• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Pressure stall information for CPU, memory and IO
4  *
5  * Copyright (c) 2018 Facebook, Inc.
6  * Author: Johannes Weiner <hannes@cmpxchg.org>
7  *
8  * Polling support by Suren Baghdasaryan <surenb@google.com>
9  * Copyright (c) 2018 Google, Inc.
10  *
11  * When CPU, memory and IO are contended, tasks experience delays that
12  * reduce throughput and introduce latencies into the workload. Memory
13  * and IO contention, in addition, can cause a full loss of forward
14  * progress in which the CPU goes idle.
15  *
16  * This code aggregates individual task delays into resource pressure
17  * metrics that indicate problems with both workload health and
18  * resource utilization.
19  *
20  *			Model
21  *
22  * The time in which a task can execute on a CPU is our baseline for
23  * productivity. Pressure expresses the amount of time in which this
24  * potential cannot be realized due to resource contention.
25  *
26  * This concept of productivity has two components: the workload and
27  * the CPU. To measure the impact of pressure on both, we define two
28  * contention states for a resource: SOME and FULL.
29  *
30  * In the SOME state of a given resource, one or more tasks are
31  * delayed on that resource. This affects the workload's ability to
32  * perform work, but the CPU may still be executing other tasks.
33  *
34  * In the FULL state of a given resource, all non-idle tasks are
35  * delayed on that resource such that nobody is advancing and the CPU
36  * goes idle. This leaves both workload and CPU unproductive.
37  *
38  *	SOME = nr_delayed_tasks != 0
39  *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40  *
41  * What it means for a task to be productive is defined differently
42  * for each resource. For IO, productive means a running task. For
43  * memory, productive means a running task that isn't a reclaimer. For
44  * CPU, productive means an oncpu task.
45  *
46  * Naturally, the FULL state doesn't exist for the CPU resource at the
47  * system level, but exist at the cgroup level. At the cgroup level,
48  * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49  * resource which is being used by others outside of the cgroup or
50  * throttled by the cgroup cpu.max configuration.
51  *
52  * The percentage of wallclock time spent in those compound stall
53  * states gives pressure numbers between 0 and 100 for each resource,
54  * where the SOME percentage indicates workload slowdowns and the FULL
55  * percentage indicates reduced CPU utilization:
56  *
57  *	%SOME = time(SOME) / period
58  *	%FULL = time(FULL) / period
59  *
60  *			Multiple CPUs
61  *
62  * The more tasks and available CPUs there are, the more work can be
63  * performed concurrently. This means that the potential that can go
64  * unrealized due to resource contention *also* scales with non-idle
65  * tasks and CPUs.
66  *
67  * Consider a scenario where 257 number crunching tasks are trying to
68  * run concurrently on 256 CPUs. If we simply aggregated the task
69  * states, we would have to conclude a CPU SOME pressure number of
70  * 100%, since *somebody* is waiting on a runqueue at all
71  * times. However, that is clearly not the amount of contention the
72  * workload is experiencing: only one out of 256 possible execution
73  * threads will be contended at any given time, or about 0.4%.
74  *
75  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76  * given time *one* of the tasks is delayed due to a lack of memory.
77  * Again, looking purely at the task state would yield a memory FULL
78  * pressure number of 0%, since *somebody* is always making forward
79  * progress. But again this wouldn't capture the amount of execution
80  * potential lost, which is 1 out of 4 CPUs, or 25%.
81  *
82  * To calculate wasted potential (pressure) with multiple processors,
83  * we have to base our calculation on the number of non-idle tasks in
84  * conjunction with the number of available CPUs, which is the number
85  * of potential execution threads. SOME becomes then the proportion of
86  * delayed tasks to possible threads, and FULL is the share of possible
87  * threads that are unproductive due to delays:
88  *
89  *	threads = min(nr_nonidle_tasks, nr_cpus)
90  *	   SOME = min(nr_delayed_tasks / threads, 1)
91  *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
92  *
93  * For the 257 number crunchers on 256 CPUs, this yields:
94  *
95  *	threads = min(257, 256)
96  *	   SOME = min(1 / 256, 1)             = 0.4%
97  *	   FULL = (256 - min(256, 256)) / 256 = 0%
98  *
99  * For the 1 out of 4 memory-delayed tasks, this yields:
100  *
101  *	threads = min(4, 4)
102  *	   SOME = min(1 / 4, 1)               = 25%
103  *	   FULL = (4 - min(3, 4)) / 4         = 25%
104  *
105  * [ Substitute nr_cpus with 1, and you can see that it's a natural
106  *   extension of the single-CPU model. ]
107  *
108  *			Implementation
109  *
110  * To assess the precise time spent in each such state, we would have
111  * to freeze the system on task changes and start/stop the state
112  * clocks accordingly. Obviously that doesn't scale in practice.
113  *
114  * Because the scheduler aims to distribute the compute load evenly
115  * among the available CPUs, we can track task state locally to each
116  * CPU and, at much lower frequency, extrapolate the global state for
117  * the cumulative stall times and the running averages.
118  *
119  * For each runqueue, we track:
120  *
121  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124  *
125  * and then periodically aggregate:
126  *
127  *	tNONIDLE = sum(tNONIDLE[i])
128  *
129  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131  *
132  *	   %SOME = tSOME / period
133  *	   %FULL = tFULL / period
134  *
135  * This gives us an approximation of pressure that is practical
136  * cost-wise, yet way more sensitive and accurate than periodic
137  * sampling of the aggregate task states would be.
138  */
139 #include <trace/hooks/psi.h>
140 
141 static int psi_bug __read_mostly;
142 
143 DEFINE_STATIC_KEY_FALSE(psi_disabled);
144 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
145 
146 #ifdef CONFIG_PSI_DEFAULT_DISABLED
147 static bool psi_enable;
148 #else
149 static bool psi_enable = true;
150 #endif
setup_psi(char * str)151 static int __init setup_psi(char *str)
152 {
153 	return kstrtobool(str, &psi_enable) == 0;
154 }
155 __setup("psi=", setup_psi);
156 
157 /* Running averages - we need to be higher-res than loadavg */
158 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
159 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
160 #define EXP_60s		1981		/* 1/exp(2s/60s) */
161 #define EXP_300s	2034		/* 1/exp(2s/300s) */
162 
163 /* PSI trigger definitions */
164 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
165 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
166 
167 /* Sampling frequency in nanoseconds */
168 static u64 psi_period __read_mostly;
169 
170 /* System-level pressure and stall tracking */
171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
172 struct psi_group psi_system = {
173 	.pcpu = &system_group_pcpu,
174 };
175 
176 static void psi_avgs_work(struct work_struct *work);
177 
178 static void poll_timer_fn(struct timer_list *t);
179 
group_init(struct psi_group * group)180 static void group_init(struct psi_group *group)
181 {
182 	int cpu;
183 
184 	group->enabled = true;
185 	for_each_possible_cpu(cpu)
186 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
187 	group->avg_last_update = sched_clock();
188 	group->avg_next_update = group->avg_last_update + psi_period;
189 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
190 	mutex_init(&group->avgs_lock);
191 	/* Init trigger-related members */
192 	atomic_set(&group->poll_scheduled, 0);
193 	mutex_init(&group->trigger_lock);
194 	INIT_LIST_HEAD(&group->triggers);
195 	group->poll_min_period = U32_MAX;
196 	group->polling_next_update = ULLONG_MAX;
197 	init_waitqueue_head(&group->poll_wait);
198 	timer_setup(&group->poll_timer, poll_timer_fn, 0);
199 	rcu_assign_pointer(group->poll_task, NULL);
200 }
201 
psi_init(void)202 void __init psi_init(void)
203 {
204 	if (!psi_enable) {
205 		static_branch_enable(&psi_disabled);
206 		static_branch_disable(&psi_cgroups_enabled);
207 		return;
208 	}
209 
210 	if (!cgroup_psi_enabled())
211 		static_branch_disable(&psi_cgroups_enabled);
212 
213 	psi_period = jiffies_to_nsecs(PSI_FREQ);
214 	group_init(&psi_system);
215 }
216 
test_state(unsigned int * tasks,enum psi_states state,bool oncpu)217 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
218 {
219 	switch (state) {
220 	case PSI_IO_SOME:
221 		return unlikely(tasks[NR_IOWAIT]);
222 	case PSI_IO_FULL:
223 		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
224 	case PSI_MEM_SOME:
225 		return unlikely(tasks[NR_MEMSTALL]);
226 	case PSI_MEM_FULL:
227 		return unlikely(tasks[NR_MEMSTALL] &&
228 			tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
229 	case PSI_CPU_SOME:
230 		return unlikely(tasks[NR_RUNNING] > oncpu);
231 	case PSI_CPU_FULL:
232 		return unlikely(tasks[NR_RUNNING] && !oncpu);
233 	case PSI_NONIDLE:
234 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
235 			tasks[NR_RUNNING];
236 	default:
237 		return false;
238 	}
239 }
240 
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)241 static void get_recent_times(struct psi_group *group, int cpu,
242 			     enum psi_aggregators aggregator, u32 *times,
243 			     u32 *pchanged_states)
244 {
245 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
246 	u64 now, state_start;
247 	enum psi_states s;
248 	unsigned int seq;
249 	u32 state_mask;
250 
251 	*pchanged_states = 0;
252 
253 	/* Snapshot a coherent view of the CPU state */
254 	do {
255 		seq = read_seqcount_begin(&groupc->seq);
256 		now = cpu_clock(cpu);
257 		memcpy(times, groupc->times, sizeof(groupc->times));
258 		state_mask = groupc->state_mask;
259 		state_start = groupc->state_start;
260 	} while (read_seqcount_retry(&groupc->seq, seq));
261 
262 	/* Calculate state time deltas against the previous snapshot */
263 	for (s = 0; s < NR_PSI_STATES; s++) {
264 		u32 delta;
265 		/*
266 		 * In addition to already concluded states, we also
267 		 * incorporate currently active states on the CPU,
268 		 * since states may last for many sampling periods.
269 		 *
270 		 * This way we keep our delta sampling buckets small
271 		 * (u32) and our reported pressure close to what's
272 		 * actually happening.
273 		 */
274 		if (state_mask & (1 << s))
275 			times[s] += now - state_start;
276 
277 		delta = times[s] - groupc->times_prev[aggregator][s];
278 		groupc->times_prev[aggregator][s] = times[s];
279 
280 		times[s] = delta;
281 		if (delta)
282 			*pchanged_states |= (1 << s);
283 	}
284 }
285 
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)286 static void calc_avgs(unsigned long avg[3], int missed_periods,
287 		      u64 time, u64 period)
288 {
289 	unsigned long pct;
290 
291 	/* Fill in zeroes for periods of no activity */
292 	if (missed_periods) {
293 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
294 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
295 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
296 	}
297 
298 	/* Sample the most recent active period */
299 	pct = div_u64(time * 100, period);
300 	pct *= FIXED_1;
301 	avg[0] = calc_load(avg[0], EXP_10s, pct);
302 	avg[1] = calc_load(avg[1], EXP_60s, pct);
303 	avg[2] = calc_load(avg[2], EXP_300s, pct);
304 }
305 
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)306 static void collect_percpu_times(struct psi_group *group,
307 				 enum psi_aggregators aggregator,
308 				 u32 *pchanged_states)
309 {
310 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
311 	unsigned long nonidle_total = 0;
312 	u32 changed_states = 0;
313 	int cpu;
314 	int s;
315 
316 	/*
317 	 * Collect the per-cpu time buckets and average them into a
318 	 * single time sample that is normalized to wallclock time.
319 	 *
320 	 * For averaging, each CPU is weighted by its non-idle time in
321 	 * the sampling period. This eliminates artifacts from uneven
322 	 * loading, or even entirely idle CPUs.
323 	 */
324 	for_each_possible_cpu(cpu) {
325 		u32 times[NR_PSI_STATES];
326 		u32 nonidle;
327 		u32 cpu_changed_states;
328 
329 		get_recent_times(group, cpu, aggregator, times,
330 				&cpu_changed_states);
331 		changed_states |= cpu_changed_states;
332 
333 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
334 		nonidle_total += nonidle;
335 
336 		for (s = 0; s < PSI_NONIDLE; s++)
337 			deltas[s] += (u64)times[s] * nonidle;
338 	}
339 
340 	/*
341 	 * Integrate the sample into the running statistics that are
342 	 * reported to userspace: the cumulative stall times and the
343 	 * decaying averages.
344 	 *
345 	 * Pressure percentages are sampled at PSI_FREQ. We might be
346 	 * called more often when the user polls more frequently than
347 	 * that; we might be called less often when there is no task
348 	 * activity, thus no data, and clock ticks are sporadic. The
349 	 * below handles both.
350 	 */
351 
352 	/* total= */
353 	for (s = 0; s < NR_PSI_STATES - 1; s++)
354 		group->total[aggregator][s] +=
355 				div_u64(deltas[s], max(nonidle_total, 1UL));
356 
357 	if (pchanged_states)
358 		*pchanged_states = changed_states;
359 }
360 
update_averages(struct psi_group * group,u64 now)361 static u64 update_averages(struct psi_group *group, u64 now)
362 {
363 	unsigned long missed_periods = 0;
364 	u64 expires, period;
365 	u64 avg_next_update;
366 	int s;
367 
368 	/* avgX= */
369 	expires = group->avg_next_update;
370 	if (now - expires >= psi_period)
371 		missed_periods = div_u64(now - expires, psi_period);
372 
373 	/*
374 	 * The periodic clock tick can get delayed for various
375 	 * reasons, especially on loaded systems. To avoid clock
376 	 * drift, we schedule the clock in fixed psi_period intervals.
377 	 * But the deltas we sample out of the per-cpu buckets above
378 	 * are based on the actual time elapsing between clock ticks.
379 	 */
380 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
381 	period = now - (group->avg_last_update + (missed_periods * psi_period));
382 	group->avg_last_update = now;
383 
384 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
385 		u32 sample;
386 
387 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
388 		/*
389 		 * Due to the lockless sampling of the time buckets,
390 		 * recorded time deltas can slip into the next period,
391 		 * which under full pressure can result in samples in
392 		 * excess of the period length.
393 		 *
394 		 * We don't want to report non-sensical pressures in
395 		 * excess of 100%, nor do we want to drop such events
396 		 * on the floor. Instead we punt any overage into the
397 		 * future until pressure subsides. By doing this we
398 		 * don't underreport the occurring pressure curve, we
399 		 * just report it delayed by one period length.
400 		 *
401 		 * The error isn't cumulative. As soon as another
402 		 * delta slips from a period P to P+1, by definition
403 		 * it frees up its time T in P.
404 		 */
405 		if (sample > period)
406 			sample = period;
407 		group->avg_total[s] += sample;
408 		calc_avgs(group->avg[s], missed_periods, sample, period);
409 	}
410 
411 	return avg_next_update;
412 }
413 
psi_avgs_work(struct work_struct * work)414 static void psi_avgs_work(struct work_struct *work)
415 {
416 	struct delayed_work *dwork;
417 	struct psi_group *group;
418 	u32 changed_states;
419 	bool nonidle;
420 	u64 now;
421 
422 	dwork = to_delayed_work(work);
423 	group = container_of(dwork, struct psi_group, avgs_work);
424 
425 	mutex_lock(&group->avgs_lock);
426 
427 	now = sched_clock();
428 
429 	collect_percpu_times(group, PSI_AVGS, &changed_states);
430 	nonidle = changed_states & (1 << PSI_NONIDLE);
431 	/*
432 	 * If there is task activity, periodically fold the per-cpu
433 	 * times and feed samples into the running averages. If things
434 	 * are idle and there is no data to process, stop the clock.
435 	 * Once restarted, we'll catch up the running averages in one
436 	 * go - see calc_avgs() and missed_periods.
437 	 */
438 	if (now >= group->avg_next_update)
439 		group->avg_next_update = update_averages(group, now);
440 
441 	if (nonidle) {
442 		schedule_delayed_work(dwork, nsecs_to_jiffies(
443 				group->avg_next_update - now) + 1);
444 	}
445 
446 	mutex_unlock(&group->avgs_lock);
447 }
448 
449 /* Trigger tracking window manipulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)450 static void window_reset(struct psi_window *win, u64 now, u64 value,
451 			 u64 prev_growth)
452 {
453 	win->start_time = now;
454 	win->start_value = value;
455 	win->prev_growth = prev_growth;
456 }
457 
458 /*
459  * PSI growth tracking window update and growth calculation routine.
460  *
461  * This approximates a sliding tracking window by interpolating
462  * partially elapsed windows using historical growth data from the
463  * previous intervals. This minimizes memory requirements (by not storing
464  * all the intermediate values in the previous window) and simplifies
465  * the calculations. It works well because PSI signal changes only in
466  * positive direction and over relatively small window sizes the growth
467  * is close to linear.
468  */
window_update(struct psi_window * win,u64 now,u64 value)469 static u64 window_update(struct psi_window *win, u64 now, u64 value)
470 {
471 	u64 elapsed;
472 	u64 growth;
473 
474 	elapsed = now - win->start_time;
475 	growth = value - win->start_value;
476 	/*
477 	 * After each tracking window passes win->start_value and
478 	 * win->start_time get reset and win->prev_growth stores
479 	 * the average per-window growth of the previous window.
480 	 * win->prev_growth is then used to interpolate additional
481 	 * growth from the previous window assuming it was linear.
482 	 */
483 	if (elapsed > win->size)
484 		window_reset(win, now, value, growth);
485 	else {
486 		u32 remaining;
487 
488 		remaining = win->size - elapsed;
489 		growth += div64_u64(win->prev_growth * remaining, win->size);
490 	}
491 
492 	return growth;
493 }
494 
init_triggers(struct psi_group * group,u64 now)495 static void init_triggers(struct psi_group *group, u64 now)
496 {
497 	struct psi_trigger *t;
498 
499 	list_for_each_entry(t, &group->triggers, node)
500 		window_reset(&t->win, now,
501 				group->total[PSI_POLL][t->state], 0);
502 	memcpy(group->polling_total, group->total[PSI_POLL],
503 		   sizeof(group->polling_total));
504 	group->polling_next_update = now + group->poll_min_period;
505 }
506 
update_triggers(struct psi_group * group,u64 now)507 static u64 update_triggers(struct psi_group *group, u64 now)
508 {
509 	struct psi_trigger *t;
510 	bool update_total = false;
511 	u64 *total = group->total[PSI_POLL];
512 
513 	/*
514 	 * On subsequent updates, calculate growth deltas and let
515 	 * watchers know when their specified thresholds are exceeded.
516 	 */
517 	list_for_each_entry(t, &group->triggers, node) {
518 		u64 growth;
519 		bool new_stall;
520 
521 		new_stall = group->polling_total[t->state] != total[t->state];
522 
523 		/* Check for stall activity or a previous threshold breach */
524 		if (!new_stall && !t->pending_event)
525 			continue;
526 		/*
527 		 * Check for new stall activity, as well as deferred
528 		 * events that occurred in the last window after the
529 		 * trigger had already fired (we want to ratelimit
530 		 * events without dropping any).
531 		 */
532 		if (new_stall) {
533 			/*
534 			 * Multiple triggers might be looking at the same state,
535 			 * remember to update group->polling_total[] once we've
536 			 * been through all of them. Also remember to extend the
537 			 * polling time if we see new stall activity.
538 			 */
539 			update_total = true;
540 
541 			/* Calculate growth since last update */
542 			growth = window_update(&t->win, now, total[t->state]);
543 			if (!t->pending_event) {
544 				if (growth < t->threshold)
545 					continue;
546 
547 				t->pending_event = true;
548 			}
549 		}
550 		/* Limit event signaling to once per window */
551 		if (now < t->last_event_time + t->win.size)
552 			continue;
553 
554 		/* Generate an event */
555 		if (cmpxchg(&t->event, 0, 1) == 0)
556 			wake_up_interruptible(&t->event_wait);
557 		t->last_event_time = now;
558 		/* Reset threshold breach flag once event got generated */
559 		t->pending_event = false;
560 	}
561 
562 	if (update_total)
563 		memcpy(group->polling_total, total,
564 				sizeof(group->polling_total));
565 
566 	return now + group->poll_min_period;
567 }
568 
569 /* Schedule polling if it's not already scheduled or forced. */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay,bool force)570 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay,
571 				   bool force)
572 {
573 	struct task_struct *task;
574 
575 	/*
576 	 * atomic_xchg should be called even when !force to provide a
577 	 * full memory barrier (see the comment inside psi_poll_work).
578 	 */
579 	if (atomic_xchg(&group->poll_scheduled, 1) && !force)
580 		return;
581 
582 	rcu_read_lock();
583 
584 	task = rcu_dereference(group->poll_task);
585 	/*
586 	 * kworker might be NULL in case psi_trigger_destroy races with
587 	 * psi_task_change (hotpath) which can't use locks
588 	 */
589 	if (likely(task))
590 		mod_timer(&group->poll_timer, jiffies + delay);
591 	else
592 		atomic_set(&group->poll_scheduled, 0);
593 
594 	rcu_read_unlock();
595 }
596 
psi_poll_work(struct psi_group * group)597 static void psi_poll_work(struct psi_group *group)
598 {
599 	bool force_reschedule = false;
600 	u32 changed_states;
601 	u64 now;
602 
603 	mutex_lock(&group->trigger_lock);
604 
605 	now = sched_clock();
606 
607 	if (now > group->polling_until) {
608 		/*
609 		 * We are either about to start or might stop polling if no
610 		 * state change was recorded. Resetting poll_scheduled leaves
611 		 * a small window for psi_group_change to sneak in and schedule
612 		 * an immediate poll_work before we get to rescheduling. One
613 		 * potential extra wakeup at the end of the polling window
614 		 * should be negligible and polling_next_update still keeps
615 		 * updates correctly on schedule.
616 		 */
617 		atomic_set(&group->poll_scheduled, 0);
618 		/*
619 		 * A task change can race with the poll worker that is supposed to
620 		 * report on it. To avoid missing events, ensure ordering between
621 		 * poll_scheduled and the task state accesses, such that if the poll
622 		 * worker misses the state update, the task change is guaranteed to
623 		 * reschedule the poll worker:
624 		 *
625 		 * poll worker:
626 		 *   atomic_set(poll_scheduled, 0)
627 		 *   smp_mb()
628 		 *   LOAD states
629 		 *
630 		 * task change:
631 		 *   STORE states
632 		 *   if atomic_xchg(poll_scheduled, 1) == 0:
633 		 *     schedule poll worker
634 		 *
635 		 * The atomic_xchg() implies a full barrier.
636 		 */
637 		smp_mb();
638 	} else {
639 		/* Polling window is not over, keep rescheduling */
640 		force_reschedule = true;
641 	}
642 
643 
644 	collect_percpu_times(group, PSI_POLL, &changed_states);
645 
646 	if (changed_states & group->poll_states) {
647 		/* Initialize trigger windows when entering polling mode */
648 		if (now > group->polling_until)
649 			init_triggers(group, now);
650 
651 		/*
652 		 * Keep the monitor active for at least the duration of the
653 		 * minimum tracking window as long as monitor states are
654 		 * changing.
655 		 */
656 		group->polling_until = now +
657 			group->poll_min_period * UPDATES_PER_WINDOW;
658 	}
659 
660 	if (now > group->polling_until) {
661 		group->polling_next_update = ULLONG_MAX;
662 		goto out;
663 	}
664 
665 	if (now >= group->polling_next_update)
666 		group->polling_next_update = update_triggers(group, now);
667 
668 	psi_schedule_poll_work(group,
669 		nsecs_to_jiffies(group->polling_next_update - now) + 1,
670 		force_reschedule);
671 
672 out:
673 	mutex_unlock(&group->trigger_lock);
674 }
675 
psi_poll_worker(void * data)676 static int psi_poll_worker(void *data)
677 {
678 	struct psi_group *group = (struct psi_group *)data;
679 
680 	sched_set_fifo_low(current);
681 
682 	while (true) {
683 		wait_event_interruptible(group->poll_wait,
684 				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
685 				kthread_should_stop());
686 		if (kthread_should_stop())
687 			break;
688 
689 		psi_poll_work(group);
690 	}
691 	return 0;
692 }
693 
poll_timer_fn(struct timer_list * t)694 static void poll_timer_fn(struct timer_list *t)
695 {
696 	struct psi_group *group = from_timer(group, t, poll_timer);
697 
698 	atomic_set(&group->poll_wakeup, 1);
699 	wake_up_interruptible(&group->poll_wait);
700 }
701 
record_times(struct psi_group_cpu * groupc,u64 now)702 static void record_times(struct psi_group_cpu *groupc, u64 now)
703 {
704 	u32 delta;
705 
706 	delta = now - groupc->state_start;
707 	groupc->state_start = now;
708 
709 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
710 		groupc->times[PSI_IO_SOME] += delta;
711 		if (groupc->state_mask & (1 << PSI_IO_FULL))
712 			groupc->times[PSI_IO_FULL] += delta;
713 	}
714 
715 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
716 		groupc->times[PSI_MEM_SOME] += delta;
717 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
718 			groupc->times[PSI_MEM_FULL] += delta;
719 	}
720 
721 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
722 		groupc->times[PSI_CPU_SOME] += delta;
723 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
724 			groupc->times[PSI_CPU_FULL] += delta;
725 	}
726 
727 	if (groupc->state_mask & (1 << PSI_NONIDLE))
728 		groupc->times[PSI_NONIDLE] += delta;
729 }
730 
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,u64 now,bool wake_clock)731 static void psi_group_change(struct psi_group *group, int cpu,
732 			     unsigned int clear, unsigned int set, u64 now,
733 			     bool wake_clock)
734 {
735 	struct psi_group_cpu *groupc;
736 	unsigned int t, m;
737 	enum psi_states s;
738 	u32 state_mask;
739 
740 	groupc = per_cpu_ptr(group->pcpu, cpu);
741 
742 	/*
743 	 * First we update the task counts according to the state
744 	 * change requested through the @clear and @set bits.
745 	 *
746 	 * Then if the cgroup PSI stats accounting enabled, we
747 	 * assess the aggregate resource states this CPU's tasks
748 	 * have been in since the last change, and account any
749 	 * SOME and FULL time these may have resulted in.
750 	 */
751 	write_seqcount_begin(&groupc->seq);
752 
753 	/*
754 	 * Start with TSK_ONCPU, which doesn't have a corresponding
755 	 * task count - it's just a boolean flag directly encoded in
756 	 * the state mask. Clear, set, or carry the current state if
757 	 * no changes are requested.
758 	 */
759 	if (unlikely(clear & TSK_ONCPU)) {
760 		state_mask = 0;
761 		clear &= ~TSK_ONCPU;
762 	} else if (unlikely(set & TSK_ONCPU)) {
763 		state_mask = PSI_ONCPU;
764 		set &= ~TSK_ONCPU;
765 	} else {
766 		state_mask = groupc->state_mask & PSI_ONCPU;
767 	}
768 
769 	/*
770 	 * The rest of the state mask is calculated based on the task
771 	 * counts. Update those first, then construct the mask.
772 	 */
773 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
774 		if (!(m & (1 << t)))
775 			continue;
776 		if (groupc->tasks[t]) {
777 			groupc->tasks[t]--;
778 		} else if (!psi_bug) {
779 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
780 					cpu, t, groupc->tasks[0],
781 					groupc->tasks[1], groupc->tasks[2],
782 					groupc->tasks[3], clear, set);
783 			psi_bug = 1;
784 		}
785 	}
786 
787 	for (t = 0; set; set &= ~(1 << t), t++)
788 		if (set & (1 << t))
789 			groupc->tasks[t]++;
790 
791 	if (!group->enabled) {
792 		/*
793 		 * On the first group change after disabling PSI, conclude
794 		 * the current state and flush its time. This is unlikely
795 		 * to matter to the user, but aggregation (get_recent_times)
796 		 * may have already incorporated the live state into times_prev;
797 		 * avoid a delta sample underflow when PSI is later re-enabled.
798 		 */
799 		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
800 			record_times(groupc, now);
801 
802 		groupc->state_mask = state_mask;
803 
804 		write_seqcount_end(&groupc->seq);
805 		return;
806 	}
807 
808 	for (s = 0; s < NR_PSI_STATES; s++) {
809 		if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
810 			state_mask |= (1 << s);
811 	}
812 
813 	/*
814 	 * Since we care about lost potential, a memstall is FULL
815 	 * when there are no other working tasks, but also when
816 	 * the CPU is actively reclaiming and nothing productive
817 	 * could run even if it were runnable. So when the current
818 	 * task in a cgroup is in_memstall, the corresponding groupc
819 	 * on that cpu is in PSI_MEM_FULL state.
820 	 */
821 	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
822 		state_mask |= (1 << PSI_MEM_FULL);
823 
824 	record_times(groupc, now);
825 
826 	groupc->state_mask = state_mask;
827 
828 	write_seqcount_end(&groupc->seq);
829 
830 	if (state_mask & group->poll_states)
831 		psi_schedule_poll_work(group, 1, false);
832 
833 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
834 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
835 }
836 
task_psi_group(struct task_struct * task)837 static inline struct psi_group *task_psi_group(struct task_struct *task)
838 {
839 #ifdef CONFIG_CGROUPS
840 	if (static_branch_likely(&psi_cgroups_enabled))
841 		return cgroup_psi(task_dfl_cgroup(task));
842 #endif
843 	return &psi_system;
844 }
845 
psi_flags_change(struct task_struct * task,int clear,int set)846 static void psi_flags_change(struct task_struct *task, int clear, int set)
847 {
848 	if (((task->psi_flags & set) ||
849 	     (task->psi_flags & clear) != clear) &&
850 	    !psi_bug) {
851 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
852 				task->pid, task->comm, task_cpu(task),
853 				task->psi_flags, clear, set);
854 		psi_bug = 1;
855 	}
856 
857 	task->psi_flags &= ~clear;
858 	task->psi_flags |= set;
859 }
860 
psi_task_change(struct task_struct * task,int clear,int set)861 void psi_task_change(struct task_struct *task, int clear, int set)
862 {
863 	int cpu = task_cpu(task);
864 	struct psi_group *group;
865 	u64 now;
866 
867 	if (!task->pid)
868 		return;
869 
870 	psi_flags_change(task, clear, set);
871 
872 	now = cpu_clock(cpu);
873 
874 	group = task_psi_group(task);
875 	do {
876 		psi_group_change(group, cpu, clear, set, now, true);
877 	} while ((group = group->parent));
878 }
879 
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)880 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
881 		     bool sleep)
882 {
883 	struct psi_group *group, *common = NULL;
884 	int cpu = task_cpu(prev);
885 	u64 now = cpu_clock(cpu);
886 
887 	if (next->pid) {
888 		psi_flags_change(next, 0, TSK_ONCPU);
889 		/*
890 		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
891 		 * ancestors with @prev, those will already have @prev's
892 		 * TSK_ONCPU bit set, and we can stop the iteration there.
893 		 */
894 		group = task_psi_group(next);
895 		do {
896 			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
897 			    PSI_ONCPU) {
898 				common = group;
899 				break;
900 			}
901 
902 			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
903 		} while ((group = group->parent));
904 	}
905 
906 	if (prev->pid) {
907 		int clear = TSK_ONCPU, set = 0;
908 		bool wake_clock = true;
909 
910 		/*
911 		 * When we're going to sleep, psi_dequeue() lets us
912 		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
913 		 * TSK_IOWAIT here, where we can combine it with
914 		 * TSK_ONCPU and save walking common ancestors twice.
915 		 */
916 		if (sleep) {
917 			clear |= TSK_RUNNING;
918 			if (prev->in_memstall)
919 				clear |= TSK_MEMSTALL_RUNNING;
920 			if (prev->in_iowait)
921 				set |= TSK_IOWAIT;
922 
923 			/*
924 			 * Periodic aggregation shuts off if there is a period of no
925 			 * task changes, so we wake it back up if necessary. However,
926 			 * don't do this if the task change is the aggregation worker
927 			 * itself going to sleep, or we'll ping-pong forever.
928 			 */
929 			if (unlikely((prev->flags & PF_WQ_WORKER) &&
930 				     wq_worker_last_func(prev) == psi_avgs_work))
931 				wake_clock = false;
932 		}
933 
934 		psi_flags_change(prev, clear, set);
935 
936 		group = task_psi_group(prev);
937 		do {
938 			if (group == common)
939 				break;
940 			psi_group_change(group, cpu, clear, set, now, wake_clock);
941 		} while ((group = group->parent));
942 
943 		/*
944 		 * TSK_ONCPU is handled up to the common ancestor. If there are
945 		 * any other differences between the two tasks (e.g. prev goes
946 		 * to sleep, or only one task is memstall), finish propagating
947 		 * those differences all the way up to the root.
948 		 */
949 		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
950 			clear &= ~TSK_ONCPU;
951 			for (; group; group = group->parent)
952 				psi_group_change(group, cpu, clear, set, now, wake_clock);
953 		}
954 	}
955 }
956 
957 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_account_irqtime(struct task_struct * task,u32 delta)958 void psi_account_irqtime(struct task_struct *task, u32 delta)
959 {
960 	int cpu = task_cpu(task);
961 	struct psi_group *group;
962 	struct psi_group_cpu *groupc;
963 	u64 now;
964 
965 	if (!task->pid)
966 		return;
967 
968 	now = cpu_clock(cpu);
969 
970 	group = task_psi_group(task);
971 	do {
972 		if (!group->enabled)
973 			continue;
974 
975 		groupc = per_cpu_ptr(group->pcpu, cpu);
976 
977 		write_seqcount_begin(&groupc->seq);
978 
979 		record_times(groupc, now);
980 		groupc->times[PSI_IRQ_FULL] += delta;
981 
982 		write_seqcount_end(&groupc->seq);
983 
984 		if (group->poll_states & (1 << PSI_IRQ_FULL))
985 			psi_schedule_poll_work(group, 1, false);
986 	} while ((group = group->parent));
987 }
988 #endif
989 
990 /**
991  * psi_memstall_enter - mark the beginning of a memory stall section
992  * @flags: flags to handle nested sections
993  *
994  * Marks the calling task as being stalled due to a lack of memory,
995  * such as waiting for a refault or performing reclaim.
996  */
psi_memstall_enter(unsigned long * flags)997 void psi_memstall_enter(unsigned long *flags)
998 {
999 	struct rq_flags rf;
1000 	struct rq *rq;
1001 
1002 	if (static_branch_likely(&psi_disabled))
1003 		return;
1004 
1005 	*flags = current->in_memstall;
1006 	if (*flags)
1007 		return;
1008 	/*
1009 	 * in_memstall setting & accounting needs to be atomic wrt
1010 	 * changes to the task's scheduling state, otherwise we can
1011 	 * race with CPU migration.
1012 	 */
1013 	rq = this_rq_lock_irq(&rf);
1014 
1015 	current->in_memstall = 1;
1016 	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1017 
1018 	rq_unlock_irq(rq, &rf);
1019 }
1020 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1021 
1022 /**
1023  * psi_memstall_leave - mark the end of an memory stall section
1024  * @flags: flags to handle nested memdelay sections
1025  *
1026  * Marks the calling task as no longer stalled due to lack of memory.
1027  */
psi_memstall_leave(unsigned long * flags)1028 void psi_memstall_leave(unsigned long *flags)
1029 {
1030 	struct rq_flags rf;
1031 	struct rq *rq;
1032 
1033 	if (static_branch_likely(&psi_disabled))
1034 		return;
1035 
1036 	if (*flags)
1037 		return;
1038 	/*
1039 	 * in_memstall clearing & accounting needs to be atomic wrt
1040 	 * changes to the task's scheduling state, otherwise we could
1041 	 * race with CPU migration.
1042 	 */
1043 	rq = this_rq_lock_irq(&rf);
1044 
1045 	current->in_memstall = 0;
1046 	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1047 
1048 	rq_unlock_irq(rq, &rf);
1049 }
1050 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1051 
1052 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)1053 int psi_cgroup_alloc(struct cgroup *cgroup)
1054 {
1055 	if (!static_branch_likely(&psi_cgroups_enabled))
1056 		return 0;
1057 
1058 	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1059 	if (!cgroup->psi)
1060 		return -ENOMEM;
1061 
1062 	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1063 	if (!cgroup->psi->pcpu) {
1064 		kfree(cgroup->psi);
1065 		return -ENOMEM;
1066 	}
1067 	group_init(cgroup->psi);
1068 	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1069 	return 0;
1070 }
1071 
psi_cgroup_free(struct cgroup * cgroup)1072 void psi_cgroup_free(struct cgroup *cgroup)
1073 {
1074 	if (!static_branch_likely(&psi_cgroups_enabled))
1075 		return;
1076 
1077 	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1078 	free_percpu(cgroup->psi->pcpu);
1079 	/* All triggers must be removed by now */
1080 	WARN_ONCE(cgroup->psi->poll_states, "psi: trigger leak\n");
1081 	kfree(cgroup->psi);
1082 }
1083 
1084 /**
1085  * cgroup_move_task - move task to a different cgroup
1086  * @task: the task
1087  * @to: the target css_set
1088  *
1089  * Move task to a new cgroup and safely migrate its associated stall
1090  * state between the different groups.
1091  *
1092  * This function acquires the task's rq lock to lock out concurrent
1093  * changes to the task's scheduling state and - in case the task is
1094  * running - concurrent changes to its stall state.
1095  */
cgroup_move_task(struct task_struct * task,struct css_set * to)1096 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1097 {
1098 	unsigned int task_flags;
1099 	struct rq_flags rf;
1100 	struct rq *rq;
1101 
1102 	if (!static_branch_likely(&psi_cgroups_enabled)) {
1103 		/*
1104 		 * Lame to do this here, but the scheduler cannot be locked
1105 		 * from the outside, so we move cgroups from inside sched/.
1106 		 */
1107 		rcu_assign_pointer(task->cgroups, to);
1108 		return;
1109 	}
1110 
1111 	rq = task_rq_lock(task, &rf);
1112 
1113 	/*
1114 	 * We may race with schedule() dropping the rq lock between
1115 	 * deactivating prev and switching to next. Because the psi
1116 	 * updates from the deactivation are deferred to the switch
1117 	 * callback to save cgroup tree updates, the task's scheduling
1118 	 * state here is not coherent with its psi state:
1119 	 *
1120 	 * schedule()                   cgroup_move_task()
1121 	 *   rq_lock()
1122 	 *   deactivate_task()
1123 	 *     p->on_rq = 0
1124 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1125 	 *   pick_next_task()
1126 	 *     rq_unlock()
1127 	 *                                rq_lock()
1128 	 *                                psi_task_change() // old cgroup
1129 	 *                                task->cgroups = to
1130 	 *                                psi_task_change() // new cgroup
1131 	 *                                rq_unlock()
1132 	 *     rq_lock()
1133 	 *   psi_sched_switch() // does deferred updates in new cgroup
1134 	 *
1135 	 * Don't rely on the scheduling state. Use psi_flags instead.
1136 	 */
1137 	task_flags = task->psi_flags;
1138 
1139 	if (task_flags)
1140 		psi_task_change(task, task_flags, 0);
1141 
1142 	/* See comment above */
1143 	rcu_assign_pointer(task->cgroups, to);
1144 
1145 	if (task_flags)
1146 		psi_task_change(task, 0, task_flags);
1147 
1148 	task_rq_unlock(rq, task, &rf);
1149 }
1150 
psi_cgroup_restart(struct psi_group * group)1151 void psi_cgroup_restart(struct psi_group *group)
1152 {
1153 	int cpu;
1154 
1155 	/*
1156 	 * After we disable psi_group->enabled, we don't actually
1157 	 * stop percpu tasks accounting in each psi_group_cpu,
1158 	 * instead only stop test_state() loop, record_times()
1159 	 * and averaging worker, see psi_group_change() for details.
1160 	 *
1161 	 * When disable cgroup PSI, this function has nothing to sync
1162 	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1163 	 * would see !psi_group->enabled and only do task accounting.
1164 	 *
1165 	 * When re-enable cgroup PSI, this function use psi_group_change()
1166 	 * to get correct state mask from test_state() loop on tasks[],
1167 	 * and restart groupc->state_start from now, use .clear = .set = 0
1168 	 * here since no task status really changed.
1169 	 */
1170 	if (!group->enabled)
1171 		return;
1172 
1173 	for_each_possible_cpu(cpu) {
1174 		struct rq *rq = cpu_rq(cpu);
1175 		struct rq_flags rf;
1176 		u64 now;
1177 
1178 		rq_lock_irq(rq, &rf);
1179 		now = cpu_clock(cpu);
1180 		psi_group_change(group, cpu, 0, 0, now, true);
1181 		rq_unlock_irq(rq, &rf);
1182 	}
1183 }
1184 #endif /* CONFIG_CGROUPS */
1185 
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1186 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1187 {
1188 	bool only_full = false;
1189 	int full;
1190 	u64 now;
1191 
1192 	if (static_branch_likely(&psi_disabled))
1193 		return -EOPNOTSUPP;
1194 
1195 	/* Update averages before reporting them */
1196 	mutex_lock(&group->avgs_lock);
1197 	now = sched_clock();
1198 	collect_percpu_times(group, PSI_AVGS, NULL);
1199 	if (now >= group->avg_next_update)
1200 		group->avg_next_update = update_averages(group, now);
1201 	mutex_unlock(&group->avgs_lock);
1202 
1203 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1204 	only_full = res == PSI_IRQ;
1205 #endif
1206 
1207 	for (full = 0; full < 2 - only_full; full++) {
1208 		unsigned long avg[3] = { 0, };
1209 		u64 total = 0;
1210 		int w;
1211 
1212 		/* CPU FULL is undefined at the system level */
1213 		if (!(group == &psi_system && res == PSI_CPU && full)) {
1214 			for (w = 0; w < 3; w++)
1215 				avg[w] = group->avg[res * 2 + full][w];
1216 			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1217 					NSEC_PER_USEC);
1218 		}
1219 
1220 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1221 			   full || only_full ? "full" : "some",
1222 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1223 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1224 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1225 			   total);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
psi_trigger_create(struct psi_group * group,char * buf,enum psi_res res)1231 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1232 			char *buf, enum psi_res res)
1233 {
1234 	struct psi_trigger *t;
1235 	enum psi_states state;
1236 	u32 threshold_us;
1237 	u32 window_us;
1238 
1239 	if (static_branch_likely(&psi_disabled))
1240 		return ERR_PTR(-EOPNOTSUPP);
1241 
1242 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1243 		state = PSI_IO_SOME + res * 2;
1244 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1245 		state = PSI_IO_FULL + res * 2;
1246 	else
1247 		return ERR_PTR(-EINVAL);
1248 
1249 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1250 	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1251 		return ERR_PTR(-EINVAL);
1252 #endif
1253 
1254 	if (state >= PSI_NONIDLE)
1255 		return ERR_PTR(-EINVAL);
1256 
1257 	if (window_us == 0 || window_us > WINDOW_MAX_US)
1258 		return ERR_PTR(-EINVAL);
1259 
1260 	/* Check threshold */
1261 	if (threshold_us == 0 || threshold_us > window_us)
1262 		return ERR_PTR(-EINVAL);
1263 
1264 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1265 	if (!t)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	t->group = group;
1269 	t->state = state;
1270 	t->threshold = threshold_us * NSEC_PER_USEC;
1271 	t->win.size = window_us * NSEC_PER_USEC;
1272 	window_reset(&t->win, sched_clock(),
1273 			group->total[PSI_POLL][t->state], 0);
1274 
1275 	t->event = 0;
1276 	t->last_event_time = 0;
1277 	init_waitqueue_head(&t->event_wait);
1278 	t->pending_event = false;
1279 
1280 	mutex_lock(&group->trigger_lock);
1281 
1282 	if (!rcu_access_pointer(group->poll_task)) {
1283 		struct task_struct *task;
1284 
1285 		task = kthread_create(psi_poll_worker, group, "psimon");
1286 		if (IS_ERR(task)) {
1287 			kfree(t);
1288 			mutex_unlock(&group->trigger_lock);
1289 			return ERR_CAST(task);
1290 		}
1291 		atomic_set(&group->poll_wakeup, 0);
1292 		wake_up_process(task);
1293 		rcu_assign_pointer(group->poll_task, task);
1294 	}
1295 
1296 	list_add(&t->node, &group->triggers);
1297 	group->poll_min_period = min(group->poll_min_period,
1298 		div_u64(t->win.size, UPDATES_PER_WINDOW));
1299 	group->nr_triggers[t->state]++;
1300 	group->poll_states |= (1 << t->state);
1301 
1302 	mutex_unlock(&group->trigger_lock);
1303 
1304 	return t;
1305 }
1306 
psi_trigger_destroy(struct psi_trigger * t)1307 void psi_trigger_destroy(struct psi_trigger *t)
1308 {
1309 	struct psi_group *group;
1310 	struct task_struct *task_to_destroy = NULL;
1311 
1312 	/*
1313 	 * We do not check psi_disabled since it might have been disabled after
1314 	 * the trigger got created.
1315 	 */
1316 	if (!t)
1317 		return;
1318 
1319 	group = t->group;
1320 	/*
1321 	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1322 	 * being accessed later. Can happen if cgroup is deleted from under a
1323 	 * polling process.
1324 	 */
1325 	wake_up_pollfree(&t->event_wait);
1326 
1327 	mutex_lock(&group->trigger_lock);
1328 
1329 	if (!list_empty(&t->node)) {
1330 		struct psi_trigger *tmp;
1331 		u64 period = ULLONG_MAX;
1332 
1333 		list_del(&t->node);
1334 		group->nr_triggers[t->state]--;
1335 		if (!group->nr_triggers[t->state])
1336 			group->poll_states &= ~(1 << t->state);
1337 		/* reset min update period for the remaining triggers */
1338 		list_for_each_entry(tmp, &group->triggers, node)
1339 			period = min(period, div_u64(tmp->win.size,
1340 					UPDATES_PER_WINDOW));
1341 		group->poll_min_period = period;
1342 		/* Destroy poll_task when the last trigger is destroyed */
1343 		if (group->poll_states == 0) {
1344 			group->polling_until = 0;
1345 			task_to_destroy = rcu_dereference_protected(
1346 					group->poll_task,
1347 					lockdep_is_held(&group->trigger_lock));
1348 			rcu_assign_pointer(group->poll_task, NULL);
1349 			del_timer(&group->poll_timer);
1350 		}
1351 	}
1352 
1353 	mutex_unlock(&group->trigger_lock);
1354 
1355 	/*
1356 	 * Wait for psi_schedule_poll_work RCU to complete its read-side
1357 	 * critical section before destroying the trigger and optionally the
1358 	 * poll_task.
1359 	 */
1360 	synchronize_rcu();
1361 	/*
1362 	 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1363 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1364 	 */
1365 	if (task_to_destroy) {
1366 		/*
1367 		 * After the RCU grace period has expired, the worker
1368 		 * can no longer be found through group->poll_task.
1369 		 */
1370 		kthread_stop(task_to_destroy);
1371 		atomic_set(&group->poll_scheduled, 0);
1372 	}
1373 	kfree(t);
1374 }
1375 
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1376 __poll_t psi_trigger_poll(void **trigger_ptr,
1377 				struct file *file, poll_table *wait)
1378 {
1379 	__poll_t ret = DEFAULT_POLLMASK;
1380 	struct psi_trigger *t;
1381 
1382 	if (static_branch_likely(&psi_disabled))
1383 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1384 
1385 	t = smp_load_acquire(trigger_ptr);
1386 	if (!t)
1387 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1388 
1389 	poll_wait(file, &t->event_wait, wait);
1390 
1391 	if (cmpxchg(&t->event, 1, 0) == 1)
1392 		ret |= EPOLLPRI;
1393 
1394 	return ret;
1395 }
1396 
1397 #ifdef CONFIG_PROC_FS
psi_io_show(struct seq_file * m,void * v)1398 static int psi_io_show(struct seq_file *m, void *v)
1399 {
1400 	return psi_show(m, &psi_system, PSI_IO);
1401 }
1402 
psi_memory_show(struct seq_file * m,void * v)1403 static int psi_memory_show(struct seq_file *m, void *v)
1404 {
1405 	return psi_show(m, &psi_system, PSI_MEM);
1406 }
1407 
psi_cpu_show(struct seq_file * m,void * v)1408 static int psi_cpu_show(struct seq_file *m, void *v)
1409 {
1410 	return psi_show(m, &psi_system, PSI_CPU);
1411 }
1412 
psi_io_open(struct inode * inode,struct file * file)1413 static int psi_io_open(struct inode *inode, struct file *file)
1414 {
1415 	return single_open(file, psi_io_show, NULL);
1416 }
1417 
psi_memory_open(struct inode * inode,struct file * file)1418 static int psi_memory_open(struct inode *inode, struct file *file)
1419 {
1420 	return single_open(file, psi_memory_show, NULL);
1421 }
1422 
psi_cpu_open(struct inode * inode,struct file * file)1423 static int psi_cpu_open(struct inode *inode, struct file *file)
1424 {
1425 	return single_open(file, psi_cpu_show, NULL);
1426 }
1427 
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1428 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1429 			 size_t nbytes, enum psi_res res)
1430 {
1431 	char buf[32];
1432 	size_t buf_size;
1433 	struct seq_file *seq;
1434 	struct psi_trigger *new;
1435 
1436 	if (static_branch_likely(&psi_disabled))
1437 		return -EOPNOTSUPP;
1438 
1439 	if (!nbytes)
1440 		return -EINVAL;
1441 
1442 	buf_size = min(nbytes, sizeof(buf));
1443 	if (copy_from_user(buf, user_buf, buf_size))
1444 		return -EFAULT;
1445 
1446 	buf[buf_size - 1] = '\0';
1447 
1448 	seq = file->private_data;
1449 
1450 	/* Take seq->lock to protect seq->private from concurrent writes */
1451 	mutex_lock(&seq->lock);
1452 
1453 	/* Allow only one trigger per file descriptor */
1454 	if (seq->private) {
1455 		mutex_unlock(&seq->lock);
1456 		return -EBUSY;
1457 	}
1458 
1459 	new = psi_trigger_create(&psi_system, buf, res);
1460 	if (IS_ERR(new)) {
1461 		mutex_unlock(&seq->lock);
1462 		return PTR_ERR(new);
1463 	}
1464 
1465 	smp_store_release(&seq->private, new);
1466 	mutex_unlock(&seq->lock);
1467 
1468 	return nbytes;
1469 }
1470 
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1471 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1472 			    size_t nbytes, loff_t *ppos)
1473 {
1474 	return psi_write(file, user_buf, nbytes, PSI_IO);
1475 }
1476 
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1477 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1478 				size_t nbytes, loff_t *ppos)
1479 {
1480 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1481 }
1482 
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1483 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1484 			     size_t nbytes, loff_t *ppos)
1485 {
1486 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1487 }
1488 
psi_fop_poll(struct file * file,poll_table * wait)1489 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1490 {
1491 	struct seq_file *seq = file->private_data;
1492 
1493 	return psi_trigger_poll(&seq->private, file, wait);
1494 }
1495 
psi_fop_release(struct inode * inode,struct file * file)1496 static int psi_fop_release(struct inode *inode, struct file *file)
1497 {
1498 	struct seq_file *seq = file->private_data;
1499 
1500 	psi_trigger_destroy(seq->private);
1501 	return single_release(inode, file);
1502 }
1503 
1504 static const struct proc_ops psi_io_proc_ops = {
1505 	.proc_open	= psi_io_open,
1506 	.proc_read	= seq_read,
1507 	.proc_lseek	= seq_lseek,
1508 	.proc_write	= psi_io_write,
1509 	.proc_poll	= psi_fop_poll,
1510 	.proc_release	= psi_fop_release,
1511 };
1512 
1513 static const struct proc_ops psi_memory_proc_ops = {
1514 	.proc_open	= psi_memory_open,
1515 	.proc_read	= seq_read,
1516 	.proc_lseek	= seq_lseek,
1517 	.proc_write	= psi_memory_write,
1518 	.proc_poll	= psi_fop_poll,
1519 	.proc_release	= psi_fop_release,
1520 };
1521 
1522 static const struct proc_ops psi_cpu_proc_ops = {
1523 	.proc_open	= psi_cpu_open,
1524 	.proc_read	= seq_read,
1525 	.proc_lseek	= seq_lseek,
1526 	.proc_write	= psi_cpu_write,
1527 	.proc_poll	= psi_fop_poll,
1528 	.proc_release	= psi_fop_release,
1529 };
1530 
1531 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_irq_show(struct seq_file * m,void * v)1532 static int psi_irq_show(struct seq_file *m, void *v)
1533 {
1534 	return psi_show(m, &psi_system, PSI_IRQ);
1535 }
1536 
psi_irq_open(struct inode * inode,struct file * file)1537 static int psi_irq_open(struct inode *inode, struct file *file)
1538 {
1539 	return single_open(file, psi_irq_show, NULL);
1540 }
1541 
psi_irq_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1542 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1543 			     size_t nbytes, loff_t *ppos)
1544 {
1545 	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1546 }
1547 
1548 static const struct proc_ops psi_irq_proc_ops = {
1549 	.proc_open	= psi_irq_open,
1550 	.proc_read	= seq_read,
1551 	.proc_lseek	= seq_lseek,
1552 	.proc_write	= psi_irq_write,
1553 	.proc_poll	= psi_fop_poll,
1554 	.proc_release	= psi_fop_release,
1555 };
1556 #endif
1557 
psi_proc_init(void)1558 static int __init psi_proc_init(void)
1559 {
1560 	if (psi_enable) {
1561 		proc_mkdir("pressure", NULL);
1562 		proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1563 		proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1564 		proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
1565 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1566 		proc_create("pressure/irq", 0, NULL, &psi_irq_proc_ops);
1567 #endif
1568 	}
1569 	return 0;
1570 }
1571 module_init(psi_proc_init);
1572 
1573 #endif /* CONFIG_PROC_FS */
1574