1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 #include <trace/hooks/sched.h>
8
9 int sched_rr_timeslice = RR_TIMESLICE;
10 /* More than 4 hours if BW_SHIFT equals 20. */
11 static const u64 max_rt_runtime = MAX_BW;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 /*
18 * period over which we measure -rt task CPU usage in us.
19 * default: 1s
20 */
21 unsigned int sysctl_sched_rt_period = 1000000;
22
23 /*
24 * part of the period that we allow rt tasks to run in us.
25 * default: 0.95s
26 */
27 int sysctl_sched_rt_runtime = 950000;
28
29 #ifdef CONFIG_SYSCTL
30 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
31 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
32 size_t *lenp, loff_t *ppos);
33 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
34 size_t *lenp, loff_t *ppos);
35 static struct ctl_table sched_rt_sysctls[] = {
36 {
37 .procname = "sched_rt_period_us",
38 .data = &sysctl_sched_rt_period,
39 .maxlen = sizeof(unsigned int),
40 .mode = 0644,
41 .proc_handler = sched_rt_handler,
42 .extra1 = SYSCTL_ONE,
43 .extra2 = SYSCTL_INT_MAX,
44 },
45 {
46 .procname = "sched_rt_runtime_us",
47 .data = &sysctl_sched_rt_runtime,
48 .maxlen = sizeof(int),
49 .mode = 0644,
50 .proc_handler = sched_rt_handler,
51 .extra1 = SYSCTL_NEG_ONE,
52 .extra2 = SYSCTL_INT_MAX,
53 },
54 {
55 .procname = "sched_rr_timeslice_ms",
56 .data = &sysctl_sched_rr_timeslice,
57 .maxlen = sizeof(int),
58 .mode = 0644,
59 .proc_handler = sched_rr_handler,
60 },
61 {}
62 };
63
sched_rt_sysctl_init(void)64 static int __init sched_rt_sysctl_init(void)
65 {
66 register_sysctl_init("kernel", sched_rt_sysctls);
67 return 0;
68 }
69 late_initcall(sched_rt_sysctl_init);
70 #endif
71
sched_rt_period_timer(struct hrtimer * timer)72 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
73 {
74 struct rt_bandwidth *rt_b =
75 container_of(timer, struct rt_bandwidth, rt_period_timer);
76 int idle = 0;
77 int overrun;
78
79 raw_spin_lock(&rt_b->rt_runtime_lock);
80 for (;;) {
81 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
82 if (!overrun)
83 break;
84
85 raw_spin_unlock(&rt_b->rt_runtime_lock);
86 idle = do_sched_rt_period_timer(rt_b, overrun);
87 raw_spin_lock(&rt_b->rt_runtime_lock);
88 }
89 if (idle)
90 rt_b->rt_period_active = 0;
91 raw_spin_unlock(&rt_b->rt_runtime_lock);
92
93 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
94 }
95
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)96 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
97 {
98 rt_b->rt_period = ns_to_ktime(period);
99 rt_b->rt_runtime = runtime;
100
101 raw_spin_lock_init(&rt_b->rt_runtime_lock);
102
103 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
104 HRTIMER_MODE_REL_HARD);
105 rt_b->rt_period_timer.function = sched_rt_period_timer;
106 }
107
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)108 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110 raw_spin_lock(&rt_b->rt_runtime_lock);
111 if (!rt_b->rt_period_active) {
112 rt_b->rt_period_active = 1;
113 /*
114 * SCHED_DEADLINE updates the bandwidth, as a run away
115 * RT task with a DL task could hog a CPU. But DL does
116 * not reset the period. If a deadline task was running
117 * without an RT task running, it can cause RT tasks to
118 * throttle when they start up. Kick the timer right away
119 * to update the period.
120 */
121 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
122 hrtimer_start_expires(&rt_b->rt_period_timer,
123 HRTIMER_MODE_ABS_PINNED_HARD);
124 }
125 raw_spin_unlock(&rt_b->rt_runtime_lock);
126 }
127
start_rt_bandwidth(struct rt_bandwidth * rt_b)128 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
129 {
130 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
131 return;
132
133 do_start_rt_bandwidth(rt_b);
134 }
135
init_rt_rq(struct rt_rq * rt_rq)136 void init_rt_rq(struct rt_rq *rt_rq)
137 {
138 struct rt_prio_array *array;
139 int i;
140
141 array = &rt_rq->active;
142 for (i = 0; i < MAX_RT_PRIO; i++) {
143 INIT_LIST_HEAD(array->queue + i);
144 __clear_bit(i, array->bitmap);
145 }
146 /* delimiter for bitsearch: */
147 __set_bit(MAX_RT_PRIO, array->bitmap);
148
149 #if defined CONFIG_SMP
150 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
151 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
152 rt_rq->rt_nr_migratory = 0;
153 rt_rq->overloaded = 0;
154 plist_head_init(&rt_rq->pushable_tasks);
155 #endif /* CONFIG_SMP */
156 /* We start is dequeued state, because no RT tasks are queued */
157 rt_rq->rt_queued = 0;
158
159 rt_rq->rt_time = 0;
160 rt_rq->rt_throttled = 0;
161 rt_rq->rt_runtime = 0;
162 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
163 }
164
165 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)166 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
167 {
168 hrtimer_cancel(&rt_b->rt_period_timer);
169 }
170
171 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
172
rt_task_of(struct sched_rt_entity * rt_se)173 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
174 {
175 #ifdef CONFIG_SCHED_DEBUG
176 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
177 #endif
178 return container_of(rt_se, struct task_struct, rt);
179 }
180
rq_of_rt_rq(struct rt_rq * rt_rq)181 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
182 {
183 return rt_rq->rq;
184 }
185
rt_rq_of_se(struct sched_rt_entity * rt_se)186 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
187 {
188 return rt_se->rt_rq;
189 }
190
rq_of_rt_se(struct sched_rt_entity * rt_se)191 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
192 {
193 struct rt_rq *rt_rq = rt_se->rt_rq;
194
195 return rt_rq->rq;
196 }
197
unregister_rt_sched_group(struct task_group * tg)198 void unregister_rt_sched_group(struct task_group *tg)
199 {
200 if (tg->rt_se)
201 destroy_rt_bandwidth(&tg->rt_bandwidth);
202
203 }
204
free_rt_sched_group(struct task_group * tg)205 void free_rt_sched_group(struct task_group *tg)
206 {
207 int i;
208
209 for_each_possible_cpu(i) {
210 if (tg->rt_rq)
211 kfree(tg->rt_rq[i]);
212 if (tg->rt_se)
213 kfree(tg->rt_se[i]);
214 }
215
216 kfree(tg->rt_rq);
217 kfree(tg->rt_se);
218 }
219
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)220 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
221 struct sched_rt_entity *rt_se, int cpu,
222 struct sched_rt_entity *parent)
223 {
224 struct rq *rq = cpu_rq(cpu);
225
226 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
227 rt_rq->rt_nr_boosted = 0;
228 rt_rq->rq = rq;
229 rt_rq->tg = tg;
230
231 tg->rt_rq[cpu] = rt_rq;
232 tg->rt_se[cpu] = rt_se;
233
234 if (!rt_se)
235 return;
236
237 if (!parent)
238 rt_se->rt_rq = &rq->rt;
239 else
240 rt_se->rt_rq = parent->my_q;
241
242 rt_se->my_q = rt_rq;
243 rt_se->parent = parent;
244 INIT_LIST_HEAD(&rt_se->run_list);
245 }
246
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)247 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
248 {
249 struct rt_rq *rt_rq;
250 struct sched_rt_entity *rt_se;
251 int i;
252
253 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
254 if (!tg->rt_rq)
255 goto err;
256 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
257 if (!tg->rt_se)
258 goto err;
259
260 init_rt_bandwidth(&tg->rt_bandwidth,
261 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
262
263 for_each_possible_cpu(i) {
264 rt_rq = kzalloc_node(sizeof(struct rt_rq),
265 GFP_KERNEL, cpu_to_node(i));
266 if (!rt_rq)
267 goto err;
268
269 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
270 GFP_KERNEL, cpu_to_node(i));
271 if (!rt_se)
272 goto err_free_rq;
273
274 init_rt_rq(rt_rq);
275 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
276 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
277 }
278
279 return 1;
280
281 err_free_rq:
282 kfree(rt_rq);
283 err:
284 return 0;
285 }
286
287 #else /* CONFIG_RT_GROUP_SCHED */
288
289 #define rt_entity_is_task(rt_se) (1)
290
rt_task_of(struct sched_rt_entity * rt_se)291 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
292 {
293 return container_of(rt_se, struct task_struct, rt);
294 }
295
rq_of_rt_rq(struct rt_rq * rt_rq)296 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
297 {
298 return container_of(rt_rq, struct rq, rt);
299 }
300
rq_of_rt_se(struct sched_rt_entity * rt_se)301 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
302 {
303 struct task_struct *p = rt_task_of(rt_se);
304
305 return task_rq(p);
306 }
307
rt_rq_of_se(struct sched_rt_entity * rt_se)308 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
309 {
310 struct rq *rq = rq_of_rt_se(rt_se);
311
312 return &rq->rt;
313 }
314
unregister_rt_sched_group(struct task_group * tg)315 void unregister_rt_sched_group(struct task_group *tg) { }
316
free_rt_sched_group(struct task_group * tg)317 void free_rt_sched_group(struct task_group *tg) { }
318
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)319 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
320 {
321 return 1;
322 }
323 #endif /* CONFIG_RT_GROUP_SCHED */
324
325 #ifdef CONFIG_SMP
326
need_pull_rt_task(struct rq * rq,struct task_struct * prev)327 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
328 {
329 /* Try to pull RT tasks here if we lower this rq's prio */
330 return rq->online && rq->rt.highest_prio.curr > prev->prio;
331 }
332
rt_overloaded(struct rq * rq)333 static inline int rt_overloaded(struct rq *rq)
334 {
335 return atomic_read(&rq->rd->rto_count);
336 }
337
rt_set_overload(struct rq * rq)338 static inline void rt_set_overload(struct rq *rq)
339 {
340 if (!rq->online)
341 return;
342
343 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
344 /*
345 * Make sure the mask is visible before we set
346 * the overload count. That is checked to determine
347 * if we should look at the mask. It would be a shame
348 * if we looked at the mask, but the mask was not
349 * updated yet.
350 *
351 * Matched by the barrier in pull_rt_task().
352 */
353 smp_wmb();
354 atomic_inc(&rq->rd->rto_count);
355 }
356
rt_clear_overload(struct rq * rq)357 static inline void rt_clear_overload(struct rq *rq)
358 {
359 if (!rq->online)
360 return;
361
362 /* the order here really doesn't matter */
363 atomic_dec(&rq->rd->rto_count);
364 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
365 }
366
update_rt_migration(struct rt_rq * rt_rq)367 static void update_rt_migration(struct rt_rq *rt_rq)
368 {
369 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
370 if (!rt_rq->overloaded) {
371 rt_set_overload(rq_of_rt_rq(rt_rq));
372 rt_rq->overloaded = 1;
373 }
374 } else if (rt_rq->overloaded) {
375 rt_clear_overload(rq_of_rt_rq(rt_rq));
376 rt_rq->overloaded = 0;
377 }
378 }
379
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)380 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
381 {
382 struct task_struct *p;
383
384 if (!rt_entity_is_task(rt_se))
385 return;
386
387 p = rt_task_of(rt_se);
388 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
389
390 rt_rq->rt_nr_total++;
391 if (p->nr_cpus_allowed > 1)
392 rt_rq->rt_nr_migratory++;
393
394 update_rt_migration(rt_rq);
395 }
396
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)397 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
398 {
399 struct task_struct *p;
400
401 if (!rt_entity_is_task(rt_se))
402 return;
403
404 p = rt_task_of(rt_se);
405 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
406
407 rt_rq->rt_nr_total--;
408 if (p->nr_cpus_allowed > 1)
409 rt_rq->rt_nr_migratory--;
410
411 update_rt_migration(rt_rq);
412 }
413
has_pushable_tasks(struct rq * rq)414 static inline int has_pushable_tasks(struct rq *rq)
415 {
416 return !plist_head_empty(&rq->rt.pushable_tasks);
417 }
418
419 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
420 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
421
422 static void push_rt_tasks(struct rq *);
423 static void pull_rt_task(struct rq *);
424
rt_queue_push_tasks(struct rq * rq)425 static inline void rt_queue_push_tasks(struct rq *rq)
426 {
427 if (!has_pushable_tasks(rq))
428 return;
429
430 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
431 }
432
rt_queue_pull_task(struct rq * rq)433 static inline void rt_queue_pull_task(struct rq *rq)
434 {
435 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
436 }
437
enqueue_pushable_task(struct rq * rq,struct task_struct * p)438 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
439 {
440 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
441 plist_node_init(&p->pushable_tasks, p->prio);
442 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
443
444 /* Update the highest prio pushable task */
445 if (p->prio < rq->rt.highest_prio.next)
446 rq->rt.highest_prio.next = p->prio;
447 }
448
dequeue_pushable_task(struct rq * rq,struct task_struct * p)449 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
450 {
451 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
452
453 /* Update the new highest prio pushable task */
454 if (has_pushable_tasks(rq)) {
455 p = plist_first_entry(&rq->rt.pushable_tasks,
456 struct task_struct, pushable_tasks);
457 rq->rt.highest_prio.next = p->prio;
458 } else {
459 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
460 }
461 }
462
463 #else
464
enqueue_pushable_task(struct rq * rq,struct task_struct * p)465 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
466 {
467 }
468
dequeue_pushable_task(struct rq * rq,struct task_struct * p)469 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
470 {
471 }
472
473 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)474 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
475 {
476 }
477
478 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)479 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
480 {
481 }
482
rt_queue_push_tasks(struct rq * rq)483 static inline void rt_queue_push_tasks(struct rq *rq)
484 {
485 }
486 #endif /* CONFIG_SMP */
487
488 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
489 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
490
on_rt_rq(struct sched_rt_entity * rt_se)491 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
492 {
493 return rt_se->on_rq;
494 }
495
496 #ifdef CONFIG_UCLAMP_TASK
497 /*
498 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
499 * settings.
500 *
501 * This check is only important for heterogeneous systems where uclamp_min value
502 * is higher than the capacity of a @cpu. For non-heterogeneous system this
503 * function will always return true.
504 *
505 * The function will return true if the capacity of the @cpu is >= the
506 * uclamp_min and false otherwise.
507 *
508 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
509 * > uclamp_max.
510 */
rt_task_fits_capacity(struct task_struct * p,int cpu)511 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
512 {
513 unsigned int min_cap;
514 unsigned int max_cap;
515 unsigned int cpu_cap;
516
517 /* Only heterogeneous systems can benefit from this check */
518 if (!sched_asym_cpucap_active())
519 return true;
520
521 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
522 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
523
524 cpu_cap = capacity_orig_of(cpu);
525
526 return cpu_cap >= min(min_cap, max_cap);
527 }
528 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)529 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
530 {
531 return true;
532 }
533 #endif
534
535 #ifdef CONFIG_RT_GROUP_SCHED
536
sched_rt_runtime(struct rt_rq * rt_rq)537 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
538 {
539 if (!rt_rq->tg)
540 return RUNTIME_INF;
541
542 return rt_rq->rt_runtime;
543 }
544
sched_rt_period(struct rt_rq * rt_rq)545 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
546 {
547 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
548 }
549
550 typedef struct task_group *rt_rq_iter_t;
551
next_task_group(struct task_group * tg)552 static inline struct task_group *next_task_group(struct task_group *tg)
553 {
554 do {
555 tg = list_entry_rcu(tg->list.next,
556 typeof(struct task_group), list);
557 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
558
559 if (&tg->list == &task_groups)
560 tg = NULL;
561
562 return tg;
563 }
564
565 #define for_each_rt_rq(rt_rq, iter, rq) \
566 for (iter = container_of(&task_groups, typeof(*iter), list); \
567 (iter = next_task_group(iter)) && \
568 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
569
570 #define for_each_sched_rt_entity(rt_se) \
571 for (; rt_se; rt_se = rt_se->parent)
572
group_rt_rq(struct sched_rt_entity * rt_se)573 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
574 {
575 return rt_se->my_q;
576 }
577
578 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
579 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
580
sched_rt_rq_enqueue(struct rt_rq * rt_rq)581 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
582 {
583 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
584 struct rq *rq = rq_of_rt_rq(rt_rq);
585 struct sched_rt_entity *rt_se;
586
587 int cpu = cpu_of(rq);
588
589 rt_se = rt_rq->tg->rt_se[cpu];
590
591 if (rt_rq->rt_nr_running) {
592 if (!rt_se)
593 enqueue_top_rt_rq(rt_rq);
594 else if (!on_rt_rq(rt_se))
595 enqueue_rt_entity(rt_se, 0);
596
597 if (rt_rq->highest_prio.curr < curr->prio)
598 resched_curr(rq);
599 }
600 }
601
sched_rt_rq_dequeue(struct rt_rq * rt_rq)602 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
603 {
604 struct sched_rt_entity *rt_se;
605 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
606
607 rt_se = rt_rq->tg->rt_se[cpu];
608
609 if (!rt_se) {
610 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
611 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
612 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
613 }
614 else if (on_rt_rq(rt_se))
615 dequeue_rt_entity(rt_se, 0);
616 }
617
rt_rq_throttled(struct rt_rq * rt_rq)618 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
619 {
620 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
621 }
622
rt_se_boosted(struct sched_rt_entity * rt_se)623 static int rt_se_boosted(struct sched_rt_entity *rt_se)
624 {
625 struct rt_rq *rt_rq = group_rt_rq(rt_se);
626 struct task_struct *p;
627
628 if (rt_rq)
629 return !!rt_rq->rt_nr_boosted;
630
631 p = rt_task_of(rt_se);
632 return p->prio != p->normal_prio;
633 }
634
635 #ifdef CONFIG_SMP
sched_rt_period_mask(void)636 static inline const struct cpumask *sched_rt_period_mask(void)
637 {
638 return this_rq()->rd->span;
639 }
640 #else
sched_rt_period_mask(void)641 static inline const struct cpumask *sched_rt_period_mask(void)
642 {
643 return cpu_online_mask;
644 }
645 #endif
646
647 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)648 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
649 {
650 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
651 }
652
sched_rt_bandwidth(struct rt_rq * rt_rq)653 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
654 {
655 return &rt_rq->tg->rt_bandwidth;
656 }
657
658 #else /* !CONFIG_RT_GROUP_SCHED */
659
sched_rt_runtime(struct rt_rq * rt_rq)660 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
661 {
662 return rt_rq->rt_runtime;
663 }
664
sched_rt_period(struct rt_rq * rt_rq)665 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
666 {
667 return ktime_to_ns(def_rt_bandwidth.rt_period);
668 }
669
670 typedef struct rt_rq *rt_rq_iter_t;
671
672 #define for_each_rt_rq(rt_rq, iter, rq) \
673 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
674
675 #define for_each_sched_rt_entity(rt_se) \
676 for (; rt_se; rt_se = NULL)
677
group_rt_rq(struct sched_rt_entity * rt_se)678 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
679 {
680 return NULL;
681 }
682
sched_rt_rq_enqueue(struct rt_rq * rt_rq)683 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
684 {
685 struct rq *rq = rq_of_rt_rq(rt_rq);
686
687 if (!rt_rq->rt_nr_running)
688 return;
689
690 enqueue_top_rt_rq(rt_rq);
691 resched_curr(rq);
692 }
693
sched_rt_rq_dequeue(struct rt_rq * rt_rq)694 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
695 {
696 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
697 }
698
rt_rq_throttled(struct rt_rq * rt_rq)699 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
700 {
701 return rt_rq->rt_throttled;
702 }
703
sched_rt_period_mask(void)704 static inline const struct cpumask *sched_rt_period_mask(void)
705 {
706 return cpu_online_mask;
707 }
708
709 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)710 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
711 {
712 return &cpu_rq(cpu)->rt;
713 }
714
sched_rt_bandwidth(struct rt_rq * rt_rq)715 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
716 {
717 return &def_rt_bandwidth;
718 }
719
720 #endif /* CONFIG_RT_GROUP_SCHED */
721
sched_rt_bandwidth_account(struct rt_rq * rt_rq)722 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
723 {
724 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
725
726 return (hrtimer_active(&rt_b->rt_period_timer) ||
727 rt_rq->rt_time < rt_b->rt_runtime);
728 }
729
730 #ifdef CONFIG_SMP
731 /*
732 * We ran out of runtime, see if we can borrow some from our neighbours.
733 */
do_balance_runtime(struct rt_rq * rt_rq)734 static void do_balance_runtime(struct rt_rq *rt_rq)
735 {
736 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
737 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
738 int i, weight;
739 u64 rt_period;
740
741 weight = cpumask_weight(rd->span);
742
743 raw_spin_lock(&rt_b->rt_runtime_lock);
744 rt_period = ktime_to_ns(rt_b->rt_period);
745 for_each_cpu(i, rd->span) {
746 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
747 s64 diff;
748
749 if (iter == rt_rq)
750 continue;
751
752 raw_spin_lock(&iter->rt_runtime_lock);
753 /*
754 * Either all rqs have inf runtime and there's nothing to steal
755 * or __disable_runtime() below sets a specific rq to inf to
756 * indicate its been disabled and disallow stealing.
757 */
758 if (iter->rt_runtime == RUNTIME_INF)
759 goto next;
760
761 /*
762 * From runqueues with spare time, take 1/n part of their
763 * spare time, but no more than our period.
764 */
765 diff = iter->rt_runtime - iter->rt_time;
766 if (diff > 0) {
767 diff = div_u64((u64)diff, weight);
768 if (rt_rq->rt_runtime + diff > rt_period)
769 diff = rt_period - rt_rq->rt_runtime;
770 iter->rt_runtime -= diff;
771 rt_rq->rt_runtime += diff;
772 if (rt_rq->rt_runtime == rt_period) {
773 raw_spin_unlock(&iter->rt_runtime_lock);
774 break;
775 }
776 }
777 next:
778 raw_spin_unlock(&iter->rt_runtime_lock);
779 }
780 raw_spin_unlock(&rt_b->rt_runtime_lock);
781 }
782
783 /*
784 * Ensure this RQ takes back all the runtime it lend to its neighbours.
785 */
__disable_runtime(struct rq * rq)786 static void __disable_runtime(struct rq *rq)
787 {
788 struct root_domain *rd = rq->rd;
789 rt_rq_iter_t iter;
790 struct rt_rq *rt_rq;
791
792 if (unlikely(!scheduler_running))
793 return;
794
795 for_each_rt_rq(rt_rq, iter, rq) {
796 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
797 s64 want;
798 int i;
799
800 raw_spin_lock(&rt_b->rt_runtime_lock);
801 raw_spin_lock(&rt_rq->rt_runtime_lock);
802 /*
803 * Either we're all inf and nobody needs to borrow, or we're
804 * already disabled and thus have nothing to do, or we have
805 * exactly the right amount of runtime to take out.
806 */
807 if (rt_rq->rt_runtime == RUNTIME_INF ||
808 rt_rq->rt_runtime == rt_b->rt_runtime)
809 goto balanced;
810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811
812 /*
813 * Calculate the difference between what we started out with
814 * and what we current have, that's the amount of runtime
815 * we lend and now have to reclaim.
816 */
817 want = rt_b->rt_runtime - rt_rq->rt_runtime;
818
819 /*
820 * Greedy reclaim, take back as much as we can.
821 */
822 for_each_cpu(i, rd->span) {
823 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
824 s64 diff;
825
826 /*
827 * Can't reclaim from ourselves or disabled runqueues.
828 */
829 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
830 continue;
831
832 raw_spin_lock(&iter->rt_runtime_lock);
833 if (want > 0) {
834 diff = min_t(s64, iter->rt_runtime, want);
835 iter->rt_runtime -= diff;
836 want -= diff;
837 } else {
838 iter->rt_runtime -= want;
839 want -= want;
840 }
841 raw_spin_unlock(&iter->rt_runtime_lock);
842
843 if (!want)
844 break;
845 }
846
847 raw_spin_lock(&rt_rq->rt_runtime_lock);
848 /*
849 * We cannot be left wanting - that would mean some runtime
850 * leaked out of the system.
851 */
852 WARN_ON_ONCE(want);
853 balanced:
854 /*
855 * Disable all the borrow logic by pretending we have inf
856 * runtime - in which case borrowing doesn't make sense.
857 */
858 rt_rq->rt_runtime = RUNTIME_INF;
859 rt_rq->rt_throttled = 0;
860 raw_spin_unlock(&rt_rq->rt_runtime_lock);
861 raw_spin_unlock(&rt_b->rt_runtime_lock);
862
863 /* Make rt_rq available for pick_next_task() */
864 sched_rt_rq_enqueue(rt_rq);
865 }
866 }
867
__enable_runtime(struct rq * rq)868 static void __enable_runtime(struct rq *rq)
869 {
870 rt_rq_iter_t iter;
871 struct rt_rq *rt_rq;
872
873 if (unlikely(!scheduler_running))
874 return;
875
876 /*
877 * Reset each runqueue's bandwidth settings
878 */
879 for_each_rt_rq(rt_rq, iter, rq) {
880 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
881
882 raw_spin_lock(&rt_b->rt_runtime_lock);
883 raw_spin_lock(&rt_rq->rt_runtime_lock);
884 rt_rq->rt_runtime = rt_b->rt_runtime;
885 rt_rq->rt_time = 0;
886 rt_rq->rt_throttled = 0;
887 raw_spin_unlock(&rt_rq->rt_runtime_lock);
888 raw_spin_unlock(&rt_b->rt_runtime_lock);
889 }
890 }
891
balance_runtime(struct rt_rq * rt_rq)892 static void balance_runtime(struct rt_rq *rt_rq)
893 {
894 if (!sched_feat(RT_RUNTIME_SHARE))
895 return;
896
897 if (rt_rq->rt_time > rt_rq->rt_runtime) {
898 raw_spin_unlock(&rt_rq->rt_runtime_lock);
899 do_balance_runtime(rt_rq);
900 raw_spin_lock(&rt_rq->rt_runtime_lock);
901 }
902 }
903 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)904 static inline void balance_runtime(struct rt_rq *rt_rq) {}
905 #endif /* CONFIG_SMP */
906
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)907 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
908 {
909 int i, idle = 1, throttled = 0;
910 const struct cpumask *span;
911
912 span = sched_rt_period_mask();
913 #ifdef CONFIG_RT_GROUP_SCHED
914 /*
915 * FIXME: isolated CPUs should really leave the root task group,
916 * whether they are isolcpus or were isolated via cpusets, lest
917 * the timer run on a CPU which does not service all runqueues,
918 * potentially leaving other CPUs indefinitely throttled. If
919 * isolation is really required, the user will turn the throttle
920 * off to kill the perturbations it causes anyway. Meanwhile,
921 * this maintains functionality for boot and/or troubleshooting.
922 */
923 if (rt_b == &root_task_group.rt_bandwidth)
924 span = cpu_online_mask;
925 #endif
926 for_each_cpu(i, span) {
927 int enqueue = 0;
928 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
929 struct rq *rq = rq_of_rt_rq(rt_rq);
930 struct rq_flags rf;
931 int skip;
932
933 /*
934 * When span == cpu_online_mask, taking each rq->lock
935 * can be time-consuming. Try to avoid it when possible.
936 */
937 raw_spin_lock(&rt_rq->rt_runtime_lock);
938 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
939 rt_rq->rt_runtime = rt_b->rt_runtime;
940 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
941 raw_spin_unlock(&rt_rq->rt_runtime_lock);
942 if (skip)
943 continue;
944
945 rq_lock(rq, &rf);
946 update_rq_clock(rq);
947
948 if (rt_rq->rt_time) {
949 u64 runtime;
950
951 raw_spin_lock(&rt_rq->rt_runtime_lock);
952 if (rt_rq->rt_throttled)
953 balance_runtime(rt_rq);
954 runtime = rt_rq->rt_runtime;
955 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
956 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
957 rt_rq->rt_throttled = 0;
958 enqueue = 1;
959
960 /*
961 * When we're idle and a woken (rt) task is
962 * throttled check_preempt_curr() will set
963 * skip_update and the time between the wakeup
964 * and this unthrottle will get accounted as
965 * 'runtime'.
966 */
967 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
968 rq_clock_cancel_skipupdate(rq);
969 }
970 if (rt_rq->rt_time || rt_rq->rt_nr_running)
971 idle = 0;
972 raw_spin_unlock(&rt_rq->rt_runtime_lock);
973 } else if (rt_rq->rt_nr_running) {
974 idle = 0;
975 if (!rt_rq_throttled(rt_rq))
976 enqueue = 1;
977 }
978 if (rt_rq->rt_throttled)
979 throttled = 1;
980
981 if (enqueue)
982 sched_rt_rq_enqueue(rt_rq);
983 rq_unlock(rq, &rf);
984 }
985
986 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
987 return 1;
988
989 return idle;
990 }
991
rt_se_prio(struct sched_rt_entity * rt_se)992 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
993 {
994 #ifdef CONFIG_RT_GROUP_SCHED
995 struct rt_rq *rt_rq = group_rt_rq(rt_se);
996
997 if (rt_rq)
998 return rt_rq->highest_prio.curr;
999 #endif
1000
1001 return rt_task_of(rt_se)->prio;
1002 }
1003
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)1004 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
1005 {
1006 u64 runtime = sched_rt_runtime(rt_rq);
1007
1008 if (rt_rq->rt_throttled)
1009 return rt_rq_throttled(rt_rq);
1010
1011 if (runtime >= sched_rt_period(rt_rq))
1012 return 0;
1013
1014 balance_runtime(rt_rq);
1015 runtime = sched_rt_runtime(rt_rq);
1016 if (runtime == RUNTIME_INF)
1017 return 0;
1018
1019 if (rt_rq->rt_time > runtime) {
1020 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1021
1022 /*
1023 * Don't actually throttle groups that have no runtime assigned
1024 * but accrue some time due to boosting.
1025 */
1026 if (likely(rt_b->rt_runtime)) {
1027 rt_rq->rt_throttled = 1;
1028 printk_deferred_once("sched: RT throttling activated\n");
1029
1030 trace_android_vh_dump_throttled_rt_tasks(
1031 raw_smp_processor_id(),
1032 rq_clock(rq_of_rt_rq(rt_rq)),
1033 sched_rt_period(rt_rq),
1034 runtime,
1035 hrtimer_get_expires_ns(&rt_b->rt_period_timer));
1036 } else {
1037 /*
1038 * In case we did anyway, make it go away,
1039 * replenishment is a joke, since it will replenish us
1040 * with exactly 0 ns.
1041 */
1042 rt_rq->rt_time = 0;
1043 }
1044
1045 if (rt_rq_throttled(rt_rq)) {
1046 sched_rt_rq_dequeue(rt_rq);
1047 return 1;
1048 }
1049 }
1050
1051 return 0;
1052 }
1053
1054 /*
1055 * Update the current task's runtime statistics. Skip current tasks that
1056 * are not in our scheduling class.
1057 */
update_curr_rt(struct rq * rq)1058 static void update_curr_rt(struct rq *rq)
1059 {
1060 struct task_struct *curr = rq->curr;
1061 struct sched_rt_entity *rt_se = &curr->rt;
1062 u64 delta_exec;
1063 u64 now;
1064
1065 if (curr->sched_class != &rt_sched_class)
1066 return;
1067
1068 now = rq_clock_task(rq);
1069 delta_exec = now - curr->se.exec_start;
1070 if (unlikely((s64)delta_exec <= 0))
1071 return;
1072
1073 schedstat_set(curr->stats.exec_max,
1074 max(curr->stats.exec_max, delta_exec));
1075
1076 trace_sched_stat_runtime(curr, delta_exec, 0);
1077
1078 update_current_exec_runtime(curr, now, delta_exec);
1079
1080 trace_android_vh_sched_stat_runtime_rt(curr, delta_exec);
1081
1082 if (!rt_bandwidth_enabled())
1083 return;
1084
1085 for_each_sched_rt_entity(rt_se) {
1086 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1087 int exceeded;
1088
1089 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1090 raw_spin_lock(&rt_rq->rt_runtime_lock);
1091 rt_rq->rt_time += delta_exec;
1092 exceeded = sched_rt_runtime_exceeded(rt_rq);
1093 if (exceeded)
1094 resched_curr(rq);
1095 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1096 if (exceeded)
1097 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1098 }
1099 }
1100 }
1101
1102 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1103 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1104 {
1105 struct rq *rq = rq_of_rt_rq(rt_rq);
1106
1107 BUG_ON(&rq->rt != rt_rq);
1108
1109 if (!rt_rq->rt_queued)
1110 return;
1111
1112 BUG_ON(!rq->nr_running);
1113
1114 sub_nr_running(rq, count);
1115 rt_rq->rt_queued = 0;
1116
1117 }
1118
1119 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1120 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1121 {
1122 struct rq *rq = rq_of_rt_rq(rt_rq);
1123
1124 BUG_ON(&rq->rt != rt_rq);
1125
1126 if (rt_rq->rt_queued)
1127 return;
1128
1129 if (rt_rq_throttled(rt_rq))
1130 return;
1131
1132 if (rt_rq->rt_nr_running) {
1133 add_nr_running(rq, rt_rq->rt_nr_running);
1134 rt_rq->rt_queued = 1;
1135 }
1136
1137 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1138 cpufreq_update_util(rq, 0);
1139 }
1140
1141 #if defined CONFIG_SMP
1142
1143 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1144 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1145 {
1146 struct rq *rq = rq_of_rt_rq(rt_rq);
1147
1148 #ifdef CONFIG_RT_GROUP_SCHED
1149 /*
1150 * Change rq's cpupri only if rt_rq is the top queue.
1151 */
1152 if (&rq->rt != rt_rq)
1153 return;
1154 #endif
1155 if (rq->online && prio < prev_prio)
1156 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1157 }
1158
1159 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1160 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1161 {
1162 struct rq *rq = rq_of_rt_rq(rt_rq);
1163
1164 #ifdef CONFIG_RT_GROUP_SCHED
1165 /*
1166 * Change rq's cpupri only if rt_rq is the top queue.
1167 */
1168 if (&rq->rt != rt_rq)
1169 return;
1170 #endif
1171 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1172 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1173 }
1174
1175 #else /* CONFIG_SMP */
1176
1177 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1178 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1179 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1180 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1181
1182 #endif /* CONFIG_SMP */
1183
1184 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1185 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1186 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188 int prev_prio = rt_rq->highest_prio.curr;
1189
1190 if (prio < prev_prio)
1191 rt_rq->highest_prio.curr = prio;
1192
1193 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1194 }
1195
1196 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1197 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1198 {
1199 int prev_prio = rt_rq->highest_prio.curr;
1200
1201 if (rt_rq->rt_nr_running) {
1202
1203 WARN_ON(prio < prev_prio);
1204
1205 /*
1206 * This may have been our highest task, and therefore
1207 * we may have some recomputation to do
1208 */
1209 if (prio == prev_prio) {
1210 struct rt_prio_array *array = &rt_rq->active;
1211
1212 rt_rq->highest_prio.curr =
1213 sched_find_first_bit(array->bitmap);
1214 }
1215
1216 } else {
1217 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1218 }
1219
1220 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1221 }
1222
1223 #else
1224
inc_rt_prio(struct rt_rq * rt_rq,int prio)1225 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1226 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1227
1228 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1229
1230 #ifdef CONFIG_RT_GROUP_SCHED
1231
1232 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1233 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1234 {
1235 if (rt_se_boosted(rt_se))
1236 rt_rq->rt_nr_boosted++;
1237
1238 if (rt_rq->tg)
1239 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1240 }
1241
1242 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1243 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245 if (rt_se_boosted(rt_se))
1246 rt_rq->rt_nr_boosted--;
1247
1248 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1249 }
1250
1251 #else /* CONFIG_RT_GROUP_SCHED */
1252
1253 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1254 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1255 {
1256 start_rt_bandwidth(&def_rt_bandwidth);
1257 }
1258
1259 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1260 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1261
1262 #endif /* CONFIG_RT_GROUP_SCHED */
1263
1264 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1265 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267 struct rt_rq *group_rq = group_rt_rq(rt_se);
1268
1269 if (group_rq)
1270 return group_rq->rt_nr_running;
1271 else
1272 return 1;
1273 }
1274
1275 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1276 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1277 {
1278 struct rt_rq *group_rq = group_rt_rq(rt_se);
1279 struct task_struct *tsk;
1280
1281 if (group_rq)
1282 return group_rq->rr_nr_running;
1283
1284 tsk = rt_task_of(rt_se);
1285
1286 return (tsk->policy == SCHED_RR) ? 1 : 0;
1287 }
1288
1289 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1290 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1291 {
1292 int prio = rt_se_prio(rt_se);
1293
1294 WARN_ON(!rt_prio(prio));
1295 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1296 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1297
1298 inc_rt_prio(rt_rq, prio);
1299 inc_rt_migration(rt_se, rt_rq);
1300 inc_rt_group(rt_se, rt_rq);
1301 }
1302
1303 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1304 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1305 {
1306 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1307 WARN_ON(!rt_rq->rt_nr_running);
1308 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1309 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1310
1311 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1312 dec_rt_migration(rt_se, rt_rq);
1313 dec_rt_group(rt_se, rt_rq);
1314 }
1315
1316 /*
1317 * Change rt_se->run_list location unless SAVE && !MOVE
1318 *
1319 * assumes ENQUEUE/DEQUEUE flags match
1320 */
move_entity(unsigned int flags)1321 static inline bool move_entity(unsigned int flags)
1322 {
1323 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1324 return false;
1325
1326 return true;
1327 }
1328
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1329 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1330 {
1331 list_del_init(&rt_se->run_list);
1332
1333 if (list_empty(array->queue + rt_se_prio(rt_se)))
1334 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1335
1336 rt_se->on_list = 0;
1337 }
1338
1339 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1340 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1341 {
1342 #ifdef CONFIG_RT_GROUP_SCHED
1343 /* schedstats is not supported for rt group. */
1344 if (!rt_entity_is_task(rt_se))
1345 return NULL;
1346 #endif
1347
1348 return &rt_task_of(rt_se)->stats;
1349 }
1350
1351 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1352 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1353 {
1354 struct sched_statistics *stats;
1355 struct task_struct *p = NULL;
1356
1357 if (!schedstat_enabled())
1358 return;
1359
1360 if (rt_entity_is_task(rt_se))
1361 p = rt_task_of(rt_se);
1362
1363 stats = __schedstats_from_rt_se(rt_se);
1364 if (!stats)
1365 return;
1366
1367 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1368 }
1369
1370 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1371 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1372 {
1373 struct sched_statistics *stats;
1374 struct task_struct *p = NULL;
1375
1376 if (!schedstat_enabled())
1377 return;
1378
1379 if (rt_entity_is_task(rt_se))
1380 p = rt_task_of(rt_se);
1381
1382 stats = __schedstats_from_rt_se(rt_se);
1383 if (!stats)
1384 return;
1385
1386 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1387 }
1388
1389 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1390 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1391 int flags)
1392 {
1393 if (!schedstat_enabled())
1394 return;
1395
1396 if (flags & ENQUEUE_WAKEUP)
1397 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1398 }
1399
1400 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1401 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1402 {
1403 struct sched_statistics *stats;
1404 struct task_struct *p = NULL;
1405
1406 if (!schedstat_enabled())
1407 return;
1408
1409 if (rt_entity_is_task(rt_se))
1410 p = rt_task_of(rt_se);
1411
1412 stats = __schedstats_from_rt_se(rt_se);
1413 if (!stats)
1414 return;
1415
1416 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1417 }
1418
1419 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1420 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1421 int flags)
1422 {
1423 struct task_struct *p = NULL;
1424
1425 if (!schedstat_enabled())
1426 return;
1427
1428 if (rt_entity_is_task(rt_se))
1429 p = rt_task_of(rt_se);
1430
1431 if ((flags & DEQUEUE_SLEEP) && p) {
1432 unsigned int state;
1433
1434 state = READ_ONCE(p->__state);
1435 if (state & TASK_INTERRUPTIBLE)
1436 __schedstat_set(p->stats.sleep_start,
1437 rq_clock(rq_of_rt_rq(rt_rq)));
1438
1439 if (state & TASK_UNINTERRUPTIBLE)
1440 __schedstat_set(p->stats.block_start,
1441 rq_clock(rq_of_rt_rq(rt_rq)));
1442 }
1443 }
1444
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1445 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1446 {
1447 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1448 struct rt_prio_array *array = &rt_rq->active;
1449 struct rt_rq *group_rq = group_rt_rq(rt_se);
1450 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1451
1452 /*
1453 * Don't enqueue the group if its throttled, or when empty.
1454 * The latter is a consequence of the former when a child group
1455 * get throttled and the current group doesn't have any other
1456 * active members.
1457 */
1458 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1459 if (rt_se->on_list)
1460 __delist_rt_entity(rt_se, array);
1461 return;
1462 }
1463
1464 if (move_entity(flags)) {
1465 WARN_ON_ONCE(rt_se->on_list);
1466 if (flags & ENQUEUE_HEAD)
1467 list_add(&rt_se->run_list, queue);
1468 else
1469 list_add_tail(&rt_se->run_list, queue);
1470
1471 __set_bit(rt_se_prio(rt_se), array->bitmap);
1472 rt_se->on_list = 1;
1473 }
1474 rt_se->on_rq = 1;
1475
1476 inc_rt_tasks(rt_se, rt_rq);
1477 }
1478
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1479 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1480 {
1481 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1482 struct rt_prio_array *array = &rt_rq->active;
1483
1484 if (move_entity(flags)) {
1485 WARN_ON_ONCE(!rt_se->on_list);
1486 __delist_rt_entity(rt_se, array);
1487 }
1488 rt_se->on_rq = 0;
1489
1490 dec_rt_tasks(rt_se, rt_rq);
1491 }
1492
1493 /*
1494 * Because the prio of an upper entry depends on the lower
1495 * entries, we must remove entries top - down.
1496 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1497 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1498 {
1499 struct sched_rt_entity *back = NULL;
1500 unsigned int rt_nr_running;
1501
1502 for_each_sched_rt_entity(rt_se) {
1503 rt_se->back = back;
1504 back = rt_se;
1505 }
1506
1507 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1508
1509 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1510 if (on_rt_rq(rt_se))
1511 __dequeue_rt_entity(rt_se, flags);
1512 }
1513
1514 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1515 }
1516
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1517 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1518 {
1519 struct rq *rq = rq_of_rt_se(rt_se);
1520
1521 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1522
1523 dequeue_rt_stack(rt_se, flags);
1524 for_each_sched_rt_entity(rt_se)
1525 __enqueue_rt_entity(rt_se, flags);
1526 enqueue_top_rt_rq(&rq->rt);
1527 }
1528
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1530 {
1531 struct rq *rq = rq_of_rt_se(rt_se);
1532
1533 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1534
1535 dequeue_rt_stack(rt_se, flags);
1536
1537 for_each_sched_rt_entity(rt_se) {
1538 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1539
1540 if (rt_rq && rt_rq->rt_nr_running)
1541 __enqueue_rt_entity(rt_se, flags);
1542 }
1543 enqueue_top_rt_rq(&rq->rt);
1544 }
1545
1546 #ifdef CONFIG_SMP
should_honor_rt_sync(struct rq * rq,struct task_struct * p,bool sync)1547 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
1548 bool sync)
1549 {
1550 /*
1551 * If the waker is CFS, then an RT sync wakeup would preempt the waker
1552 * and force it to run for a likely small time after the RT wakee is
1553 * done. So, only honor RT sync wakeups from RT wakers.
1554 */
1555 return sync && task_has_rt_policy(rq->curr) &&
1556 p->prio <= rq->rt.highest_prio.next &&
1557 rq->rt.rt_nr_running <= 2;
1558 }
1559 #else
should_honor_rt_sync(struct rq * rq,struct task_struct * p,bool sync)1560 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
1561 bool sync)
1562 {
1563 return 0;
1564 }
1565 #endif
1566
1567 /*
1568 * Adding/removing a task to/from a priority array:
1569 */
1570 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1571 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1572 {
1573 struct sched_rt_entity *rt_se = &p->rt;
1574 bool sync = !!(flags & ENQUEUE_WAKEUP_SYNC);
1575
1576 if (flags & ENQUEUE_WAKEUP)
1577 rt_se->timeout = 0;
1578
1579 check_schedstat_required();
1580 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1581
1582 enqueue_rt_entity(rt_se, flags);
1583
1584 if (!task_current(rq, p) && p->nr_cpus_allowed > 1 &&
1585 !should_honor_rt_sync(rq, p, sync))
1586 enqueue_pushable_task(rq, p);
1587 }
1588
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1589 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1590 {
1591 struct sched_rt_entity *rt_se = &p->rt;
1592
1593 update_curr_rt(rq);
1594 dequeue_rt_entity(rt_se, flags);
1595
1596 dequeue_pushable_task(rq, p);
1597 }
1598
1599 /*
1600 * Put task to the head or the end of the run list without the overhead of
1601 * dequeue followed by enqueue.
1602 */
1603 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1604 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1605 {
1606 if (on_rt_rq(rt_se)) {
1607 struct rt_prio_array *array = &rt_rq->active;
1608 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1609
1610 if (head)
1611 list_move(&rt_se->run_list, queue);
1612 else
1613 list_move_tail(&rt_se->run_list, queue);
1614 }
1615 }
1616
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1617 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1618 {
1619 struct sched_rt_entity *rt_se = &p->rt;
1620 struct rt_rq *rt_rq;
1621
1622 for_each_sched_rt_entity(rt_se) {
1623 rt_rq = rt_rq_of_se(rt_se);
1624 requeue_rt_entity(rt_rq, rt_se, head);
1625 }
1626 }
1627
yield_task_rt(struct rq * rq)1628 static void yield_task_rt(struct rq *rq)
1629 {
1630 requeue_task_rt(rq, rq->curr, 0);
1631 }
1632
1633 #ifdef CONFIG_SMP
1634 static int find_lowest_rq(struct task_struct *task);
1635
1636 #ifdef CONFIG_RT_SOFTIRQ_AWARE_SCHED
1637 /*
1638 * Return whether the given cpu is currently non-preemptible
1639 * while handling a potentially long softirq, or if the current
1640 * task is likely to block preemptions soon because it is a
1641 * ksoftirq thread that is handling softirqs.
1642 */
cpu_busy_with_softirqs(int cpu)1643 bool cpu_busy_with_softirqs(int cpu)
1644 {
1645 u32 softirqs = per_cpu(active_softirqs, cpu) |
1646 __cpu_softirq_pending(cpu);
1647
1648 return softirqs & LONG_SOFTIRQ_MASK;
1649 }
1650 #else
cpu_busy_with_softirqs(int cpu)1651 bool cpu_busy_with_softirqs(int cpu)
1652 {
1653 return false;
1654 }
1655 #endif /* CONFIG_RT_SOFTIRQ_AWARE_SCHED */
1656 EXPORT_SYMBOL_GPL(cpu_busy_with_softirqs);
1657
rt_task_fits_cpu(struct task_struct * p,int cpu)1658 static bool rt_task_fits_cpu(struct task_struct *p, int cpu)
1659 {
1660 return rt_task_fits_capacity(p, cpu) && !cpu_busy_with_softirqs(cpu);
1661 }
1662
1663 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1664 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1665 {
1666 struct task_struct *curr;
1667 struct rq *rq;
1668 struct rq *this_cpu_rq;
1669 bool test;
1670 int target_cpu = -1;
1671 bool sync = !!(flags & WF_SYNC);
1672 int this_cpu;
1673
1674 trace_android_rvh_select_task_rq_rt(p, cpu, flags & 0xF,
1675 flags, &target_cpu);
1676 if (target_cpu >= 0)
1677 return target_cpu;
1678
1679 /* For anything but wake ups, just return the task_cpu */
1680 if (!(flags & (WF_TTWU | WF_FORK)))
1681 goto out;
1682
1683 rq = cpu_rq(cpu);
1684
1685 rcu_read_lock();
1686 curr = READ_ONCE(rq->curr); /* unlocked access */
1687 this_cpu = smp_processor_id();
1688 this_cpu_rq = cpu_rq(this_cpu);
1689
1690 /*
1691 * If the current task on @p's runqueue is an RT task, then
1692 * try to see if we can wake this RT task up on another
1693 * runqueue. Otherwise simply start this RT task
1694 * on its current runqueue.
1695 *
1696 * We want to avoid overloading runqueues. If the woken
1697 * task is a higher priority, then it will stay on this CPU
1698 * and the lower prio task should be moved to another CPU.
1699 * Even though this will probably make the lower prio task
1700 * lose its cache, we do not want to bounce a higher task
1701 * around just because it gave up its CPU, perhaps for a
1702 * lock?
1703 *
1704 * For equal prio tasks, we just let the scheduler sort it out.
1705 *
1706 * Otherwise, just let it ride on the affined RQ and the
1707 * post-schedule router will push the preempted task away
1708 *
1709 * This test is optimistic, if we get it wrong the load-balancer
1710 * will have to sort it out.
1711 *
1712 * We use rt_task_fits_cpu() to evaluate if the CPU is busy with
1713 * potentially long-running softirq work, as well as take into
1714 * account the capacity of the CPU to ensure it fits the
1715 * requirement of the task - which is only important on
1716 * heterogeneous systems like big.LITTLE.
1717 */
1718 test = curr &&
1719 unlikely(rt_task(curr)) &&
1720 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1721
1722 /*
1723 * Respect the sync flag as long as the task can run on this CPU.
1724 */
1725 if (should_honor_rt_sync(this_cpu_rq, p, sync) &&
1726 cpumask_test_cpu(this_cpu, p->cpus_ptr)) {
1727 cpu = this_cpu;
1728 goto out_unlock;
1729 }
1730
1731 if (test || !rt_task_fits_cpu(p, cpu)) {
1732 int target = find_lowest_rq(p);
1733
1734 /*
1735 * Bail out if we were forcing a migration to find a better
1736 * fitting CPU but our search failed.
1737 */
1738 if (!test && target != -1 && !rt_task_fits_cpu(p, target))
1739 goto out_unlock;
1740
1741 /*
1742 * Don't bother moving it if the destination CPU is
1743 * not running a lower priority task.
1744 */
1745 if (target != -1 &&
1746 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1747 cpu = target;
1748 }
1749
1750 out_unlock:
1751 rcu_read_unlock();
1752
1753 out:
1754 return cpu;
1755 }
1756
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1757 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1758 {
1759 /*
1760 * Current can't be migrated, useless to reschedule,
1761 * let's hope p can move out.
1762 */
1763 if (rq->curr->nr_cpus_allowed == 1 ||
1764 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1765 return;
1766
1767 /*
1768 * p is migratable, so let's not schedule it and
1769 * see if it is pushed or pulled somewhere else.
1770 */
1771 if (p->nr_cpus_allowed != 1 &&
1772 cpupri_find(&rq->rd->cpupri, p, NULL))
1773 return;
1774
1775 /*
1776 * There appear to be other CPUs that can accept
1777 * the current task but none can run 'p', so lets reschedule
1778 * to try and push the current task away:
1779 */
1780 requeue_task_rt(rq, p, 1);
1781 resched_curr(rq);
1782 }
1783
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1784 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1785 {
1786 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1787 int done = 0;
1788
1789 /*
1790 * This is OK, because current is on_cpu, which avoids it being
1791 * picked for load-balance and preemption/IRQs are still
1792 * disabled avoiding further scheduler activity on it and we've
1793 * not yet started the picking loop.
1794 */
1795 rq_unpin_lock(rq, rf);
1796 trace_android_rvh_sched_balance_rt(rq, p, &done);
1797 if (!done)
1798 pull_rt_task(rq);
1799 rq_repin_lock(rq, rf);
1800 }
1801
1802 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1803 }
1804 #endif /* CONFIG_SMP */
1805
1806 /*
1807 * Preempt the current task with a newly woken task if needed:
1808 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1809 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1810 {
1811 if (p->prio < rq->curr->prio) {
1812 resched_curr(rq);
1813 return;
1814 }
1815
1816 #ifdef CONFIG_SMP
1817 /*
1818 * If:
1819 *
1820 * - the newly woken task is of equal priority to the current task
1821 * - the newly woken task is non-migratable while current is migratable
1822 * - current will be preempted on the next reschedule
1823 *
1824 * we should check to see if current can readily move to a different
1825 * cpu. If so, we will reschedule to allow the push logic to try
1826 * to move current somewhere else, making room for our non-migratable
1827 * task.
1828 */
1829 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1830 check_preempt_equal_prio(rq, p);
1831 #endif
1832 }
1833
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1834 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1835 {
1836 struct sched_rt_entity *rt_se = &p->rt;
1837 struct rt_rq *rt_rq = &rq->rt;
1838
1839 p->se.exec_start = rq_clock_task(rq);
1840 if (on_rt_rq(&p->rt))
1841 update_stats_wait_end_rt(rt_rq, rt_se);
1842
1843 /* The running task is never eligible for pushing */
1844 dequeue_pushable_task(rq, p);
1845
1846 if (!first)
1847 return;
1848
1849 /*
1850 * If prev task was rt, put_prev_task() has already updated the
1851 * utilization. We only care of the case where we start to schedule a
1852 * rt task
1853 */
1854 if (rq->curr->sched_class != &rt_sched_class)
1855 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1856 trace_android_rvh_update_rt_rq_load_avg(rq_clock_pelt(rq), rq, p, 0);
1857
1858 rt_queue_push_tasks(rq);
1859 }
1860
pick_next_rt_entity(struct rt_rq * rt_rq)1861 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1862 {
1863 struct rt_prio_array *array = &rt_rq->active;
1864 struct sched_rt_entity *next = NULL;
1865 struct list_head *queue;
1866 int idx;
1867
1868 idx = sched_find_first_bit(array->bitmap);
1869 BUG_ON(idx >= MAX_RT_PRIO);
1870
1871 queue = array->queue + idx;
1872 if (SCHED_WARN_ON(list_empty(queue)))
1873 return NULL;
1874 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1875
1876 return next;
1877 }
1878
_pick_next_task_rt(struct rq * rq)1879 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1880 {
1881 struct sched_rt_entity *rt_se;
1882 struct rt_rq *rt_rq = &rq->rt;
1883
1884 do {
1885 rt_se = pick_next_rt_entity(rt_rq);
1886 if (unlikely(!rt_se))
1887 return NULL;
1888 rt_rq = group_rt_rq(rt_se);
1889 } while (rt_rq);
1890
1891 return rt_task_of(rt_se);
1892 }
1893
pick_task_rt(struct rq * rq)1894 static struct task_struct *pick_task_rt(struct rq *rq)
1895 {
1896 struct task_struct *p;
1897
1898 if (!sched_rt_runnable(rq))
1899 return NULL;
1900
1901 p = _pick_next_task_rt(rq);
1902
1903 return p;
1904 }
1905
pick_next_task_rt(struct rq * rq)1906 static struct task_struct *pick_next_task_rt(struct rq *rq)
1907 {
1908 struct task_struct *p = pick_task_rt(rq);
1909
1910 if (p)
1911 set_next_task_rt(rq, p, true);
1912
1913 return p;
1914 }
1915
put_prev_task_rt(struct rq * rq,struct task_struct * p)1916 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1917 {
1918 struct sched_rt_entity *rt_se = &p->rt;
1919 struct rt_rq *rt_rq = &rq->rt;
1920
1921 if (on_rt_rq(&p->rt))
1922 update_stats_wait_start_rt(rt_rq, rt_se);
1923
1924 update_curr_rt(rq);
1925
1926 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1927 trace_android_rvh_update_rt_rq_load_avg(rq_clock_pelt(rq), rq, p, 1);
1928
1929 /*
1930 * The previous task needs to be made eligible for pushing
1931 * if it is still active
1932 */
1933 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1934 enqueue_pushable_task(rq, p);
1935 }
1936
1937 #ifdef CONFIG_SMP
1938
1939 /* Only try algorithms three times */
1940 #define RT_MAX_TRIES 3
1941
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1942 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1943 {
1944 if (!task_on_cpu(rq, p) &&
1945 cpumask_test_cpu(cpu, &p->cpus_mask))
1946 return 1;
1947
1948 return 0;
1949 }
1950
1951 /*
1952 * Return the highest pushable rq's task, which is suitable to be executed
1953 * on the CPU, NULL otherwise
1954 */
pick_highest_pushable_task(struct rq * rq,int cpu)1955 struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1956 {
1957 struct plist_head *head = &rq->rt.pushable_tasks;
1958 struct task_struct *p;
1959
1960 if (!has_pushable_tasks(rq))
1961 return NULL;
1962
1963 plist_for_each_entry(p, head, pushable_tasks) {
1964 if (pick_rt_task(rq, p, cpu))
1965 return p;
1966 }
1967
1968 return NULL;
1969 }
1970 EXPORT_SYMBOL_GPL(pick_highest_pushable_task);
1971
1972 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1973
find_lowest_rq(struct task_struct * task)1974 static int find_lowest_rq(struct task_struct *task)
1975 {
1976 struct sched_domain *sd;
1977 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1978 int this_cpu = smp_processor_id();
1979 int cpu = -1;
1980 int ret;
1981
1982 /* Make sure the mask is initialized first */
1983 if (unlikely(!lowest_mask))
1984 return -1;
1985
1986 if (task->nr_cpus_allowed == 1)
1987 return -1; /* No other targets possible */
1988
1989 /*
1990 * If we're using the softirq optimization or if we are
1991 * on asym system, ensure we consider the softirq processing
1992 * or different capacities of the CPUs when searching for the
1993 * lowest_mask.
1994 */
1995 if (IS_ENABLED(CONFIG_RT_SOFTIRQ_AWARE_SCHED) ||
1996 sched_asym_cpucap_active()) {
1997
1998 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1999 task, lowest_mask,
2000 rt_task_fits_cpu);
2001 } else {
2002
2003 ret = cpupri_find(&task_rq(task)->rd->cpupri,
2004 task, lowest_mask);
2005 }
2006
2007 trace_android_rvh_find_lowest_rq(task, lowest_mask, ret, &cpu);
2008 if (cpu >= 0)
2009 return cpu;
2010
2011 if (!ret)
2012 return -1; /* No targets found */
2013
2014 cpu = task_cpu(task);
2015
2016 /*
2017 * At this point we have built a mask of CPUs representing the
2018 * lowest priority tasks in the system. Now we want to elect
2019 * the best one based on our affinity and topology.
2020 *
2021 * We prioritize the last CPU that the task executed on since
2022 * it is most likely cache-hot in that location.
2023 */
2024 if (cpumask_test_cpu(cpu, lowest_mask))
2025 return cpu;
2026
2027 /*
2028 * Otherwise, we consult the sched_domains span maps to figure
2029 * out which CPU is logically closest to our hot cache data.
2030 */
2031 if (!cpumask_test_cpu(this_cpu, lowest_mask))
2032 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
2033
2034 rcu_read_lock();
2035 for_each_domain(cpu, sd) {
2036 if (sd->flags & SD_WAKE_AFFINE) {
2037 int best_cpu;
2038
2039 /*
2040 * "this_cpu" is cheaper to preempt than a
2041 * remote processor.
2042 */
2043 if (this_cpu != -1 &&
2044 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2045 rcu_read_unlock();
2046 return this_cpu;
2047 }
2048
2049 best_cpu = cpumask_any_and_distribute(lowest_mask,
2050 sched_domain_span(sd));
2051 if (best_cpu < nr_cpu_ids) {
2052 rcu_read_unlock();
2053 return best_cpu;
2054 }
2055 }
2056 }
2057 rcu_read_unlock();
2058
2059 /*
2060 * And finally, if there were no matches within the domains
2061 * just give the caller *something* to work with from the compatible
2062 * locations.
2063 */
2064 if (this_cpu != -1)
2065 return this_cpu;
2066
2067 cpu = cpumask_any_distribute(lowest_mask);
2068 if (cpu < nr_cpu_ids)
2069 return cpu;
2070
2071 return -1;
2072 }
2073
2074 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)2075 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
2076 {
2077 struct rq *lowest_rq = NULL;
2078 int tries;
2079 int cpu;
2080
2081 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
2082 cpu = find_lowest_rq(task);
2083
2084 if ((cpu == -1) || (cpu == rq->cpu))
2085 break;
2086
2087 lowest_rq = cpu_rq(cpu);
2088
2089 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
2090 /*
2091 * Target rq has tasks of equal or higher priority,
2092 * retrying does not release any lock and is unlikely
2093 * to yield a different result.
2094 */
2095 lowest_rq = NULL;
2096 break;
2097 }
2098
2099 /* if the prio of this runqueue changed, try again */
2100 if (double_lock_balance(rq, lowest_rq)) {
2101 /*
2102 * We had to unlock the run queue. In
2103 * the mean time, task could have
2104 * migrated already or had its affinity changed.
2105 * Also make sure that it wasn't scheduled on its rq.
2106 * It is possible the task was scheduled, set
2107 * "migrate_disabled" and then got preempted, so we must
2108 * check the task migration disable flag here too.
2109 */
2110 if (unlikely(task_rq(task) != rq ||
2111 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2112 task_on_cpu(rq, task) ||
2113 !rt_task(task) ||
2114 is_migration_disabled(task) ||
2115 !task_on_rq_queued(task))) {
2116
2117 double_unlock_balance(rq, lowest_rq);
2118 lowest_rq = NULL;
2119 break;
2120 }
2121 }
2122
2123 /* If this rq is still suitable use it. */
2124 if (lowest_rq->rt.highest_prio.curr > task->prio)
2125 break;
2126
2127 /* try again */
2128 double_unlock_balance(rq, lowest_rq);
2129 lowest_rq = NULL;
2130 }
2131
2132 return lowest_rq;
2133 }
2134
pick_next_pushable_task(struct rq * rq)2135 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2136 {
2137 struct task_struct *p;
2138
2139 if (!has_pushable_tasks(rq))
2140 return NULL;
2141
2142 p = plist_first_entry(&rq->rt.pushable_tasks,
2143 struct task_struct, pushable_tasks);
2144
2145 BUG_ON(rq->cpu != task_cpu(p));
2146 BUG_ON(task_current(rq, p));
2147 BUG_ON(p->nr_cpus_allowed <= 1);
2148
2149 BUG_ON(!task_on_rq_queued(p));
2150 BUG_ON(!rt_task(p));
2151
2152 return p;
2153 }
2154
2155 /*
2156 * If the current CPU has more than one RT task, see if the non
2157 * running task can migrate over to a CPU that is running a task
2158 * of lesser priority.
2159 */
push_rt_task(struct rq * rq,bool pull)2160 static int push_rt_task(struct rq *rq, bool pull)
2161 {
2162 struct task_struct *next_task;
2163 struct rq *lowest_rq;
2164 int ret = 0;
2165
2166 if (!rq->rt.overloaded)
2167 return 0;
2168
2169 next_task = pick_next_pushable_task(rq);
2170 if (!next_task)
2171 return 0;
2172
2173 retry:
2174 /*
2175 * It's possible that the next_task slipped in of
2176 * higher priority than current. If that's the case
2177 * just reschedule current.
2178 */
2179 if (unlikely(next_task->prio < rq->curr->prio)) {
2180 resched_curr(rq);
2181 return 0;
2182 }
2183
2184 if (is_migration_disabled(next_task)) {
2185 struct task_struct *push_task = NULL;
2186 int cpu;
2187
2188 if (!pull || rq->push_busy)
2189 return 0;
2190
2191 /*
2192 * Invoking find_lowest_rq() on anything but an RT task doesn't
2193 * make sense. Per the above priority check, curr has to
2194 * be of higher priority than next_task, so no need to
2195 * reschedule when bailing out.
2196 *
2197 * Note that the stoppers are masqueraded as SCHED_FIFO
2198 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2199 */
2200 if (rq->curr->sched_class != &rt_sched_class)
2201 return 0;
2202
2203 cpu = find_lowest_rq(rq->curr);
2204 if (cpu == -1 || cpu == rq->cpu)
2205 return 0;
2206
2207 /*
2208 * Given we found a CPU with lower priority than @next_task,
2209 * therefore it should be running. However we cannot migrate it
2210 * to this other CPU, instead attempt to push the current
2211 * running task on this CPU away.
2212 */
2213 push_task = get_push_task(rq);
2214 if (push_task) {
2215 preempt_disable();
2216 raw_spin_rq_unlock(rq);
2217 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2218 push_task, &rq->push_work);
2219 preempt_enable();
2220 raw_spin_rq_lock(rq);
2221 }
2222
2223 return 0;
2224 }
2225
2226 if (WARN_ON(next_task == rq->curr))
2227 return 0;
2228
2229 /* We might release rq lock */
2230 get_task_struct(next_task);
2231
2232 /* find_lock_lowest_rq locks the rq if found */
2233 lowest_rq = find_lock_lowest_rq(next_task, rq);
2234 if (!lowest_rq) {
2235 struct task_struct *task;
2236 /*
2237 * find_lock_lowest_rq releases rq->lock
2238 * so it is possible that next_task has migrated.
2239 *
2240 * We need to make sure that the task is still on the same
2241 * run-queue and is also still the next task eligible for
2242 * pushing.
2243 */
2244 task = pick_next_pushable_task(rq);
2245 if (task == next_task) {
2246 /*
2247 * The task hasn't migrated, and is still the next
2248 * eligible task, but we failed to find a run-queue
2249 * to push it to. Do not retry in this case, since
2250 * other CPUs will pull from us when ready.
2251 */
2252 goto out;
2253 }
2254
2255 if (!task)
2256 /* No more tasks, just exit */
2257 goto out;
2258
2259 /*
2260 * Something has shifted, try again.
2261 */
2262 put_task_struct(next_task);
2263 next_task = task;
2264 goto retry;
2265 }
2266
2267 deactivate_task(rq, next_task, 0);
2268 set_task_cpu(next_task, lowest_rq->cpu);
2269 activate_task(lowest_rq, next_task, 0);
2270 resched_curr(lowest_rq);
2271 ret = 1;
2272
2273 double_unlock_balance(rq, lowest_rq);
2274 out:
2275 put_task_struct(next_task);
2276
2277 return ret;
2278 }
2279
push_rt_tasks(struct rq * rq)2280 static void push_rt_tasks(struct rq *rq)
2281 {
2282 /* push_rt_task will return true if it moved an RT */
2283 while (push_rt_task(rq, false))
2284 ;
2285 }
2286
2287 #ifdef HAVE_RT_PUSH_IPI
2288
2289 /*
2290 * When a high priority task schedules out from a CPU and a lower priority
2291 * task is scheduled in, a check is made to see if there's any RT tasks
2292 * on other CPUs that are waiting to run because a higher priority RT task
2293 * is currently running on its CPU. In this case, the CPU with multiple RT
2294 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2295 * up that may be able to run one of its non-running queued RT tasks.
2296 *
2297 * All CPUs with overloaded RT tasks need to be notified as there is currently
2298 * no way to know which of these CPUs have the highest priority task waiting
2299 * to run. Instead of trying to take a spinlock on each of these CPUs,
2300 * which has shown to cause large latency when done on machines with many
2301 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2302 * RT tasks waiting to run.
2303 *
2304 * Just sending an IPI to each of the CPUs is also an issue, as on large
2305 * count CPU machines, this can cause an IPI storm on a CPU, especially
2306 * if its the only CPU with multiple RT tasks queued, and a large number
2307 * of CPUs scheduling a lower priority task at the same time.
2308 *
2309 * Each root domain has its own irq work function that can iterate over
2310 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2311 * task must be checked if there's one or many CPUs that are lowering
2312 * their priority, there's a single irq work iterator that will try to
2313 * push off RT tasks that are waiting to run.
2314 *
2315 * When a CPU schedules a lower priority task, it will kick off the
2316 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2317 * As it only takes the first CPU that schedules a lower priority task
2318 * to start the process, the rto_start variable is incremented and if
2319 * the atomic result is one, then that CPU will try to take the rto_lock.
2320 * This prevents high contention on the lock as the process handles all
2321 * CPUs scheduling lower priority tasks.
2322 *
2323 * All CPUs that are scheduling a lower priority task will increment the
2324 * rt_loop_next variable. This will make sure that the irq work iterator
2325 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2326 * priority task, even if the iterator is in the middle of a scan. Incrementing
2327 * the rt_loop_next will cause the iterator to perform another scan.
2328 *
2329 */
rto_next_cpu(struct root_domain * rd)2330 static int rto_next_cpu(struct root_domain *rd)
2331 {
2332 int next;
2333 int cpu;
2334
2335 /*
2336 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2337 * rt_next_cpu() will simply return the first CPU found in
2338 * the rto_mask.
2339 *
2340 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2341 * will return the next CPU found in the rto_mask.
2342 *
2343 * If there are no more CPUs left in the rto_mask, then a check is made
2344 * against rto_loop and rto_loop_next. rto_loop is only updated with
2345 * the rto_lock held, but any CPU may increment the rto_loop_next
2346 * without any locking.
2347 */
2348 for (;;) {
2349
2350 /* When rto_cpu is -1 this acts like cpumask_first() */
2351 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2352
2353 /* this will be any CPU in the rd->rto_mask, and can be a halted cpu update it */
2354 trace_android_rvh_rto_next_cpu(rd->rto_cpu, rd->rto_mask, &cpu);
2355
2356 rd->rto_cpu = cpu;
2357
2358 if (cpu < nr_cpu_ids)
2359 return cpu;
2360
2361 rd->rto_cpu = -1;
2362
2363 /*
2364 * ACQUIRE ensures we see the @rto_mask changes
2365 * made prior to the @next value observed.
2366 *
2367 * Matches WMB in rt_set_overload().
2368 */
2369 next = atomic_read_acquire(&rd->rto_loop_next);
2370
2371 if (rd->rto_loop == next)
2372 break;
2373
2374 rd->rto_loop = next;
2375 }
2376
2377 return -1;
2378 }
2379
rto_start_trylock(atomic_t * v)2380 static inline bool rto_start_trylock(atomic_t *v)
2381 {
2382 return !atomic_cmpxchg_acquire(v, 0, 1);
2383 }
2384
rto_start_unlock(atomic_t * v)2385 static inline void rto_start_unlock(atomic_t *v)
2386 {
2387 atomic_set_release(v, 0);
2388 }
2389
tell_cpu_to_push(struct rq * rq)2390 static void tell_cpu_to_push(struct rq *rq)
2391 {
2392 int cpu = -1;
2393
2394 /* Keep the loop going if the IPI is currently active */
2395 atomic_inc(&rq->rd->rto_loop_next);
2396
2397 /* Only one CPU can initiate a loop at a time */
2398 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2399 return;
2400
2401 raw_spin_lock(&rq->rd->rto_lock);
2402
2403 /*
2404 * The rto_cpu is updated under the lock, if it has a valid CPU
2405 * then the IPI is still running and will continue due to the
2406 * update to loop_next, and nothing needs to be done here.
2407 * Otherwise it is finishing up and an ipi needs to be sent.
2408 */
2409 if (rq->rd->rto_cpu < 0)
2410 cpu = rto_next_cpu(rq->rd);
2411
2412 raw_spin_unlock(&rq->rd->rto_lock);
2413
2414 rto_start_unlock(&rq->rd->rto_loop_start);
2415
2416 if (cpu >= 0) {
2417 /* Make sure the rd does not get freed while pushing */
2418 sched_get_rd(rq->rd);
2419 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2420 }
2421 }
2422
2423 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2424 void rto_push_irq_work_func(struct irq_work *work)
2425 {
2426 struct root_domain *rd =
2427 container_of(work, struct root_domain, rto_push_work);
2428 struct rq *rq;
2429 int cpu;
2430
2431 rq = this_rq();
2432
2433 /*
2434 * We do not need to grab the lock to check for has_pushable_tasks.
2435 * When it gets updated, a check is made if a push is possible.
2436 */
2437 if (has_pushable_tasks(rq)) {
2438 raw_spin_rq_lock(rq);
2439 while (push_rt_task(rq, true))
2440 ;
2441 raw_spin_rq_unlock(rq);
2442 }
2443
2444 raw_spin_lock(&rd->rto_lock);
2445
2446 /* Pass the IPI to the next rt overloaded queue */
2447 cpu = rto_next_cpu(rd);
2448
2449 raw_spin_unlock(&rd->rto_lock);
2450
2451 if (cpu < 0) {
2452 sched_put_rd(rd);
2453 return;
2454 }
2455
2456 /* Try the next RT overloaded CPU */
2457 irq_work_queue_on(&rd->rto_push_work, cpu);
2458 }
2459 #endif /* HAVE_RT_PUSH_IPI */
2460
pull_rt_task(struct rq * this_rq)2461 static void pull_rt_task(struct rq *this_rq)
2462 {
2463 int this_cpu = this_rq->cpu, cpu;
2464 bool resched = false;
2465 struct task_struct *p, *push_task;
2466 struct rq *src_rq;
2467 int rt_overload_count = rt_overloaded(this_rq);
2468
2469 if (likely(!rt_overload_count))
2470 return;
2471
2472 /*
2473 * Match the barrier from rt_set_overloaded; this guarantees that if we
2474 * see overloaded we must also see the rto_mask bit.
2475 */
2476 smp_rmb();
2477
2478 /* If we are the only overloaded CPU do nothing */
2479 if (rt_overload_count == 1 &&
2480 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2481 return;
2482
2483 #ifdef HAVE_RT_PUSH_IPI
2484 if (sched_feat(RT_PUSH_IPI)) {
2485 tell_cpu_to_push(this_rq);
2486 return;
2487 }
2488 #endif
2489
2490 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2491 if (this_cpu == cpu)
2492 continue;
2493
2494 src_rq = cpu_rq(cpu);
2495
2496 /*
2497 * Don't bother taking the src_rq->lock if the next highest
2498 * task is known to be lower-priority than our current task.
2499 * This may look racy, but if this value is about to go
2500 * logically higher, the src_rq will push this task away.
2501 * And if its going logically lower, we do not care
2502 */
2503 if (src_rq->rt.highest_prio.next >=
2504 this_rq->rt.highest_prio.curr)
2505 continue;
2506
2507 /*
2508 * We can potentially drop this_rq's lock in
2509 * double_lock_balance, and another CPU could
2510 * alter this_rq
2511 */
2512 push_task = NULL;
2513 double_lock_balance(this_rq, src_rq);
2514
2515 /*
2516 * We can pull only a task, which is pushable
2517 * on its rq, and no others.
2518 */
2519 p = pick_highest_pushable_task(src_rq, this_cpu);
2520
2521 /*
2522 * Do we have an RT task that preempts
2523 * the to-be-scheduled task?
2524 */
2525 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2526 WARN_ON(p == src_rq->curr);
2527 WARN_ON(!task_on_rq_queued(p));
2528
2529 /*
2530 * There's a chance that p is higher in priority
2531 * than what's currently running on its CPU.
2532 * This is just that p is waking up and hasn't
2533 * had a chance to schedule. We only pull
2534 * p if it is lower in priority than the
2535 * current task on the run queue
2536 */
2537 if (p->prio < src_rq->curr->prio)
2538 goto skip;
2539
2540 if (is_migration_disabled(p)) {
2541 push_task = get_push_task(src_rq);
2542 } else {
2543 deactivate_task(src_rq, p, 0);
2544 set_task_cpu(p, this_cpu);
2545 activate_task(this_rq, p, 0);
2546 resched = true;
2547 }
2548 /*
2549 * We continue with the search, just in
2550 * case there's an even higher prio task
2551 * in another runqueue. (low likelihood
2552 * but possible)
2553 */
2554 }
2555 skip:
2556 double_unlock_balance(this_rq, src_rq);
2557
2558 if (push_task) {
2559 preempt_disable();
2560 raw_spin_rq_unlock(this_rq);
2561 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2562 push_task, &src_rq->push_work);
2563 preempt_enable();
2564 raw_spin_rq_lock(this_rq);
2565 }
2566 }
2567
2568 if (resched)
2569 resched_curr(this_rq);
2570 }
2571
2572 /*
2573 * If we are not running and we are not going to reschedule soon, we should
2574 * try to push tasks away now
2575 */
task_woken_rt(struct rq * rq,struct task_struct * p)2576 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2577 {
2578 bool need_to_push = !task_on_cpu(rq, p) &&
2579 !test_tsk_need_resched(rq->curr) &&
2580 p->nr_cpus_allowed > 1 &&
2581 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2582 (rq->curr->nr_cpus_allowed < 2 ||
2583 rq->curr->prio <= p->prio);
2584
2585 if (need_to_push)
2586 push_rt_tasks(rq);
2587 }
2588
2589 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2590 static void rq_online_rt(struct rq *rq)
2591 {
2592 if (rq->rt.overloaded)
2593 rt_set_overload(rq);
2594
2595 __enable_runtime(rq);
2596
2597 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2598 }
2599
2600 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2601 static void rq_offline_rt(struct rq *rq)
2602 {
2603 if (rq->rt.overloaded)
2604 rt_clear_overload(rq);
2605
2606 __disable_runtime(rq);
2607
2608 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2609 }
2610
2611 /*
2612 * When switch from the rt queue, we bring ourselves to a position
2613 * that we might want to pull RT tasks from other runqueues.
2614 */
switched_from_rt(struct rq * rq,struct task_struct * p)2615 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2616 {
2617 /*
2618 * If there are other RT tasks then we will reschedule
2619 * and the scheduling of the other RT tasks will handle
2620 * the balancing. But if we are the last RT task
2621 * we may need to handle the pulling of RT tasks
2622 * now.
2623 */
2624 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2625 return;
2626
2627 rt_queue_pull_task(rq);
2628 }
2629
init_sched_rt_class(void)2630 void __init init_sched_rt_class(void)
2631 {
2632 unsigned int i;
2633
2634 for_each_possible_cpu(i) {
2635 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2636 GFP_KERNEL, cpu_to_node(i));
2637 }
2638 }
2639 #endif /* CONFIG_SMP */
2640
2641 /*
2642 * When switching a task to RT, we may overload the runqueue
2643 * with RT tasks. In this case we try to push them off to
2644 * other runqueues.
2645 */
switched_to_rt(struct rq * rq,struct task_struct * p)2646 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2647 {
2648 /*
2649 * If we are running, update the avg_rt tracking, as the running time
2650 * will now on be accounted into the latter.
2651 */
2652 if (task_current(rq, p)) {
2653 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2654 return;
2655 }
2656
2657 /*
2658 * If we are not running we may need to preempt the current
2659 * running task. If that current running task is also an RT task
2660 * then see if we can move to another run queue.
2661 */
2662 if (task_on_rq_queued(p)) {
2663 #ifdef CONFIG_SMP
2664 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2665 rt_queue_push_tasks(rq);
2666 #endif /* CONFIG_SMP */
2667 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2668 resched_curr(rq);
2669 }
2670 }
2671
2672 /*
2673 * Priority of the task has changed. This may cause
2674 * us to initiate a push or pull.
2675 */
2676 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2677 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2678 {
2679 if (!task_on_rq_queued(p))
2680 return;
2681
2682 if (task_current(rq, p)) {
2683 #ifdef CONFIG_SMP
2684 /*
2685 * If our priority decreases while running, we
2686 * may need to pull tasks to this runqueue.
2687 */
2688 if (oldprio < p->prio)
2689 rt_queue_pull_task(rq);
2690
2691 /*
2692 * If there's a higher priority task waiting to run
2693 * then reschedule.
2694 */
2695 if (p->prio > rq->rt.highest_prio.curr)
2696 resched_curr(rq);
2697 #else
2698 /* For UP simply resched on drop of prio */
2699 if (oldprio < p->prio)
2700 resched_curr(rq);
2701 #endif /* CONFIG_SMP */
2702 } else {
2703 /*
2704 * This task is not running, but if it is
2705 * greater than the current running task
2706 * then reschedule.
2707 */
2708 if (p->prio < rq->curr->prio)
2709 resched_curr(rq);
2710 }
2711 }
2712
2713 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2714 static void watchdog(struct rq *rq, struct task_struct *p)
2715 {
2716 unsigned long soft, hard;
2717
2718 /* max may change after cur was read, this will be fixed next tick */
2719 soft = task_rlimit(p, RLIMIT_RTTIME);
2720 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2721
2722 if (soft != RLIM_INFINITY) {
2723 unsigned long next;
2724
2725 if (p->rt.watchdog_stamp != jiffies) {
2726 p->rt.timeout++;
2727 p->rt.watchdog_stamp = jiffies;
2728 }
2729
2730 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2731 if (p->rt.timeout > next) {
2732 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2733 p->se.sum_exec_runtime);
2734 }
2735 }
2736 }
2737 #else
watchdog(struct rq * rq,struct task_struct * p)2738 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2739 #endif
2740
2741 /*
2742 * scheduler tick hitting a task of our scheduling class.
2743 *
2744 * NOTE: This function can be called remotely by the tick offload that
2745 * goes along full dynticks. Therefore no local assumption can be made
2746 * and everything must be accessed through the @rq and @curr passed in
2747 * parameters.
2748 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2749 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2750 {
2751 struct sched_rt_entity *rt_se = &p->rt;
2752
2753 update_curr_rt(rq);
2754 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2755 trace_android_rvh_update_rt_rq_load_avg(rq_clock_pelt(rq), rq, p, 1);
2756
2757 watchdog(rq, p);
2758
2759 /*
2760 * RR tasks need a special form of timeslice management.
2761 * FIFO tasks have no timeslices.
2762 */
2763 if (p->policy != SCHED_RR)
2764 return;
2765
2766 if (--p->rt.time_slice)
2767 return;
2768
2769 p->rt.time_slice = sched_rr_timeslice;
2770
2771 /*
2772 * Requeue to the end of queue if we (and all of our ancestors) are not
2773 * the only element on the queue
2774 */
2775 for_each_sched_rt_entity(rt_se) {
2776 if (rt_se->run_list.prev != rt_se->run_list.next) {
2777 requeue_task_rt(rq, p, 0);
2778 resched_curr(rq);
2779 return;
2780 }
2781 }
2782 }
2783
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2784 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2785 {
2786 /*
2787 * Time slice is 0 for SCHED_FIFO tasks
2788 */
2789 if (task->policy == SCHED_RR)
2790 return sched_rr_timeslice;
2791 else
2792 return 0;
2793 }
2794
2795 DEFINE_SCHED_CLASS(rt) = {
2796
2797 .enqueue_task = enqueue_task_rt,
2798 .dequeue_task = dequeue_task_rt,
2799 .yield_task = yield_task_rt,
2800
2801 .check_preempt_curr = check_preempt_curr_rt,
2802
2803 .pick_next_task = pick_next_task_rt,
2804 .put_prev_task = put_prev_task_rt,
2805 .set_next_task = set_next_task_rt,
2806
2807 #ifdef CONFIG_SMP
2808 .balance = balance_rt,
2809 .pick_task = pick_task_rt,
2810 .select_task_rq = select_task_rq_rt,
2811 .set_cpus_allowed = set_cpus_allowed_common,
2812 .rq_online = rq_online_rt,
2813 .rq_offline = rq_offline_rt,
2814 .task_woken = task_woken_rt,
2815 .switched_from = switched_from_rt,
2816 .find_lock_rq = find_lock_lowest_rq,
2817 #endif
2818
2819 .task_tick = task_tick_rt,
2820
2821 .get_rr_interval = get_rr_interval_rt,
2822
2823 .prio_changed = prio_changed_rt,
2824 .switched_to = switched_to_rt,
2825
2826 .update_curr = update_curr_rt,
2827
2828 #ifdef CONFIG_UCLAMP_TASK
2829 .uclamp_enabled = 1,
2830 #endif
2831 };
2832
2833 #ifdef CONFIG_RT_GROUP_SCHED
2834 /*
2835 * Ensure that the real time constraints are schedulable.
2836 */
2837 static DEFINE_MUTEX(rt_constraints_mutex);
2838
tg_has_rt_tasks(struct task_group * tg)2839 static inline int tg_has_rt_tasks(struct task_group *tg)
2840 {
2841 struct task_struct *task;
2842 struct css_task_iter it;
2843 int ret = 0;
2844
2845 /*
2846 * Autogroups do not have RT tasks; see autogroup_create().
2847 */
2848 if (task_group_is_autogroup(tg))
2849 return 0;
2850
2851 css_task_iter_start(&tg->css, 0, &it);
2852 while (!ret && (task = css_task_iter_next(&it)))
2853 ret |= rt_task(task);
2854 css_task_iter_end(&it);
2855
2856 return ret;
2857 }
2858
2859 struct rt_schedulable_data {
2860 struct task_group *tg;
2861 u64 rt_period;
2862 u64 rt_runtime;
2863 };
2864
tg_rt_schedulable(struct task_group * tg,void * data)2865 static int tg_rt_schedulable(struct task_group *tg, void *data)
2866 {
2867 struct rt_schedulable_data *d = data;
2868 struct task_group *child;
2869 unsigned long total, sum = 0;
2870 u64 period, runtime;
2871
2872 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2873 runtime = tg->rt_bandwidth.rt_runtime;
2874
2875 if (tg == d->tg) {
2876 period = d->rt_period;
2877 runtime = d->rt_runtime;
2878 }
2879
2880 /*
2881 * Cannot have more runtime than the period.
2882 */
2883 if (runtime > period && runtime != RUNTIME_INF)
2884 return -EINVAL;
2885
2886 /*
2887 * Ensure we don't starve existing RT tasks if runtime turns zero.
2888 */
2889 if (rt_bandwidth_enabled() && !runtime &&
2890 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2891 return -EBUSY;
2892
2893 total = to_ratio(period, runtime);
2894
2895 /*
2896 * Nobody can have more than the global setting allows.
2897 */
2898 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2899 return -EINVAL;
2900
2901 /*
2902 * The sum of our children's runtime should not exceed our own.
2903 */
2904 list_for_each_entry_rcu(child, &tg->children, siblings) {
2905 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2906 runtime = child->rt_bandwidth.rt_runtime;
2907
2908 if (child == d->tg) {
2909 period = d->rt_period;
2910 runtime = d->rt_runtime;
2911 }
2912
2913 sum += to_ratio(period, runtime);
2914 }
2915
2916 if (sum > total)
2917 return -EINVAL;
2918
2919 return 0;
2920 }
2921
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2922 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2923 {
2924 int ret;
2925
2926 struct rt_schedulable_data data = {
2927 .tg = tg,
2928 .rt_period = period,
2929 .rt_runtime = runtime,
2930 };
2931
2932 rcu_read_lock();
2933 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2934 rcu_read_unlock();
2935
2936 return ret;
2937 }
2938
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2939 static int tg_set_rt_bandwidth(struct task_group *tg,
2940 u64 rt_period, u64 rt_runtime)
2941 {
2942 int i, err = 0;
2943
2944 /*
2945 * Disallowing the root group RT runtime is BAD, it would disallow the
2946 * kernel creating (and or operating) RT threads.
2947 */
2948 if (tg == &root_task_group && rt_runtime == 0)
2949 return -EINVAL;
2950
2951 /* No period doesn't make any sense. */
2952 if (rt_period == 0)
2953 return -EINVAL;
2954
2955 /*
2956 * Bound quota to defend quota against overflow during bandwidth shift.
2957 */
2958 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2959 return -EINVAL;
2960
2961 mutex_lock(&rt_constraints_mutex);
2962 err = __rt_schedulable(tg, rt_period, rt_runtime);
2963 if (err)
2964 goto unlock;
2965
2966 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2967 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2968 tg->rt_bandwidth.rt_runtime = rt_runtime;
2969
2970 for_each_possible_cpu(i) {
2971 struct rt_rq *rt_rq = tg->rt_rq[i];
2972
2973 raw_spin_lock(&rt_rq->rt_runtime_lock);
2974 rt_rq->rt_runtime = rt_runtime;
2975 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2976 }
2977 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2978 unlock:
2979 mutex_unlock(&rt_constraints_mutex);
2980
2981 return err;
2982 }
2983
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2984 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2985 {
2986 u64 rt_runtime, rt_period;
2987
2988 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2989 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2990 if (rt_runtime_us < 0)
2991 rt_runtime = RUNTIME_INF;
2992 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2993 return -EINVAL;
2994
2995 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2996 }
2997
sched_group_rt_runtime(struct task_group * tg)2998 long sched_group_rt_runtime(struct task_group *tg)
2999 {
3000 u64 rt_runtime_us;
3001
3002 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
3003 return -1;
3004
3005 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
3006 do_div(rt_runtime_us, NSEC_PER_USEC);
3007 return rt_runtime_us;
3008 }
3009
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)3010 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
3011 {
3012 u64 rt_runtime, rt_period;
3013
3014 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
3015 return -EINVAL;
3016
3017 rt_period = rt_period_us * NSEC_PER_USEC;
3018 rt_runtime = tg->rt_bandwidth.rt_runtime;
3019
3020 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
3021 }
3022
sched_group_rt_period(struct task_group * tg)3023 long sched_group_rt_period(struct task_group *tg)
3024 {
3025 u64 rt_period_us;
3026
3027 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
3028 do_div(rt_period_us, NSEC_PER_USEC);
3029 return rt_period_us;
3030 }
3031
3032 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)3033 static int sched_rt_global_constraints(void)
3034 {
3035 int ret = 0;
3036
3037 mutex_lock(&rt_constraints_mutex);
3038 ret = __rt_schedulable(NULL, 0, 0);
3039 mutex_unlock(&rt_constraints_mutex);
3040
3041 return ret;
3042 }
3043 #endif /* CONFIG_SYSCTL */
3044
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)3045 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
3046 {
3047 /* Don't accept realtime tasks when there is no way for them to run */
3048 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
3049 return 0;
3050
3051 return 1;
3052 }
3053
3054 #else /* !CONFIG_RT_GROUP_SCHED */
3055
3056 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)3057 static int sched_rt_global_constraints(void)
3058 {
3059 unsigned long flags;
3060 int i;
3061
3062 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3063 for_each_possible_cpu(i) {
3064 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
3065
3066 raw_spin_lock(&rt_rq->rt_runtime_lock);
3067 rt_rq->rt_runtime = global_rt_runtime();
3068 raw_spin_unlock(&rt_rq->rt_runtime_lock);
3069 }
3070 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3071
3072 return 0;
3073 }
3074 #endif /* CONFIG_SYSCTL */
3075 #endif /* CONFIG_RT_GROUP_SCHED */
3076
3077 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)3078 static int sched_rt_global_validate(void)
3079 {
3080 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
3081 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
3082 ((u64)sysctl_sched_rt_runtime *
3083 NSEC_PER_USEC > max_rt_runtime)))
3084 return -EINVAL;
3085
3086 return 0;
3087 }
3088
sched_rt_do_global(void)3089 static void sched_rt_do_global(void)
3090 {
3091 unsigned long flags;
3092
3093 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3094 def_rt_bandwidth.rt_runtime = global_rt_runtime();
3095 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3096 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3097 }
3098
sched_rt_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3099 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
3100 size_t *lenp, loff_t *ppos)
3101 {
3102 int old_period, old_runtime;
3103 static DEFINE_MUTEX(mutex);
3104 int ret;
3105
3106 mutex_lock(&mutex);
3107 old_period = sysctl_sched_rt_period;
3108 old_runtime = sysctl_sched_rt_runtime;
3109
3110 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3111
3112 if (!ret && write) {
3113 ret = sched_rt_global_validate();
3114 if (ret)
3115 goto undo;
3116
3117 ret = sched_dl_global_validate();
3118 if (ret)
3119 goto undo;
3120
3121 ret = sched_rt_global_constraints();
3122 if (ret)
3123 goto undo;
3124
3125 sched_rt_do_global();
3126 sched_dl_do_global();
3127 }
3128 if (0) {
3129 undo:
3130 sysctl_sched_rt_period = old_period;
3131 sysctl_sched_rt_runtime = old_runtime;
3132 }
3133 mutex_unlock(&mutex);
3134
3135 return ret;
3136 }
3137
sched_rr_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3138 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3139 size_t *lenp, loff_t *ppos)
3140 {
3141 int ret;
3142 static DEFINE_MUTEX(mutex);
3143
3144 mutex_lock(&mutex);
3145 ret = proc_dointvec(table, write, buffer, lenp, ppos);
3146 /*
3147 * Make sure that internally we keep jiffies.
3148 * Also, writing zero resets the timeslice to default:
3149 */
3150 if (!ret && write) {
3151 sched_rr_timeslice =
3152 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3153 msecs_to_jiffies(sysctl_sched_rr_timeslice);
3154
3155 if (sysctl_sched_rr_timeslice <= 0)
3156 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3157 }
3158 mutex_unlock(&mutex);
3159
3160 return ret;
3161 }
3162 #endif /* CONFIG_SYSCTL */
3163
3164 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)3165 void print_rt_stats(struct seq_file *m, int cpu)
3166 {
3167 rt_rq_iter_t iter;
3168 struct rt_rq *rt_rq;
3169
3170 rcu_read_lock();
3171 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3172 print_rt_rq(m, cpu, rt_rq);
3173 rcu_read_unlock();
3174 }
3175 #endif /* CONFIG_SCHED_DEBUG */
3176