• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 /*
23  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24  */
25 
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29 
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38 EXPORT_SYMBOL_GPL(panic_reboot_mode);
39 
40 /*
41  * This variable is used privately to keep track of whether or not
42  * reboot_type is still set to its default value (i.e., reboot= hasn't
43  * been set on the command line).  This is needed so that we can
44  * suppress DMI scanning for reboot quirks.  Without it, it's
45  * impossible to override a faulty reboot quirk without recompiling.
46  */
47 int reboot_default = 1;
48 int reboot_cpu;
49 enum reboot_type reboot_type = BOOT_ACPI;
50 int reboot_force;
51 
52 struct sys_off_handler {
53 	struct notifier_block nb;
54 	int (*sys_off_cb)(struct sys_off_data *data);
55 	void *cb_data;
56 	enum sys_off_mode mode;
57 	bool blocking;
58 	void *list;
59 };
60 
61 /*
62  * Temporary stub that prevents linkage failure while we're in process
63  * of removing all uses of legacy pm_power_off() around the kernel.
64  */
65 void __weak (*pm_power_off)(void);
66 
67 /**
68  *	emergency_restart - reboot the system
69  *
70  *	Without shutting down any hardware or taking any locks
71  *	reboot the system.  This is called when we know we are in
72  *	trouble so this is our best effort to reboot.  This is
73  *	safe to call in interrupt context.
74  */
emergency_restart(void)75 void emergency_restart(void)
76 {
77 	kmsg_dump(KMSG_DUMP_EMERG);
78 	system_state = SYSTEM_RESTART;
79 	machine_emergency_restart();
80 }
81 EXPORT_SYMBOL_GPL(emergency_restart);
82 
kernel_restart_prepare(char * cmd)83 void kernel_restart_prepare(char *cmd)
84 {
85 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
86 	system_state = SYSTEM_RESTART;
87 	usermodehelper_disable();
88 	device_shutdown();
89 }
90 
91 /**
92  *	register_reboot_notifier - Register function to be called at reboot time
93  *	@nb: Info about notifier function to be called
94  *
95  *	Registers a function with the list of functions
96  *	to be called at reboot time.
97  *
98  *	Currently always returns zero, as blocking_notifier_chain_register()
99  *	always returns zero.
100  */
register_reboot_notifier(struct notifier_block * nb)101 int register_reboot_notifier(struct notifier_block *nb)
102 {
103 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
104 }
105 EXPORT_SYMBOL(register_reboot_notifier);
106 
107 /**
108  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
109  *	@nb: Hook to be unregistered
110  *
111  *	Unregisters a previously registered reboot
112  *	notifier function.
113  *
114  *	Returns zero on success, or %-ENOENT on failure.
115  */
unregister_reboot_notifier(struct notifier_block * nb)116 int unregister_reboot_notifier(struct notifier_block *nb)
117 {
118 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
119 }
120 EXPORT_SYMBOL(unregister_reboot_notifier);
121 
devm_unregister_reboot_notifier(struct device * dev,void * res)122 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
123 {
124 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
125 }
126 
devm_register_reboot_notifier(struct device * dev,struct notifier_block * nb)127 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
128 {
129 	struct notifier_block **rcnb;
130 	int ret;
131 
132 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
133 			    sizeof(*rcnb), GFP_KERNEL);
134 	if (!rcnb)
135 		return -ENOMEM;
136 
137 	ret = register_reboot_notifier(nb);
138 	if (!ret) {
139 		*rcnb = nb;
140 		devres_add(dev, rcnb);
141 	} else {
142 		devres_free(rcnb);
143 	}
144 
145 	return ret;
146 }
147 EXPORT_SYMBOL(devm_register_reboot_notifier);
148 
149 /*
150  *	Notifier list for kernel code which wants to be called
151  *	to restart the system.
152  */
153 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
154 
155 /**
156  *	register_restart_handler - Register function to be called to reset
157  *				   the system
158  *	@nb: Info about handler function to be called
159  *	@nb->priority:	Handler priority. Handlers should follow the
160  *			following guidelines for setting priorities.
161  *			0:	Restart handler of last resort,
162  *				with limited restart capabilities
163  *			128:	Default restart handler; use if no other
164  *				restart handler is expected to be available,
165  *				and/or if restart functionality is
166  *				sufficient to restart the entire system
167  *			255:	Highest priority restart handler, will
168  *				preempt all other restart handlers
169  *
170  *	Registers a function with code to be called to restart the
171  *	system.
172  *
173  *	Registered functions will be called from machine_restart as last
174  *	step of the restart sequence (if the architecture specific
175  *	machine_restart function calls do_kernel_restart - see below
176  *	for details).
177  *	Registered functions are expected to restart the system immediately.
178  *	If more than one function is registered, the restart handler priority
179  *	selects which function will be called first.
180  *
181  *	Restart handlers are expected to be registered from non-architecture
182  *	code, typically from drivers. A typical use case would be a system
183  *	where restart functionality is provided through a watchdog. Multiple
184  *	restart handlers may exist; for example, one restart handler might
185  *	restart the entire system, while another only restarts the CPU.
186  *	In such cases, the restart handler which only restarts part of the
187  *	hardware is expected to register with low priority to ensure that
188  *	it only runs if no other means to restart the system is available.
189  *
190  *	Currently always returns zero, as atomic_notifier_chain_register()
191  *	always returns zero.
192  */
register_restart_handler(struct notifier_block * nb)193 int register_restart_handler(struct notifier_block *nb)
194 {
195 	return atomic_notifier_chain_register(&restart_handler_list, nb);
196 }
197 EXPORT_SYMBOL(register_restart_handler);
198 
199 /**
200  *	unregister_restart_handler - Unregister previously registered
201  *				     restart handler
202  *	@nb: Hook to be unregistered
203  *
204  *	Unregisters a previously registered restart handler function.
205  *
206  *	Returns zero on success, or %-ENOENT on failure.
207  */
unregister_restart_handler(struct notifier_block * nb)208 int unregister_restart_handler(struct notifier_block *nb)
209 {
210 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
211 }
212 EXPORT_SYMBOL(unregister_restart_handler);
213 
214 /**
215  *	do_kernel_restart - Execute kernel restart handler call chain
216  *
217  *	Calls functions registered with register_restart_handler.
218  *
219  *	Expected to be called from machine_restart as last step of the restart
220  *	sequence.
221  *
222  *	Restarts the system immediately if a restart handler function has been
223  *	registered. Otherwise does nothing.
224  */
do_kernel_restart(char * cmd)225 void do_kernel_restart(char *cmd)
226 {
227 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
228 }
229 
migrate_to_reboot_cpu(void)230 void migrate_to_reboot_cpu(void)
231 {
232 	/* The boot cpu is always logical cpu 0 */
233 	int cpu = reboot_cpu;
234 
235 	cpu_hotplug_disable();
236 
237 	/* Make certain the cpu I'm about to reboot on is online */
238 	if (!cpu_online(cpu))
239 		cpu = cpumask_first(cpu_online_mask);
240 
241 	/* Prevent races with other tasks migrating this task */
242 	current->flags |= PF_NO_SETAFFINITY;
243 
244 	/* Make certain I only run on the appropriate processor */
245 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
246 }
247 
248 /*
249  *	Notifier list for kernel code which wants to be called
250  *	to prepare system for restart.
251  */
252 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
253 
do_kernel_restart_prepare(void)254 static void do_kernel_restart_prepare(void)
255 {
256 	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
257 }
258 
259 /**
260  *	kernel_restart - reboot the system
261  *	@cmd: pointer to buffer containing command to execute for restart
262  *		or %NULL
263  *
264  *	Shutdown everything and perform a clean reboot.
265  *	This is not safe to call in interrupt context.
266  */
kernel_restart(char * cmd)267 void kernel_restart(char *cmd)
268 {
269 	kernel_restart_prepare(cmd);
270 	do_kernel_restart_prepare();
271 	migrate_to_reboot_cpu();
272 	syscore_shutdown();
273 	if (!cmd)
274 		pr_emerg("Restarting system\n");
275 	else
276 		pr_emerg("Restarting system with command '%s'\n", cmd);
277 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
278 	machine_restart(cmd);
279 }
280 EXPORT_SYMBOL_GPL(kernel_restart);
281 
kernel_shutdown_prepare(enum system_states state)282 static void kernel_shutdown_prepare(enum system_states state)
283 {
284 	blocking_notifier_call_chain(&reboot_notifier_list,
285 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
286 	system_state = state;
287 	usermodehelper_disable();
288 	device_shutdown();
289 }
290 /**
291  *	kernel_halt - halt the system
292  *
293  *	Shutdown everything and perform a clean system halt.
294  */
kernel_halt(void)295 void kernel_halt(void)
296 {
297 	kernel_shutdown_prepare(SYSTEM_HALT);
298 	migrate_to_reboot_cpu();
299 	syscore_shutdown();
300 	pr_emerg("System halted\n");
301 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
302 	machine_halt();
303 }
304 EXPORT_SYMBOL_GPL(kernel_halt);
305 
306 /*
307  *	Notifier list for kernel code which wants to be called
308  *	to prepare system for power off.
309  */
310 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
311 
312 /*
313  *	Notifier list for kernel code which wants to be called
314  *	to power off system.
315  */
316 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
317 
sys_off_notify(struct notifier_block * nb,unsigned long mode,void * cmd)318 static int sys_off_notify(struct notifier_block *nb,
319 			  unsigned long mode, void *cmd)
320 {
321 	struct sys_off_handler *handler;
322 	struct sys_off_data data = {};
323 
324 	handler = container_of(nb, struct sys_off_handler, nb);
325 	data.cb_data = handler->cb_data;
326 	data.mode = mode;
327 	data.cmd = cmd;
328 
329 	return handler->sys_off_cb(&data);
330 }
331 
332 static struct sys_off_handler platform_sys_off_handler;
333 
alloc_sys_off_handler(int priority)334 static struct sys_off_handler *alloc_sys_off_handler(int priority)
335 {
336 	struct sys_off_handler *handler;
337 	gfp_t flags;
338 
339 	/*
340 	 * Platforms like m68k can't allocate sys_off handler dynamically
341 	 * at the early boot time because memory allocator isn't available yet.
342 	 */
343 	if (priority == SYS_OFF_PRIO_PLATFORM) {
344 		handler = &platform_sys_off_handler;
345 		if (handler->cb_data)
346 			return ERR_PTR(-EBUSY);
347 	} else {
348 		if (system_state > SYSTEM_RUNNING)
349 			flags = GFP_ATOMIC;
350 		else
351 			flags = GFP_KERNEL;
352 
353 		handler = kzalloc(sizeof(*handler), flags);
354 		if (!handler)
355 			return ERR_PTR(-ENOMEM);
356 	}
357 
358 	return handler;
359 }
360 
free_sys_off_handler(struct sys_off_handler * handler)361 static void free_sys_off_handler(struct sys_off_handler *handler)
362 {
363 	if (handler == &platform_sys_off_handler)
364 		memset(handler, 0, sizeof(*handler));
365 	else
366 		kfree(handler);
367 }
368 
369 /**
370  *	register_sys_off_handler - Register sys-off handler
371  *	@mode: Sys-off mode
372  *	@priority: Handler priority
373  *	@callback: Callback function
374  *	@cb_data: Callback argument
375  *
376  *	Registers system power-off or restart handler that will be invoked
377  *	at the step corresponding to the given sys-off mode. Handler's callback
378  *	should return NOTIFY_DONE to permit execution of the next handler in
379  *	the call chain or NOTIFY_STOP to break the chain (in error case for
380  *	example).
381  *
382  *	Multiple handlers can be registered at the default priority level.
383  *
384  *	Only one handler can be registered at the non-default priority level,
385  *	otherwise ERR_PTR(-EBUSY) is returned.
386  *
387  *	Returns a new instance of struct sys_off_handler on success, or
388  *	an ERR_PTR()-encoded error code otherwise.
389  */
390 struct sys_off_handler *
register_sys_off_handler(enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)391 register_sys_off_handler(enum sys_off_mode mode,
392 			 int priority,
393 			 int (*callback)(struct sys_off_data *data),
394 			 void *cb_data)
395 {
396 	struct sys_off_handler *handler;
397 	int err;
398 
399 	handler = alloc_sys_off_handler(priority);
400 	if (IS_ERR(handler))
401 		return handler;
402 
403 	switch (mode) {
404 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
405 		handler->list = &power_off_prep_handler_list;
406 		handler->blocking = true;
407 		break;
408 
409 	case SYS_OFF_MODE_POWER_OFF:
410 		handler->list = &power_off_handler_list;
411 		break;
412 
413 	case SYS_OFF_MODE_RESTART_PREPARE:
414 		handler->list = &restart_prep_handler_list;
415 		handler->blocking = true;
416 		break;
417 
418 	case SYS_OFF_MODE_RESTART:
419 		handler->list = &restart_handler_list;
420 		break;
421 
422 	default:
423 		free_sys_off_handler(handler);
424 		return ERR_PTR(-EINVAL);
425 	}
426 
427 	handler->nb.notifier_call = sys_off_notify;
428 	handler->nb.priority = priority;
429 	handler->sys_off_cb = callback;
430 	handler->cb_data = cb_data;
431 	handler->mode = mode;
432 
433 	if (handler->blocking) {
434 		if (priority == SYS_OFF_PRIO_DEFAULT)
435 			err = blocking_notifier_chain_register(handler->list,
436 							       &handler->nb);
437 		else
438 			err = blocking_notifier_chain_register_unique_prio(handler->list,
439 									   &handler->nb);
440 	} else {
441 		if (priority == SYS_OFF_PRIO_DEFAULT)
442 			err = atomic_notifier_chain_register(handler->list,
443 							     &handler->nb);
444 		else
445 			err = atomic_notifier_chain_register_unique_prio(handler->list,
446 									 &handler->nb);
447 	}
448 
449 	if (err) {
450 		free_sys_off_handler(handler);
451 		return ERR_PTR(err);
452 	}
453 
454 	return handler;
455 }
456 EXPORT_SYMBOL_GPL(register_sys_off_handler);
457 
458 /**
459  *	unregister_sys_off_handler - Unregister sys-off handler
460  *	@handler: Sys-off handler
461  *
462  *	Unregisters given sys-off handler.
463  */
unregister_sys_off_handler(struct sys_off_handler * handler)464 void unregister_sys_off_handler(struct sys_off_handler *handler)
465 {
466 	int err;
467 
468 	if (IS_ERR_OR_NULL(handler))
469 		return;
470 
471 	if (handler->blocking)
472 		err = blocking_notifier_chain_unregister(handler->list,
473 							 &handler->nb);
474 	else
475 		err = atomic_notifier_chain_unregister(handler->list,
476 						       &handler->nb);
477 
478 	/* sanity check, shall never happen */
479 	WARN_ON(err);
480 
481 	free_sys_off_handler(handler);
482 }
483 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
484 
devm_unregister_sys_off_handler(void * data)485 static void devm_unregister_sys_off_handler(void *data)
486 {
487 	struct sys_off_handler *handler = data;
488 
489 	unregister_sys_off_handler(handler);
490 }
491 
492 /**
493  *	devm_register_sys_off_handler - Register sys-off handler
494  *	@dev: Device that registers handler
495  *	@mode: Sys-off mode
496  *	@priority: Handler priority
497  *	@callback: Callback function
498  *	@cb_data: Callback argument
499  *
500  *	Registers resource-managed sys-off handler.
501  *
502  *	Returns zero on success, or error code on failure.
503  */
devm_register_sys_off_handler(struct device * dev,enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)504 int devm_register_sys_off_handler(struct device *dev,
505 				  enum sys_off_mode mode,
506 				  int priority,
507 				  int (*callback)(struct sys_off_data *data),
508 				  void *cb_data)
509 {
510 	struct sys_off_handler *handler;
511 
512 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
513 	if (IS_ERR(handler))
514 		return PTR_ERR(handler);
515 
516 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
517 					handler);
518 }
519 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
520 
521 /**
522  *	devm_register_power_off_handler - Register power-off handler
523  *	@dev: Device that registers callback
524  *	@callback: Callback function
525  *	@cb_data: Callback's argument
526  *
527  *	Registers resource-managed sys-off handler with a default priority
528  *	and using power-off mode.
529  *
530  *	Returns zero on success, or error code on failure.
531  */
devm_register_power_off_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)532 int devm_register_power_off_handler(struct device *dev,
533 				    int (*callback)(struct sys_off_data *data),
534 				    void *cb_data)
535 {
536 	return devm_register_sys_off_handler(dev,
537 					     SYS_OFF_MODE_POWER_OFF,
538 					     SYS_OFF_PRIO_DEFAULT,
539 					     callback, cb_data);
540 }
541 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
542 
543 /**
544  *	devm_register_restart_handler - Register restart handler
545  *	@dev: Device that registers callback
546  *	@callback: Callback function
547  *	@cb_data: Callback's argument
548  *
549  *	Registers resource-managed sys-off handler with a default priority
550  *	and using restart mode.
551  *
552  *	Returns zero on success, or error code on failure.
553  */
devm_register_restart_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)554 int devm_register_restart_handler(struct device *dev,
555 				  int (*callback)(struct sys_off_data *data),
556 				  void *cb_data)
557 {
558 	return devm_register_sys_off_handler(dev,
559 					     SYS_OFF_MODE_RESTART,
560 					     SYS_OFF_PRIO_DEFAULT,
561 					     callback, cb_data);
562 }
563 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
564 
565 static struct sys_off_handler *platform_power_off_handler;
566 
platform_power_off_notify(struct sys_off_data * data)567 static int platform_power_off_notify(struct sys_off_data *data)
568 {
569 	void (*platform_power_power_off_cb)(void) = data->cb_data;
570 
571 	platform_power_power_off_cb();
572 
573 	return NOTIFY_DONE;
574 }
575 
576 /**
577  *	register_platform_power_off - Register platform-level power-off callback
578  *	@power_off: Power-off callback
579  *
580  *	Registers power-off callback that will be called as last step
581  *	of the power-off sequence. This callback is expected to be invoked
582  *	for the last resort. Only one platform power-off callback is allowed
583  *	to be registered at a time.
584  *
585  *	Returns zero on success, or error code on failure.
586  */
register_platform_power_off(void (* power_off)(void))587 int register_platform_power_off(void (*power_off)(void))
588 {
589 	struct sys_off_handler *handler;
590 
591 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
592 					   SYS_OFF_PRIO_PLATFORM,
593 					   platform_power_off_notify,
594 					   power_off);
595 	if (IS_ERR(handler))
596 		return PTR_ERR(handler);
597 
598 	platform_power_off_handler = handler;
599 
600 	return 0;
601 }
602 EXPORT_SYMBOL_GPL(register_platform_power_off);
603 
604 /**
605  *	unregister_platform_power_off - Unregister platform-level power-off callback
606  *	@power_off: Power-off callback
607  *
608  *	Unregisters previously registered platform power-off callback.
609  */
unregister_platform_power_off(void (* power_off)(void))610 void unregister_platform_power_off(void (*power_off)(void))
611 {
612 	if (platform_power_off_handler &&
613 	    platform_power_off_handler->cb_data == power_off) {
614 		unregister_sys_off_handler(platform_power_off_handler);
615 		platform_power_off_handler = NULL;
616 	}
617 }
618 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
619 
legacy_pm_power_off(struct sys_off_data * data)620 static int legacy_pm_power_off(struct sys_off_data *data)
621 {
622 	if (pm_power_off)
623 		pm_power_off();
624 
625 	return NOTIFY_DONE;
626 }
627 
do_kernel_power_off_prepare(void)628 static void do_kernel_power_off_prepare(void)
629 {
630 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
631 }
632 
633 /**
634  *	do_kernel_power_off - Execute kernel power-off handler call chain
635  *
636  *	Expected to be called as last step of the power-off sequence.
637  *
638  *	Powers off the system immediately if a power-off handler function has
639  *	been registered. Otherwise does nothing.
640  */
do_kernel_power_off(void)641 void do_kernel_power_off(void)
642 {
643 	struct sys_off_handler *sys_off = NULL;
644 
645 	/*
646 	 * Register sys-off handlers for legacy PM callback. This allows
647 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
648 	 *
649 	 * TODO: Remove legacy handlers once all legacy PM users will be
650 	 *       switched to the sys-off based APIs.
651 	 */
652 	if (pm_power_off)
653 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
654 						   SYS_OFF_PRIO_DEFAULT,
655 						   legacy_pm_power_off, NULL);
656 
657 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
658 
659 	unregister_sys_off_handler(sys_off);
660 }
661 
662 /**
663  *	kernel_can_power_off - check whether system can be powered off
664  *
665  *	Returns true if power-off handler is registered and system can be
666  *	powered off, false otherwise.
667  */
kernel_can_power_off(void)668 bool kernel_can_power_off(void)
669 {
670 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
671 		pm_power_off;
672 }
673 EXPORT_SYMBOL_GPL(kernel_can_power_off);
674 
675 /**
676  *	kernel_power_off - power_off the system
677  *
678  *	Shutdown everything and perform a clean system power_off.
679  */
kernel_power_off(void)680 void kernel_power_off(void)
681 {
682 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
683 	do_kernel_power_off_prepare();
684 	migrate_to_reboot_cpu();
685 	syscore_shutdown();
686 	pr_emerg("Power down\n");
687 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
688 	machine_power_off();
689 }
690 EXPORT_SYMBOL_GPL(kernel_power_off);
691 
692 DEFINE_MUTEX(system_transition_mutex);
693 
694 /*
695  * Reboot system call: for obvious reasons only root may call it,
696  * and even root needs to set up some magic numbers in the registers
697  * so that some mistake won't make this reboot the whole machine.
698  * You can also set the meaning of the ctrl-alt-del-key here.
699  *
700  * reboot doesn't sync: do that yourself before calling this.
701  */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)702 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
703 		void __user *, arg)
704 {
705 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
706 	char buffer[256];
707 	int ret = 0;
708 
709 	/* We only trust the superuser with rebooting the system. */
710 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
711 		return -EPERM;
712 
713 	/* For safety, we require "magic" arguments. */
714 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
715 			(magic2 != LINUX_REBOOT_MAGIC2 &&
716 			magic2 != LINUX_REBOOT_MAGIC2A &&
717 			magic2 != LINUX_REBOOT_MAGIC2B &&
718 			magic2 != LINUX_REBOOT_MAGIC2C))
719 		return -EINVAL;
720 
721 	/*
722 	 * If pid namespaces are enabled and the current task is in a child
723 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
724 	 * call do_exit().
725 	 */
726 	ret = reboot_pid_ns(pid_ns, cmd);
727 	if (ret)
728 		return ret;
729 
730 	/* Instead of trying to make the power_off code look like
731 	 * halt when pm_power_off is not set do it the easy way.
732 	 */
733 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off())
734 		cmd = LINUX_REBOOT_CMD_HALT;
735 
736 	mutex_lock(&system_transition_mutex);
737 	switch (cmd) {
738 	case LINUX_REBOOT_CMD_RESTART:
739 		kernel_restart(NULL);
740 		break;
741 
742 	case LINUX_REBOOT_CMD_CAD_ON:
743 		C_A_D = 1;
744 		break;
745 
746 	case LINUX_REBOOT_CMD_CAD_OFF:
747 		C_A_D = 0;
748 		break;
749 
750 	case LINUX_REBOOT_CMD_HALT:
751 		kernel_halt();
752 		do_exit(0);
753 
754 	case LINUX_REBOOT_CMD_POWER_OFF:
755 		kernel_power_off();
756 		do_exit(0);
757 		break;
758 
759 	case LINUX_REBOOT_CMD_RESTART2:
760 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
761 		if (ret < 0) {
762 			ret = -EFAULT;
763 			break;
764 		}
765 		buffer[sizeof(buffer) - 1] = '\0';
766 
767 		kernel_restart(buffer);
768 		break;
769 
770 #ifdef CONFIG_KEXEC_CORE
771 	case LINUX_REBOOT_CMD_KEXEC:
772 		ret = kernel_kexec();
773 		break;
774 #endif
775 
776 #ifdef CONFIG_HIBERNATION
777 	case LINUX_REBOOT_CMD_SW_SUSPEND:
778 		ret = hibernate();
779 		break;
780 #endif
781 
782 	default:
783 		ret = -EINVAL;
784 		break;
785 	}
786 	mutex_unlock(&system_transition_mutex);
787 	return ret;
788 }
789 
deferred_cad(struct work_struct * dummy)790 static void deferred_cad(struct work_struct *dummy)
791 {
792 	kernel_restart(NULL);
793 }
794 
795 /*
796  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
797  * As it's called within an interrupt, it may NOT sync: the only choice
798  * is whether to reboot at once, or just ignore the ctrl-alt-del.
799  */
ctrl_alt_del(void)800 void ctrl_alt_del(void)
801 {
802 	static DECLARE_WORK(cad_work, deferred_cad);
803 
804 	if (C_A_D)
805 		schedule_work(&cad_work);
806 	else
807 		kill_cad_pid(SIGINT, 1);
808 }
809 
810 #define POWEROFF_CMD_PATH_LEN  256
811 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
812 static const char reboot_cmd[] = "/sbin/reboot";
813 
run_cmd(const char * cmd)814 static int run_cmd(const char *cmd)
815 {
816 	char **argv;
817 	static char *envp[] = {
818 		"HOME=/",
819 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
820 		NULL
821 	};
822 	int ret;
823 	argv = argv_split(GFP_KERNEL, cmd, NULL);
824 	if (argv) {
825 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
826 		argv_free(argv);
827 	} else {
828 		ret = -ENOMEM;
829 	}
830 
831 	return ret;
832 }
833 
__orderly_reboot(void)834 static int __orderly_reboot(void)
835 {
836 	int ret;
837 
838 	ret = run_cmd(reboot_cmd);
839 
840 	if (ret) {
841 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
842 		emergency_sync();
843 		kernel_restart(NULL);
844 	}
845 
846 	return ret;
847 }
848 
__orderly_poweroff(bool force)849 static int __orderly_poweroff(bool force)
850 {
851 	int ret;
852 
853 	ret = run_cmd(poweroff_cmd);
854 
855 	if (ret && force) {
856 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
857 
858 		/*
859 		 * I guess this should try to kick off some daemon to sync and
860 		 * poweroff asap.  Or not even bother syncing if we're doing an
861 		 * emergency shutdown?
862 		 */
863 		emergency_sync();
864 		kernel_power_off();
865 	}
866 
867 	return ret;
868 }
869 
870 static bool poweroff_force;
871 
poweroff_work_func(struct work_struct * work)872 static void poweroff_work_func(struct work_struct *work)
873 {
874 	__orderly_poweroff(poweroff_force);
875 }
876 
877 static DECLARE_WORK(poweroff_work, poweroff_work_func);
878 
879 /**
880  * orderly_poweroff - Trigger an orderly system poweroff
881  * @force: force poweroff if command execution fails
882  *
883  * This may be called from any context to trigger a system shutdown.
884  * If the orderly shutdown fails, it will force an immediate shutdown.
885  */
orderly_poweroff(bool force)886 void orderly_poweroff(bool force)
887 {
888 	if (force) /* do not override the pending "true" */
889 		poweroff_force = true;
890 	schedule_work(&poweroff_work);
891 }
892 EXPORT_SYMBOL_GPL(orderly_poweroff);
893 
reboot_work_func(struct work_struct * work)894 static void reboot_work_func(struct work_struct *work)
895 {
896 	__orderly_reboot();
897 }
898 
899 static DECLARE_WORK(reboot_work, reboot_work_func);
900 
901 /**
902  * orderly_reboot - Trigger an orderly system reboot
903  *
904  * This may be called from any context to trigger a system reboot.
905  * If the orderly reboot fails, it will force an immediate reboot.
906  */
orderly_reboot(void)907 void orderly_reboot(void)
908 {
909 	schedule_work(&reboot_work);
910 }
911 EXPORT_SYMBOL_GPL(orderly_reboot);
912 
913 /**
914  * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
915  * @work: work_struct associated with the emergency poweroff function
916  *
917  * This function is called in very critical situations to force
918  * a kernel poweroff after a configurable timeout value.
919  */
hw_failure_emergency_poweroff_func(struct work_struct * work)920 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
921 {
922 	/*
923 	 * We have reached here after the emergency shutdown waiting period has
924 	 * expired. This means orderly_poweroff has not been able to shut off
925 	 * the system for some reason.
926 	 *
927 	 * Try to shut down the system immediately using kernel_power_off
928 	 * if populated
929 	 */
930 	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
931 	kernel_power_off();
932 
933 	/*
934 	 * Worst of the worst case trigger emergency restart
935 	 */
936 	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
937 	emergency_restart();
938 }
939 
940 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
941 			    hw_failure_emergency_poweroff_func);
942 
943 /**
944  * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
945  *
946  * This may be called from any critical situation to trigger a system shutdown
947  * after a given period of time. If time is negative this is not scheduled.
948  */
hw_failure_emergency_poweroff(int poweroff_delay_ms)949 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
950 {
951 	if (poweroff_delay_ms <= 0)
952 		return;
953 	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
954 			      msecs_to_jiffies(poweroff_delay_ms));
955 }
956 
957 /**
958  * hw_protection_shutdown - Trigger an emergency system poweroff
959  *
960  * @reason:		Reason of emergency shutdown to be printed.
961  * @ms_until_forced:	Time to wait for orderly shutdown before tiggering a
962  *			forced shudown. Negative value disables the forced
963  *			shutdown.
964  *
965  * Initiate an emergency system shutdown in order to protect hardware from
966  * further damage. Usage examples include a thermal protection or a voltage or
967  * current regulator failures.
968  * NOTE: The request is ignored if protection shutdown is already pending even
969  * if the previous request has given a large timeout for forced shutdown.
970  * Can be called from any context.
971  */
hw_protection_shutdown(const char * reason,int ms_until_forced)972 void hw_protection_shutdown(const char *reason, int ms_until_forced)
973 {
974 	static atomic_t allow_proceed = ATOMIC_INIT(1);
975 
976 	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
977 
978 	/* Shutdown should be initiated only once. */
979 	if (!atomic_dec_and_test(&allow_proceed))
980 		return;
981 
982 	/*
983 	 * Queue a backup emergency shutdown in the event of
984 	 * orderly_poweroff failure
985 	 */
986 	hw_failure_emergency_poweroff(ms_until_forced);
987 	orderly_poweroff(true);
988 }
989 EXPORT_SYMBOL_GPL(hw_protection_shutdown);
990 
reboot_setup(char * str)991 static int __init reboot_setup(char *str)
992 {
993 	for (;;) {
994 		enum reboot_mode *mode;
995 
996 		/*
997 		 * Having anything passed on the command line via
998 		 * reboot= will cause us to disable DMI checking
999 		 * below.
1000 		 */
1001 		reboot_default = 0;
1002 
1003 		if (!strncmp(str, "panic_", 6)) {
1004 			mode = &panic_reboot_mode;
1005 			str += 6;
1006 		} else {
1007 			mode = &reboot_mode;
1008 		}
1009 
1010 		switch (*str) {
1011 		case 'w':
1012 			*mode = REBOOT_WARM;
1013 			break;
1014 
1015 		case 'c':
1016 			*mode = REBOOT_COLD;
1017 			break;
1018 
1019 		case 'h':
1020 			*mode = REBOOT_HARD;
1021 			break;
1022 
1023 		case 's':
1024 			/*
1025 			 * reboot_cpu is s[mp]#### with #### being the processor
1026 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1027 			 */
1028 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1029 
1030 			if (isdigit(str[0])) {
1031 				int cpu = simple_strtoul(str, NULL, 0);
1032 
1033 				if (cpu >= num_possible_cpus()) {
1034 					pr_err("Ignoring the CPU number in reboot= option. "
1035 					"CPU %d exceeds possible cpu number %d\n",
1036 					cpu, num_possible_cpus());
1037 					break;
1038 				}
1039 				reboot_cpu = cpu;
1040 			} else
1041 				*mode = REBOOT_SOFT;
1042 			break;
1043 
1044 		case 'g':
1045 			*mode = REBOOT_GPIO;
1046 			break;
1047 
1048 		case 'b':
1049 		case 'a':
1050 		case 'k':
1051 		case 't':
1052 		case 'e':
1053 		case 'p':
1054 			reboot_type = *str;
1055 			break;
1056 
1057 		case 'f':
1058 			reboot_force = 1;
1059 			break;
1060 		}
1061 
1062 		str = strchr(str, ',');
1063 		if (str)
1064 			str++;
1065 		else
1066 			break;
1067 	}
1068 	return 1;
1069 }
1070 __setup("reboot=", reboot_setup);
1071 
1072 #ifdef CONFIG_SYSFS
1073 
1074 #define REBOOT_COLD_STR		"cold"
1075 #define REBOOT_WARM_STR		"warm"
1076 #define REBOOT_HARD_STR		"hard"
1077 #define REBOOT_SOFT_STR		"soft"
1078 #define REBOOT_GPIO_STR		"gpio"
1079 #define REBOOT_UNDEFINED_STR	"undefined"
1080 
1081 #define BOOT_TRIPLE_STR		"triple"
1082 #define BOOT_KBD_STR		"kbd"
1083 #define BOOT_BIOS_STR		"bios"
1084 #define BOOT_ACPI_STR		"acpi"
1085 #define BOOT_EFI_STR		"efi"
1086 #define BOOT_PCI_STR		"pci"
1087 
mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1088 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1089 {
1090 	const char *val;
1091 
1092 	switch (reboot_mode) {
1093 	case REBOOT_COLD:
1094 		val = REBOOT_COLD_STR;
1095 		break;
1096 	case REBOOT_WARM:
1097 		val = REBOOT_WARM_STR;
1098 		break;
1099 	case REBOOT_HARD:
1100 		val = REBOOT_HARD_STR;
1101 		break;
1102 	case REBOOT_SOFT:
1103 		val = REBOOT_SOFT_STR;
1104 		break;
1105 	case REBOOT_GPIO:
1106 		val = REBOOT_GPIO_STR;
1107 		break;
1108 	default:
1109 		val = REBOOT_UNDEFINED_STR;
1110 	}
1111 
1112 	return sprintf(buf, "%s\n", val);
1113 }
mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1114 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1115 			  const char *buf, size_t count)
1116 {
1117 	if (!capable(CAP_SYS_BOOT))
1118 		return -EPERM;
1119 
1120 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1121 		reboot_mode = REBOOT_COLD;
1122 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1123 		reboot_mode = REBOOT_WARM;
1124 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1125 		reboot_mode = REBOOT_HARD;
1126 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1127 		reboot_mode = REBOOT_SOFT;
1128 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1129 		reboot_mode = REBOOT_GPIO;
1130 	else
1131 		return -EINVAL;
1132 
1133 	reboot_default = 0;
1134 
1135 	return count;
1136 }
1137 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1138 
1139 #ifdef CONFIG_X86
force_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1140 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1141 {
1142 	return sprintf(buf, "%d\n", reboot_force);
1143 }
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1144 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1145 			  const char *buf, size_t count)
1146 {
1147 	bool res;
1148 
1149 	if (!capable(CAP_SYS_BOOT))
1150 		return -EPERM;
1151 
1152 	if (kstrtobool(buf, &res))
1153 		return -EINVAL;
1154 
1155 	reboot_default = 0;
1156 	reboot_force = res;
1157 
1158 	return count;
1159 }
1160 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1161 
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1162 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1163 {
1164 	const char *val;
1165 
1166 	switch (reboot_type) {
1167 	case BOOT_TRIPLE:
1168 		val = BOOT_TRIPLE_STR;
1169 		break;
1170 	case BOOT_KBD:
1171 		val = BOOT_KBD_STR;
1172 		break;
1173 	case BOOT_BIOS:
1174 		val = BOOT_BIOS_STR;
1175 		break;
1176 	case BOOT_ACPI:
1177 		val = BOOT_ACPI_STR;
1178 		break;
1179 	case BOOT_EFI:
1180 		val = BOOT_EFI_STR;
1181 		break;
1182 	case BOOT_CF9_FORCE:
1183 		val = BOOT_PCI_STR;
1184 		break;
1185 	default:
1186 		val = REBOOT_UNDEFINED_STR;
1187 	}
1188 
1189 	return sprintf(buf, "%s\n", val);
1190 }
type_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1191 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1192 			  const char *buf, size_t count)
1193 {
1194 	if (!capable(CAP_SYS_BOOT))
1195 		return -EPERM;
1196 
1197 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1198 		reboot_type = BOOT_TRIPLE;
1199 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1200 		reboot_type = BOOT_KBD;
1201 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1202 		reboot_type = BOOT_BIOS;
1203 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1204 		reboot_type = BOOT_ACPI;
1205 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1206 		reboot_type = BOOT_EFI;
1207 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1208 		reboot_type = BOOT_CF9_FORCE;
1209 	else
1210 		return -EINVAL;
1211 
1212 	reboot_default = 0;
1213 
1214 	return count;
1215 }
1216 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1217 #endif
1218 
1219 #ifdef CONFIG_SMP
cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1220 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1221 {
1222 	return sprintf(buf, "%d\n", reboot_cpu);
1223 }
cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1224 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1225 			  const char *buf, size_t count)
1226 {
1227 	unsigned int cpunum;
1228 	int rc;
1229 
1230 	if (!capable(CAP_SYS_BOOT))
1231 		return -EPERM;
1232 
1233 	rc = kstrtouint(buf, 0, &cpunum);
1234 
1235 	if (rc)
1236 		return rc;
1237 
1238 	if (cpunum >= num_possible_cpus())
1239 		return -ERANGE;
1240 
1241 	reboot_default = 0;
1242 	reboot_cpu = cpunum;
1243 
1244 	return count;
1245 }
1246 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1247 #endif
1248 
1249 static struct attribute *reboot_attrs[] = {
1250 	&reboot_mode_attr.attr,
1251 #ifdef CONFIG_X86
1252 	&reboot_force_attr.attr,
1253 	&reboot_type_attr.attr,
1254 #endif
1255 #ifdef CONFIG_SMP
1256 	&reboot_cpu_attr.attr,
1257 #endif
1258 	NULL,
1259 };
1260 
1261 #ifdef CONFIG_SYSCTL
1262 static struct ctl_table kern_reboot_table[] = {
1263 	{
1264 		.procname       = "poweroff_cmd",
1265 		.data           = &poweroff_cmd,
1266 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1267 		.mode           = 0644,
1268 		.proc_handler   = proc_dostring,
1269 	},
1270 	{
1271 		.procname       = "ctrl-alt-del",
1272 		.data           = &C_A_D,
1273 		.maxlen         = sizeof(int),
1274 		.mode           = 0644,
1275 		.proc_handler   = proc_dointvec,
1276 	},
1277 	{ }
1278 };
1279 
kernel_reboot_sysctls_init(void)1280 static void __init kernel_reboot_sysctls_init(void)
1281 {
1282 	register_sysctl_init("kernel", kern_reboot_table);
1283 }
1284 #else
1285 #define kernel_reboot_sysctls_init() do { } while (0)
1286 #endif /* CONFIG_SYSCTL */
1287 
1288 static const struct attribute_group reboot_attr_group = {
1289 	.attrs = reboot_attrs,
1290 };
1291 
reboot_ksysfs_init(void)1292 static int __init reboot_ksysfs_init(void)
1293 {
1294 	struct kobject *reboot_kobj;
1295 	int ret;
1296 
1297 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1298 	if (!reboot_kobj)
1299 		return -ENOMEM;
1300 
1301 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1302 	if (ret) {
1303 		kobject_put(reboot_kobj);
1304 		return ret;
1305 	}
1306 
1307 	kernel_reboot_sysctls_init();
1308 
1309 	return 0;
1310 }
1311 late_initcall(reboot_ksysfs_init);
1312 
1313 #endif
1314