• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/profile.c
4  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
5  *  with configurable resolution, support for restricting the cpus on
6  *  which profiling is done, and switching between cpu time and
7  *  schedule() calls via kernel command line parameters passed at boot.
8  *
9  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10  *	Red Hat, July 2004
11  *  Consolidation of architecture support code for profiling,
12  *	Nadia Yvette Chambers, Oracle, July 2004
13  *  Amortized hit count accounting via per-cpu open-addressed hashtables
14  *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15  *	Oracle, 2004
16  */
17 
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30 
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34 
35 struct profile_hit {
36 	u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT	3
39 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
42 
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46 
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49 
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56 
profile_setup(char * str)57 int profile_setup(char *str)
58 {
59 	static const char schedstr[] = "schedule";
60 	static const char sleepstr[] = "sleep";
61 	static const char kvmstr[] = "kvm";
62 	const char *select = NULL;
63 	int par;
64 
65 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
66 #ifdef CONFIG_SCHEDSTATS
67 		force_schedstat_enabled();
68 		prof_on = SLEEP_PROFILING;
69 		select = sleepstr;
70 #else
71 		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
72 #endif /* CONFIG_SCHEDSTATS */
73 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
74 		prof_on = SCHED_PROFILING;
75 		select = schedstr;
76 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
77 		prof_on = KVM_PROFILING;
78 		select = kvmstr;
79 	} else if (get_option(&str, &par)) {
80 		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
81 		prof_on = CPU_PROFILING;
82 		pr_info("kernel profiling enabled (shift: %u)\n",
83 			prof_shift);
84 	}
85 
86 	if (select) {
87 		if (str[strlen(select)] == ',')
88 			str += strlen(select) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
91 		pr_info("kernel %s profiling enabled (shift: %u)\n",
92 			select, prof_shift);
93 	}
94 
95 	return 1;
96 }
97 __setup("profile=", profile_setup);
98 
99 
profile_init(void)100 int __ref profile_init(void)
101 {
102 	int buffer_bytes;
103 	if (!prof_on)
104 		return 0;
105 
106 	/* only text is profiled */
107 	prof_len = (_etext - _stext) >> prof_shift;
108 
109 	if (!prof_len) {
110 		pr_warn("profiling shift: %u too large\n", prof_shift);
111 		prof_on = 0;
112 		return -EINVAL;
113 	}
114 
115 	buffer_bytes = prof_len*sizeof(atomic_t);
116 
117 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
118 		return -ENOMEM;
119 
120 	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
121 
122 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
123 	if (prof_buffer)
124 		return 0;
125 
126 	prof_buffer = alloc_pages_exact(buffer_bytes,
127 					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
128 	if (prof_buffer)
129 		return 0;
130 
131 	prof_buffer = vzalloc(buffer_bytes);
132 	if (prof_buffer)
133 		return 0;
134 
135 	free_cpumask_var(prof_cpu_mask);
136 	return -ENOMEM;
137 }
138 
139 /* Profile event notifications */
140 
141 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
142 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
143 
profile_task_exit(struct task_struct * task)144 void profile_task_exit(struct task_struct *task)
145 {
146 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
147 }
148 
profile_munmap(unsigned long addr)149 void profile_munmap(unsigned long addr)
150 {
151 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
152 }
153 
profile_event_register(enum profile_type type,struct notifier_block * n)154 int profile_event_register(enum profile_type type, struct notifier_block *n)
155 {
156 	int err = -EINVAL;
157 
158 	switch (type) {
159 	case PROFILE_TASK_EXIT:
160 		err = blocking_notifier_chain_register(
161 				&task_exit_notifier, n);
162 		break;
163 	case PROFILE_MUNMAP:
164 		err = blocking_notifier_chain_register(
165 				&munmap_notifier, n);
166 		break;
167 	}
168 
169 	return err;
170 }
171 EXPORT_SYMBOL_GPL(profile_event_register);
172 
profile_event_unregister(enum profile_type type,struct notifier_block * n)173 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
174 {
175 	int err = -EINVAL;
176 
177 	switch (type) {
178 	case PROFILE_TASK_EXIT:
179 		err = blocking_notifier_chain_unregister(
180 				&task_exit_notifier, n);
181 		break;
182 	case PROFILE_MUNMAP:
183 		err = blocking_notifier_chain_unregister(
184 				&munmap_notifier, n);
185 		break;
186 	}
187 
188 	return err;
189 }
190 EXPORT_SYMBOL_GPL(profile_event_unregister);
191 
192 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
193 /*
194  * Each cpu has a pair of open-addressed hashtables for pending
195  * profile hits. read_profile() IPI's all cpus to request them
196  * to flip buffers and flushes their contents to prof_buffer itself.
197  * Flip requests are serialized by the profile_flip_mutex. The sole
198  * use of having a second hashtable is for avoiding cacheline
199  * contention that would otherwise happen during flushes of pending
200  * profile hits required for the accuracy of reported profile hits
201  * and so resurrect the interrupt livelock issue.
202  *
203  * The open-addressed hashtables are indexed by profile buffer slot
204  * and hold the number of pending hits to that profile buffer slot on
205  * a cpu in an entry. When the hashtable overflows, all pending hits
206  * are accounted to their corresponding profile buffer slots with
207  * atomic_add() and the hashtable emptied. As numerous pending hits
208  * may be accounted to a profile buffer slot in a hashtable entry,
209  * this amortizes a number of atomic profile buffer increments likely
210  * to be far larger than the number of entries in the hashtable,
211  * particularly given that the number of distinct profile buffer
212  * positions to which hits are accounted during short intervals (e.g.
213  * several seconds) is usually very small. Exclusion from buffer
214  * flipping is provided by interrupt disablement (note that for
215  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
216  * process context).
217  * The hash function is meant to be lightweight as opposed to strong,
218  * and was vaguely inspired by ppc64 firmware-supported inverted
219  * pagetable hash functions, but uses a full hashtable full of finite
220  * collision chains, not just pairs of them.
221  *
222  * -- nyc
223  */
__profile_flip_buffers(void * unused)224 static void __profile_flip_buffers(void *unused)
225 {
226 	int cpu = smp_processor_id();
227 
228 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
229 }
230 
profile_flip_buffers(void)231 static void profile_flip_buffers(void)
232 {
233 	int i, j, cpu;
234 
235 	mutex_lock(&profile_flip_mutex);
236 	j = per_cpu(cpu_profile_flip, get_cpu());
237 	put_cpu();
238 	on_each_cpu(__profile_flip_buffers, NULL, 1);
239 	for_each_online_cpu(cpu) {
240 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
241 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
242 			if (!hits[i].hits) {
243 				if (hits[i].pc)
244 					hits[i].pc = 0;
245 				continue;
246 			}
247 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
248 			hits[i].hits = hits[i].pc = 0;
249 		}
250 	}
251 	mutex_unlock(&profile_flip_mutex);
252 }
253 
profile_discard_flip_buffers(void)254 static void profile_discard_flip_buffers(void)
255 {
256 	int i, cpu;
257 
258 	mutex_lock(&profile_flip_mutex);
259 	i = per_cpu(cpu_profile_flip, get_cpu());
260 	put_cpu();
261 	on_each_cpu(__profile_flip_buffers, NULL, 1);
262 	for_each_online_cpu(cpu) {
263 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
264 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
265 	}
266 	mutex_unlock(&profile_flip_mutex);
267 }
268 
do_profile_hits(int type,void * __pc,unsigned int nr_hits)269 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
270 {
271 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
272 	int i, j, cpu;
273 	struct profile_hit *hits;
274 
275 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
276 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
277 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
278 	cpu = get_cpu();
279 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
280 	if (!hits) {
281 		put_cpu();
282 		return;
283 	}
284 	/*
285 	 * We buffer the global profiler buffer into a per-CPU
286 	 * queue and thus reduce the number of global (and possibly
287 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
288 	 */
289 	local_irq_save(flags);
290 	do {
291 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
292 			if (hits[i + j].pc == pc) {
293 				hits[i + j].hits += nr_hits;
294 				goto out;
295 			} else if (!hits[i + j].hits) {
296 				hits[i + j].pc = pc;
297 				hits[i + j].hits = nr_hits;
298 				goto out;
299 			}
300 		}
301 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
302 	} while (i != primary);
303 
304 	/*
305 	 * Add the current hit(s) and flush the write-queue out
306 	 * to the global buffer:
307 	 */
308 	atomic_add(nr_hits, &prof_buffer[pc]);
309 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
310 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
311 		hits[i].pc = hits[i].hits = 0;
312 	}
313 out:
314 	local_irq_restore(flags);
315 	put_cpu();
316 }
317 
profile_dead_cpu(unsigned int cpu)318 static int profile_dead_cpu(unsigned int cpu)
319 {
320 	struct page *page;
321 	int i;
322 
323 	if (cpumask_available(prof_cpu_mask))
324 		cpumask_clear_cpu(cpu, prof_cpu_mask);
325 
326 	for (i = 0; i < 2; i++) {
327 		if (per_cpu(cpu_profile_hits, cpu)[i]) {
328 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
329 			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
330 			__free_page(page);
331 		}
332 	}
333 	return 0;
334 }
335 
profile_prepare_cpu(unsigned int cpu)336 static int profile_prepare_cpu(unsigned int cpu)
337 {
338 	int i, node = cpu_to_mem(cpu);
339 	struct page *page;
340 
341 	per_cpu(cpu_profile_flip, cpu) = 0;
342 
343 	for (i = 0; i < 2; i++) {
344 		if (per_cpu(cpu_profile_hits, cpu)[i])
345 			continue;
346 
347 		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
348 		if (!page) {
349 			profile_dead_cpu(cpu);
350 			return -ENOMEM;
351 		}
352 		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
353 
354 	}
355 	return 0;
356 }
357 
profile_online_cpu(unsigned int cpu)358 static int profile_online_cpu(unsigned int cpu)
359 {
360 	if (cpumask_available(prof_cpu_mask))
361 		cpumask_set_cpu(cpu, prof_cpu_mask);
362 
363 	return 0;
364 }
365 
366 #else /* !CONFIG_SMP */
367 #define profile_flip_buffers()		do { } while (0)
368 #define profile_discard_flip_buffers()	do { } while (0)
369 
do_profile_hits(int type,void * __pc,unsigned int nr_hits)370 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
371 {
372 	unsigned long pc;
373 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
374 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
375 }
376 #endif /* !CONFIG_SMP */
377 
profile_hits(int type,void * __pc,unsigned int nr_hits)378 void profile_hits(int type, void *__pc, unsigned int nr_hits)
379 {
380 	if (prof_on != type || !prof_buffer)
381 		return;
382 	do_profile_hits(type, __pc, nr_hits);
383 }
384 EXPORT_SYMBOL_GPL(profile_hits);
385 
profile_tick(int type)386 void profile_tick(int type)
387 {
388 	struct pt_regs *regs = get_irq_regs();
389 
390 	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
391 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
392 		profile_hit(type, (void *)profile_pc(regs));
393 }
394 
395 #ifdef CONFIG_PROC_FS
396 #include <linux/proc_fs.h>
397 #include <linux/seq_file.h>
398 #include <linux/uaccess.h>
399 
prof_cpu_mask_proc_show(struct seq_file * m,void * v)400 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
401 {
402 	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
403 	return 0;
404 }
405 
prof_cpu_mask_proc_open(struct inode * inode,struct file * file)406 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
407 {
408 	return single_open(file, prof_cpu_mask_proc_show, NULL);
409 }
410 
prof_cpu_mask_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)411 static ssize_t prof_cpu_mask_proc_write(struct file *file,
412 	const char __user *buffer, size_t count, loff_t *pos)
413 {
414 	cpumask_var_t new_value;
415 	int err;
416 
417 	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
418 		return -ENOMEM;
419 
420 	err = cpumask_parse_user(buffer, count, new_value);
421 	if (!err) {
422 		cpumask_copy(prof_cpu_mask, new_value);
423 		err = count;
424 	}
425 	free_cpumask_var(new_value);
426 	return err;
427 }
428 
429 static const struct proc_ops prof_cpu_mask_proc_ops = {
430 	.proc_open	= prof_cpu_mask_proc_open,
431 	.proc_read	= seq_read,
432 	.proc_lseek	= seq_lseek,
433 	.proc_release	= single_release,
434 	.proc_write	= prof_cpu_mask_proc_write,
435 };
436 
create_prof_cpu_mask(void)437 void create_prof_cpu_mask(void)
438 {
439 	/* create /proc/irq/prof_cpu_mask */
440 	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
441 }
442 
443 /*
444  * This function accesses profiling information. The returned data is
445  * binary: the sampling step and the actual contents of the profile
446  * buffer. Use of the program readprofile is recommended in order to
447  * get meaningful info out of these data.
448  */
449 static ssize_t
read_profile(struct file * file,char __user * buf,size_t count,loff_t * ppos)450 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
451 {
452 	unsigned long p = *ppos;
453 	ssize_t read;
454 	char *pnt;
455 	unsigned long sample_step = 1UL << prof_shift;
456 
457 	profile_flip_buffers();
458 	if (p >= (prof_len+1)*sizeof(unsigned int))
459 		return 0;
460 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
461 		count = (prof_len+1)*sizeof(unsigned int) - p;
462 	read = 0;
463 
464 	while (p < sizeof(unsigned int) && count > 0) {
465 		if (put_user(*((char *)(&sample_step)+p), buf))
466 			return -EFAULT;
467 		buf++; p++; count--; read++;
468 	}
469 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
470 	if (copy_to_user(buf, (void *)pnt, count))
471 		return -EFAULT;
472 	read += count;
473 	*ppos += read;
474 	return read;
475 }
476 
477 /* default is to not implement this call */
setup_profiling_timer(unsigned mult)478 int __weak setup_profiling_timer(unsigned mult)
479 {
480 	return -EINVAL;
481 }
482 
483 /*
484  * Writing to /proc/profile resets the counters
485  *
486  * Writing a 'profiling multiplier' value into it also re-sets the profiling
487  * interrupt frequency, on architectures that support this.
488  */
write_profile(struct file * file,const char __user * buf,size_t count,loff_t * ppos)489 static ssize_t write_profile(struct file *file, const char __user *buf,
490 			     size_t count, loff_t *ppos)
491 {
492 #ifdef CONFIG_SMP
493 	if (count == sizeof(int)) {
494 		unsigned int multiplier;
495 
496 		if (copy_from_user(&multiplier, buf, sizeof(int)))
497 			return -EFAULT;
498 
499 		if (setup_profiling_timer(multiplier))
500 			return -EINVAL;
501 	}
502 #endif
503 	profile_discard_flip_buffers();
504 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
505 	return count;
506 }
507 
508 static const struct proc_ops profile_proc_ops = {
509 	.proc_read	= read_profile,
510 	.proc_write	= write_profile,
511 	.proc_lseek	= default_llseek,
512 };
513 
create_proc_profile(void)514 int __ref create_proc_profile(void)
515 {
516 	struct proc_dir_entry *entry;
517 #ifdef CONFIG_SMP
518 	enum cpuhp_state online_state;
519 #endif
520 
521 	int err = 0;
522 
523 	if (!prof_on)
524 		return 0;
525 #ifdef CONFIG_SMP
526 	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
527 				profile_prepare_cpu, profile_dead_cpu);
528 	if (err)
529 		return err;
530 
531 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
532 				profile_online_cpu, NULL);
533 	if (err < 0)
534 		goto err_state_prep;
535 	online_state = err;
536 	err = 0;
537 #endif
538 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
539 			    NULL, &profile_proc_ops);
540 	if (!entry)
541 		goto err_state_onl;
542 	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
543 
544 	return err;
545 err_state_onl:
546 #ifdef CONFIG_SMP
547 	cpuhp_remove_state(online_state);
548 err_state_prep:
549 	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
550 #endif
551 	return err;
552 }
553 subsys_initcall(create_proc_profile);
554 #endif /* CONFIG_PROC_FS */
555