1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/power/snapshot.c
4 *
5 * This file provides system snapshot/restore functionality for swsusp.
6 *
7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 */
10
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39
40 #include "power.h"
41
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45
enable_restore_image_protection(void)46 void enable_restore_image_protection(void)
47 {
48 hibernate_restore_protection = true;
49 }
50
hibernate_restore_protection_begin(void)51 static inline void hibernate_restore_protection_begin(void)
52 {
53 hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55
hibernate_restore_protection_end(void)56 static inline void hibernate_restore_protection_end(void)
57 {
58 hibernate_restore_protection_active = false;
59 }
60
hibernate_restore_protect_page(void * page_address)61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 if (hibernate_restore_protection_active)
64 set_memory_ro((unsigned long)page_address, 1);
65 }
66
hibernate_restore_unprotect_page(void * page_address)67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 if (hibernate_restore_protection_active)
70 set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
hibernate_restore_protection_begin(void)73 static inline void hibernate_restore_protection_begin(void) {}
hibernate_restore_protection_end(void)74 static inline void hibernate_restore_protection_end(void) {}
hibernate_restore_protect_page(void * page_address)75 static inline void hibernate_restore_protect_page(void *page_address) {}
hibernate_restore_unprotect_page(void * page_address)76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
78
79
80 /*
81 * The calls to set_direct_map_*() should not fail because remapping a page
82 * here means that we only update protection bits in an existing PTE.
83 * It is still worth to have a warning here if something changes and this
84 * will no longer be the case.
85 */
hibernate_map_page(struct page * page)86 static inline void hibernate_map_page(struct page *page)
87 {
88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 int ret = set_direct_map_default_noflush(page);
90
91 if (ret)
92 pr_warn_once("Failed to remap page\n");
93 } else {
94 debug_pagealloc_map_pages(page, 1);
95 }
96 }
97
hibernate_unmap_page(struct page * page)98 static inline void hibernate_unmap_page(struct page *page)
99 {
100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 unsigned long addr = (unsigned long)page_address(page);
102 int ret = set_direct_map_invalid_noflush(page);
103
104 if (ret)
105 pr_warn_once("Failed to remap page\n");
106
107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 } else {
109 debug_pagealloc_unmap_pages(page, 1);
110 }
111 }
112
113 static int swsusp_page_is_free(struct page *);
114 static void swsusp_set_page_forbidden(struct page *);
115 static void swsusp_unset_page_forbidden(struct page *);
116
117 /*
118 * Number of bytes to reserve for memory allocations made by device drivers
119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120 * cause image creation to fail (tunable via /sys/power/reserved_size).
121 */
122 unsigned long reserved_size;
123
hibernate_reserved_size_init(void)124 void __init hibernate_reserved_size_init(void)
125 {
126 reserved_size = SPARE_PAGES * PAGE_SIZE;
127 }
128
129 /*
130 * Preferred image size in bytes (tunable via /sys/power/image_size).
131 * When it is set to N, swsusp will do its best to ensure the image
132 * size will not exceed N bytes, but if that is impossible, it will
133 * try to create the smallest image possible.
134 */
135 unsigned long image_size;
136
hibernate_image_size_init(void)137 void __init hibernate_image_size_init(void)
138 {
139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
140 }
141
142 /*
143 * List of PBEs needed for restoring the pages that were allocated before
144 * the suspend and included in the suspend image, but have also been
145 * allocated by the "resume" kernel, so their contents cannot be written
146 * directly to their "original" page frames.
147 */
148 struct pbe *restore_pblist;
149
150 /* struct linked_page is used to build chains of pages */
151
152 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
153
154 struct linked_page {
155 struct linked_page *next;
156 char data[LINKED_PAGE_DATA_SIZE];
157 } __packed;
158
159 /*
160 * List of "safe" pages (ie. pages that were not used by the image kernel
161 * before hibernation) that may be used as temporary storage for image kernel
162 * memory contents.
163 */
164 static struct linked_page *safe_pages_list;
165
166 /* Pointer to an auxiliary buffer (1 page) */
167 static void *buffer;
168
169 #define PG_ANY 0
170 #define PG_SAFE 1
171 #define PG_UNSAFE_CLEAR 1
172 #define PG_UNSAFE_KEEP 0
173
174 static unsigned int allocated_unsafe_pages;
175
176 /**
177 * get_image_page - Allocate a page for a hibernation image.
178 * @gfp_mask: GFP mask for the allocation.
179 * @safe_needed: Get pages that were not used before hibernation (restore only)
180 *
181 * During image restoration, for storing the PBE list and the image data, we can
182 * only use memory pages that do not conflict with the pages used before
183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
184 * using allocated_unsafe_pages.
185 *
186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187 * swsusp_free() can release it.
188 */
get_image_page(gfp_t gfp_mask,int safe_needed)189 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
190 {
191 void *res;
192
193 res = (void *)get_zeroed_page(gfp_mask);
194 if (safe_needed)
195 while (res && swsusp_page_is_free(virt_to_page(res))) {
196 /* The page is unsafe, mark it for swsusp_free() */
197 swsusp_set_page_forbidden(virt_to_page(res));
198 allocated_unsafe_pages++;
199 res = (void *)get_zeroed_page(gfp_mask);
200 }
201 if (res) {
202 swsusp_set_page_forbidden(virt_to_page(res));
203 swsusp_set_page_free(virt_to_page(res));
204 }
205 return res;
206 }
207
__get_safe_page(gfp_t gfp_mask)208 static void *__get_safe_page(gfp_t gfp_mask)
209 {
210 if (safe_pages_list) {
211 void *ret = safe_pages_list;
212
213 safe_pages_list = safe_pages_list->next;
214 memset(ret, 0, PAGE_SIZE);
215 return ret;
216 }
217 return get_image_page(gfp_mask, PG_SAFE);
218 }
219
get_safe_page(gfp_t gfp_mask)220 unsigned long get_safe_page(gfp_t gfp_mask)
221 {
222 return (unsigned long)__get_safe_page(gfp_mask);
223 }
224
alloc_image_page(gfp_t gfp_mask)225 static struct page *alloc_image_page(gfp_t gfp_mask)
226 {
227 struct page *page;
228
229 page = alloc_page(gfp_mask);
230 if (page) {
231 swsusp_set_page_forbidden(page);
232 swsusp_set_page_free(page);
233 }
234 return page;
235 }
236
recycle_safe_page(void * page_address)237 static void recycle_safe_page(void *page_address)
238 {
239 struct linked_page *lp = page_address;
240
241 lp->next = safe_pages_list;
242 safe_pages_list = lp;
243 }
244
245 /**
246 * free_image_page - Free a page allocated for hibernation image.
247 * @addr: Address of the page to free.
248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249 *
250 * The page to free should have been allocated by get_image_page() (page flags
251 * set by it are affected).
252 */
free_image_page(void * addr,int clear_nosave_free)253 static inline void free_image_page(void *addr, int clear_nosave_free)
254 {
255 struct page *page;
256
257 BUG_ON(!virt_addr_valid(addr));
258
259 page = virt_to_page(addr);
260
261 swsusp_unset_page_forbidden(page);
262 if (clear_nosave_free)
263 swsusp_unset_page_free(page);
264
265 __free_page(page);
266 }
267
free_list_of_pages(struct linked_page * list,int clear_page_nosave)268 static inline void free_list_of_pages(struct linked_page *list,
269 int clear_page_nosave)
270 {
271 while (list) {
272 struct linked_page *lp = list->next;
273
274 free_image_page(list, clear_page_nosave);
275 list = lp;
276 }
277 }
278
279 /*
280 * struct chain_allocator is used for allocating small objects out of
281 * a linked list of pages called 'the chain'.
282 *
283 * The chain grows each time when there is no room for a new object in
284 * the current page. The allocated objects cannot be freed individually.
285 * It is only possible to free them all at once, by freeing the entire
286 * chain.
287 *
288 * NOTE: The chain allocator may be inefficient if the allocated objects
289 * are not much smaller than PAGE_SIZE.
290 */
291 struct chain_allocator {
292 struct linked_page *chain; /* the chain */
293 unsigned int used_space; /* total size of objects allocated out
294 of the current page */
295 gfp_t gfp_mask; /* mask for allocating pages */
296 int safe_needed; /* if set, only "safe" pages are allocated */
297 };
298
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 int safe_needed)
301 {
302 ca->chain = NULL;
303 ca->used_space = LINKED_PAGE_DATA_SIZE;
304 ca->gfp_mask = gfp_mask;
305 ca->safe_needed = safe_needed;
306 }
307
chain_alloc(struct chain_allocator * ca,unsigned int size)308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309 {
310 void *ret;
311
312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 struct linked_page *lp;
314
315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 get_image_page(ca->gfp_mask, PG_ANY);
317 if (!lp)
318 return NULL;
319
320 lp->next = ca->chain;
321 ca->chain = lp;
322 ca->used_space = 0;
323 }
324 ret = ca->chain->data + ca->used_space;
325 ca->used_space += size;
326 return ret;
327 }
328
329 /*
330 * Data types related to memory bitmaps.
331 *
332 * Memory bitmap is a structure consisting of many linked lists of
333 * objects. The main list's elements are of type struct zone_bitmap
334 * and each of them corresponds to one zone. For each zone bitmap
335 * object there is a list of objects of type struct bm_block that
336 * represent each blocks of bitmap in which information is stored.
337 *
338 * struct memory_bitmap contains a pointer to the main list of zone
339 * bitmap objects, a struct bm_position used for browsing the bitmap,
340 * and a pointer to the list of pages used for allocating all of the
341 * zone bitmap objects and bitmap block objects.
342 *
343 * NOTE: It has to be possible to lay out the bitmap in memory
344 * using only allocations of order 0. Additionally, the bitmap is
345 * designed to work with arbitrary number of zones (this is over the
346 * top for now, but let's avoid making unnecessary assumptions ;-).
347 *
348 * struct zone_bitmap contains a pointer to a list of bitmap block
349 * objects and a pointer to the bitmap block object that has been
350 * most recently used for setting bits. Additionally, it contains the
351 * PFNs that correspond to the start and end of the represented zone.
352 *
353 * struct bm_block contains a pointer to the memory page in which
354 * information is stored (in the form of a block of bitmap)
355 * It also contains the pfns that correspond to the start and end of
356 * the represented memory area.
357 *
358 * The memory bitmap is organized as a radix tree to guarantee fast random
359 * access to the bits. There is one radix tree for each zone (as returned
360 * from create_mem_extents).
361 *
362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363 * two linked lists for the nodes of the tree, one for the inner nodes and
364 * one for the leave nodes. The linked leave nodes are used for fast linear
365 * access of the memory bitmap.
366 *
367 * The struct rtree_node represents one node of the radix tree.
368 */
369
370 #define BM_END_OF_MAP (~0UL)
371
372 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
373 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
374 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
375
376 /*
377 * struct rtree_node is a wrapper struct to link the nodes
378 * of the rtree together for easy linear iteration over
379 * bits and easy freeing
380 */
381 struct rtree_node {
382 struct list_head list;
383 unsigned long *data;
384 };
385
386 /*
387 * struct mem_zone_bm_rtree represents a bitmap used for one
388 * populated memory zone.
389 */
390 struct mem_zone_bm_rtree {
391 struct list_head list; /* Link Zones together */
392 struct list_head nodes; /* Radix Tree inner nodes */
393 struct list_head leaves; /* Radix Tree leaves */
394 unsigned long start_pfn; /* Zone start page frame */
395 unsigned long end_pfn; /* Zone end page frame + 1 */
396 struct rtree_node *rtree; /* Radix Tree Root */
397 int levels; /* Number of Radix Tree Levels */
398 unsigned int blocks; /* Number of Bitmap Blocks */
399 };
400
401 /* strcut bm_position is used for browsing memory bitmaps */
402
403 struct bm_position {
404 struct mem_zone_bm_rtree *zone;
405 struct rtree_node *node;
406 unsigned long node_pfn;
407 unsigned long cur_pfn;
408 int node_bit;
409 };
410
411 struct memory_bitmap {
412 struct list_head zones;
413 struct linked_page *p_list; /* list of pages used to store zone
414 bitmap objects and bitmap block
415 objects */
416 struct bm_position cur; /* most recently used bit position */
417 };
418
419 /* Functions that operate on memory bitmaps */
420
421 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
422 #if BITS_PER_LONG == 32
423 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
424 #else
425 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
426 #endif
427 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
428
429 /**
430 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
431 * @gfp_mask: GFP mask for the allocation.
432 * @safe_needed: Get pages not used before hibernation (restore only)
433 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
434 * @list: Radix Tree node to add.
435 *
436 * This function is used to allocate inner nodes as well as the
437 * leave nodes of the radix tree. It also adds the node to the
438 * corresponding linked list passed in by the *list parameter.
439 */
alloc_rtree_node(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,struct list_head * list)440 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
441 struct chain_allocator *ca,
442 struct list_head *list)
443 {
444 struct rtree_node *node;
445
446 node = chain_alloc(ca, sizeof(struct rtree_node));
447 if (!node)
448 return NULL;
449
450 node->data = get_image_page(gfp_mask, safe_needed);
451 if (!node->data)
452 return NULL;
453
454 list_add_tail(&node->list, list);
455
456 return node;
457 }
458
459 /**
460 * add_rtree_block - Add a new leave node to the radix tree.
461 *
462 * The leave nodes need to be allocated in order to keep the leaves
463 * linked list in order. This is guaranteed by the zone->blocks
464 * counter.
465 */
add_rtree_block(struct mem_zone_bm_rtree * zone,gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca)466 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
467 int safe_needed, struct chain_allocator *ca)
468 {
469 struct rtree_node *node, *block, **dst;
470 unsigned int levels_needed, block_nr;
471 int i;
472
473 block_nr = zone->blocks;
474 levels_needed = 0;
475
476 /* How many levels do we need for this block nr? */
477 while (block_nr) {
478 levels_needed += 1;
479 block_nr >>= BM_RTREE_LEVEL_SHIFT;
480 }
481
482 /* Make sure the rtree has enough levels */
483 for (i = zone->levels; i < levels_needed; i++) {
484 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
485 &zone->nodes);
486 if (!node)
487 return -ENOMEM;
488
489 node->data[0] = (unsigned long)zone->rtree;
490 zone->rtree = node;
491 zone->levels += 1;
492 }
493
494 /* Allocate new block */
495 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
496 if (!block)
497 return -ENOMEM;
498
499 /* Now walk the rtree to insert the block */
500 node = zone->rtree;
501 dst = &zone->rtree;
502 block_nr = zone->blocks;
503 for (i = zone->levels; i > 0; i--) {
504 int index;
505
506 if (!node) {
507 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
508 &zone->nodes);
509 if (!node)
510 return -ENOMEM;
511 *dst = node;
512 }
513
514 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
515 index &= BM_RTREE_LEVEL_MASK;
516 dst = (struct rtree_node **)&((*dst)->data[index]);
517 node = *dst;
518 }
519
520 zone->blocks += 1;
521 *dst = block;
522
523 return 0;
524 }
525
526 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
527 int clear_nosave_free);
528
529 /**
530 * create_zone_bm_rtree - Create a radix tree for one zone.
531 *
532 * Allocated the mem_zone_bm_rtree structure and initializes it.
533 * This function also allocated and builds the radix tree for the
534 * zone.
535 */
create_zone_bm_rtree(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,unsigned long start,unsigned long end)536 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
537 int safe_needed,
538 struct chain_allocator *ca,
539 unsigned long start,
540 unsigned long end)
541 {
542 struct mem_zone_bm_rtree *zone;
543 unsigned int i, nr_blocks;
544 unsigned long pages;
545
546 pages = end - start;
547 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
548 if (!zone)
549 return NULL;
550
551 INIT_LIST_HEAD(&zone->nodes);
552 INIT_LIST_HEAD(&zone->leaves);
553 zone->start_pfn = start;
554 zone->end_pfn = end;
555 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
556
557 for (i = 0; i < nr_blocks; i++) {
558 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
559 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
560 return NULL;
561 }
562 }
563
564 return zone;
565 }
566
567 /**
568 * free_zone_bm_rtree - Free the memory of the radix tree.
569 *
570 * Free all node pages of the radix tree. The mem_zone_bm_rtree
571 * structure itself is not freed here nor are the rtree_node
572 * structs.
573 */
free_zone_bm_rtree(struct mem_zone_bm_rtree * zone,int clear_nosave_free)574 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
575 int clear_nosave_free)
576 {
577 struct rtree_node *node;
578
579 list_for_each_entry(node, &zone->nodes, list)
580 free_image_page(node->data, clear_nosave_free);
581
582 list_for_each_entry(node, &zone->leaves, list)
583 free_image_page(node->data, clear_nosave_free);
584 }
585
memory_bm_position_reset(struct memory_bitmap * bm)586 static void memory_bm_position_reset(struct memory_bitmap *bm)
587 {
588 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
589 list);
590 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
591 struct rtree_node, list);
592 bm->cur.node_pfn = 0;
593 bm->cur.cur_pfn = BM_END_OF_MAP;
594 bm->cur.node_bit = 0;
595 }
596
597 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
598
599 struct mem_extent {
600 struct list_head hook;
601 unsigned long start;
602 unsigned long end;
603 };
604
605 /**
606 * free_mem_extents - Free a list of memory extents.
607 * @list: List of extents to free.
608 */
free_mem_extents(struct list_head * list)609 static void free_mem_extents(struct list_head *list)
610 {
611 struct mem_extent *ext, *aux;
612
613 list_for_each_entry_safe(ext, aux, list, hook) {
614 list_del(&ext->hook);
615 kfree(ext);
616 }
617 }
618
619 /**
620 * create_mem_extents - Create a list of memory extents.
621 * @list: List to put the extents into.
622 * @gfp_mask: Mask to use for memory allocations.
623 *
624 * The extents represent contiguous ranges of PFNs.
625 */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)626 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
627 {
628 struct zone *zone;
629
630 INIT_LIST_HEAD(list);
631
632 for_each_populated_zone(zone) {
633 unsigned long zone_start, zone_end;
634 struct mem_extent *ext, *cur, *aux;
635
636 zone_start = zone->zone_start_pfn;
637 zone_end = zone_end_pfn(zone);
638
639 list_for_each_entry(ext, list, hook)
640 if (zone_start <= ext->end)
641 break;
642
643 if (&ext->hook == list || zone_end < ext->start) {
644 /* New extent is necessary */
645 struct mem_extent *new_ext;
646
647 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
648 if (!new_ext) {
649 free_mem_extents(list);
650 return -ENOMEM;
651 }
652 new_ext->start = zone_start;
653 new_ext->end = zone_end;
654 list_add_tail(&new_ext->hook, &ext->hook);
655 continue;
656 }
657
658 /* Merge this zone's range of PFNs with the existing one */
659 if (zone_start < ext->start)
660 ext->start = zone_start;
661 if (zone_end > ext->end)
662 ext->end = zone_end;
663
664 /* More merging may be possible */
665 cur = ext;
666 list_for_each_entry_safe_continue(cur, aux, list, hook) {
667 if (zone_end < cur->start)
668 break;
669 if (zone_end < cur->end)
670 ext->end = cur->end;
671 list_del(&cur->hook);
672 kfree(cur);
673 }
674 }
675
676 return 0;
677 }
678
679 /**
680 * memory_bm_create - Allocate memory for a memory bitmap.
681 */
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)682 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
683 int safe_needed)
684 {
685 struct chain_allocator ca;
686 struct list_head mem_extents;
687 struct mem_extent *ext;
688 int error;
689
690 chain_init(&ca, gfp_mask, safe_needed);
691 INIT_LIST_HEAD(&bm->zones);
692
693 error = create_mem_extents(&mem_extents, gfp_mask);
694 if (error)
695 return error;
696
697 list_for_each_entry(ext, &mem_extents, hook) {
698 struct mem_zone_bm_rtree *zone;
699
700 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
701 ext->start, ext->end);
702 if (!zone) {
703 error = -ENOMEM;
704 goto Error;
705 }
706 list_add_tail(&zone->list, &bm->zones);
707 }
708
709 bm->p_list = ca.chain;
710 memory_bm_position_reset(bm);
711 Exit:
712 free_mem_extents(&mem_extents);
713 return error;
714
715 Error:
716 bm->p_list = ca.chain;
717 memory_bm_free(bm, PG_UNSAFE_CLEAR);
718 goto Exit;
719 }
720
721 /**
722 * memory_bm_free - Free memory occupied by the memory bitmap.
723 * @bm: Memory bitmap.
724 */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)725 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
726 {
727 struct mem_zone_bm_rtree *zone;
728
729 list_for_each_entry(zone, &bm->zones, list)
730 free_zone_bm_rtree(zone, clear_nosave_free);
731
732 free_list_of_pages(bm->p_list, clear_nosave_free);
733
734 INIT_LIST_HEAD(&bm->zones);
735 }
736
737 /**
738 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
739 *
740 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
741 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
742 *
743 * Walk the radix tree to find the page containing the bit that represents @pfn
744 * and return the position of the bit in @addr and @bit_nr.
745 */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)746 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
747 void **addr, unsigned int *bit_nr)
748 {
749 struct mem_zone_bm_rtree *curr, *zone;
750 struct rtree_node *node;
751 int i, block_nr;
752
753 zone = bm->cur.zone;
754
755 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
756 goto zone_found;
757
758 zone = NULL;
759
760 /* Find the right zone */
761 list_for_each_entry(curr, &bm->zones, list) {
762 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
763 zone = curr;
764 break;
765 }
766 }
767
768 if (!zone)
769 return -EFAULT;
770
771 zone_found:
772 /*
773 * We have found the zone. Now walk the radix tree to find the leaf node
774 * for our PFN.
775 */
776
777 /*
778 * If the zone we wish to scan is the current zone and the
779 * pfn falls into the current node then we do not need to walk
780 * the tree.
781 */
782 node = bm->cur.node;
783 if (zone == bm->cur.zone &&
784 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
785 goto node_found;
786
787 node = zone->rtree;
788 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
789
790 for (i = zone->levels; i > 0; i--) {
791 int index;
792
793 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
794 index &= BM_RTREE_LEVEL_MASK;
795 BUG_ON(node->data[index] == 0);
796 node = (struct rtree_node *)node->data[index];
797 }
798
799 node_found:
800 /* Update last position */
801 bm->cur.zone = zone;
802 bm->cur.node = node;
803 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
804 bm->cur.cur_pfn = pfn;
805
806 /* Set return values */
807 *addr = node->data;
808 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
809
810 return 0;
811 }
812
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)813 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
814 {
815 void *addr;
816 unsigned int bit;
817 int error;
818
819 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
820 BUG_ON(error);
821 set_bit(bit, addr);
822 }
823
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)824 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
825 {
826 void *addr;
827 unsigned int bit;
828 int error;
829
830 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
831 if (!error)
832 set_bit(bit, addr);
833
834 return error;
835 }
836
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)837 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
838 {
839 void *addr;
840 unsigned int bit;
841 int error;
842
843 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
844 BUG_ON(error);
845 clear_bit(bit, addr);
846 }
847
memory_bm_clear_current(struct memory_bitmap * bm)848 static void memory_bm_clear_current(struct memory_bitmap *bm)
849 {
850 int bit;
851
852 bit = max(bm->cur.node_bit - 1, 0);
853 clear_bit(bit, bm->cur.node->data);
854 }
855
memory_bm_get_current(struct memory_bitmap * bm)856 static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
857 {
858 return bm->cur.cur_pfn;
859 }
860
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)861 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
862 {
863 void *addr;
864 unsigned int bit;
865 int error;
866
867 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
868 BUG_ON(error);
869 return test_bit(bit, addr);
870 }
871
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)872 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
873 {
874 void *addr;
875 unsigned int bit;
876
877 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
878 }
879
880 /*
881 * rtree_next_node - Jump to the next leaf node.
882 *
883 * Set the position to the beginning of the next node in the
884 * memory bitmap. This is either the next node in the current
885 * zone's radix tree or the first node in the radix tree of the
886 * next zone.
887 *
888 * Return true if there is a next node, false otherwise.
889 */
rtree_next_node(struct memory_bitmap * bm)890 static bool rtree_next_node(struct memory_bitmap *bm)
891 {
892 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
893 bm->cur.node = list_entry(bm->cur.node->list.next,
894 struct rtree_node, list);
895 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
896 bm->cur.node_bit = 0;
897 touch_softlockup_watchdog();
898 return true;
899 }
900
901 /* No more nodes, goto next zone */
902 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
903 bm->cur.zone = list_entry(bm->cur.zone->list.next,
904 struct mem_zone_bm_rtree, list);
905 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
906 struct rtree_node, list);
907 bm->cur.node_pfn = 0;
908 bm->cur.node_bit = 0;
909 return true;
910 }
911
912 /* No more zones */
913 return false;
914 }
915
916 /**
917 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
918 * @bm: Memory bitmap.
919 *
920 * Starting from the last returned position this function searches for the next
921 * set bit in @bm and returns the PFN represented by it. If no more bits are
922 * set, BM_END_OF_MAP is returned.
923 *
924 * It is required to run memory_bm_position_reset() before the first call to
925 * this function for the given memory bitmap.
926 */
memory_bm_next_pfn(struct memory_bitmap * bm)927 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
928 {
929 unsigned long bits, pfn, pages;
930 int bit;
931
932 do {
933 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
934 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
935 bit = find_next_bit(bm->cur.node->data, bits,
936 bm->cur.node_bit);
937 if (bit < bits) {
938 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
939 bm->cur.node_bit = bit + 1;
940 bm->cur.cur_pfn = pfn;
941 return pfn;
942 }
943 } while (rtree_next_node(bm));
944
945 bm->cur.cur_pfn = BM_END_OF_MAP;
946 return BM_END_OF_MAP;
947 }
948
949 /*
950 * This structure represents a range of page frames the contents of which
951 * should not be saved during hibernation.
952 */
953 struct nosave_region {
954 struct list_head list;
955 unsigned long start_pfn;
956 unsigned long end_pfn;
957 };
958
959 static LIST_HEAD(nosave_regions);
960
recycle_zone_bm_rtree(struct mem_zone_bm_rtree * zone)961 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
962 {
963 struct rtree_node *node;
964
965 list_for_each_entry(node, &zone->nodes, list)
966 recycle_safe_page(node->data);
967
968 list_for_each_entry(node, &zone->leaves, list)
969 recycle_safe_page(node->data);
970 }
971
memory_bm_recycle(struct memory_bitmap * bm)972 static void memory_bm_recycle(struct memory_bitmap *bm)
973 {
974 struct mem_zone_bm_rtree *zone;
975 struct linked_page *p_list;
976
977 list_for_each_entry(zone, &bm->zones, list)
978 recycle_zone_bm_rtree(zone);
979
980 p_list = bm->p_list;
981 while (p_list) {
982 struct linked_page *lp = p_list;
983
984 p_list = lp->next;
985 recycle_safe_page(lp);
986 }
987 }
988
989 /**
990 * register_nosave_region - Register a region of unsaveable memory.
991 *
992 * Register a range of page frames the contents of which should not be saved
993 * during hibernation (to be used in the early initialization code).
994 */
register_nosave_region(unsigned long start_pfn,unsigned long end_pfn)995 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
996 {
997 struct nosave_region *region;
998
999 if (start_pfn >= end_pfn)
1000 return;
1001
1002 if (!list_empty(&nosave_regions)) {
1003 /* Try to extend the previous region (they should be sorted) */
1004 region = list_entry(nosave_regions.prev,
1005 struct nosave_region, list);
1006 if (region->end_pfn == start_pfn) {
1007 region->end_pfn = end_pfn;
1008 goto Report;
1009 }
1010 }
1011 /* This allocation cannot fail */
1012 region = memblock_alloc(sizeof(struct nosave_region),
1013 SMP_CACHE_BYTES);
1014 if (!region)
1015 panic("%s: Failed to allocate %zu bytes\n", __func__,
1016 sizeof(struct nosave_region));
1017 region->start_pfn = start_pfn;
1018 region->end_pfn = end_pfn;
1019 list_add_tail(®ion->list, &nosave_regions);
1020 Report:
1021 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1022 (unsigned long long) start_pfn << PAGE_SHIFT,
1023 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1024 }
1025
1026 /*
1027 * Set bits in this map correspond to the page frames the contents of which
1028 * should not be saved during the suspend.
1029 */
1030 static struct memory_bitmap *forbidden_pages_map;
1031
1032 /* Set bits in this map correspond to free page frames. */
1033 static struct memory_bitmap *free_pages_map;
1034
1035 /*
1036 * Each page frame allocated for creating the image is marked by setting the
1037 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1038 */
1039
swsusp_set_page_free(struct page * page)1040 void swsusp_set_page_free(struct page *page)
1041 {
1042 if (free_pages_map)
1043 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1044 }
1045
swsusp_page_is_free(struct page * page)1046 static int swsusp_page_is_free(struct page *page)
1047 {
1048 return free_pages_map ?
1049 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1050 }
1051
swsusp_unset_page_free(struct page * page)1052 void swsusp_unset_page_free(struct page *page)
1053 {
1054 if (free_pages_map)
1055 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1056 }
1057
swsusp_set_page_forbidden(struct page * page)1058 static void swsusp_set_page_forbidden(struct page *page)
1059 {
1060 if (forbidden_pages_map)
1061 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1062 }
1063
swsusp_page_is_forbidden(struct page * page)1064 int swsusp_page_is_forbidden(struct page *page)
1065 {
1066 return forbidden_pages_map ?
1067 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1068 }
1069
swsusp_unset_page_forbidden(struct page * page)1070 static void swsusp_unset_page_forbidden(struct page *page)
1071 {
1072 if (forbidden_pages_map)
1073 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1074 }
1075
1076 /**
1077 * mark_nosave_pages - Mark pages that should not be saved.
1078 * @bm: Memory bitmap.
1079 *
1080 * Set the bits in @bm that correspond to the page frames the contents of which
1081 * should not be saved.
1082 */
mark_nosave_pages(struct memory_bitmap * bm)1083 static void mark_nosave_pages(struct memory_bitmap *bm)
1084 {
1085 struct nosave_region *region;
1086
1087 if (list_empty(&nosave_regions))
1088 return;
1089
1090 list_for_each_entry(region, &nosave_regions, list) {
1091 unsigned long pfn;
1092
1093 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1094 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1095 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1096 - 1);
1097
1098 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1099 if (pfn_valid(pfn)) {
1100 /*
1101 * It is safe to ignore the result of
1102 * mem_bm_set_bit_check() here, since we won't
1103 * touch the PFNs for which the error is
1104 * returned anyway.
1105 */
1106 mem_bm_set_bit_check(bm, pfn);
1107 }
1108 }
1109 }
1110
1111 /**
1112 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1113 *
1114 * Create bitmaps needed for marking page frames that should not be saved and
1115 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1116 * only modified if everything goes well, because we don't want the bits to be
1117 * touched before both bitmaps are set up.
1118 */
create_basic_memory_bitmaps(void)1119 int create_basic_memory_bitmaps(void)
1120 {
1121 struct memory_bitmap *bm1, *bm2;
1122 int error = 0;
1123
1124 if (forbidden_pages_map && free_pages_map)
1125 return 0;
1126 else
1127 BUG_ON(forbidden_pages_map || free_pages_map);
1128
1129 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1130 if (!bm1)
1131 return -ENOMEM;
1132
1133 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1134 if (error)
1135 goto Free_first_object;
1136
1137 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1138 if (!bm2)
1139 goto Free_first_bitmap;
1140
1141 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1142 if (error)
1143 goto Free_second_object;
1144
1145 forbidden_pages_map = bm1;
1146 free_pages_map = bm2;
1147 mark_nosave_pages(forbidden_pages_map);
1148
1149 pr_debug("Basic memory bitmaps created\n");
1150
1151 return 0;
1152
1153 Free_second_object:
1154 kfree(bm2);
1155 Free_first_bitmap:
1156 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1157 Free_first_object:
1158 kfree(bm1);
1159 return -ENOMEM;
1160 }
1161
1162 /**
1163 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1164 *
1165 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1166 * auxiliary pointers are necessary so that the bitmaps themselves are not
1167 * referred to while they are being freed.
1168 */
free_basic_memory_bitmaps(void)1169 void free_basic_memory_bitmaps(void)
1170 {
1171 struct memory_bitmap *bm1, *bm2;
1172
1173 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1174 return;
1175
1176 bm1 = forbidden_pages_map;
1177 bm2 = free_pages_map;
1178 forbidden_pages_map = NULL;
1179 free_pages_map = NULL;
1180 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1181 kfree(bm1);
1182 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1183 kfree(bm2);
1184
1185 pr_debug("Basic memory bitmaps freed\n");
1186 }
1187
clear_or_poison_free_page(struct page * page)1188 static void clear_or_poison_free_page(struct page *page)
1189 {
1190 if (page_poisoning_enabled_static())
1191 __kernel_poison_pages(page, 1);
1192 else if (want_init_on_free())
1193 clear_highpage(page);
1194 }
1195
clear_or_poison_free_pages(void)1196 void clear_or_poison_free_pages(void)
1197 {
1198 struct memory_bitmap *bm = free_pages_map;
1199 unsigned long pfn;
1200
1201 if (WARN_ON(!(free_pages_map)))
1202 return;
1203
1204 if (page_poisoning_enabled() || want_init_on_free()) {
1205 memory_bm_position_reset(bm);
1206 pfn = memory_bm_next_pfn(bm);
1207 while (pfn != BM_END_OF_MAP) {
1208 if (pfn_valid(pfn))
1209 clear_or_poison_free_page(pfn_to_page(pfn));
1210
1211 pfn = memory_bm_next_pfn(bm);
1212 }
1213 memory_bm_position_reset(bm);
1214 pr_info("free pages cleared after restore\n");
1215 }
1216 }
1217
1218 /**
1219 * snapshot_additional_pages - Estimate the number of extra pages needed.
1220 * @zone: Memory zone to carry out the computation for.
1221 *
1222 * Estimate the number of additional pages needed for setting up a hibernation
1223 * image data structures for @zone (usually, the returned value is greater than
1224 * the exact number).
1225 */
snapshot_additional_pages(struct zone * zone)1226 unsigned int snapshot_additional_pages(struct zone *zone)
1227 {
1228 unsigned int rtree, nodes;
1229
1230 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1231 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1232 LINKED_PAGE_DATA_SIZE);
1233 while (nodes > 1) {
1234 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1235 rtree += nodes;
1236 }
1237
1238 return 2 * rtree;
1239 }
1240
1241 #ifdef CONFIG_HIGHMEM
1242 /**
1243 * count_free_highmem_pages - Compute the total number of free highmem pages.
1244 *
1245 * The returned number is system-wide.
1246 */
count_free_highmem_pages(void)1247 static unsigned int count_free_highmem_pages(void)
1248 {
1249 struct zone *zone;
1250 unsigned int cnt = 0;
1251
1252 for_each_populated_zone(zone)
1253 if (is_highmem(zone))
1254 cnt += zone_page_state(zone, NR_FREE_PAGES);
1255
1256 return cnt;
1257 }
1258
1259 /**
1260 * saveable_highmem_page - Check if a highmem page is saveable.
1261 *
1262 * Determine whether a highmem page should be included in a hibernation image.
1263 *
1264 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1265 * and it isn't part of a free chunk of pages.
1266 */
saveable_highmem_page(struct zone * zone,unsigned long pfn)1267 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1268 {
1269 struct page *page;
1270
1271 if (!pfn_valid(pfn))
1272 return NULL;
1273
1274 page = pfn_to_online_page(pfn);
1275 if (!page || page_zone(page) != zone)
1276 return NULL;
1277
1278 BUG_ON(!PageHighMem(page));
1279
1280 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1281 return NULL;
1282
1283 if (PageReserved(page) || PageOffline(page))
1284 return NULL;
1285
1286 if (page_is_guard(page))
1287 return NULL;
1288
1289 return page;
1290 }
1291
1292 /**
1293 * count_highmem_pages - Compute the total number of saveable highmem pages.
1294 */
count_highmem_pages(void)1295 static unsigned int count_highmem_pages(void)
1296 {
1297 struct zone *zone;
1298 unsigned int n = 0;
1299
1300 for_each_populated_zone(zone) {
1301 unsigned long pfn, max_zone_pfn;
1302
1303 if (!is_highmem(zone))
1304 continue;
1305
1306 mark_free_pages(zone);
1307 max_zone_pfn = zone_end_pfn(zone);
1308 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1309 if (saveable_highmem_page(zone, pfn))
1310 n++;
1311 }
1312 return n;
1313 }
1314 #else
saveable_highmem_page(struct zone * z,unsigned long p)1315 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1316 {
1317 return NULL;
1318 }
1319 #endif /* CONFIG_HIGHMEM */
1320
1321 /**
1322 * saveable_page - Check if the given page is saveable.
1323 *
1324 * Determine whether a non-highmem page should be included in a hibernation
1325 * image.
1326 *
1327 * We should save the page if it isn't Nosave, and is not in the range
1328 * of pages statically defined as 'unsaveable', and it isn't part of
1329 * a free chunk of pages.
1330 */
saveable_page(struct zone * zone,unsigned long pfn)1331 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1332 {
1333 struct page *page;
1334
1335 if (!pfn_valid(pfn))
1336 return NULL;
1337
1338 page = pfn_to_online_page(pfn);
1339 if (!page || page_zone(page) != zone)
1340 return NULL;
1341
1342 BUG_ON(PageHighMem(page));
1343
1344 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1345 return NULL;
1346
1347 if (PageOffline(page))
1348 return NULL;
1349
1350 if (PageReserved(page)
1351 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1352 return NULL;
1353
1354 if (page_is_guard(page))
1355 return NULL;
1356
1357 return page;
1358 }
1359
1360 /**
1361 * count_data_pages - Compute the total number of saveable non-highmem pages.
1362 */
count_data_pages(void)1363 static unsigned int count_data_pages(void)
1364 {
1365 struct zone *zone;
1366 unsigned long pfn, max_zone_pfn;
1367 unsigned int n = 0;
1368
1369 for_each_populated_zone(zone) {
1370 if (is_highmem(zone))
1371 continue;
1372
1373 mark_free_pages(zone);
1374 max_zone_pfn = zone_end_pfn(zone);
1375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1376 if (saveable_page(zone, pfn))
1377 n++;
1378 }
1379 return n;
1380 }
1381
1382 /*
1383 * This is needed, because copy_page and memcpy are not usable for copying
1384 * task structs. Returns true if the page was filled with only zeros,
1385 * otherwise false.
1386 */
do_copy_page(long * dst,long * src)1387 static inline bool do_copy_page(long *dst, long *src)
1388 {
1389 long z = 0;
1390 int n;
1391
1392 for (n = PAGE_SIZE / sizeof(long); n; n--) {
1393 z |= *src;
1394 *dst++ = *src++;
1395 }
1396 return !z;
1397 }
1398
1399 /**
1400 * safe_copy_page - Copy a page in a safe way.
1401 *
1402 * Check if the page we are going to copy is marked as present in the kernel
1403 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1404 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1405 * always returns 'true'. Returns true if the page was entirely composed of
1406 * zeros, otherwise it will return false.
1407 */
safe_copy_page(void * dst,struct page * s_page)1408 static bool safe_copy_page(void *dst, struct page *s_page)
1409 {
1410 bool zeros_only;
1411
1412 if (kernel_page_present(s_page)) {
1413 zeros_only = do_copy_page(dst, page_address(s_page));
1414 } else {
1415 hibernate_map_page(s_page);
1416 zeros_only = do_copy_page(dst, page_address(s_page));
1417 hibernate_unmap_page(s_page);
1418 }
1419 return zeros_only;
1420 }
1421
1422 #ifdef CONFIG_HIGHMEM
page_is_saveable(struct zone * zone,unsigned long pfn)1423 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1424 {
1425 return is_highmem(zone) ?
1426 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1427 }
1428
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1429 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1430 {
1431 struct page *s_page, *d_page;
1432 void *src, *dst;
1433 bool zeros_only;
1434
1435 s_page = pfn_to_page(src_pfn);
1436 d_page = pfn_to_page(dst_pfn);
1437 if (PageHighMem(s_page)) {
1438 src = kmap_atomic(s_page);
1439 dst = kmap_atomic(d_page);
1440 zeros_only = do_copy_page(dst, src);
1441 kunmap_atomic(dst);
1442 kunmap_atomic(src);
1443 } else {
1444 if (PageHighMem(d_page)) {
1445 /*
1446 * The page pointed to by src may contain some kernel
1447 * data modified by kmap_atomic()
1448 */
1449 zeros_only = safe_copy_page(buffer, s_page);
1450 dst = kmap_atomic(d_page);
1451 copy_page(dst, buffer);
1452 kunmap_atomic(dst);
1453 } else {
1454 zeros_only = safe_copy_page(page_address(d_page), s_page);
1455 }
1456 }
1457 return zeros_only;
1458 }
1459 #else
1460 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1461
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1462 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1463 {
1464 return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1465 pfn_to_page(src_pfn));
1466 }
1467 #endif /* CONFIG_HIGHMEM */
1468
1469 /*
1470 * Copy data pages will copy all pages into pages pulled from the copy_bm.
1471 * If a page was entirely filled with zeros it will be marked in the zero_bm.
1472 *
1473 * Returns the number of pages copied.
1474 */
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm,struct memory_bitmap * zero_bm)1475 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1476 struct memory_bitmap *orig_bm,
1477 struct memory_bitmap *zero_bm)
1478 {
1479 unsigned long copied_pages = 0;
1480 struct zone *zone;
1481 unsigned long pfn, copy_pfn;
1482
1483 for_each_populated_zone(zone) {
1484 unsigned long max_zone_pfn;
1485
1486 mark_free_pages(zone);
1487 max_zone_pfn = zone_end_pfn(zone);
1488 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1489 if (page_is_saveable(zone, pfn))
1490 memory_bm_set_bit(orig_bm, pfn);
1491 }
1492 memory_bm_position_reset(orig_bm);
1493 memory_bm_position_reset(copy_bm);
1494 copy_pfn = memory_bm_next_pfn(copy_bm);
1495 for(;;) {
1496 pfn = memory_bm_next_pfn(orig_bm);
1497 if (unlikely(pfn == BM_END_OF_MAP))
1498 break;
1499 if (copy_data_page(copy_pfn, pfn)) {
1500 memory_bm_set_bit(zero_bm, pfn);
1501 /* Use this copy_pfn for a page that is not full of zeros */
1502 continue;
1503 }
1504 copied_pages++;
1505 copy_pfn = memory_bm_next_pfn(copy_bm);
1506 }
1507 return copied_pages;
1508 }
1509
1510 /* Total number of image pages */
1511 static unsigned int nr_copy_pages;
1512 /* Number of pages needed for saving the original pfns of the image pages */
1513 static unsigned int nr_meta_pages;
1514 /* Number of zero pages */
1515 static unsigned int nr_zero_pages;
1516
1517 /*
1518 * Numbers of normal and highmem page frames allocated for hibernation image
1519 * before suspending devices.
1520 */
1521 static unsigned int alloc_normal, alloc_highmem;
1522 /*
1523 * Memory bitmap used for marking saveable pages (during hibernation) or
1524 * hibernation image pages (during restore)
1525 */
1526 static struct memory_bitmap orig_bm;
1527 /*
1528 * Memory bitmap used during hibernation for marking allocated page frames that
1529 * will contain copies of saveable pages. During restore it is initially used
1530 * for marking hibernation image pages, but then the set bits from it are
1531 * duplicated in @orig_bm and it is released. On highmem systems it is next
1532 * used for marking "safe" highmem pages, but it has to be reinitialized for
1533 * this purpose.
1534 */
1535 static struct memory_bitmap copy_bm;
1536
1537 /* Memory bitmap which tracks which saveable pages were zero filled. */
1538 static struct memory_bitmap zero_bm;
1539
1540 /**
1541 * swsusp_free - Free pages allocated for hibernation image.
1542 *
1543 * Image pages are allocated before snapshot creation, so they need to be
1544 * released after resume.
1545 */
swsusp_free(void)1546 void swsusp_free(void)
1547 {
1548 unsigned long fb_pfn, fr_pfn;
1549
1550 if (!forbidden_pages_map || !free_pages_map)
1551 goto out;
1552
1553 memory_bm_position_reset(forbidden_pages_map);
1554 memory_bm_position_reset(free_pages_map);
1555
1556 loop:
1557 fr_pfn = memory_bm_next_pfn(free_pages_map);
1558 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1559
1560 /*
1561 * Find the next bit set in both bitmaps. This is guaranteed to
1562 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1563 */
1564 do {
1565 if (fb_pfn < fr_pfn)
1566 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1567 if (fr_pfn < fb_pfn)
1568 fr_pfn = memory_bm_next_pfn(free_pages_map);
1569 } while (fb_pfn != fr_pfn);
1570
1571 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1572 struct page *page = pfn_to_page(fr_pfn);
1573
1574 memory_bm_clear_current(forbidden_pages_map);
1575 memory_bm_clear_current(free_pages_map);
1576 hibernate_restore_unprotect_page(page_address(page));
1577 __free_page(page);
1578 goto loop;
1579 }
1580
1581 out:
1582 nr_copy_pages = 0;
1583 nr_meta_pages = 0;
1584 nr_zero_pages = 0;
1585 restore_pblist = NULL;
1586 buffer = NULL;
1587 alloc_normal = 0;
1588 alloc_highmem = 0;
1589 hibernate_restore_protection_end();
1590 }
1591
1592 /* Helper functions used for the shrinking of memory. */
1593
1594 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1595
1596 /**
1597 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1598 * @nr_pages: Number of page frames to allocate.
1599 * @mask: GFP flags to use for the allocation.
1600 *
1601 * Return value: Number of page frames actually allocated
1602 */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1603 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1604 {
1605 unsigned long nr_alloc = 0;
1606
1607 while (nr_pages > 0) {
1608 struct page *page;
1609
1610 page = alloc_image_page(mask);
1611 if (!page)
1612 break;
1613 memory_bm_set_bit(©_bm, page_to_pfn(page));
1614 if (PageHighMem(page))
1615 alloc_highmem++;
1616 else
1617 alloc_normal++;
1618 nr_pages--;
1619 nr_alloc++;
1620 }
1621
1622 return nr_alloc;
1623 }
1624
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1625 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1626 unsigned long avail_normal)
1627 {
1628 unsigned long alloc;
1629
1630 if (avail_normal <= alloc_normal)
1631 return 0;
1632
1633 alloc = avail_normal - alloc_normal;
1634 if (nr_pages < alloc)
1635 alloc = nr_pages;
1636
1637 return preallocate_image_pages(alloc, GFP_IMAGE);
1638 }
1639
1640 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1641 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1642 {
1643 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1644 }
1645
1646 /**
1647 * __fraction - Compute (an approximation of) x * (multiplier / base).
1648 */
__fraction(u64 x,u64 multiplier,u64 base)1649 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1650 {
1651 return div64_u64(x * multiplier, base);
1652 }
1653
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1654 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1655 unsigned long highmem,
1656 unsigned long total)
1657 {
1658 unsigned long alloc = __fraction(nr_pages, highmem, total);
1659
1660 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1661 }
1662 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1663 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1664 {
1665 return 0;
1666 }
1667
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1668 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1669 unsigned long highmem,
1670 unsigned long total)
1671 {
1672 return 0;
1673 }
1674 #endif /* CONFIG_HIGHMEM */
1675
1676 /**
1677 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1678 */
free_unnecessary_pages(void)1679 static unsigned long free_unnecessary_pages(void)
1680 {
1681 unsigned long save, to_free_normal, to_free_highmem, free;
1682
1683 save = count_data_pages();
1684 if (alloc_normal >= save) {
1685 to_free_normal = alloc_normal - save;
1686 save = 0;
1687 } else {
1688 to_free_normal = 0;
1689 save -= alloc_normal;
1690 }
1691 save += count_highmem_pages();
1692 if (alloc_highmem >= save) {
1693 to_free_highmem = alloc_highmem - save;
1694 } else {
1695 to_free_highmem = 0;
1696 save -= alloc_highmem;
1697 if (to_free_normal > save)
1698 to_free_normal -= save;
1699 else
1700 to_free_normal = 0;
1701 }
1702 free = to_free_normal + to_free_highmem;
1703
1704 memory_bm_position_reset(©_bm);
1705
1706 while (to_free_normal > 0 || to_free_highmem > 0) {
1707 unsigned long pfn = memory_bm_next_pfn(©_bm);
1708 struct page *page = pfn_to_page(pfn);
1709
1710 if (PageHighMem(page)) {
1711 if (!to_free_highmem)
1712 continue;
1713 to_free_highmem--;
1714 alloc_highmem--;
1715 } else {
1716 if (!to_free_normal)
1717 continue;
1718 to_free_normal--;
1719 alloc_normal--;
1720 }
1721 memory_bm_clear_bit(©_bm, pfn);
1722 swsusp_unset_page_forbidden(page);
1723 swsusp_unset_page_free(page);
1724 __free_page(page);
1725 }
1726
1727 return free;
1728 }
1729
1730 /**
1731 * minimum_image_size - Estimate the minimum acceptable size of an image.
1732 * @saveable: Number of saveable pages in the system.
1733 *
1734 * We want to avoid attempting to free too much memory too hard, so estimate the
1735 * minimum acceptable size of a hibernation image to use as the lower limit for
1736 * preallocating memory.
1737 *
1738 * We assume that the minimum image size should be proportional to
1739 *
1740 * [number of saveable pages] - [number of pages that can be freed in theory]
1741 *
1742 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1743 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1744 */
minimum_image_size(unsigned long saveable)1745 static unsigned long minimum_image_size(unsigned long saveable)
1746 {
1747 unsigned long size;
1748
1749 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1750 + global_node_page_state(NR_ACTIVE_ANON)
1751 + global_node_page_state(NR_INACTIVE_ANON)
1752 + global_node_page_state(NR_ACTIVE_FILE)
1753 + global_node_page_state(NR_INACTIVE_FILE);
1754
1755 return saveable <= size ? 0 : saveable - size;
1756 }
1757
1758 /**
1759 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1760 *
1761 * To create a hibernation image it is necessary to make a copy of every page
1762 * frame in use. We also need a number of page frames to be free during
1763 * hibernation for allocations made while saving the image and for device
1764 * drivers, in case they need to allocate memory from their hibernation
1765 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1766 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1767 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1768 * total number of available page frames and allocate at least
1769 *
1770 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1771 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1772 *
1773 * of them, which corresponds to the maximum size of a hibernation image.
1774 *
1775 * If image_size is set below the number following from the above formula,
1776 * the preallocation of memory is continued until the total number of saveable
1777 * pages in the system is below the requested image size or the minimum
1778 * acceptable image size returned by minimum_image_size(), whichever is greater.
1779 */
hibernate_preallocate_memory(void)1780 int hibernate_preallocate_memory(void)
1781 {
1782 struct zone *zone;
1783 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1784 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1785 ktime_t start, stop;
1786 int error;
1787
1788 pr_info("Preallocating image memory\n");
1789 start = ktime_get();
1790
1791 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1792 if (error) {
1793 pr_err("Cannot allocate original bitmap\n");
1794 goto err_out;
1795 }
1796
1797 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1798 if (error) {
1799 pr_err("Cannot allocate copy bitmap\n");
1800 goto err_out;
1801 }
1802
1803 error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1804 if (error) {
1805 pr_err("Cannot allocate zero bitmap\n");
1806 goto err_out;
1807 }
1808
1809 alloc_normal = 0;
1810 alloc_highmem = 0;
1811 nr_zero_pages = 0;
1812
1813 /* Count the number of saveable data pages. */
1814 save_highmem = count_highmem_pages();
1815 saveable = count_data_pages();
1816
1817 /*
1818 * Compute the total number of page frames we can use (count) and the
1819 * number of pages needed for image metadata (size).
1820 */
1821 count = saveable;
1822 saveable += save_highmem;
1823 highmem = save_highmem;
1824 size = 0;
1825 for_each_populated_zone(zone) {
1826 size += snapshot_additional_pages(zone);
1827 if (is_highmem(zone))
1828 highmem += zone_page_state(zone, NR_FREE_PAGES);
1829 else
1830 count += zone_page_state(zone, NR_FREE_PAGES);
1831 }
1832 avail_normal = count;
1833 count += highmem;
1834 count -= totalreserve_pages;
1835
1836 /* Compute the maximum number of saveable pages to leave in memory. */
1837 max_size = (count - (size + PAGES_FOR_IO)) / 2
1838 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1839 /* Compute the desired number of image pages specified by image_size. */
1840 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1841 if (size > max_size)
1842 size = max_size;
1843 /*
1844 * If the desired number of image pages is at least as large as the
1845 * current number of saveable pages in memory, allocate page frames for
1846 * the image and we're done.
1847 */
1848 if (size >= saveable) {
1849 pages = preallocate_image_highmem(save_highmem);
1850 pages += preallocate_image_memory(saveable - pages, avail_normal);
1851 goto out;
1852 }
1853
1854 /* Estimate the minimum size of the image. */
1855 pages = minimum_image_size(saveable);
1856 /*
1857 * To avoid excessive pressure on the normal zone, leave room in it to
1858 * accommodate an image of the minimum size (unless it's already too
1859 * small, in which case don't preallocate pages from it at all).
1860 */
1861 if (avail_normal > pages)
1862 avail_normal -= pages;
1863 else
1864 avail_normal = 0;
1865 if (size < pages)
1866 size = min_t(unsigned long, pages, max_size);
1867
1868 /*
1869 * Let the memory management subsystem know that we're going to need a
1870 * large number of page frames to allocate and make it free some memory.
1871 * NOTE: If this is not done, performance will be hurt badly in some
1872 * test cases.
1873 */
1874 shrink_all_memory(saveable - size);
1875
1876 /*
1877 * The number of saveable pages in memory was too high, so apply some
1878 * pressure to decrease it. First, make room for the largest possible
1879 * image and fail if that doesn't work. Next, try to decrease the size
1880 * of the image as much as indicated by 'size' using allocations from
1881 * highmem and non-highmem zones separately.
1882 */
1883 pages_highmem = preallocate_image_highmem(highmem / 2);
1884 alloc = count - max_size;
1885 if (alloc > pages_highmem)
1886 alloc -= pages_highmem;
1887 else
1888 alloc = 0;
1889 pages = preallocate_image_memory(alloc, avail_normal);
1890 if (pages < alloc) {
1891 /* We have exhausted non-highmem pages, try highmem. */
1892 alloc -= pages;
1893 pages += pages_highmem;
1894 pages_highmem = preallocate_image_highmem(alloc);
1895 if (pages_highmem < alloc) {
1896 pr_err("Image allocation is %lu pages short\n",
1897 alloc - pages_highmem);
1898 goto err_out;
1899 }
1900 pages += pages_highmem;
1901 /*
1902 * size is the desired number of saveable pages to leave in
1903 * memory, so try to preallocate (all memory - size) pages.
1904 */
1905 alloc = (count - pages) - size;
1906 pages += preallocate_image_highmem(alloc);
1907 } else {
1908 /*
1909 * There are approximately max_size saveable pages at this point
1910 * and we want to reduce this number down to size.
1911 */
1912 alloc = max_size - size;
1913 size = preallocate_highmem_fraction(alloc, highmem, count);
1914 pages_highmem += size;
1915 alloc -= size;
1916 size = preallocate_image_memory(alloc, avail_normal);
1917 pages_highmem += preallocate_image_highmem(alloc - size);
1918 pages += pages_highmem + size;
1919 }
1920
1921 /*
1922 * We only need as many page frames for the image as there are saveable
1923 * pages in memory, but we have allocated more. Release the excessive
1924 * ones now.
1925 */
1926 pages -= free_unnecessary_pages();
1927
1928 out:
1929 stop = ktime_get();
1930 pr_info("Allocated %lu pages for snapshot\n", pages);
1931 swsusp_show_speed(start, stop, pages, "Allocated");
1932
1933 return 0;
1934
1935 err_out:
1936 swsusp_free();
1937 return -ENOMEM;
1938 }
1939
1940 #ifdef CONFIG_HIGHMEM
1941 /**
1942 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1943 *
1944 * Compute the number of non-highmem pages that will be necessary for creating
1945 * copies of highmem pages.
1946 */
count_pages_for_highmem(unsigned int nr_highmem)1947 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1948 {
1949 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1950
1951 if (free_highmem >= nr_highmem)
1952 nr_highmem = 0;
1953 else
1954 nr_highmem -= free_highmem;
1955
1956 return nr_highmem;
1957 }
1958 #else
count_pages_for_highmem(unsigned int nr_highmem)1959 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1960 #endif /* CONFIG_HIGHMEM */
1961
1962 /**
1963 * enough_free_mem - Check if there is enough free memory for the image.
1964 */
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1965 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1966 {
1967 struct zone *zone;
1968 unsigned int free = alloc_normal;
1969
1970 for_each_populated_zone(zone)
1971 if (!is_highmem(zone))
1972 free += zone_page_state(zone, NR_FREE_PAGES);
1973
1974 nr_pages += count_pages_for_highmem(nr_highmem);
1975 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1976 nr_pages, PAGES_FOR_IO, free);
1977
1978 return free > nr_pages + PAGES_FOR_IO;
1979 }
1980
1981 #ifdef CONFIG_HIGHMEM
1982 /**
1983 * get_highmem_buffer - Allocate a buffer for highmem pages.
1984 *
1985 * If there are some highmem pages in the hibernation image, we may need a
1986 * buffer to copy them and/or load their data.
1987 */
get_highmem_buffer(int safe_needed)1988 static inline int get_highmem_buffer(int safe_needed)
1989 {
1990 buffer = get_image_page(GFP_ATOMIC, safe_needed);
1991 return buffer ? 0 : -ENOMEM;
1992 }
1993
1994 /**
1995 * alloc_highmem_pages - Allocate some highmem pages for the image.
1996 *
1997 * Try to allocate as many pages as needed, but if the number of free highmem
1998 * pages is less than that, allocate them all.
1999 */
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)2000 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2001 unsigned int nr_highmem)
2002 {
2003 unsigned int to_alloc = count_free_highmem_pages();
2004
2005 if (to_alloc > nr_highmem)
2006 to_alloc = nr_highmem;
2007
2008 nr_highmem -= to_alloc;
2009 while (to_alloc-- > 0) {
2010 struct page *page;
2011
2012 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2013 memory_bm_set_bit(bm, page_to_pfn(page));
2014 }
2015 return nr_highmem;
2016 }
2017 #else
get_highmem_buffer(int safe_needed)2018 static inline int get_highmem_buffer(int safe_needed) { return 0; }
2019
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)2020 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2021 unsigned int n) { return 0; }
2022 #endif /* CONFIG_HIGHMEM */
2023
2024 /**
2025 * swsusp_alloc - Allocate memory for hibernation image.
2026 *
2027 * We first try to allocate as many highmem pages as there are
2028 * saveable highmem pages in the system. If that fails, we allocate
2029 * non-highmem pages for the copies of the remaining highmem ones.
2030 *
2031 * In this approach it is likely that the copies of highmem pages will
2032 * also be located in the high memory, because of the way in which
2033 * copy_data_pages() works.
2034 */
swsusp_alloc(struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)2035 static int swsusp_alloc(struct memory_bitmap *copy_bm,
2036 unsigned int nr_pages, unsigned int nr_highmem)
2037 {
2038 if (nr_highmem > 0) {
2039 if (get_highmem_buffer(PG_ANY))
2040 goto err_out;
2041 if (nr_highmem > alloc_highmem) {
2042 nr_highmem -= alloc_highmem;
2043 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2044 }
2045 }
2046 if (nr_pages > alloc_normal) {
2047 nr_pages -= alloc_normal;
2048 while (nr_pages-- > 0) {
2049 struct page *page;
2050
2051 page = alloc_image_page(GFP_ATOMIC);
2052 if (!page)
2053 goto err_out;
2054 memory_bm_set_bit(copy_bm, page_to_pfn(page));
2055 }
2056 }
2057
2058 return 0;
2059
2060 err_out:
2061 swsusp_free();
2062 return -ENOMEM;
2063 }
2064
swsusp_save(void)2065 asmlinkage __visible int swsusp_save(void)
2066 {
2067 unsigned int nr_pages, nr_highmem;
2068
2069 pr_info("Creating image:\n");
2070
2071 drain_local_pages(NULL);
2072 nr_pages = count_data_pages();
2073 nr_highmem = count_highmem_pages();
2074 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2075
2076 if (!enough_free_mem(nr_pages, nr_highmem)) {
2077 pr_err("Not enough free memory\n");
2078 return -ENOMEM;
2079 }
2080
2081 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) {
2082 pr_err("Memory allocation failed\n");
2083 return -ENOMEM;
2084 }
2085
2086 /*
2087 * During allocating of suspend pagedir, new cold pages may appear.
2088 * Kill them.
2089 */
2090 drain_local_pages(NULL);
2091 nr_copy_pages = copy_data_pages(©_bm, &orig_bm, &zero_bm);
2092
2093 /*
2094 * End of critical section. From now on, we can write to memory,
2095 * but we should not touch disk. This specially means we must _not_
2096 * touch swap space! Except we must write out our image of course.
2097 */
2098 nr_pages += nr_highmem;
2099 /* We don't actually copy the zero pages */
2100 nr_zero_pages = nr_pages - nr_copy_pages;
2101 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2102
2103 pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
2104
2105 return 0;
2106 }
2107
2108 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)2109 static int init_header_complete(struct swsusp_info *info)
2110 {
2111 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2112 info->version_code = LINUX_VERSION_CODE;
2113 return 0;
2114 }
2115
check_image_kernel(struct swsusp_info * info)2116 static const char *check_image_kernel(struct swsusp_info *info)
2117 {
2118 if (info->version_code != LINUX_VERSION_CODE)
2119 return "kernel version";
2120 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2121 return "system type";
2122 if (strcmp(info->uts.release,init_utsname()->release))
2123 return "kernel release";
2124 if (strcmp(info->uts.version,init_utsname()->version))
2125 return "version";
2126 if (strcmp(info->uts.machine,init_utsname()->machine))
2127 return "machine";
2128 return NULL;
2129 }
2130 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2131
snapshot_get_image_size(void)2132 unsigned long snapshot_get_image_size(void)
2133 {
2134 return nr_copy_pages + nr_meta_pages + 1;
2135 }
2136 EXPORT_SYMBOL_GPL(snapshot_get_image_size);
2137
init_header(struct swsusp_info * info)2138 static int init_header(struct swsusp_info *info)
2139 {
2140 memset(info, 0, sizeof(struct swsusp_info));
2141 info->num_physpages = get_num_physpages();
2142 info->image_pages = nr_copy_pages;
2143 info->pages = snapshot_get_image_size();
2144 info->size = info->pages;
2145 info->size <<= PAGE_SHIFT;
2146 return init_header_complete(info);
2147 }
2148
2149 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2150 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2151
2152 /**
2153 * pack_pfns - Prepare PFNs for saving.
2154 * @bm: Memory bitmap.
2155 * @buf: Memory buffer to store the PFNs in.
2156 * @zero_bm: Memory bitmap containing PFNs of zero pages.
2157 *
2158 * PFNs corresponding to set bits in @bm are stored in the area of memory
2159 * pointed to by @buf (1 page at a time). Pages which were filled with only
2160 * zeros will have the highest bit set in the packed format to distinguish
2161 * them from PFNs which will be contained in the image file.
2162 */
pack_pfns(unsigned long * buf,struct memory_bitmap * bm,struct memory_bitmap * zero_bm)2163 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2164 struct memory_bitmap *zero_bm)
2165 {
2166 int j;
2167
2168 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2169 buf[j] = memory_bm_next_pfn(bm);
2170 if (unlikely(buf[j] == BM_END_OF_MAP))
2171 break;
2172 if (memory_bm_test_bit(zero_bm, buf[j]))
2173 buf[j] |= ENCODED_PFN_ZERO_FLAG;
2174 }
2175 }
2176
2177 /**
2178 * snapshot_read_next - Get the address to read the next image page from.
2179 * @handle: Snapshot handle to be used for the reading.
2180 *
2181 * On the first call, @handle should point to a zeroed snapshot_handle
2182 * structure. The structure gets populated then and a pointer to it should be
2183 * passed to this function every next time.
2184 *
2185 * On success, the function returns a positive number. Then, the caller
2186 * is allowed to read up to the returned number of bytes from the memory
2187 * location computed by the data_of() macro.
2188 *
2189 * The function returns 0 to indicate the end of the data stream condition,
2190 * and negative numbers are returned on errors. If that happens, the structure
2191 * pointed to by @handle is not updated and should not be used any more.
2192 */
snapshot_read_next(struct snapshot_handle * handle)2193 int snapshot_read_next(struct snapshot_handle *handle)
2194 {
2195 if (handle->cur > nr_meta_pages + nr_copy_pages)
2196 return 0;
2197
2198 if (!buffer) {
2199 /* This makes the buffer be freed by swsusp_free() */
2200 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2201 if (!buffer)
2202 return -ENOMEM;
2203 }
2204 if (!handle->cur) {
2205 int error;
2206
2207 error = init_header((struct swsusp_info *)buffer);
2208 if (error)
2209 return error;
2210 handle->buffer = buffer;
2211 memory_bm_position_reset(&orig_bm);
2212 memory_bm_position_reset(©_bm);
2213 } else if (handle->cur <= nr_meta_pages) {
2214 clear_page(buffer);
2215 pack_pfns(buffer, &orig_bm, &zero_bm);
2216 } else {
2217 struct page *page;
2218
2219 page = pfn_to_page(memory_bm_next_pfn(©_bm));
2220 if (PageHighMem(page)) {
2221 /*
2222 * Highmem pages are copied to the buffer,
2223 * because we can't return with a kmapped
2224 * highmem page (we may not be called again).
2225 */
2226 void *kaddr;
2227
2228 kaddr = kmap_atomic(page);
2229 copy_page(buffer, kaddr);
2230 kunmap_atomic(kaddr);
2231 handle->buffer = buffer;
2232 } else {
2233 handle->buffer = page_address(page);
2234 }
2235 }
2236 handle->cur++;
2237 return PAGE_SIZE;
2238 }
2239
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)2240 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2241 struct memory_bitmap *src)
2242 {
2243 unsigned long pfn;
2244
2245 memory_bm_position_reset(src);
2246 pfn = memory_bm_next_pfn(src);
2247 while (pfn != BM_END_OF_MAP) {
2248 memory_bm_set_bit(dst, pfn);
2249 pfn = memory_bm_next_pfn(src);
2250 }
2251 }
2252
2253 /**
2254 * mark_unsafe_pages - Mark pages that were used before hibernation.
2255 *
2256 * Mark the pages that cannot be used for storing the image during restoration,
2257 * because they conflict with the pages that had been used before hibernation.
2258 */
mark_unsafe_pages(struct memory_bitmap * bm)2259 static void mark_unsafe_pages(struct memory_bitmap *bm)
2260 {
2261 unsigned long pfn;
2262
2263 /* Clear the "free"/"unsafe" bit for all PFNs */
2264 memory_bm_position_reset(free_pages_map);
2265 pfn = memory_bm_next_pfn(free_pages_map);
2266 while (pfn != BM_END_OF_MAP) {
2267 memory_bm_clear_current(free_pages_map);
2268 pfn = memory_bm_next_pfn(free_pages_map);
2269 }
2270
2271 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2272 duplicate_memory_bitmap(free_pages_map, bm);
2273
2274 allocated_unsafe_pages = 0;
2275 }
2276
check_header(struct swsusp_info * info)2277 static int check_header(struct swsusp_info *info)
2278 {
2279 const char *reason;
2280
2281 reason = check_image_kernel(info);
2282 if (!reason && info->num_physpages != get_num_physpages())
2283 reason = "memory size";
2284 if (reason) {
2285 pr_err("Image mismatch: %s\n", reason);
2286 return -EPERM;
2287 }
2288 return 0;
2289 }
2290
2291 /**
2292 * load_header - Check the image header and copy the data from it.
2293 */
load_header(struct swsusp_info * info)2294 static int load_header(struct swsusp_info *info)
2295 {
2296 int error;
2297
2298 restore_pblist = NULL;
2299 error = check_header(info);
2300 if (!error) {
2301 nr_copy_pages = info->image_pages;
2302 nr_meta_pages = info->pages - info->image_pages - 1;
2303 }
2304 return error;
2305 }
2306
2307 /**
2308 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2309 * @bm: Memory bitmap.
2310 * @buf: Area of memory containing the PFNs.
2311 * @zero_bm: Memory bitmap with the zero PFNs marked.
2312 *
2313 * For each element of the array pointed to by @buf (1 page at a time), set the
2314 * corresponding bit in @bm. If the page was originally populated with only
2315 * zeros then a corresponding bit will also be set in @zero_bm.
2316 */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm,struct memory_bitmap * zero_bm)2317 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2318 struct memory_bitmap *zero_bm)
2319 {
2320 unsigned long decoded_pfn;
2321 bool zero;
2322 int j;
2323
2324 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2325 if (unlikely(buf[j] == BM_END_OF_MAP))
2326 break;
2327
2328 zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2329 decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2330 if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2331 memory_bm_set_bit(bm, decoded_pfn);
2332 if (zero) {
2333 memory_bm_set_bit(zero_bm, decoded_pfn);
2334 nr_zero_pages++;
2335 }
2336 } else {
2337 if (!pfn_valid(decoded_pfn))
2338 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2339 (unsigned long long)PFN_PHYS(decoded_pfn));
2340 return -EFAULT;
2341 }
2342 }
2343
2344 return 0;
2345 }
2346
2347 #ifdef CONFIG_HIGHMEM
2348 /*
2349 * struct highmem_pbe is used for creating the list of highmem pages that
2350 * should be restored atomically during the resume from disk, because the page
2351 * frames they have occupied before the suspend are in use.
2352 */
2353 struct highmem_pbe {
2354 struct page *copy_page; /* data is here now */
2355 struct page *orig_page; /* data was here before the suspend */
2356 struct highmem_pbe *next;
2357 };
2358
2359 /*
2360 * List of highmem PBEs needed for restoring the highmem pages that were
2361 * allocated before the suspend and included in the suspend image, but have
2362 * also been allocated by the "resume" kernel, so their contents cannot be
2363 * written directly to their "original" page frames.
2364 */
2365 static struct highmem_pbe *highmem_pblist;
2366
2367 /**
2368 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2369 * @bm: Memory bitmap.
2370 *
2371 * The bits in @bm that correspond to image pages are assumed to be set.
2372 */
count_highmem_image_pages(struct memory_bitmap * bm)2373 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2374 {
2375 unsigned long pfn;
2376 unsigned int cnt = 0;
2377
2378 memory_bm_position_reset(bm);
2379 pfn = memory_bm_next_pfn(bm);
2380 while (pfn != BM_END_OF_MAP) {
2381 if (PageHighMem(pfn_to_page(pfn)))
2382 cnt++;
2383
2384 pfn = memory_bm_next_pfn(bm);
2385 }
2386 return cnt;
2387 }
2388
2389 static unsigned int safe_highmem_pages;
2390
2391 static struct memory_bitmap *safe_highmem_bm;
2392
2393 /**
2394 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2395 * @bm: Pointer to an uninitialized memory bitmap structure.
2396 * @nr_highmem_p: Pointer to the number of highmem image pages.
2397 *
2398 * Try to allocate as many highmem pages as there are highmem image pages
2399 * (@nr_highmem_p points to the variable containing the number of highmem image
2400 * pages). The pages that are "safe" (ie. will not be overwritten when the
2401 * hibernation image is restored entirely) have the corresponding bits set in
2402 * @bm (it must be uninitialized).
2403 *
2404 * NOTE: This function should not be called if there are no highmem image pages.
2405 */
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2406 static int prepare_highmem_image(struct memory_bitmap *bm,
2407 unsigned int *nr_highmem_p)
2408 {
2409 unsigned int to_alloc;
2410
2411 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2412 return -ENOMEM;
2413
2414 if (get_highmem_buffer(PG_SAFE))
2415 return -ENOMEM;
2416
2417 to_alloc = count_free_highmem_pages();
2418 if (to_alloc > *nr_highmem_p)
2419 to_alloc = *nr_highmem_p;
2420 else
2421 *nr_highmem_p = to_alloc;
2422
2423 safe_highmem_pages = 0;
2424 while (to_alloc-- > 0) {
2425 struct page *page;
2426
2427 page = alloc_page(__GFP_HIGHMEM);
2428 if (!swsusp_page_is_free(page)) {
2429 /* The page is "safe", set its bit the bitmap */
2430 memory_bm_set_bit(bm, page_to_pfn(page));
2431 safe_highmem_pages++;
2432 }
2433 /* Mark the page as allocated */
2434 swsusp_set_page_forbidden(page);
2435 swsusp_set_page_free(page);
2436 }
2437 memory_bm_position_reset(bm);
2438 safe_highmem_bm = bm;
2439 return 0;
2440 }
2441
2442 static struct page *last_highmem_page;
2443
2444 /**
2445 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2446 *
2447 * For a given highmem image page get a buffer that suspend_write_next() should
2448 * return to its caller to write to.
2449 *
2450 * If the page is to be saved to its "original" page frame or a copy of
2451 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2452 * the copy of the page is to be made in normal memory, so the address of
2453 * the copy is returned.
2454 *
2455 * If @buffer is returned, the caller of suspend_write_next() will write
2456 * the page's contents to @buffer, so they will have to be copied to the
2457 * right location on the next call to suspend_write_next() and it is done
2458 * with the help of copy_last_highmem_page(). For this purpose, if
2459 * @buffer is returned, @last_highmem_page is set to the page to which
2460 * the data will have to be copied from @buffer.
2461 */
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2462 static void *get_highmem_page_buffer(struct page *page,
2463 struct chain_allocator *ca)
2464 {
2465 struct highmem_pbe *pbe;
2466 void *kaddr;
2467
2468 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2469 /*
2470 * We have allocated the "original" page frame and we can
2471 * use it directly to store the loaded page.
2472 */
2473 last_highmem_page = page;
2474 return buffer;
2475 }
2476 /*
2477 * The "original" page frame has not been allocated and we have to
2478 * use a "safe" page frame to store the loaded page.
2479 */
2480 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2481 if (!pbe) {
2482 swsusp_free();
2483 return ERR_PTR(-ENOMEM);
2484 }
2485 pbe->orig_page = page;
2486 if (safe_highmem_pages > 0) {
2487 struct page *tmp;
2488
2489 /* Copy of the page will be stored in high memory */
2490 kaddr = buffer;
2491 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2492 safe_highmem_pages--;
2493 last_highmem_page = tmp;
2494 pbe->copy_page = tmp;
2495 } else {
2496 /* Copy of the page will be stored in normal memory */
2497 kaddr = __get_safe_page(ca->gfp_mask);
2498 if (!kaddr)
2499 return ERR_PTR(-ENOMEM);
2500 pbe->copy_page = virt_to_page(kaddr);
2501 }
2502 pbe->next = highmem_pblist;
2503 highmem_pblist = pbe;
2504 return kaddr;
2505 }
2506
2507 /**
2508 * copy_last_highmem_page - Copy most the most recent highmem image page.
2509 *
2510 * Copy the contents of a highmem image from @buffer, where the caller of
2511 * snapshot_write_next() has stored them, to the right location represented by
2512 * @last_highmem_page .
2513 */
copy_last_highmem_page(void)2514 static void copy_last_highmem_page(void)
2515 {
2516 if (last_highmem_page) {
2517 void *dst;
2518
2519 dst = kmap_atomic(last_highmem_page);
2520 copy_page(dst, buffer);
2521 kunmap_atomic(dst);
2522 last_highmem_page = NULL;
2523 }
2524 }
2525
last_highmem_page_copied(void)2526 static inline int last_highmem_page_copied(void)
2527 {
2528 return !last_highmem_page;
2529 }
2530
free_highmem_data(void)2531 static inline void free_highmem_data(void)
2532 {
2533 if (safe_highmem_bm)
2534 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2535
2536 if (buffer)
2537 free_image_page(buffer, PG_UNSAFE_CLEAR);
2538 }
2539 #else
count_highmem_image_pages(struct memory_bitmap * bm)2540 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2541
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2542 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2543 unsigned int *nr_highmem_p) { return 0; }
2544
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2545 static inline void *get_highmem_page_buffer(struct page *page,
2546 struct chain_allocator *ca)
2547 {
2548 return ERR_PTR(-EINVAL);
2549 }
2550
copy_last_highmem_page(void)2551 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2552 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2553 static inline void free_highmem_data(void) {}
2554 #endif /* CONFIG_HIGHMEM */
2555
2556 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2557
2558 /**
2559 * prepare_image - Make room for loading hibernation image.
2560 * @new_bm: Uninitialized memory bitmap structure.
2561 * @bm: Memory bitmap with unsafe pages marked.
2562 * @zero_bm: Memory bitmap containing the zero pages.
2563 *
2564 * Use @bm to mark the pages that will be overwritten in the process of
2565 * restoring the system memory state from the suspend image ("unsafe" pages)
2566 * and allocate memory for the image.
2567 *
2568 * The idea is to allocate a new memory bitmap first and then allocate
2569 * as many pages as needed for image data, but without specifying what those
2570 * pages will be used for just yet. Instead, we mark them all as allocated and
2571 * create a lists of "safe" pages to be used later. On systems with high
2572 * memory a list of "safe" highmem pages is created too.
2573 *
2574 * Because it was not known which pages were unsafe when @zero_bm was created,
2575 * make a copy of it and recreate it within safe pages.
2576 */
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm,struct memory_bitmap * zero_bm)2577 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2578 struct memory_bitmap *zero_bm)
2579 {
2580 unsigned int nr_pages, nr_highmem;
2581 struct memory_bitmap tmp;
2582 struct linked_page *lp;
2583 int error;
2584
2585 /* If there is no highmem, the buffer will not be necessary */
2586 free_image_page(buffer, PG_UNSAFE_CLEAR);
2587 buffer = NULL;
2588
2589 nr_highmem = count_highmem_image_pages(bm);
2590 mark_unsafe_pages(bm);
2591
2592 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2593 if (error)
2594 goto Free;
2595
2596 duplicate_memory_bitmap(new_bm, bm);
2597 memory_bm_free(bm, PG_UNSAFE_KEEP);
2598
2599 /* Make a copy of zero_bm so it can be created in safe pages */
2600 error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2601 if (error)
2602 goto Free;
2603
2604 duplicate_memory_bitmap(&tmp, zero_bm);
2605 memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2606
2607 /* Recreate zero_bm in safe pages */
2608 error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2609 if (error)
2610 goto Free;
2611
2612 duplicate_memory_bitmap(zero_bm, &tmp);
2613 memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2614 /* At this point zero_bm is in safe pages and it can be used for restoring. */
2615
2616 if (nr_highmem > 0) {
2617 error = prepare_highmem_image(bm, &nr_highmem);
2618 if (error)
2619 goto Free;
2620 }
2621 /*
2622 * Reserve some safe pages for potential later use.
2623 *
2624 * NOTE: This way we make sure there will be enough safe pages for the
2625 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2626 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2627 *
2628 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2629 */
2630 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2631 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2632 while (nr_pages > 0) {
2633 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2634 if (!lp) {
2635 error = -ENOMEM;
2636 goto Free;
2637 }
2638 lp->next = safe_pages_list;
2639 safe_pages_list = lp;
2640 nr_pages--;
2641 }
2642 /* Preallocate memory for the image */
2643 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2644 while (nr_pages > 0) {
2645 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2646 if (!lp) {
2647 error = -ENOMEM;
2648 goto Free;
2649 }
2650 if (!swsusp_page_is_free(virt_to_page(lp))) {
2651 /* The page is "safe", add it to the list */
2652 lp->next = safe_pages_list;
2653 safe_pages_list = lp;
2654 }
2655 /* Mark the page as allocated */
2656 swsusp_set_page_forbidden(virt_to_page(lp));
2657 swsusp_set_page_free(virt_to_page(lp));
2658 nr_pages--;
2659 }
2660 return 0;
2661
2662 Free:
2663 swsusp_free();
2664 return error;
2665 }
2666
2667 /**
2668 * get_buffer - Get the address to store the next image data page.
2669 *
2670 * Get the address that snapshot_write_next() should return to its caller to
2671 * write to.
2672 */
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2673 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2674 {
2675 struct pbe *pbe;
2676 struct page *page;
2677 unsigned long pfn = memory_bm_next_pfn(bm);
2678
2679 if (pfn == BM_END_OF_MAP)
2680 return ERR_PTR(-EFAULT);
2681
2682 page = pfn_to_page(pfn);
2683 if (PageHighMem(page))
2684 return get_highmem_page_buffer(page, ca);
2685
2686 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2687 /*
2688 * We have allocated the "original" page frame and we can
2689 * use it directly to store the loaded page.
2690 */
2691 return page_address(page);
2692
2693 /*
2694 * The "original" page frame has not been allocated and we have to
2695 * use a "safe" page frame to store the loaded page.
2696 */
2697 pbe = chain_alloc(ca, sizeof(struct pbe));
2698 if (!pbe) {
2699 swsusp_free();
2700 return ERR_PTR(-ENOMEM);
2701 }
2702 pbe->orig_address = page_address(page);
2703 pbe->address = __get_safe_page(ca->gfp_mask);
2704 if (!pbe->address)
2705 return ERR_PTR(-ENOMEM);
2706 pbe->next = restore_pblist;
2707 restore_pblist = pbe;
2708 return pbe->address;
2709 }
2710
2711 /**
2712 * snapshot_write_next - Get the address to store the next image page.
2713 * @handle: Snapshot handle structure to guide the writing.
2714 *
2715 * On the first call, @handle should point to a zeroed snapshot_handle
2716 * structure. The structure gets populated then and a pointer to it should be
2717 * passed to this function every next time.
2718 *
2719 * On success, the function returns a positive number. Then, the caller
2720 * is allowed to write up to the returned number of bytes to the memory
2721 * location computed by the data_of() macro.
2722 *
2723 * The function returns 0 to indicate the "end of file" condition. Negative
2724 * numbers are returned on errors, in which cases the structure pointed to by
2725 * @handle is not updated and should not be used any more.
2726 */
snapshot_write_next(struct snapshot_handle * handle)2727 int snapshot_write_next(struct snapshot_handle *handle)
2728 {
2729 static struct chain_allocator ca;
2730 int error = 0;
2731
2732 next:
2733 /* Check if we have already loaded the entire image */
2734 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2735 return 0;
2736
2737 if (!handle->cur) {
2738 if (!buffer)
2739 /* This makes the buffer be freed by swsusp_free() */
2740 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2741
2742 if (!buffer)
2743 return -ENOMEM;
2744
2745 handle->buffer = buffer;
2746 } else if (handle->cur == 1) {
2747 error = load_header(buffer);
2748 if (error)
2749 return error;
2750
2751 safe_pages_list = NULL;
2752
2753 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2754 if (error)
2755 return error;
2756
2757 error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
2758 if (error)
2759 return error;
2760
2761 nr_zero_pages = 0;
2762
2763 hibernate_restore_protection_begin();
2764 } else if (handle->cur <= nr_meta_pages + 1) {
2765 error = unpack_orig_pfns(buffer, ©_bm, &zero_bm);
2766 if (error)
2767 return error;
2768
2769 if (handle->cur == nr_meta_pages + 1) {
2770 error = prepare_image(&orig_bm, ©_bm, &zero_bm);
2771 if (error)
2772 return error;
2773
2774 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2775 memory_bm_position_reset(&orig_bm);
2776 memory_bm_position_reset(&zero_bm);
2777 restore_pblist = NULL;
2778 handle->buffer = get_buffer(&orig_bm, &ca);
2779 if (IS_ERR(handle->buffer))
2780 return PTR_ERR(handle->buffer);
2781 }
2782 } else {
2783 copy_last_highmem_page();
2784 hibernate_restore_protect_page(handle->buffer);
2785 handle->buffer = get_buffer(&orig_bm, &ca);
2786 if (IS_ERR(handle->buffer))
2787 return PTR_ERR(handle->buffer);
2788 }
2789 handle->sync_read = (handle->buffer == buffer);
2790 handle->cur++;
2791
2792 /* Zero pages were not included in the image, memset it and move on. */
2793 if (handle->cur > nr_meta_pages + 1 &&
2794 memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2795 memset(handle->buffer, 0, PAGE_SIZE);
2796 goto next;
2797 }
2798
2799 return PAGE_SIZE;
2800 }
2801
2802 /**
2803 * snapshot_write_finalize - Complete the loading of a hibernation image.
2804 *
2805 * Must be called after the last call to snapshot_write_next() in case the last
2806 * page in the image happens to be a highmem page and its contents should be
2807 * stored in highmem. Additionally, it recycles bitmap memory that's not
2808 * necessary any more.
2809 */
snapshot_write_finalize(struct snapshot_handle * handle)2810 void snapshot_write_finalize(struct snapshot_handle *handle)
2811 {
2812 copy_last_highmem_page();
2813 hibernate_restore_protect_page(handle->buffer);
2814 /* Do that only if we have loaded the image entirely */
2815 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2816 memory_bm_recycle(&orig_bm);
2817 free_highmem_data();
2818 }
2819 }
2820
snapshot_image_loaded(struct snapshot_handle * handle)2821 int snapshot_image_loaded(struct snapshot_handle *handle)
2822 {
2823 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2824 handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2825 }
2826
2827 #ifdef CONFIG_HIGHMEM
2828 /* Assumes that @buf is ready and points to a "safe" page */
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2829 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2830 void *buf)
2831 {
2832 void *kaddr1, *kaddr2;
2833
2834 kaddr1 = kmap_atomic(p1);
2835 kaddr2 = kmap_atomic(p2);
2836 copy_page(buf, kaddr1);
2837 copy_page(kaddr1, kaddr2);
2838 copy_page(kaddr2, buf);
2839 kunmap_atomic(kaddr2);
2840 kunmap_atomic(kaddr1);
2841 }
2842
2843 /**
2844 * restore_highmem - Put highmem image pages into their original locations.
2845 *
2846 * For each highmem page that was in use before hibernation and is included in
2847 * the image, and also has been allocated by the "restore" kernel, swap its
2848 * current contents with the previous (ie. "before hibernation") ones.
2849 *
2850 * If the restore eventually fails, we can call this function once again and
2851 * restore the highmem state as seen by the restore kernel.
2852 */
restore_highmem(void)2853 int restore_highmem(void)
2854 {
2855 struct highmem_pbe *pbe = highmem_pblist;
2856 void *buf;
2857
2858 if (!pbe)
2859 return 0;
2860
2861 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2862 if (!buf)
2863 return -ENOMEM;
2864
2865 while (pbe) {
2866 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2867 pbe = pbe->next;
2868 }
2869 free_image_page(buf, PG_UNSAFE_CLEAR);
2870 return 0;
2871 }
2872 #endif /* CONFIG_HIGHMEM */
2873