ww_container_of(rtm)	NULL
35 
__ww_mutex_add_waiter(struct rt_mutex_waiter * waiter,struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)36 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
37 					struct rt_mutex *lock,
38 					struct ww_acquire_ctx *ww_ctx)
39 {
40 	return 0;
41 }
42 
__ww_mutex_check_waiters(struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx)43 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
44 					    struct ww_acquire_ctx *ww_ctx)
45 {
46 }
47 
ww_mutex_lock_acquired(struct ww_mutex * lock,struct ww_acquire_ctx * ww_ctx)48 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
49 					  struct ww_acquire_ctx *ww_ctx)
50 {
51 }
52 
__ww_mutex_check_kill(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)53 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
54 					struct rt_mutex_waiter *waiter,
55 					struct ww_acquire_ctx *ww_ctx)
56 {
57 	return 0;
58 }
59 
60 #else
61 # define build_ww_mutex()	(true)
62 # define ww_container_of(rtm)	container_of(rtm, struct ww_mutex, base)
63 # include "ww_mutex.h"
64 #endif
65 
66 /*
67  * lock->owner state tracking:
68  *
69  * lock->owner holds the task_struct pointer of the owner. Bit 0
70  * is used to keep track of the "lock has waiters" state.
71  *
72  * owner	bit0
73  * NULL		0	lock is free (fast acquire possible)
74  * NULL		1	lock is free and has waiters and the top waiter
75  *				is going to take the lock*
76  * taskpointer	0	lock is held (fast release possible)
77  * taskpointer	1	lock is held and has waiters**
78  *
79  * The fast atomic compare exchange based acquire and release is only
80  * possible when bit 0 of lock->owner is 0.
81  *
82  * (*) It also can be a transitional state when grabbing the lock
83  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
84  * we need to set the bit0 before looking at the lock, and the owner may be
85  * NULL in this small time, hence this can be a transitional state.
86  *
87  * (**) There is a small time when bit 0 is set but there are no
88  * waiters. This can happen when grabbing the lock in the slow path.
89  * To prevent a cmpxchg of the owner releasing the lock, we need to
90  * set this bit before looking at the lock.
91  */
92 
93 static __always_inline struct task_struct *
rt_mutex_owner_encode(struct rt_mutex_base * lock,struct task_struct * owner)94 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
95 {
96 	unsigned long val = (unsigned long)owner;
97 
98 	if (rt_mutex_has_waiters(lock))
99 		val |= RT_MUTEX_HAS_WAITERS;
100 
101 	return (struct task_struct *)val;
102 }
103 
104 static __always_inline void
rt_mutex_set_owner(struct rt_mutex_base * lock,struct task_struct * owner)105 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
106 {
107 	/*
108 	 * lock->wait_lock is held but explicit acquire semantics are needed
109 	 * for a new lock owner so WRITE_ONCE is insufficient.
110 	 */
111 	xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
112 }
113 
rt_mutex_clear_owner(struct rt_mutex_base * lock)114 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
115 {
116 	/* lock->wait_lock is held so the unlock provides release semantics. */
117 	WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
118 }
119 
clear_rt_mutex_waiters(struct rt_mutex_base * lock)120 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
121 {
122 	lock->owner = (struct task_struct *)
123 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
124 }
125 
126 static __always_inline void
fixup_rt_mutex_waiters(struct rt_mutex_base * lock,bool acquire_lock)127 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
128 {
129 	unsigned long owner, *p = (unsigned long *) &lock->owner;
130 
131 	if (rt_mutex_has_waiters(lock))
132 		return;
133 
134 	/*
135 	 * The rbtree has no waiters enqueued, now make sure that the
136 	 * lock->owner still has the waiters bit set, otherwise the
137 	 * following can happen:
138 	 *
139 	 * CPU 0	CPU 1		CPU2
140 	 * l->owner=T1
141 	 *		rt_mutex_lock(l)
142 	 *		lock(l->lock)
143 	 *		l->owner = T1 | HAS_WAITERS;
144 	 *		enqueue(T2)
145 	 *		boost()
146 	 *		  unlock(l->lock)
147 	 *		block()
148 	 *
149 	 *				rt_mutex_lock(l)
150 	 *				lock(l->lock)
151 	 *				l->owner = T1 | HAS_WAITERS;
152 	 *				enqueue(T3)
153 	 *				boost()
154 	 *				  unlock(l->lock)
155 	 *				block()
156 	 *		signal(->T2)	signal(->T3)
157 	 *		lock(l->lock)
158 	 *		dequeue(T2)
159 	 *		deboost()
160 	 *		  unlock(l->lock)
161 	 *				lock(l->lock)
162 	 *				dequeue(T3)
163 	 *				 ==> wait list is empty
164 	 *				deboost()
165 	 *				 unlock(l->lock)
166 	 *		lock(l->lock)
167 	 *		fixup_rt_mutex_waiters()
168 	 *		  if (wait_list_empty(l) {
169 	 *		    l->owner = owner
170 	 *		    owner = l->owner & ~HAS_WAITERS;
171 	 *		      ==> l->owner = T1
172 	 *		  }
173 	 *				lock(l->lock)
174 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
175 	 *				  if (wait_list_empty(l) {
176 	 *				    owner = l->owner & ~HAS_WAITERS;
177 	 * cmpxchg(l->owner, T1, NULL)
178 	 *  ===> Success (l->owner = NULL)
179 	 *
180 	 *				    l->owner = owner
181 	 *				      ==> l->owner = T1
182 	 *				  }
183 	 *
184 	 * With the check for the waiter bit in place T3 on CPU2 will not
185 	 * overwrite. All tasks fiddling with the waiters bit are
186 	 * serialized by l->lock, so nothing else can modify the waiters
187 	 * bit. If the bit is set then nothing can change l->owner either
188 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
189 	 * happens in the middle of the RMW because the waiters bit is
190 	 * still set.
191 	 */
192 	owner = READ_ONCE(*p);
193 	if (owner & RT_MUTEX_HAS_WAITERS) {
194 		/*
195 		 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
196 		 * why xchg_acquire() is used for updating owner for
197 		 * locking and WRITE_ONCE() for unlocking.
198 		 *
199 		 * WRITE_ONCE() would work for the acquire case too, but
200 		 * in case that the lock acquisition failed it might
201 		 * force other lockers into the slow path unnecessarily.
202 		 */
203 		if (acquire_lock)
204 			xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
205 		else
206 			WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
207 	}
208 }
209 
210 /*
211  * We can speed up the acquire/release, if there's no debugging state to be
212  * set up.
213  */
214 #ifndef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)215 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
216 						     struct task_struct *old,
217 						     struct task_struct *new)
218 {
219 	return try_cmpxchg_acquire(&lock->owner, &old, new);
220 }
221 
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)222 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
223 						     struct task_struct *old,
224 						     struct task_struct *new)
225 {
226 	return try_cmpxchg_release(&lock->owner, &old, new);
227 }
228 
229 /*
230  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
231  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
232  * relaxed semantics suffice.
233  */
mark_rt_mutex_waiters(struct rt_mutex_base * lock)234 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
235 {
236 	unsigned long owner, *p = (unsigned long *) &lock->owner;
237 
238 	do {
239 		owner = *p;
240 	} while (cmpxchg_relaxed(p, owner,
241 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
242 
243 	/*
244 	 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
245 	 * operations in the event of contention. Ensure the successful
246 	 * cmpxchg is visible.
247 	 */
248 	smp_mb__after_atomic();
249 }
250 
251 /*
252  * Safe fastpath aware unlock:
253  * 1) Clear the waiters bit
254  * 2) Drop lock->wait_lock
255  * 3) Try to unlock the lock with cmpxchg
256  */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)257 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
258 						 unsigned long flags)
259 	__releases(lock->wait_lock)
260 {
261 	struct task_struct *owner = rt_mutex_owner(lock);
262 
263 	clear_rt_mutex_waiters(lock);
264 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
265 	/*
266 	 * If a new waiter comes in between the unlock and the cmpxchg
267 	 * we have two situations:
268 	 *
269 	 * unlock(wait_lock);
270 	 *					lock(wait_lock);
271 	 * cmpxchg(p, owner, 0) == owner
272 	 *					mark_rt_mutex_waiters(lock);
273 	 *					acquire(lock);
274 	 * or:
275 	 *
276 	 * unlock(wait_lock);
277 	 *					lock(wait_lock);
278 	 *					mark_rt_mutex_waiters(lock);
279 	 *
280 	 * cmpxchg(p, owner, 0) != owner
281 	 *					enqueue_waiter();
282 	 *					unlock(wait_lock);
283 	 * lock(wait_lock);
284 	 * wake waiter();
285 	 * unlock(wait_lock);
286 	 *					lock(wait_lock);
287 	 *					acquire(lock);
288 	 */
289 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
290 }
291 
292 #else
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)293 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
294 						     struct task_struct *old,
295 						     struct task_struct *new)
296 {
297 	return false;
298 
299 }
300 
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)301 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
302 						     struct task_struct *old,
303 						     struct task_struct *new)
304 {
305 	return false;
306 }
307 
mark_rt_mutex_waiters(struct rt_mutex_base * lock)308 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
309 {
310 	lock->owner = (struct task_struct *)
311 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
312 }
313 
314 /*
315  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
316  */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)317 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
318 						 unsigned long flags)
319 	__releases(lock->wait_lock)
320 {
321 	lock->owner = NULL;
322 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
323 	return true;
324 }
325 #endif
326 
__waiter_prio(struct task_struct * task)327 static __always_inline int __waiter_prio(struct task_struct *task)
328 {
329 	int prio = task->prio;
330 	int waiter_prio = 0;
331 
332 	trace_android_vh_rtmutex_waiter_prio(task, &waiter_prio);
333 	if (waiter_prio > 0)
334 		return waiter_prio;
335 
336 	if (!rt_prio(prio))
337 		return DEFAULT_PRIO;
338 
339 	return prio;
340 }
341 
342 static __always_inline void
waiter_update_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)343 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
344 {
345 	waiter->prio = __waiter_prio(task);
346 	waiter->deadline = task->dl.deadline;
347 }
348 
349 /*
350  * Only use with rt_mutex_waiter_{less,equal}()
351  */
352 #define task_to_waiter(p)	\
353 	&(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
354 
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)355 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
356 						struct rt_mutex_waiter *right)
357 {
358 	if (left->prio < right->prio)
359 		return 1;
360 
361 	/*
362 	 * If both waiters have dl_prio(), we check the deadlines of the
363 	 * associated tasks.
364 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
365 	 * then right waiter has a dl_prio() too.
366 	 */
367 	if (dl_prio(left->prio))
368 		return dl_time_before(left->deadline, right->deadline);
369 
370 	return 0;
371 }
372 
rt_mutex_waiter_equal(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)373 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
374 						 struct rt_mutex_waiter *right)
375 {
376 	if (left->prio != right->prio)
377 		return 0;
378 
379 	/*
380 	 * If both waiters have dl_prio(), we check the deadlines of the
381 	 * associated tasks.
382 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
383 	 * then right waiter has a dl_prio() too.
384 	 */
385 	if (dl_prio(left->prio))
386 		return left->deadline == right->deadline;
387 
388 	return 1;
389 }
390 
rt_mutex_steal(struct rt_mutex_waiter * waiter,struct rt_mutex_waiter * top_waiter)391 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
392 				  struct rt_mutex_waiter *top_waiter)
393 {
394 	bool ret = false;
395 
396 	if (rt_mutex_waiter_less(waiter, top_waiter))
397 		return true;
398 
399 	trace_android_vh_rt_mutex_steal(waiter->prio, top_waiter->prio, &ret);
400 	if (ret)
401 		return true;
402 
403 #ifdef RT_MUTEX_BUILD_SPINLOCKS
404 	/*
405 	 * Note that RT tasks are excluded from same priority (lateral)
406 	 * steals to prevent the introduction of an unbounded latency.
407 	 */
408 	if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
409 		return false;
410 
411 	return rt_mutex_waiter_equal(waiter, top_waiter);
412 #else
413 	return false;
414 #endif
415 }
416 
417 #define __node_2_waiter(node) \
418 	rb_entry((node), struct rt_mutex_waiter, tree_entry)
419 
__waiter_less(struct rb_node * a,const struct rb_node * b)420 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
421 {
422 	struct rt_mutex_waiter *aw = __node_2_waiter(a);
423 	struct rt_mutex_waiter *bw = __node_2_waiter(b);
424 
425 	if (rt_mutex_waiter_less(aw, bw))
426 		return 1;
427 
428 	if (!build_ww_mutex())
429 		return 0;
430 
431 	if (rt_mutex_waiter_less(bw, aw))
432 		return 0;
433 
434 	/* NOTE: relies on waiter->ww_ctx being set before insertion */
435 	if (aw->ww_ctx) {
436 		if (!bw->ww_ctx)
437 			return 1;
438 
439 		return (signed long)(aw->ww_ctx->stamp -
440 				     bw->ww_ctx->stamp) < 0;
441 	}
442 
443 	return 0;
444 }
445 
446 static __always_inline void
rt_mutex_enqueue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)447 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
448 {
449 	rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
450 }
451 
452 static __always_inline void
rt_mutex_dequeue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)453 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
454 {
455 	if (RB_EMPTY_NODE(&waiter->tree_entry))
456 		return;
457 
458 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
459 	RB_CLEAR_NODE(&waiter->tree_entry);
460 }
461 
462 #define __node_2_pi_waiter(node) \
463 	rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
464 
465 static __always_inline bool
__pi_waiter_less(struct rb_node * a,const struct rb_node * b)466 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
467 {
468 	return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
469 }
470 
471 static __always_inline void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)472 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
473 {
474 	rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
475 }
476 
477 static __always_inline void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)478 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
479 {
480 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
481 		return;
482 
483 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
484 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
485 }
486 
rt_mutex_adjust_prio(struct task_struct * p)487 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
488 {
489 	struct task_struct *pi_task = NULL;
490 
491 	lockdep_assert_held(&p->pi_lock);
492 
493 	if (task_has_pi_waiters(p))
494 		pi_task = task_top_pi_waiter(p)->task;
495 
496 	rt_mutex_setprio(p, pi_task);
497 }
498 
499 /* RT mutex specific wake_q wrappers */
rt_mutex_wake_q_add_task(struct rt_wake_q_head * wqh,struct task_struct * task,unsigned int wake_state)500 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
501 						     struct task_struct *task,
502 						     unsigned int wake_state)
503 {
504 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
505 		if (IS_ENABLED(CONFIG_PROVE_LOCKING))
506 			WARN_ON_ONCE(wqh->rtlock_task);
507 		get_task_struct(task);
508 		wqh->rtlock_task = task;
509 	} else {
510 		wake_q_add(&wqh->head, task);
511 	}
512 }
513 
rt_mutex_wake_q_add(struct rt_wake_q_head * wqh,struct rt_mutex_waiter * w)514 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
515 						struct rt_mutex_waiter *w)
516 {
517 	rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
518 }
519 
rt_mutex_wake_up_q(struct rt_wake_q_head * wqh)520 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
521 {
522 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
523 		wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
524 		put_task_struct(wqh->rtlock_task);
525 		wqh->rtlock_task = NULL;
526 	}
527 
528 	if (!wake_q_empty(&wqh->head))
529 		wake_up_q(&wqh->head);
530 
531 	/* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
532 	preempt_enable();
533 }
534 
535 /*
536  * Deadlock detection is conditional:
537  *
538  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
539  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
540  *
541  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
542  * conducted independent of the detect argument.
543  *
544  * If the waiter argument is NULL this indicates the deboost path and
545  * deadlock detection is disabled independent of the detect argument
546  * and the config settings.
547  */
548 static __always_inline bool
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)549 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
550 			      enum rtmutex_chainwalk chwalk)
551 {
552 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
553 		return waiter != NULL;
554 	return chwalk == RT_MUTEX_FULL_CHAINWALK;
555 }
556 
task_blocked_on_lock(struct task_struct * p)557 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
558 {
559 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
560 }
561 
562 /*
563  * Adjust the priority chain. Also used for deadlock detection.
564  * Decreases task's usage by one - may thus free the task.
565  *
566  * @task:	the task owning the mutex (owner) for which a chain walk is
567  *		probably needed
568  * @chwalk:	do we have to carry out deadlock detection?
569  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
570  *		things for a task that has just got its priority adjusted, and
571  *		is waiting on a mutex)
572  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
573  *		we dropped its pi_lock. Is never dereferenced, only used for
574  *		comparison to detect lock chain changes.
575  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
576  *		its priority to the mutex owner (can be NULL in the case
577  *		depicted above or if the top waiter is gone away and we are
578  *		actually deboosting the owner)
579  * @top_task:	the current top waiter
580  *
581  * Returns 0 or -EDEADLK.
582  *
583  * Chain walk basics and protection scope
584  *
585  * [R] refcount on task
586  * [P] task->pi_lock held
587  * [L] rtmutex->wait_lock held
588  *
589  * Step	Description				Protected by
590  *	function arguments:
591  *	@task					[R]
592  *	@orig_lock if != NULL			@top_task is blocked on it
593  *	@next_lock				Unprotected. Cannot be
594  *						dereferenced. Only used for
595  *						comparison.
596  *	@orig_waiter if != NULL			@top_task is blocked on it
597  *	@top_task				current, or in case of proxy
598  *						locking protected by calling
599  *						code
600  *	again:
601  *	  loop_sanity_check();
602  *	retry:
603  * [1]	  lock(task->pi_lock);			[R] acquire [P]
604  * [2]	  waiter = task->pi_blocked_on;		[P]
605  * [3]	  check_exit_conditions_1();		[P]
606  * [4]	  lock = waiter->lock;			[P]
607  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
608  *	    unlock(task->pi_lock);		release [P]
609  *	    goto retry;
610  *	  }
611  * [6]	  check_exit_conditions_2();		[P] + [L]
612  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
613  * [8]	  unlock(task->pi_lock);		release [P]
614  *	  put_task_struct(task);		release [R]
615  * [9]	  check_exit_conditions_3();		[L]
616  * [10]	  task = owner(lock);			[L]
617  *	  get_task_struct(task);		[L] acquire [R]
618  *	  lock(task->pi_lock);			[L] acquire [P]
619  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
620  * [12]	  check_exit_conditions_4();		[P] + [L]
621  * [13]	  unlock(task->pi_lock);		release [P]
622  *	  unlock(lock->wait_lock);		release [L]
623  *	  goto again;
624  */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex_base * orig_lock,struct rt_mutex_base * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)625 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
626 					      enum rtmutex_chainwalk chwalk,
627 					      struct rt_mutex_base *orig_lock,
628 					      struct rt_mutex_base *next_lock,
629 					      struct rt_mutex_waiter *orig_waiter,
630 					      struct task_struct *top_task)
631 {
632 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
633 	struct rt_mutex_waiter *prerequeue_top_waiter;
634 	int ret = 0, depth = 0;
635 	struct rt_mutex_base *lock;
636 	bool detect_deadlock;
637 	bool requeue = true;
638 
639 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
640 
641 	/*
642 	 * The (de)boosting is a step by step approach with a lot of
643 	 * pitfalls. We want this to be preemptible and we want hold a
644 	 * maximum of two locks per step. So we have to check
645 	 * carefully whether things change under us.
646 	 */
647  again:
648 	/*
649 	 * We limit the lock chain length for each invocation.
650 	 */
651 	if (++depth > max_lock_depth) {
652 		static int prev_max;
653 
654 		/*
655 		 * Print this only once. If the admin changes the limit,
656 		 * print a new message when reaching the limit again.
657 		 */
658 		if (prev_max != max_lock_depth) {
659 			prev_max = max_lock_depth;
660 			printk(KERN_WARNING "Maximum lock depth %d reached "
661 			       "task: %s (%d)\n", max_lock_depth,
662 			       top_task->comm, task_pid_nr(top_task));
663 		}
664 		put_task_struct(task);
665 
666 		return -EDEADLK;
667 	}
668 
669 	/*
670 	 * We are fully preemptible here and only hold the refcount on
671 	 * @task. So everything can have changed under us since the
672 	 * caller or our own code below (goto retry/again) dropped all
673 	 * locks.
674 	 */
675  retry:
676 	/*
677 	 * [1] Task cannot go away as we did a get_task() before !
678 	 */
679 	raw_spin_lock_irq(&task->pi_lock);
680 
681 	/*
682 	 * [2] Get the waiter on which @task is blocked on.
683 	 */
684 	waiter = task->pi_blocked_on;
685 
686 	/*
687 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
688 	 */
689 
690 	/*
691 	 * Check whether the end of the boosting chain has been
692 	 * reached or the state of the chain has changed while we
693 	 * dropped the locks.
694 	 */
695 	if (!waiter)
696 		goto out_unlock_pi;
697 
698 	/*
699 	 * Check the orig_waiter state. After we dropped the locks,
700 	 * the previous owner of the lock might have released the lock.
701 	 */
702 	if (orig_waiter && !rt_mutex_owner(orig_lock))
703 		goto out_unlock_pi;
704 
705 	/*
706 	 * We dropped all locks after taking a refcount on @task, so
707 	 * the task might have moved on in the lock chain or even left
708 	 * the chain completely and blocks now on an unrelated lock or
709 	 * on @orig_lock.
710 	 *
711 	 * We stored the lock on which @task was blocked in @next_lock,
712 	 * so we can detect the chain change.
713 	 */
714 	if (next_lock != waiter->lock)
715 		goto out_unlock_pi;
716 
717 	/*
718 	 * There could be 'spurious' loops in the lock graph due to ww_mutex,
719 	 * consider:
720 	 *
721 	 *   P1: A, ww_A, ww_B
722 	 *   P2: ww_B, ww_A
723 	 *   P3: A
724 	 *
725 	 * P3 should not return -EDEADLK because it gets trapped in the cycle
726 	 * created by P1 and P2 (which will resolve -- and runs into
727 	 * max_lock_depth above). Therefore disable detect_deadlock such that
728 	 * the below termination condition can trigger once all relevant tasks
729 	 * are boosted.
730 	 *
731 	 * Even when we start with ww_mutex we can disable deadlock detection,
732 	 * since we would supress a ww_mutex induced deadlock at [6] anyway.
733 	 * Supressing it here however is not sufficient since we might still
734 	 * hit [6] due to adjustment driven iteration.
735 	 *
736 	 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
737 	 * utterly fail to report it; lockdep should.
738 	 */
739 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
740 		detect_deadlock = false;
741 
742 	/*
743 	 * Drop out, when the task has no waiters. Note,
744 	 * top_waiter can be NULL, when we are in the deboosting
745 	 * mode!
746 	 */
747 	if (top_waiter) {
748 		if (!task_has_pi_waiters(task))
749 			goto out_unlock_pi;
750 		/*
751 		 * If deadlock detection is off, we stop here if we
752 		 * are not the top pi waiter of the task. If deadlock
753 		 * detection is enabled we continue, but stop the
754 		 * requeueing in the chain walk.
755 		 */
756 		if (top_waiter != task_top_pi_waiter(task)) {
757 			if (!detect_deadlock)
758 				goto out_unlock_pi;
759 			else
760 				requeue = false;
761 		}
762 	}
763 
764 	/*
765 	 * If the waiter priority is the same as the task priority
766 	 * then there is no further priority adjustment necessary.  If
767 	 * deadlock detection is off, we stop the chain walk. If its
768 	 * enabled we continue, but stop the requeueing in the chain
769 	 * walk.
770 	 */
771 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
772 		if (!detect_deadlock)
773 			goto out_unlock_pi;
774 		else
775 			requeue = false;
776 	}
777 
778 	/*
779 	 * [4] Get the next lock
780 	 */
781 	lock = waiter->lock;
782 	/*
783 	 * [5] We need to trylock here as we are holding task->pi_lock,
784 	 * which is the reverse lock order versus the other rtmutex
785 	 * operations.
786 	 */
787 	if (!raw_spin_trylock(&lock->wait_lock)) {
788 		raw_spin_unlock_irq(&task->pi_lock);
789 		cpu_relax();
790 		goto retry;
791 	}
792 
793 	/*
794 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
795 	 * lock->wait_lock.
796 	 *
797 	 * Deadlock detection. If the lock is the same as the original
798 	 * lock which caused us to walk the lock chain or if the
799 	 * current lock is owned by the task which initiated the chain
800 	 * walk, we detected a deadlock.
801 	 */
802 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
803 		ret = -EDEADLK;
804 
805 		/*
806 		 * When the deadlock is due to ww_mutex; also see above. Don't
807 		 * report the deadlock and instead let the ww_mutex wound/die
808 		 * logic pick which of the contending threads gets -EDEADLK.
809 		 *
810 		 * NOTE: assumes the cycle only contains a single ww_class; any
811 		 * other configuration and we fail to report; also, see
812 		 * lockdep.
813 		 */
814 		if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
815 			ret = 0;
816 
817 		raw_spin_unlock(&lock->wait_lock);
818 		goto out_unlock_pi;
819 	}
820 
821 	/*
822 	 * If we just follow the lock chain for deadlock detection, no
823 	 * need to do all the requeue operations. To avoid a truckload
824 	 * of conditionals around the various places below, just do the
825 	 * minimum chain walk checks.
826 	 */
827 	if (!requeue) {
828 		/*
829 		 * No requeue[7] here. Just release @task [8]
830 		 */
831 		raw_spin_unlock(&task->pi_lock);
832 		put_task_struct(task);
833 
834 		/*
835 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
836 		 * If there is no owner of the lock, end of chain.
837 		 */
838 		if (!rt_mutex_owner(lock)) {
839 			raw_spin_unlock_irq(&lock->wait_lock);
840 			return 0;
841 		}
842 
843 		/* [10] Grab the next task, i.e. owner of @lock */
844 		task = get_task_struct(rt_mutex_owner(lock));
845 		raw_spin_lock(&task->pi_lock);
846 
847 		/*
848 		 * No requeue [11] here. We just do deadlock detection.
849 		 *
850 		 * [12] Store whether owner is blocked
851 		 * itself. Decision is made after dropping the locks
852 		 */
853 		next_lock = task_blocked_on_lock(task);
854 		/*
855 		 * Get the top waiter for the next iteration
856 		 */
857 		top_waiter = rt_mutex_top_waiter(lock);
858 
859 		/* [13] Drop locks */
860 		raw_spin_unlock(&task->pi_lock);
861 		raw_spin_unlock_irq(&lock->wait_lock);
862 
863 		/* If owner is not blocked, end of chain. */
864 		if (!next_lock)
865 			goto out_put_task;
866 		goto again;
867 	}
868 
869 	/*
870 	 * Store the current top waiter before doing the requeue
871 	 * operation on @lock. We need it for the boost/deboost
872 	 * decision below.
873 	 */
874 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
875 
876 	/* [7] Requeue the waiter in the lock waiter tree. */
877 	rt_mutex_dequeue(lock, waiter);
878 
879 	/*
880 	 * Update the waiter prio fields now that we're dequeued.
881 	 *
882 	 * These values can have changed through either:
883 	 *
884 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
885 	 *
886 	 * or
887 	 *
888 	 *   DL CBS enforcement advancing the effective deadline.
889 	 *
890 	 * Even though pi_waiters also uses these fields, and that tree is only
891 	 * updated in [11], we can do this here, since we hold [L], which
892 	 * serializes all pi_waiters access and rb_erase() does not care about
893 	 * the values of the node being removed.
894 	 */
895 	waiter_update_prio(waiter, task);
896 
897 	rt_mutex_enqueue(lock, waiter);
898 
899 	/* [8] Release the task */
900 	raw_spin_unlock(&task->pi_lock);
901 	put_task_struct(task);
902 
903 	/*
904 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
905 	 *
906 	 * We must abort the chain walk if there is no lock owner even
907 	 * in the dead lock detection case, as we have nothing to
908 	 * follow here. This is the end of the chain we are walking.
909 	 */
910 	if (!rt_mutex_owner(lock)) {
911 		/*
912 		 * If the requeue [7] above changed the top waiter,
913 		 * then we need to wake the new top waiter up to try
914 		 * to get the lock.
915 		 */
916 		top_waiter = rt_mutex_top_waiter(lock);
917 		if (prerequeue_top_waiter != top_waiter)
918 			wake_up_state(top_waiter->task, top_waiter->wake_state);
919 		raw_spin_unlock_irq(&lock->wait_lock);
920 		return 0;
921 	}
922 
923 	/* [10] Grab the next task, i.e. the owner of @lock */
924 	task = get_task_struct(rt_mutex_owner(lock));
925 	raw_spin_lock(&task->pi_lock);
926 
927 	/* [11] requeue the pi waiters if necessary */
928 	if (waiter == rt_mutex_top_waiter(lock)) {
929 		/*
930 		 * The waiter became the new top (highest priority)
931 		 * waiter on the lock. Replace the previous top waiter
932 		 * in the owner tasks pi waiters tree with this waiter
933 		 * and adjust the priority of the owner.
934 		 */
935 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
936 		rt_mutex_enqueue_pi(task, waiter);
937 		rt_mutex_adjust_prio(task);
938 
939 	} else if (prerequeue_top_waiter == waiter) {
940 		/*
941 		 * The waiter was the top waiter on the lock, but is
942 		 * no longer the top priority waiter. Replace waiter in
943 		 * the owner tasks pi waiters tree with the new top
944 		 * (highest priority) waiter and adjust the priority
945 		 * of the owner.
946 		 * The new top waiter is stored in @waiter so that
947 		 * @waiter == @top_waiter evaluates to true below and
948 		 * we continue to deboost the rest of the chain.
949 		 */
950 		rt_mutex_dequeue_pi(task, waiter);
951 		waiter = rt_mutex_top_waiter(lock);
952 		rt_mutex_enqueue_pi(task, waiter);
953 		rt_mutex_adjust_prio(task);
954 	} else {
955 		/*
956 		 * Nothing changed. No need to do any priority
957 		 * adjustment.
958 		 */
959 	}
960 
961 	/*
962 	 * [12] check_exit_conditions_4() protected by task->pi_lock
963 	 * and lock->wait_lock. The actual decisions are made after we
964 	 * dropped the locks.
965 	 *
966 	 * Check whether the task which owns the current lock is pi
967 	 * blocked itself. If yes we store a pointer to the lock for
968 	 * the lock chain change detection above. After we dropped
969 	 * task->pi_lock next_lock cannot be dereferenced anymore.
970 	 */
971 	next_lock = task_blocked_on_lock(task);
972 	/*
973 	 * Store the top waiter of @lock for the end of chain walk
974 	 * decision below.
975 	 */
976 	top_waiter = rt_mutex_top_waiter(lock);
977 
978 	/* [13] Drop the locks */
979 	raw_spin_unlock(&task->pi_lock);
980 	raw_spin_unlock_irq(&lock->wait_lock);
981 
982 	/*
983 	 * Make the actual exit decisions [12], based on the stored
984 	 * values.
985 	 *
986 	 * We reached the end of the lock chain. Stop right here. No
987 	 * point to go back just to figure that out.
988 	 */
989 	if (!next_lock)
990 		goto out_put_task;
991 
992 	/*
993 	 * If the current waiter is not the top waiter on the lock,
994 	 * then we can stop the chain walk here if we are not in full
995 	 * deadlock detection mode.
996 	 */
997 	if (!detect_deadlock && waiter != top_waiter)
998 		goto out_put_task;
999 
1000 	goto again;
1001 
1002  out_unlock_pi:
1003 	raw_spin_unlock_irq(&task->pi_lock);
1004  out_put_task:
1005 	put_task_struct(task);
1006 
1007 	return ret;
1008 }
1009 
1010 /*
1011  * Try to take an rt-mutex
1012  *
1013  * Must be called with lock->wait_lock held and interrupts disabled
1014  *
1015  * @lock:   The lock to be acquired.
1016  * @task:   The task which wants to acquire the lock
1017  * @waiter: The waiter that is queued to the lock's wait tree if the
1018  *	    callsite called task_blocked_on_lock(), otherwise NULL
1019  */
1020 static int __sched
try_to_take_rt_mutex(struct rt_mutex_base * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)1021 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1022 		     struct rt_mutex_waiter *waiter)
1023 {
1024 	lockdep_assert_held(&lock->wait_lock);
1025 
1026 	/*
1027 	 * Before testing whether we can acquire @lock, we set the
1028 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1029 	 * other tasks which try to modify @lock into the slow path
1030 	 * and they serialize on @lock->wait_lock.
1031 	 *
1032 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1033 	 * as explained at the top of this file if and only if:
1034 	 *
1035 	 * - There is a lock owner. The caller must fixup the
1036 	 *   transient state if it does a trylock or leaves the lock
1037 	 *   function due to a signal or timeout.
1038 	 *
1039 	 * - @task acquires the lock and there are no other
1040 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
1041 	 *   the end of this function.
1042 	 */
1043 	mark_rt_mutex_waiters(lock);
1044 
1045 	/*
1046 	 * If @lock has an owner, give up.
1047 	 */
1048 	if (rt_mutex_owner(lock))
1049 		return 0;
1050 
1051 	/*
1052 	 * If @waiter != NULL, @task has already enqueued the waiter
1053 	 * into @lock waiter tree. If @waiter == NULL then this is a
1054 	 * trylock attempt.
1055 	 */
1056 	if (waiter) {
1057 		struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1058 
1059 		/*
1060 		 * If waiter is the highest priority waiter of @lock,
1061 		 * or allowed to steal it, take it over.
1062 		 */
1063 		if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1064 			/*
1065 			 * We can acquire the lock. Remove the waiter from the
1066 			 * lock waiters tree.
1067 			 */
1068 			rt_mutex_dequeue(lock, waiter);
1069 		} else {
1070 			return 0;
1071 		}
1072 	} else {
1073 		/*
1074 		 * If the lock has waiters already we check whether @task is
1075 		 * eligible to take over the lock.
1076 		 *
1077 		 * If there are no other waiters, @task can acquire
1078 		 * the lock.  @task->pi_blocked_on is NULL, so it does
1079 		 * not need to be dequeued.
1080 		 */
1081 		if (rt_mutex_has_waiters(lock)) {
1082 			/* Check whether the trylock can steal it. */
1083 			if (!rt_mutex_steal(task_to_waiter(task),
1084 					    rt_mutex_top_waiter(lock)))
1085 				return 0;
1086 
1087 			/*
1088 			 * The current top waiter stays enqueued. We
1089 			 * don't have to change anything in the lock
1090 			 * waiters order.
1091 			 */
1092 		} else {
1093 			/*
1094 			 * No waiters. Take the lock without the
1095 			 * pi_lock dance.@task->pi_blocked_on is NULL
1096 			 * and we have no waiters to enqueue in @task
1097 			 * pi waiters tree.
1098 			 */
1099 			goto takeit;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Clear @task->pi_blocked_on. Requires protection by
1105 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
1106 	 * case, but conditionals are more expensive than a redundant
1107 	 * store.
1108 	 */
1109 	raw_spin_lock(&task->pi_lock);
1110 	task->pi_blocked_on = NULL;
1111 	/*
1112 	 * Finish the lock acquisition. @task is the new owner. If
1113 	 * other waiters exist we have to insert the highest priority
1114 	 * waiter into @task->pi_waiters tree.
1115 	 */
1116 	if (rt_mutex_has_waiters(lock))
1117 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1118 	raw_spin_unlock(&task->pi_lock);
1119 
1120 takeit:
1121 	/*
1122 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1123 	 * are still waiters or clears it.
1124 	 */
1125 	rt_mutex_set_owner(lock, task);
1126 
1127 	return 1;
1128 }
1129 
1130 /*
1131  * Task blocks on lock.
1132  *
1133  * Prepare waiter and propagate pi chain
1134  *
1135  * This must be called with lock->wait_lock held and interrupts disabled
1136  */
task_blocks_on_rt_mutex(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,struct ww_acquire_ctx * ww_ctx,enum rtmutex_chainwalk chwalk)1137 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1138 					   struct rt_mutex_waiter *waiter,
1139 					   struct task_struct *task,
1140 					   struct ww_acquire_ctx *ww_ctx,
1141 					   enum rtmutex_chainwalk chwalk)
1142 {
1143 	struct task_struct *owner = rt_mutex_owner(lock);
1144 	struct rt_mutex_waiter *top_waiter = waiter;
1145 	struct rt_mutex_base *next_lock;
1146 	int chain_walk = 0, res;
1147 
1148 	lockdep_assert_held(&lock->wait_lock);
1149 
1150 	/*
1151 	 * Early deadlock detection. We really don't want the task to
1152 	 * enqueue on itself just to untangle the mess later. It's not
1153 	 * only an optimization. We drop the locks, so another waiter
1154 	 * can come in before the chain walk detects the deadlock. So
1155 	 * the other will detect the deadlock and return -EDEADLOCK,
1156 	 * which is wrong, as the other waiter is not in a deadlock
1157 	 * situation.
1158 	 *
1159 	 * Except for ww_mutex, in that case the chain walk must already deal
1160 	 * with spurious cycles, see the comments at [3] and [6].
1161 	 */
1162 	if (owner == task && !(build_ww_mutex() && ww_ctx))
1163 		return -EDEADLK;
1164 
1165 	trace_android_vh_task_blocks_on_rtmutex(lock, waiter, task, ww_ctx, &chwalk);
1166 	raw_spin_lock(&task->pi_lock);
1167 	waiter->task = task;
1168 	waiter->lock = lock;
1169 	waiter_update_prio(waiter, task);
1170 
1171 	/* Get the top priority waiter on the lock */
1172 	if (rt_mutex_has_waiters(lock))
1173 		top_waiter = rt_mutex_top_waiter(lock);
1174 	rt_mutex_enqueue(lock, waiter);
1175 
1176 	task->pi_blocked_on = waiter;
1177 
1178 	raw_spin_unlock(&task->pi_lock);
1179 
1180 	if (build_ww_mutex() && ww_ctx) {
1181 		struct rt_mutex *rtm;
1182 
1183 		/* Check whether the waiter should back out immediately */
1184 		rtm = container_of(lock, struct rt_mutex, rtmutex);
1185 		res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1186 		if (res) {
1187 			raw_spin_lock(&task->pi_lock);
1188 			rt_mutex_dequeue(lock, waiter);
1189 			task->pi_blocked_on = NULL;
1190 			raw_spin_unlock(&task->pi_lock);
1191 			return res;
1192 		}
1193 	}
1194 
1195 	if (!owner)
1196 		return 0;
1197 
1198 	raw_spin_lock(&owner->pi_lock);
1199 	if (waiter == rt_mutex_top_waiter(lock)) {
1200 		rt_mutex_dequeue_pi(owner, top_waiter);
1201 		rt_mutex_enqueue_pi(owner, waiter);
1202 
1203 		rt_mutex_adjust_prio(owner);
1204 		if (owner->pi_blocked_on)
1205 			chain_walk = 1;
1206 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1207 		chain_walk = 1;
1208 	}
1209 
1210 	/* Store the lock on which owner is blocked or NULL */
1211 	next_lock = task_blocked_on_lock(owner);
1212 
1213 	raw_spin_unlock(&owner->pi_lock);
1214 	/*
1215 	 * Even if full deadlock detection is on, if the owner is not
1216 	 * blocked itself, we can avoid finding this out in the chain
1217 	 * walk.
1218 	 */
1219 	if (!chain_walk || !next_lock)
1220 		return 0;
1221 
1222 	/*
1223 	 * The owner can't disappear while holding a lock,
1224 	 * so the owner struct is protected by wait_lock.
1225 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1226 	 */
1227 	get_task_struct(owner);
1228 
1229 	raw_spin_unlock_irq(&lock->wait_lock);
1230 
1231 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1232 					 next_lock, waiter, task);
1233 
1234 	raw_spin_lock_irq(&lock->wait_lock);
1235 
1236 	return res;
1237 }
1238 
1239 /*
1240  * Remove the top waiter from the current tasks pi waiter tree and
1241  * queue it up.
1242  *
1243  * Called with lock->wait_lock held and interrupts disabled.
1244  */
mark_wakeup_next_waiter(struct rt_wake_q_head * wqh,struct rt_mutex_base * lock)1245 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1246 					    struct rt_mutex_base *lock)
1247 {
1248 	struct rt_mutex_waiter *waiter;
1249 
1250 	raw_spin_lock(&current->pi_lock);
1251 
1252 	waiter = rt_mutex_top_waiter(lock);
1253 
1254 	/*
1255 	 * Remove it from current->pi_waiters and deboost.
1256 	 *
1257 	 * We must in fact deboost here in order to ensure we call
1258 	 * rt_mutex_setprio() to update p->pi_top_task before the
1259 	 * task unblocks.
1260 	 */
1261 	rt_mutex_dequeue_pi(current, waiter);
1262 	rt_mutex_adjust_prio(current);
1263 
1264 	/*
1265 	 * As we are waking up the top waiter, and the waiter stays
1266 	 * queued on the lock until it gets the lock, this lock
1267 	 * obviously has waiters. Just set the bit here and this has
1268 	 * the added benefit of forcing all new tasks into the
1269 	 * slow path making sure no task of lower priority than
1270 	 * the top waiter can steal this lock.
1271 	 */
1272 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1273 
1274 	/*
1275 	 * We deboosted before waking the top waiter task such that we don't
1276 	 * run two tasks with the 'same' priority (and ensure the
1277 	 * p->pi_top_task pointer points to a blocked task). This however can
1278 	 * lead to priority inversion if we would get preempted after the
1279 	 * deboost but before waking our donor task, hence the preempt_disable()
1280 	 * before unlock.
1281 	 *
1282 	 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1283 	 */
1284 	preempt_disable();
1285 	rt_mutex_wake_q_add(wqh, waiter);
1286 	raw_spin_unlock(&current->pi_lock);
1287 }
1288 
__rt_mutex_slowtrylock(struct rt_mutex_base * lock)1289 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1290 {
1291 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1292 
1293 	/*
1294 	 * try_to_take_rt_mutex() sets the lock waiters bit
1295 	 * unconditionally. Clean this up.
1296 	 */
1297 	fixup_rt_mutex_waiters(lock, true);
1298 
1299 	return ret;
1300 }
1301 
1302 /*
1303  * Slow path try-lock function:
1304  */
rt_mutex_slowtrylock(struct rt_mutex_base * lock)1305 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1306 {
1307 	unsigned long flags;
1308 	int ret;
1309 
1310 	/*
1311 	 * If the lock already has an owner we fail to get the lock.
1312 	 * This can be done without taking the @lock->wait_lock as
1313 	 * it is only being read, and this is a trylock anyway.
1314 	 */
1315 	if (rt_mutex_owner(lock))
1316 		return 0;
1317 
1318 	/*
1319 	 * The mutex has currently no owner. Lock the wait lock and try to
1320 	 * acquire the lock. We use irqsave here to support early boot calls.
1321 	 */
1322 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1323 
1324 	ret = __rt_mutex_slowtrylock(lock);
1325 
1326 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1327 
1328 	return ret;
1329 }
1330 
__rt_mutex_trylock(struct rt_mutex_base * lock)1331 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1332 {
1333 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1334 		return 1;
1335 
1336 	return rt_mutex_slowtrylock(lock);
1337 }
1338 
1339 /*
1340  * Slow path to release a rt-mutex.
1341  */
rt_mutex_slowunlock(struct rt_mutex_base * lock)1342 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1343 {
1344 	DEFINE_RT_WAKE_Q(wqh);
1345 	unsigned long flags;
1346 
1347 	/* irqsave required to support early boot calls */
1348 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1349 
1350 	debug_rt_mutex_unlock(lock);
1351 
1352 	/*
1353 	 * We must be careful here if the fast path is enabled. If we
1354 	 * have no waiters queued we cannot set owner to NULL here
1355 	 * because of:
1356 	 *
1357 	 * foo->lock->owner = NULL;
1358 	 *			rtmutex_lock(foo->lock);   <- fast path
1359 	 *			free = atomic_dec_and_test(foo->refcnt);
1360 	 *			rtmutex_unlock(foo->lock); <- fast path
1361 	 *			if (free)
1362 	 *				kfree(foo);
1363 	 * raw_spin_unlock(foo->lock->wait_lock);
1364 	 *
1365 	 * So for the fastpath enabled kernel:
1366 	 *
1367 	 * Nothing can set the waiters bit as long as we hold
1368 	 * lock->wait_lock. So we do the following sequence:
1369 	 *
1370 	 *	owner = rt_mutex_owner(lock);
1371 	 *	clear_rt_mutex_waiters(lock);
1372 	 *	raw_spin_unlock(&lock->wait_lock);
1373 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1374 	 *		return;
1375 	 *	goto retry;
1376 	 *
1377 	 * The fastpath disabled variant is simple as all access to
1378 	 * lock->owner is serialized by lock->wait_lock:
1379 	 *
1380 	 *	lock->owner = NULL;
1381 	 *	raw_spin_unlock(&lock->wait_lock);
1382 	 */
1383 	while (!rt_mutex_has_waiters(lock)) {
1384 		/* Drops lock->wait_lock ! */
1385 		if (unlock_rt_mutex_safe(lock, flags) == true)
1386 			return;
1387 		/* Relock the rtmutex and try again */
1388 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1389 	}
1390 
1391 	/*
1392 	 * The wakeup next waiter path does not suffer from the above
1393 	 * race. See the comments there.
1394 	 *
1395 	 * Queue the next waiter for wakeup once we release the wait_lock.
1396 	 */
1397 	mark_wakeup_next_waiter(&wqh, lock);
1398 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1399 
1400 	rt_mutex_wake_up_q(&wqh);
1401 }
1402 
__rt_mutex_unlock(struct rt_mutex_base * lock)1403 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1404 {
1405 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1406 		return;
1407 
1408 	rt_mutex_slowunlock(lock);
1409 }
1410 
1411 #ifdef CONFIG_SMP
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1412 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1413 				  struct rt_mutex_waiter *waiter,
1414 				  struct task_struct *owner)
1415 {
1416 	bool res = true;
1417 
1418 	rcu_read_lock();
1419 	for (;;) {
1420 		/* If owner changed, trylock again. */
1421 		if (owner != rt_mutex_owner(lock))
1422 			break;
1423 		/*
1424 		 * Ensure that @owner is dereferenced after checking that
1425 		 * the lock owner still matches @owner. If that fails,
1426 		 * @owner might point to freed memory. If it still matches,
1427 		 * the rcu_read_lock() ensures the memory stays valid.
1428 		 */
1429 		barrier();
1430 		/*
1431 		 * Stop spinning when:
1432 		 *  - the lock owner has been scheduled out
1433 		 *  - current is not longer the top waiter
1434 		 *  - current is requested to reschedule (redundant
1435 		 *    for CONFIG_PREEMPT_RCU=y)
1436 		 *  - the VCPU on which owner runs is preempted
1437 		 */
1438 		if (!owner_on_cpu(owner) || need_resched() ||
1439 		    !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1440 			res = false;
1441 			break;
1442 		}
1443 		cpu_relax();
1444 	}
1445 	rcu_read_unlock();
1446 	return res;
1447 }
1448 #else
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1449 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1450 				  struct rt_mutex_waiter *waiter,
1451 				  struct task_struct *owner)
1452 {
1453 	return false;
1454 }
1455 #endif
1456 
1457 #ifdef RT_MUTEX_BUILD_MUTEX
1458 /*
1459  * Functions required for:
1460  *	- rtmutex, futex on all kernels
1461  *	- mutex and rwsem substitutions on RT kernels
1462  */
1463 
1464 /*
1465  * Remove a waiter from a lock and give up
1466  *
1467  * Must be called with lock->wait_lock held and interrupts disabled. It must
1468  * have just failed to try_to_take_rt_mutex().
1469  */
remove_waiter(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)1470 static void __sched remove_waiter(struct rt_mutex_base *lock,
1471 				  struct rt_mutex_waiter *waiter)
1472 {
1473 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1474 	struct task_struct *owner = rt_mutex_owner(lock);
1475 	struct rt_mutex_base *next_lock;
1476 
1477 	lockdep_assert_held(&lock->wait_lock);
1478 
1479 	raw_spin_lock(&current->pi_lock);
1480 	rt_mutex_dequeue(lock, waiter);
1481 	current->pi_blocked_on = NULL;
1482 	raw_spin_unlock(&current->pi_lock);
1483 
1484 	/*
1485 	 * Only update priority if the waiter was the highest priority
1486 	 * waiter of the lock and there is an owner to update.
1487 	 */
1488 	if (!owner || !is_top_waiter)
1489 		return;
1490 
1491 	raw_spin_lock(&owner->pi_lock);
1492 
1493 	rt_mutex_dequeue_pi(owner, waiter);
1494 
1495 	if (rt_mutex_has_waiters(lock))
1496 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1497 
1498 	rt_mutex_adjust_prio(owner);
1499 
1500 	/* Store the lock on which owner is blocked or NULL */
1501 	next_lock = task_blocked_on_lock(owner);
1502 
1503 	raw_spin_unlock(&owner->pi_lock);
1504 
1505 	/*
1506 	 * Don't walk the chain, if the owner task is not blocked
1507 	 * itself.
1508 	 */
1509 	if (!next_lock)
1510 		return;
1511 
1512 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1513 	get_task_struct(owner);
1514 
1515 	raw_spin_unlock_irq(&lock->wait_lock);
1516 
1517 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1518 				   next_lock, NULL, current);
1519 
1520 	raw_spin_lock_irq(&lock->wait_lock);
1521 }
1522 
1523 /**
1524  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1525  * @lock:		 the rt_mutex to take
1526  * @ww_ctx:		 WW mutex context pointer
1527  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1528  *			 or TASK_UNINTERRUPTIBLE)
1529  * @timeout:		 the pre-initialized and started timer, or NULL for none
1530  * @waiter:		 the pre-initialized rt_mutex_waiter
1531  *
1532  * Must be called with lock->wait_lock held and interrupts disabled
1533  */
rt_mutex_slowlock_block(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1534 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1535 					   struct ww_acquire_ctx *ww_ctx,
1536 					   unsigned int state,
1537 					   struct hrtimer_sleeper *timeout,
1538 					   struct rt_mutex_waiter *waiter)
1539 {
1540 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1541 	struct task_struct *owner;
1542 	int ret = 0;
1543 
1544 	trace_android_vh_rtmutex_wait_start(lock);
1545 	for (;;) {
1546 		/* Try to acquire the lock: */
1547 		if (try_to_take_rt_mutex(lock, current, waiter))
1548 			break;
1549 
1550 		if (timeout && !timeout->task) {
1551 			ret = -ETIMEDOUT;
1552 			break;
1553 		}
1554 		if (signal_pending_state(state, current)) {
1555 			ret = -EINTR;
1556 			break;
1557 		}
1558 
1559 		if (build_ww_mutex() && ww_ctx) {
1560 			ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1561 			if (ret)
1562 				break;
1563 		}
1564 
1565 		if (waiter == rt_mutex_top_waiter(lock))
1566 			owner = rt_mutex_owner(lock);
1567 		else
1568 			owner = NULL;
1569 		raw_spin_unlock_irq(&lock->wait_lock);
1570 
1571 		if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1572 			schedule();
1573 
1574 		raw_spin_lock_irq(&lock->wait_lock);
1575 		set_current_state(state);
1576 	}
1577 
1578 	trace_android_vh_rtmutex_wait_finish(lock);
1579 	__set_current_state(TASK_RUNNING);
1580 	return ret;
1581 }
1582 
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1583 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1584 					     struct rt_mutex_waiter *w)
1585 {
1586 	/*
1587 	 * If the result is not -EDEADLOCK or the caller requested
1588 	 * deadlock detection, nothing to do here.
1589 	 */
1590 	if (res != -EDEADLOCK || detect_deadlock)
1591 		return;
1592 
1593 	if (build_ww_mutex() && w->ww_ctx)
1594 		return;
1595 
1596 	/*
1597 	 * Yell loudly and stop the task right here.
1598 	 */
1599 	WARN(1, "rtmutex deadlock detected\n");
1600 	while (1) {
1601 		set_current_state(TASK_INTERRUPTIBLE);
1602 		schedule();
1603 	}
1604 }
1605 
1606 /**
1607  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1608  * @lock:	The rtmutex to block lock
1609  * @ww_ctx:	WW mutex context pointer
1610  * @state:	The task state for sleeping
1611  * @chwalk:	Indicator whether full or partial chainwalk is requested
1612  * @waiter:	Initializer waiter for blocking
1613  */
__rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,enum rtmutex_chainwalk chwalk,struct rt_mutex_waiter * waiter)1614 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1615 				       struct ww_acquire_ctx *ww_ctx,
1616 				       unsigned int state,
1617 				       enum rtmutex_chainwalk chwalk,
1618 				       struct rt_mutex_waiter *waiter)
1619 {
1620 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1621 	struct ww_mutex *ww = ww_container_of(rtm);
1622 	int ret;
1623 
1624 	lockdep_assert_held(&lock->wait_lock);
1625 
1626 	/* Try to acquire the lock again: */
1627 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1628 		if (build_ww_mutex() && ww_ctx) {
1629 			__ww_mutex_check_waiters(rtm, ww_ctx);
1630 			ww_mutex_lock_acquired(ww, ww_ctx);
1631 		}
1632 		return 0;
1633 	}
1634 
1635 	set_current_state(state);
1636 
1637 	trace_contention_begin(lock, LCB_F_RT);
1638 
1639 	ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1640 	if (likely(!ret))
1641 		ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1642 
1643 	if (likely(!ret)) {
1644 		/* acquired the lock */
1645 		if (build_ww_mutex() && ww_ctx) {
1646 			if (!ww_ctx->is_wait_die)
1647 				__ww_mutex_check_waiters(rtm, ww_ctx);
1648 			ww_mutex_lock_acquired(ww, ww_ctx);
1649 		}
1650 	} else {
1651 		__set_current_state(TASK_RUNNING);
1652 		remove_waiter(lock, waiter);
1653 		rt_mutex_handle_deadlock(ret, chwalk, waiter);
1654 	}
1655 
1656 	/*
1657 	 * try_to_take_rt_mutex() sets the waiter bit
1658 	 * unconditionally. We might have to fix that up.
1659 	 */
1660 	fixup_rt_mutex_waiters(lock, true);
1661 
1662 	trace_contention_end(lock, ret);
1663 
1664 	return ret;
1665 }
1666 
__rt_mutex_slowlock_locked(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1667 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1668 					     struct ww_acquire_ctx *ww_ctx,
1669 					     unsigned int state)
1670 {
1671 	struct rt_mutex_waiter waiter;
1672 	int ret;
1673 
1674 	rt_mutex_init_waiter(&waiter);
1675 	waiter.ww_ctx = ww_ctx;
1676 
1677 	ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1678 				  &waiter);
1679 
1680 	debug_rt_mutex_free_waiter(&waiter);
1681 	return ret;
1682 }
1683 
1684 /*
1685  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1686  * @lock:	The rtmutex to block lock
1687  * @ww_ctx:	WW mutex context pointer
1688  * @state:	The task state for sleeping
1689  */
rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1690 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1691 				     struct ww_acquire_ctx *ww_ctx,
1692 				     unsigned int state)
1693 {
1694 	unsigned long flags;
1695 	int ret;
1696 
1697 	/*
1698 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1699 	 * be called in early boot if the cmpxchg() fast path is disabled
1700 	 * (debug, no architecture support). In this case we will acquire the
1701 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1702 	 * enable interrupts in that early boot case. So we need to use the
1703 	 * irqsave/restore variants.
1704 	 */
1705 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1706 	ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1707 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1708 
1709 	return ret;
1710 }
1711 
__rt_mutex_lock(struct rt_mutex_base * lock,unsigned int state)1712 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1713 					   unsigned int state)
1714 {
1715 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1716 		return 0;
1717 
1718 	return rt_mutex_slowlock(lock, NULL, state);
1719 }
1720 #endif /* RT_MUTEX_BUILD_MUTEX */
1721 
1722 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1723 /*
1724  * Functions required for spin/rw_lock substitution on RT kernels
1725  */
1726 
1727 /**
1728  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1729  * @lock:	The underlying RT mutex
1730  */
rtlock_slowlock_locked(struct rt_mutex_base * lock)1731 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1732 {
1733 	struct rt_mutex_waiter waiter;
1734 	struct task_struct *owner;
1735 
1736 	lockdep_assert_held(&lock->wait_lock);
1737 
1738 	if (try_to_take_rt_mutex(lock, current, NULL))
1739 		return;
1740 
1741 	rt_mutex_init_rtlock_waiter(&waiter);
1742 
1743 	/* Save current state and set state to TASK_RTLOCK_WAIT */
1744 	current_save_and_set_rtlock_wait_state();
1745 
1746 	trace_contention_begin(lock, LCB_F_RT);
1747 
1748 	task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1749 
1750 	for (;;) {
1751 		/* Try to acquire the lock again */
1752 		if (try_to_take_rt_mutex(lock, current, &waiter))
1753 			break;
1754 
1755 		if (&waiter == rt_mutex_top_waiter(lock))
1756 			owner = rt_mutex_owner(lock);
1757 		else
1758 			owner = NULL;
1759 		raw_spin_unlock_irq(&lock->wait_lock);
1760 
1761 		if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1762 			schedule_rtlock();
1763 
1764 		raw_spin_lock_irq(&lock->wait_lock);
1765 		set_current_state(TASK_RTLOCK_WAIT);
1766 	}
1767 
1768 	/* Restore the task state */
1769 	current_restore_rtlock_saved_state();
1770 
1771 	/*
1772 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1773 	 * We might have to fix that up:
1774 	 */
1775 	fixup_rt_mutex_waiters(lock, true);
1776 	debug_rt_mutex_free_waiter(&waiter);
1777 
1778 	trace_contention_end(lock, 0);
1779 }
1780 
rtlock_slowlock(struct rt_mutex_base * lock)1781 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1782 {
1783 	unsigned long flags;
1784 
1785 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1786 	rtlock_slowlock_locked(lock);
1787 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1788 }
1789 
1790 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1791