• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/android_vendor.h>
72 #include <linux/android_kabi.h>
73 #include "android.h"
74 
75 #include <trace/events/power.h>
76 #include <trace/events/sched.h>
77 
78 #include "../workqueue_internal.h"
79 
80 #ifdef CONFIG_CGROUP_SCHED
81 #include <linux/cgroup.h>
82 #include <linux/psi.h>
83 #endif
84 
85 #ifdef CONFIG_SCHED_DEBUG
86 # include <linux/static_key.h>
87 #endif
88 
89 #ifdef CONFIG_PARAVIRT
90 # include <asm/paravirt.h>
91 # include <asm/paravirt_api_clock.h>
92 #endif
93 
94 #include "cpupri.h"
95 #include "cpudeadline.h"
96 
97 #ifdef CONFIG_SCHED_DEBUG
98 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
99 #else
100 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
101 #endif
102 
103 struct rq;
104 struct cpuidle_state;
105 
106 /* task_struct::on_rq states: */
107 #define TASK_ON_RQ_QUEUED	1
108 #define TASK_ON_RQ_MIGRATING	2
109 
110 extern __read_mostly int scheduler_running;
111 
112 extern unsigned long calc_load_update;
113 extern atomic_long_t calc_load_tasks;
114 
115 extern unsigned int sysctl_sched_child_runs_first;
116 
117 extern void calc_global_load_tick(struct rq *this_rq);
118 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
119 
120 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
121 
122 extern unsigned int sysctl_sched_rt_period;
123 extern int sysctl_sched_rt_runtime;
124 extern int sched_rr_timeslice;
125 
126 /*
127  * Helpers for converting nanosecond timing to jiffy resolution
128  */
129 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
130 
131 /*
132  * Increase resolution of nice-level calculations for 64-bit architectures.
133  * The extra resolution improves shares distribution and load balancing of
134  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
135  * hierarchies, especially on larger systems. This is not a user-visible change
136  * and does not change the user-interface for setting shares/weights.
137  *
138  * We increase resolution only if we have enough bits to allow this increased
139  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
140  * are pretty high and the returns do not justify the increased costs.
141  *
142  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
143  * increase coverage and consistency always enable it on 64-bit platforms.
144  */
145 #ifdef CONFIG_64BIT
146 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
147 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
148 # define scale_load_down(w) \
149 ({ \
150 	unsigned long __w = (w); \
151 	if (__w) \
152 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
153 	__w; \
154 })
155 #else
156 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
157 # define scale_load(w)		(w)
158 # define scale_load_down(w)	(w)
159 #endif
160 
161 /*
162  * Task weight (visible to users) and its load (invisible to users) have
163  * independent resolution, but they should be well calibrated. We use
164  * scale_load() and scale_load_down(w) to convert between them. The
165  * following must be true:
166  *
167  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
168  *
169  */
170 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
171 
172 /*
173  * Single value that decides SCHED_DEADLINE internal math precision.
174  * 10 -> just above 1us
175  * 9  -> just above 0.5us
176  */
177 #define DL_SCALE		10
178 
179 /*
180  * Single value that denotes runtime == period, ie unlimited time.
181  */
182 #define RUNTIME_INF		((u64)~0ULL)
183 
idle_policy(int policy)184 static inline int idle_policy(int policy)
185 {
186 	return policy == SCHED_IDLE;
187 }
fair_policy(int policy)188 static inline int fair_policy(int policy)
189 {
190 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
191 }
192 
rt_policy(int policy)193 static inline int rt_policy(int policy)
194 {
195 	return policy == SCHED_FIFO || policy == SCHED_RR;
196 }
197 
dl_policy(int policy)198 static inline int dl_policy(int policy)
199 {
200 	return policy == SCHED_DEADLINE;
201 }
valid_policy(int policy)202 static inline bool valid_policy(int policy)
203 {
204 	return idle_policy(policy) || fair_policy(policy) ||
205 		rt_policy(policy) || dl_policy(policy);
206 }
207 
task_has_idle_policy(struct task_struct * p)208 static inline int task_has_idle_policy(struct task_struct *p)
209 {
210 	return idle_policy(p->policy);
211 }
212 
task_has_rt_policy(struct task_struct * p)213 static inline int task_has_rt_policy(struct task_struct *p)
214 {
215 	return rt_policy(p->policy);
216 }
217 
task_has_dl_policy(struct task_struct * p)218 static inline int task_has_dl_policy(struct task_struct *p)
219 {
220 	return dl_policy(p->policy);
221 }
222 
223 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
224 
update_avg(u64 * avg,u64 sample)225 static inline void update_avg(u64 *avg, u64 sample)
226 {
227 	s64 diff = sample - *avg;
228 	*avg += diff / 8;
229 }
230 
231 /*
232  * Shifting a value by an exponent greater *or equal* to the size of said value
233  * is UB; cap at size-1.
234  */
235 #define shr_bound(val, shift)							\
236 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
237 
238 /*
239  * !! For sched_setattr_nocheck() (kernel) only !!
240  *
241  * This is actually gross. :(
242  *
243  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
244  * tasks, but still be able to sleep. We need this on platforms that cannot
245  * atomically change clock frequency. Remove once fast switching will be
246  * available on such platforms.
247  *
248  * SUGOV stands for SchedUtil GOVernor.
249  */
250 #define SCHED_FLAG_SUGOV	0x10000000
251 
252 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
253 
dl_entity_is_special(struct sched_dl_entity * dl_se)254 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
255 {
256 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
257 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
258 #else
259 	return false;
260 #endif
261 }
262 
263 /*
264  * Tells if entity @a should preempt entity @b.
265  */
266 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)267 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
268 {
269 	return dl_entity_is_special(a) ||
270 	       dl_time_before(a->deadline, b->deadline);
271 }
272 
273 /*
274  * This is the priority-queue data structure of the RT scheduling class:
275  */
276 struct rt_prio_array {
277 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
278 	struct list_head queue[MAX_RT_PRIO];
279 };
280 
281 struct rt_bandwidth {
282 	/* nests inside the rq lock: */
283 	raw_spinlock_t		rt_runtime_lock;
284 	ktime_t			rt_period;
285 	u64			rt_runtime;
286 	struct hrtimer		rt_period_timer;
287 	unsigned int		rt_period_active;
288 };
289 
290 void __dl_clear_params(struct task_struct *p);
291 
292 struct dl_bandwidth {
293 	raw_spinlock_t		dl_runtime_lock;
294 	u64			dl_runtime;
295 	u64			dl_period;
296 };
297 
dl_bandwidth_enabled(void)298 static inline int dl_bandwidth_enabled(void)
299 {
300 	return sysctl_sched_rt_runtime >= 0;
301 }
302 
303 /*
304  * To keep the bandwidth of -deadline tasks under control
305  * we need some place where:
306  *  - store the maximum -deadline bandwidth of each cpu;
307  *  - cache the fraction of bandwidth that is currently allocated in
308  *    each root domain;
309  *
310  * This is all done in the data structure below. It is similar to the
311  * one used for RT-throttling (rt_bandwidth), with the main difference
312  * that, since here we are only interested in admission control, we
313  * do not decrease any runtime while the group "executes", neither we
314  * need a timer to replenish it.
315  *
316  * With respect to SMP, bandwidth is given on a per root domain basis,
317  * meaning that:
318  *  - bw (< 100%) is the deadline bandwidth of each CPU;
319  *  - total_bw is the currently allocated bandwidth in each root domain;
320  */
321 struct dl_bw {
322 	raw_spinlock_t		lock;
323 	u64			bw;
324 	u64			total_bw;
325 };
326 
327 extern void init_dl_bw(struct dl_bw *dl_b);
328 extern int  sched_dl_global_validate(void);
329 extern void sched_dl_do_global(void);
330 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
331 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
332 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
333 extern bool __checkparam_dl(const struct sched_attr *attr);
334 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
335 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
336 extern int  dl_bw_check_overflow(int cpu);
337 
338 #ifdef CONFIG_CGROUP_SCHED
339 
340 struct cfs_rq;
341 struct rt_rq;
342 
343 extern struct list_head task_groups;
344 
345 struct cfs_bandwidth {
346 #ifdef CONFIG_CFS_BANDWIDTH
347 	raw_spinlock_t		lock;
348 	ktime_t			period;
349 	u64			quota;
350 	u64			runtime;
351 	u64			burst;
352 	u64			runtime_snap;
353 	s64			hierarchical_quota;
354 
355 	u8			idle;
356 	u8			period_active;
357 	u8			slack_started;
358 	struct hrtimer		period_timer;
359 	struct hrtimer		slack_timer;
360 	struct list_head	throttled_cfs_rq;
361 
362 	/* Statistics: */
363 	int			nr_periods;
364 	int			nr_throttled;
365 	int			nr_burst;
366 	u64			throttled_time;
367 	u64			burst_time;
368 #endif
369 };
370 
371 /* Task group related information */
372 struct task_group {
373 	struct cgroup_subsys_state css;
374 
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 	/* schedulable entities of this group on each CPU */
377 	struct sched_entity	**se;
378 	/* runqueue "owned" by this group on each CPU */
379 	struct cfs_rq		**cfs_rq;
380 	unsigned long		shares;
381 
382 	/* A positive value indicates that this is a SCHED_IDLE group. */
383 	int			idle;
384 
385 #ifdef	CONFIG_SMP
386 	/*
387 	 * load_avg can be heavily contended at clock tick time, so put
388 	 * it in its own cacheline separated from the fields above which
389 	 * will also be accessed at each tick.
390 	 */
391 	atomic_long_t		load_avg ____cacheline_aligned;
392 #endif
393 #endif
394 
395 #ifdef CONFIG_RT_GROUP_SCHED
396 	struct sched_rt_entity	**rt_se;
397 	struct rt_rq		**rt_rq;
398 
399 	struct rt_bandwidth	rt_bandwidth;
400 #endif
401 
402 	struct rcu_head		rcu;
403 	struct list_head	list;
404 
405 	struct task_group	*parent;
406 	struct list_head	siblings;
407 	struct list_head	children;
408 
409 #ifdef CONFIG_SCHED_AUTOGROUP
410 	struct autogroup	*autogroup;
411 #endif
412 
413 	struct cfs_bandwidth	cfs_bandwidth;
414 
415 #ifdef CONFIG_UCLAMP_TASK_GROUP
416 	/* The two decimal precision [%] value requested from user-space */
417 	unsigned int		uclamp_pct[UCLAMP_CNT];
418 	/* Clamp values requested for a task group */
419 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
420 	/* Effective clamp values used for a task group */
421 	struct uclamp_se	uclamp[UCLAMP_CNT];
422 	/* Latency-sensitive flag used for a task group */
423 	unsigned int		latency_sensitive;
424 
425 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
426 #endif
427 
428 	ANDROID_KABI_RESERVE(1);
429 	ANDROID_KABI_RESERVE(2);
430 	ANDROID_KABI_RESERVE(3);
431 	ANDROID_KABI_RESERVE(4);
432 };
433 
434 #ifdef CONFIG_FAIR_GROUP_SCHED
435 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
436 
437 /*
438  * A weight of 0 or 1 can cause arithmetics problems.
439  * A weight of a cfs_rq is the sum of weights of which entities
440  * are queued on this cfs_rq, so a weight of a entity should not be
441  * too large, so as the shares value of a task group.
442  * (The default weight is 1024 - so there's no practical
443  *  limitation from this.)
444  */
445 #define MIN_SHARES		(1UL <<  1)
446 #define MAX_SHARES		(1UL << 18)
447 #endif
448 
449 typedef int (*tg_visitor)(struct task_group *, void *);
450 
451 extern int walk_tg_tree_from(struct task_group *from,
452 			     tg_visitor down, tg_visitor up, void *data);
453 
454 /*
455  * Iterate the full tree, calling @down when first entering a node and @up when
456  * leaving it for the final time.
457  *
458  * Caller must hold rcu_lock or sufficient equivalent.
459  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)460 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
461 {
462 	return walk_tg_tree_from(&root_task_group, down, up, data);
463 }
464 
465 extern int tg_nop(struct task_group *tg, void *data);
466 
467 extern void free_fair_sched_group(struct task_group *tg);
468 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
469 extern void online_fair_sched_group(struct task_group *tg);
470 extern void unregister_fair_sched_group(struct task_group *tg);
471 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
472 			struct sched_entity *se, int cpu,
473 			struct sched_entity *parent);
474 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
475 
476 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
477 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
478 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
479 
480 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
481 		struct sched_rt_entity *rt_se, int cpu,
482 		struct sched_rt_entity *parent);
483 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
484 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
485 extern long sched_group_rt_runtime(struct task_group *tg);
486 extern long sched_group_rt_period(struct task_group *tg);
487 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
488 
489 extern struct task_group *sched_create_group(struct task_group *parent);
490 extern void sched_online_group(struct task_group *tg,
491 			       struct task_group *parent);
492 extern void sched_destroy_group(struct task_group *tg);
493 extern void sched_release_group(struct task_group *tg);
494 
495 extern void sched_move_task(struct task_struct *tsk);
496 
497 #ifdef CONFIG_FAIR_GROUP_SCHED
498 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
499 
500 extern int sched_group_set_idle(struct task_group *tg, long idle);
501 
502 #ifdef CONFIG_SMP
503 extern void set_task_rq_fair(struct sched_entity *se,
504 			     struct cfs_rq *prev, struct cfs_rq *next);
505 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)506 static inline void set_task_rq_fair(struct sched_entity *se,
507 			     struct cfs_rq *prev, struct cfs_rq *next) { }
508 #endif /* CONFIG_SMP */
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
510 
511 #else /* CONFIG_CGROUP_SCHED */
512 
513 struct cfs_bandwidth { };
514 
515 #endif	/* CONFIG_CGROUP_SCHED */
516 
517 extern void unregister_rt_sched_group(struct task_group *tg);
518 extern void free_rt_sched_group(struct task_group *tg);
519 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
520 
521 /*
522  * u64_u32_load/u64_u32_store
523  *
524  * Use a copy of a u64 value to protect against data race. This is only
525  * applicable for 32-bits architectures.
526  */
527 #ifdef CONFIG_64BIT
528 # define u64_u32_load_copy(var, copy)       var
529 # define u64_u32_store_copy(var, copy, val) (var = val)
530 #else
531 # define u64_u32_load_copy(var, copy)					\
532 ({									\
533 	u64 __val, __val_copy;						\
534 	do {								\
535 		__val_copy = copy;					\
536 		/*							\
537 		 * paired with u64_u32_store_copy(), ordering access	\
538 		 * to var and copy.					\
539 		 */							\
540 		smp_rmb();						\
541 		__val = var;						\
542 	} while (__val != __val_copy);					\
543 	__val;								\
544 })
545 # define u64_u32_store_copy(var, copy, val)				\
546 do {									\
547 	typeof(val) __val = (val);					\
548 	var = __val;							\
549 	/*								\
550 	 * paired with u64_u32_load_copy(), ordering access to var and	\
551 	 * copy.							\
552 	 */								\
553 	smp_wmb();							\
554 	copy = __val;							\
555 } while (0)
556 #endif
557 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
558 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
559 
560 /* CFS-related fields in a runqueue */
561 struct cfs_rq {
562 	struct load_weight	load;
563 	unsigned int		nr_running;
564 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
565 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
566 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
567 
568 	u64			exec_clock;
569 	u64			min_vruntime;
570 #ifdef CONFIG_SCHED_CORE
571 	unsigned int		forceidle_seq;
572 	u64			min_vruntime_fi;
573 #endif
574 
575 #ifndef CONFIG_64BIT
576 	u64			min_vruntime_copy;
577 #endif
578 
579 	struct rb_root_cached	tasks_timeline;
580 
581 	/*
582 	 * 'curr' points to currently running entity on this cfs_rq.
583 	 * It is set to NULL otherwise (i.e when none are currently running).
584 	 */
585 	struct sched_entity	*curr;
586 	struct sched_entity	*next;
587 	struct sched_entity	*last;
588 	struct sched_entity	*skip;
589 
590 #ifdef	CONFIG_SCHED_DEBUG
591 	unsigned int		nr_spread_over;
592 #endif
593 
594 #ifdef CONFIG_SMP
595 	/*
596 	 * CFS load tracking
597 	 */
598 	struct sched_avg	avg;
599 #ifndef CONFIG_64BIT
600 	u64			last_update_time_copy;
601 #endif
602 	struct {
603 		raw_spinlock_t	lock ____cacheline_aligned;
604 		int		nr;
605 		unsigned long	load_avg;
606 		unsigned long	util_avg;
607 		unsigned long	runnable_avg;
608 	} removed;
609 
610 #ifdef CONFIG_FAIR_GROUP_SCHED
611 	unsigned long		tg_load_avg_contrib;
612 	long			propagate;
613 	long			prop_runnable_sum;
614 
615 	/*
616 	 *   h_load = weight * f(tg)
617 	 *
618 	 * Where f(tg) is the recursive weight fraction assigned to
619 	 * this group.
620 	 */
621 	unsigned long		h_load;
622 	u64			last_h_load_update;
623 	struct sched_entity	*h_load_next;
624 #endif /* CONFIG_FAIR_GROUP_SCHED */
625 #endif /* CONFIG_SMP */
626 
627 #ifdef CONFIG_FAIR_GROUP_SCHED
628 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
629 
630 	/*
631 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
632 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
633 	 * (like users, containers etc.)
634 	 *
635 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
636 	 * This list is used during load balance.
637 	 */
638 	int			on_list;
639 	struct list_head	leaf_cfs_rq_list;
640 	struct task_group	*tg;	/* group that "owns" this runqueue */
641 
642 	/* Locally cached copy of our task_group's idle value */
643 	int			idle;
644 
645 #ifdef CONFIG_CFS_BANDWIDTH
646 	int			runtime_enabled;
647 	s64			runtime_remaining;
648 
649 	u64			throttled_pelt_idle;
650 #ifndef CONFIG_64BIT
651 	u64                     throttled_pelt_idle_copy;
652 #endif
653 	u64			throttled_clock;
654 	u64			throttled_clock_pelt;
655 	u64			throttled_clock_pelt_time;
656 	int			throttled;
657 	int			throttle_count;
658 	struct list_head	throttled_list;
659 #endif /* CONFIG_CFS_BANDWIDTH */
660 #endif /* CONFIG_FAIR_GROUP_SCHED */
661 };
662 
rt_bandwidth_enabled(void)663 static inline int rt_bandwidth_enabled(void)
664 {
665 	return sysctl_sched_rt_runtime >= 0;
666 }
667 
668 /* RT IPI pull logic requires IRQ_WORK */
669 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
670 # define HAVE_RT_PUSH_IPI
671 #endif
672 
673 /* Real-Time classes' related field in a runqueue: */
674 struct rt_rq {
675 	struct rt_prio_array	active;
676 	unsigned int		rt_nr_running;
677 	unsigned int		rr_nr_running;
678 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
679 	struct {
680 		int		curr; /* highest queued rt task prio */
681 #ifdef CONFIG_SMP
682 		int		next; /* next highest */
683 #endif
684 	} highest_prio;
685 #endif
686 #ifdef CONFIG_SMP
687 	unsigned int		rt_nr_migratory;
688 	unsigned int		rt_nr_total;
689 	int			overloaded;
690 	struct plist_head	pushable_tasks;
691 
692 #endif /* CONFIG_SMP */
693 	int			rt_queued;
694 
695 	int			rt_throttled;
696 	u64			rt_time;
697 	u64			rt_runtime;
698 	/* Nests inside the rq lock: */
699 	raw_spinlock_t		rt_runtime_lock;
700 
701 #ifdef CONFIG_RT_GROUP_SCHED
702 	unsigned int		rt_nr_boosted;
703 
704 	struct rq		*rq;
705 	struct task_group	*tg;
706 #endif
707 };
708 
rt_rq_is_runnable(struct rt_rq * rt_rq)709 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
710 {
711 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
712 }
713 
714 /* Deadline class' related fields in a runqueue */
715 struct dl_rq {
716 	/* runqueue is an rbtree, ordered by deadline */
717 	struct rb_root_cached	root;
718 
719 	unsigned int		dl_nr_running;
720 
721 #ifdef CONFIG_SMP
722 	/*
723 	 * Deadline values of the currently executing and the
724 	 * earliest ready task on this rq. Caching these facilitates
725 	 * the decision whether or not a ready but not running task
726 	 * should migrate somewhere else.
727 	 */
728 	struct {
729 		u64		curr;
730 		u64		next;
731 	} earliest_dl;
732 
733 	unsigned int		dl_nr_migratory;
734 	int			overloaded;
735 
736 	/*
737 	 * Tasks on this rq that can be pushed away. They are kept in
738 	 * an rb-tree, ordered by tasks' deadlines, with caching
739 	 * of the leftmost (earliest deadline) element.
740 	 */
741 	struct rb_root_cached	pushable_dl_tasks_root;
742 #else
743 	struct dl_bw		dl_bw;
744 #endif
745 	/*
746 	 * "Active utilization" for this runqueue: increased when a
747 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
748 	 * task blocks
749 	 */
750 	u64			running_bw;
751 
752 	/*
753 	 * Utilization of the tasks "assigned" to this runqueue (including
754 	 * the tasks that are in runqueue and the tasks that executed on this
755 	 * CPU and blocked). Increased when a task moves to this runqueue, and
756 	 * decreased when the task moves away (migrates, changes scheduling
757 	 * policy, or terminates).
758 	 * This is needed to compute the "inactive utilization" for the
759 	 * runqueue (inactive utilization = this_bw - running_bw).
760 	 */
761 	u64			this_bw;
762 	u64			extra_bw;
763 
764 	/*
765 	 * Inverse of the fraction of CPU utilization that can be reclaimed
766 	 * by the GRUB algorithm.
767 	 */
768 	u64			bw_ratio;
769 };
770 
771 #ifdef CONFIG_FAIR_GROUP_SCHED
772 /* An entity is a task if it doesn't "own" a runqueue */
773 #define entity_is_task(se)	(!se->my_q)
774 
se_update_runnable(struct sched_entity * se)775 static inline void se_update_runnable(struct sched_entity *se)
776 {
777 	if (!entity_is_task(se))
778 		se->runnable_weight = se->my_q->h_nr_running;
779 }
780 
se_runnable(struct sched_entity * se)781 static inline long se_runnable(struct sched_entity *se)
782 {
783 	if (entity_is_task(se))
784 		return !!se->on_rq;
785 	else
786 		return se->runnable_weight;
787 }
788 
789 #else
790 #define entity_is_task(se)	1
791 
se_update_runnable(struct sched_entity * se)792 static inline void se_update_runnable(struct sched_entity *se) {}
793 
se_runnable(struct sched_entity * se)794 static inline long se_runnable(struct sched_entity *se)
795 {
796 	return !!se->on_rq;
797 }
798 #endif
799 
800 #ifdef CONFIG_SMP
801 /*
802  * XXX we want to get rid of these helpers and use the full load resolution.
803  */
se_weight(struct sched_entity * se)804 static inline long se_weight(struct sched_entity *se)
805 {
806 	return scale_load_down(se->load.weight);
807 }
808 
809 
sched_asym_prefer(int a,int b)810 static inline bool sched_asym_prefer(int a, int b)
811 {
812 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
813 }
814 
815 struct perf_domain {
816 	struct em_perf_domain *em_pd;
817 	struct perf_domain *next;
818 	struct rcu_head rcu;
819 };
820 
821 /* Scheduling group status flags */
822 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
823 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
824 
825 /*
826  * We add the notion of a root-domain which will be used to define per-domain
827  * variables. Each exclusive cpuset essentially defines an island domain by
828  * fully partitioning the member CPUs from any other cpuset. Whenever a new
829  * exclusive cpuset is created, we also create and attach a new root-domain
830  * object.
831  *
832  */
833 struct root_domain {
834 	atomic_t		refcount;
835 	atomic_t		rto_count;
836 	struct rcu_head		rcu;
837 	cpumask_var_t		span;
838 	cpumask_var_t		online;
839 
840 	/*
841 	 * Indicate pullable load on at least one CPU, e.g:
842 	 * - More than one runnable task
843 	 * - Running task is misfit
844 	 */
845 	int			overload;
846 
847 	/* Indicate one or more cpus over-utilized (tipping point) */
848 	int			overutilized;
849 
850 	/*
851 	 * The bit corresponding to a CPU gets set here if such CPU has more
852 	 * than one runnable -deadline task (as it is below for RT tasks).
853 	 */
854 	cpumask_var_t		dlo_mask;
855 	atomic_t		dlo_count;
856 	struct dl_bw		dl_bw;
857 	struct cpudl		cpudl;
858 
859 	/*
860 	 * Indicate whether a root_domain's dl_bw has been checked or
861 	 * updated. It's monotonously increasing value.
862 	 *
863 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
864 	 * that u64 is 'big enough'. So that shouldn't be a concern.
865 	 */
866 	u64 visit_gen;
867 
868 #ifdef HAVE_RT_PUSH_IPI
869 	/*
870 	 * For IPI pull requests, loop across the rto_mask.
871 	 */
872 	struct irq_work		rto_push_work;
873 	raw_spinlock_t		rto_lock;
874 	/* These are only updated and read within rto_lock */
875 	int			rto_loop;
876 	int			rto_cpu;
877 	/* These atomics are updated outside of a lock */
878 	atomic_t		rto_loop_next;
879 	atomic_t		rto_loop_start;
880 #endif
881 	/*
882 	 * The "RT overload" flag: it gets set if a CPU has more than
883 	 * one runnable RT task.
884 	 */
885 	cpumask_var_t		rto_mask;
886 	struct cpupri		cpupri;
887 
888 	unsigned long		max_cpu_capacity;
889 
890 	/*
891 	 * NULL-terminated list of performance domains intersecting with the
892 	 * CPUs of the rd. Protected by RCU.
893 	 */
894 	struct perf_domain __rcu *pd;
895 
896 	ANDROID_VENDOR_DATA_ARRAY(1, 1);
897 
898 	ANDROID_KABI_RESERVE(1);
899 	ANDROID_KABI_RESERVE(2);
900 	ANDROID_KABI_RESERVE(3);
901 	ANDROID_KABI_RESERVE(4);
902 };
903 
904 extern void init_defrootdomain(void);
905 extern int sched_init_domains(const struct cpumask *cpu_map);
906 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
907 extern void sched_get_rd(struct root_domain *rd);
908 extern void sched_put_rd(struct root_domain *rd);
909 
910 #ifdef HAVE_RT_PUSH_IPI
911 extern void rto_push_irq_work_func(struct irq_work *work);
912 #endif
913 extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
914 #endif /* CONFIG_SMP */
915 
916 #ifdef CONFIG_UCLAMP_TASK
917 /*
918  * struct uclamp_bucket - Utilization clamp bucket
919  * @value: utilization clamp value for tasks on this clamp bucket
920  * @tasks: number of RUNNABLE tasks on this clamp bucket
921  *
922  * Keep track of how many tasks are RUNNABLE for a given utilization
923  * clamp value.
924  */
925 struct uclamp_bucket {
926 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
927 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
928 };
929 
930 /*
931  * struct uclamp_rq - rq's utilization clamp
932  * @value: currently active clamp values for a rq
933  * @bucket: utilization clamp buckets affecting a rq
934  *
935  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
936  * A clamp value is affecting a rq when there is at least one task RUNNABLE
937  * (or actually running) with that value.
938  *
939  * There are up to UCLAMP_CNT possible different clamp values, currently there
940  * are only two: minimum utilization and maximum utilization.
941  *
942  * All utilization clamping values are MAX aggregated, since:
943  * - for util_min: we want to run the CPU at least at the max of the minimum
944  *   utilization required by its currently RUNNABLE tasks.
945  * - for util_max: we want to allow the CPU to run up to the max of the
946  *   maximum utilization allowed by its currently RUNNABLE tasks.
947  *
948  * Since on each system we expect only a limited number of different
949  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
950  * the metrics required to compute all the per-rq utilization clamp values.
951  */
952 struct uclamp_rq {
953 	unsigned int value;
954 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
955 };
956 
957 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
958 #endif /* CONFIG_UCLAMP_TASK */
959 
960 struct rq;
961 struct balance_callback {
962 	struct balance_callback *next;
963 	void (*func)(struct rq *rq);
964 };
965 
966 /*
967  * This is the main, per-CPU runqueue data structure.
968  *
969  * Locking rule: those places that want to lock multiple runqueues
970  * (such as the load balancing or the thread migration code), lock
971  * acquire operations must be ordered by ascending &runqueue.
972  */
973 struct rq {
974 	/* runqueue lock: */
975 	raw_spinlock_t		__lock;
976 
977 	/*
978 	 * nr_running and cpu_load should be in the same cacheline because
979 	 * remote CPUs use both these fields when doing load calculation.
980 	 */
981 	unsigned int		nr_running;
982 #ifdef CONFIG_NUMA_BALANCING
983 	unsigned int		nr_numa_running;
984 	unsigned int		nr_preferred_running;
985 	unsigned int		numa_migrate_on;
986 #endif
987 #ifdef CONFIG_NO_HZ_COMMON
988 #ifdef CONFIG_SMP
989 	unsigned long		last_blocked_load_update_tick;
990 	unsigned int		has_blocked_load;
991 	call_single_data_t	nohz_csd;
992 #endif /* CONFIG_SMP */
993 	unsigned int		nohz_tick_stopped;
994 	atomic_t		nohz_flags;
995 #endif /* CONFIG_NO_HZ_COMMON */
996 
997 #ifdef CONFIG_SMP
998 	unsigned int		ttwu_pending;
999 #endif
1000 	u64			nr_switches;
1001 
1002 #ifdef CONFIG_UCLAMP_TASK
1003 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1004 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1005 	unsigned int		uclamp_flags;
1006 #define UCLAMP_FLAG_IDLE 0x01
1007 #endif
1008 
1009 	struct cfs_rq		cfs;
1010 	struct rt_rq		rt;
1011 	struct dl_rq		dl;
1012 
1013 #ifdef CONFIG_FAIR_GROUP_SCHED
1014 	/* list of leaf cfs_rq on this CPU: */
1015 	struct list_head	leaf_cfs_rq_list;
1016 	struct list_head	*tmp_alone_branch;
1017 #endif /* CONFIG_FAIR_GROUP_SCHED */
1018 
1019 	/*
1020 	 * This is part of a global counter where only the total sum
1021 	 * over all CPUs matters. A task can increase this counter on
1022 	 * one CPU and if it got migrated afterwards it may decrease
1023 	 * it on another CPU. Always updated under the runqueue lock:
1024 	 */
1025 	unsigned int		nr_uninterruptible;
1026 
1027 	struct task_struct __rcu	*curr;
1028 	struct task_struct	*idle;
1029 	struct task_struct	*stop;
1030 	unsigned long		next_balance;
1031 	struct mm_struct	*prev_mm;
1032 
1033 	unsigned int		clock_update_flags;
1034 	u64			clock;
1035 	/* Ensure that all clocks are in the same cache line */
1036 	u64			clock_task ____cacheline_aligned;
1037 	u64			clock_task_mult;
1038 	u64			clock_pelt;
1039 	unsigned long		lost_idle_time;
1040 	u64			clock_pelt_idle;
1041 	u64			clock_idle;
1042 #ifndef CONFIG_64BIT
1043 	u64			clock_pelt_idle_copy;
1044 	u64			clock_idle_copy;
1045 #endif
1046 
1047 	atomic_t		nr_iowait;
1048 
1049 #ifdef CONFIG_SCHED_DEBUG
1050 	u64 last_seen_need_resched_ns;
1051 	int ticks_without_resched;
1052 #endif
1053 
1054 #ifdef CONFIG_MEMBARRIER
1055 	int membarrier_state;
1056 #endif
1057 
1058 #ifdef CONFIG_SMP
1059 	struct root_domain		*rd;
1060 	struct sched_domain __rcu	*sd;
1061 
1062 	unsigned long		cpu_capacity;
1063 	unsigned long		cpu_capacity_orig;
1064 	/*
1065 	 * ANDROID ONLY:
1066 	 * cpu_capacity_inverted is preserved here to keep the same ABI,
1067 	 * but it is NOT a field that is used anymore.  Be aware of this
1068 	 * if when attempting to access it in out-of-tree code.  It was
1069 	 * removed in commit 8517d739923e ("sched/fair: Remove capacity
1070 	 * inversion detection") in the 6.1.47 upstream release.
1071 	 */
1072 	unsigned long		cpu_capacity_inverted;
1073 
1074 	struct balance_callback *balance_callback;
1075 
1076 	unsigned char		nohz_idle_balance;
1077 	unsigned char		idle_balance;
1078 
1079 	unsigned long		misfit_task_load;
1080 
1081 	/* For active balancing */
1082 	int			active_balance;
1083 	int			push_cpu;
1084 	struct cpu_stop_work	active_balance_work;
1085 
1086 	/* CPU of this runqueue: */
1087 	int			cpu;
1088 	int			online;
1089 
1090 	struct list_head cfs_tasks;
1091 
1092 	struct sched_avg	avg_rt;
1093 	struct sched_avg	avg_dl;
1094 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1095 	struct sched_avg	avg_irq;
1096 #endif
1097 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1098 	struct sched_avg	avg_thermal;
1099 #endif
1100 	u64			idle_stamp;
1101 	u64			avg_idle;
1102 
1103 	unsigned long		wake_stamp;
1104 	u64			wake_avg_idle;
1105 
1106 	/* This is used to determine avg_idle's max value */
1107 	u64			max_idle_balance_cost;
1108 
1109 #ifdef CONFIG_HOTPLUG_CPU
1110 	struct rcuwait		hotplug_wait;
1111 #endif
1112 #endif /* CONFIG_SMP */
1113 
1114 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1115 	u64			prev_irq_time;
1116 #endif
1117 #ifdef CONFIG_PARAVIRT
1118 	u64			prev_steal_time;
1119 #endif
1120 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1121 	u64			prev_steal_time_rq;
1122 #endif
1123 
1124 	/* calc_load related fields */
1125 	unsigned long		calc_load_update;
1126 	long			calc_load_active;
1127 
1128 #ifdef CONFIG_SCHED_HRTICK
1129 #ifdef CONFIG_SMP
1130 	call_single_data_t	hrtick_csd;
1131 #endif
1132 	struct hrtimer		hrtick_timer;
1133 	ktime_t 		hrtick_time;
1134 #endif
1135 
1136 #ifdef CONFIG_SCHEDSTATS
1137 	/* latency stats */
1138 	struct sched_info	rq_sched_info;
1139 	unsigned long long	rq_cpu_time;
1140 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1141 
1142 	/* sys_sched_yield() stats */
1143 	unsigned int		yld_count;
1144 
1145 	/* schedule() stats */
1146 	unsigned int		sched_count;
1147 	unsigned int		sched_goidle;
1148 
1149 	/* try_to_wake_up() stats */
1150 	unsigned int		ttwu_count;
1151 	unsigned int		ttwu_local;
1152 #endif
1153 
1154 #ifdef CONFIG_CPU_IDLE
1155 	/* Must be inspected within a rcu lock section */
1156 	struct cpuidle_state	*idle_state;
1157 #endif
1158 
1159 #ifdef CONFIG_SMP
1160 	unsigned int		nr_pinned;
1161 #endif
1162 	unsigned int		push_busy;
1163 	struct cpu_stop_work	push_work;
1164 
1165 #ifdef CONFIG_SCHED_CORE
1166 	/* per rq */
1167 	struct rq		*core;
1168 	struct task_struct	*core_pick;
1169 	unsigned int		core_enabled;
1170 	unsigned int		core_sched_seq;
1171 	struct rb_root		core_tree;
1172 
1173 	/* shared state -- careful with sched_core_cpu_deactivate() */
1174 	unsigned int		core_task_seq;
1175 	unsigned int		core_pick_seq;
1176 	unsigned long		core_cookie;
1177 	unsigned int		core_forceidle_count;
1178 	unsigned int		core_forceidle_seq;
1179 	unsigned int		core_forceidle_occupation;
1180 	u64			core_forceidle_start;
1181 #endif
1182 
1183 	ANDROID_VENDOR_DATA_ARRAY(1, 1);
1184 	ANDROID_OEM_DATA_ARRAY(1, 16);
1185 
1186 	ANDROID_KABI_RESERVE(1);
1187 	ANDROID_KABI_RESERVE(2);
1188 	ANDROID_KABI_RESERVE(3);
1189 	ANDROID_KABI_RESERVE(4);
1190 };
1191 
1192 #ifdef CONFIG_FAIR_GROUP_SCHED
1193 
1194 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1195 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1196 {
1197 	return cfs_rq->rq;
1198 }
1199 
1200 #else
1201 
rq_of(struct cfs_rq * cfs_rq)1202 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1203 {
1204 	return container_of(cfs_rq, struct rq, cfs);
1205 }
1206 #endif
1207 
cpu_of(struct rq * rq)1208 static inline int cpu_of(struct rq *rq)
1209 {
1210 #ifdef CONFIG_SMP
1211 	return rq->cpu;
1212 #else
1213 	return 0;
1214 #endif
1215 }
1216 
1217 #define MDF_PUSH	0x01
1218 
is_migration_disabled(struct task_struct * p)1219 static inline bool is_migration_disabled(struct task_struct *p)
1220 {
1221 #ifdef CONFIG_SMP
1222 	return p->migration_disabled;
1223 #else
1224 	return false;
1225 #endif
1226 }
1227 
1228 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1229 
1230 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1231 #define this_rq()		this_cpu_ptr(&runqueues)
1232 #define task_rq(p)		cpu_rq(task_cpu(p))
1233 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1234 #define raw_rq()		raw_cpu_ptr(&runqueues)
1235 
1236 struct sched_group;
1237 #ifdef CONFIG_SCHED_CORE
1238 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1239 
1240 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1241 
sched_core_enabled(struct rq * rq)1242 static inline bool sched_core_enabled(struct rq *rq)
1243 {
1244 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1245 }
1246 
sched_core_disabled(void)1247 static inline bool sched_core_disabled(void)
1248 {
1249 	return !static_branch_unlikely(&__sched_core_enabled);
1250 }
1251 
1252 /*
1253  * Be careful with this function; not for general use. The return value isn't
1254  * stable unless you actually hold a relevant rq->__lock.
1255  */
rq_lockp(struct rq * rq)1256 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1257 {
1258 	if (sched_core_enabled(rq))
1259 		return &rq->core->__lock;
1260 
1261 	return &rq->__lock;
1262 }
1263 
__rq_lockp(struct rq * rq)1264 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1265 {
1266 	if (rq->core_enabled)
1267 		return &rq->core->__lock;
1268 
1269 	return &rq->__lock;
1270 }
1271 
1272 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1273 
1274 /*
1275  * Helpers to check if the CPU's core cookie matches with the task's cookie
1276  * when core scheduling is enabled.
1277  * A special case is that the task's cookie always matches with CPU's core
1278  * cookie if the CPU is in an idle core.
1279  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1280 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1281 {
1282 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1283 	if (!sched_core_enabled(rq))
1284 		return true;
1285 
1286 	return rq->core->core_cookie == p->core_cookie;
1287 }
1288 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1289 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1290 {
1291 	bool idle_core = true;
1292 	int cpu;
1293 
1294 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1295 	if (!sched_core_enabled(rq))
1296 		return true;
1297 
1298 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1299 		if (!available_idle_cpu(cpu)) {
1300 			idle_core = false;
1301 			break;
1302 		}
1303 	}
1304 
1305 	/*
1306 	 * A CPU in an idle core is always the best choice for tasks with
1307 	 * cookies.
1308 	 */
1309 	return idle_core || rq->core->core_cookie == p->core_cookie;
1310 }
1311 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1312 static inline bool sched_group_cookie_match(struct rq *rq,
1313 					    struct task_struct *p,
1314 					    struct sched_group *group)
1315 {
1316 	int cpu;
1317 
1318 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1319 	if (!sched_core_enabled(rq))
1320 		return true;
1321 
1322 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1323 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1324 			return true;
1325 	}
1326 	return false;
1327 }
1328 
sched_core_enqueued(struct task_struct * p)1329 static inline bool sched_core_enqueued(struct task_struct *p)
1330 {
1331 	return !RB_EMPTY_NODE(&p->core_node);
1332 }
1333 
1334 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1335 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1336 
1337 extern void sched_core_get(void);
1338 extern void sched_core_put(void);
1339 
1340 #else /* !CONFIG_SCHED_CORE */
1341 
sched_core_enabled(struct rq * rq)1342 static inline bool sched_core_enabled(struct rq *rq)
1343 {
1344 	return false;
1345 }
1346 
sched_core_disabled(void)1347 static inline bool sched_core_disabled(void)
1348 {
1349 	return true;
1350 }
1351 
rq_lockp(struct rq * rq)1352 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1353 {
1354 	return &rq->__lock;
1355 }
1356 
__rq_lockp(struct rq * rq)1357 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1358 {
1359 	return &rq->__lock;
1360 }
1361 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1362 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1363 {
1364 	return true;
1365 }
1366 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1367 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1368 {
1369 	return true;
1370 }
1371 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1372 static inline bool sched_group_cookie_match(struct rq *rq,
1373 					    struct task_struct *p,
1374 					    struct sched_group *group)
1375 {
1376 	return true;
1377 }
1378 #endif /* CONFIG_SCHED_CORE */
1379 
lockdep_assert_rq_held(struct rq * rq)1380 static inline void lockdep_assert_rq_held(struct rq *rq)
1381 {
1382 	lockdep_assert_held(__rq_lockp(rq));
1383 }
1384 
1385 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1386 extern bool raw_spin_rq_trylock(struct rq *rq);
1387 extern void raw_spin_rq_unlock(struct rq *rq);
1388 
raw_spin_rq_lock(struct rq * rq)1389 static inline void raw_spin_rq_lock(struct rq *rq)
1390 {
1391 	raw_spin_rq_lock_nested(rq, 0);
1392 }
1393 
raw_spin_rq_lock_irq(struct rq * rq)1394 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1395 {
1396 	local_irq_disable();
1397 	raw_spin_rq_lock(rq);
1398 }
1399 
raw_spin_rq_unlock_irq(struct rq * rq)1400 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1401 {
1402 	raw_spin_rq_unlock(rq);
1403 	local_irq_enable();
1404 }
1405 
_raw_spin_rq_lock_irqsave(struct rq * rq)1406 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1407 {
1408 	unsigned long flags;
1409 	local_irq_save(flags);
1410 	raw_spin_rq_lock(rq);
1411 	return flags;
1412 }
1413 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1414 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1415 {
1416 	raw_spin_rq_unlock(rq);
1417 	local_irq_restore(flags);
1418 }
1419 
1420 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1421 do {						\
1422 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1423 } while (0)
1424 
1425 #ifdef CONFIG_SCHED_SMT
1426 extern void __update_idle_core(struct rq *rq);
1427 
update_idle_core(struct rq * rq)1428 static inline void update_idle_core(struct rq *rq)
1429 {
1430 	if (static_branch_unlikely(&sched_smt_present))
1431 		__update_idle_core(rq);
1432 }
1433 
1434 #else
update_idle_core(struct rq * rq)1435 static inline void update_idle_core(struct rq *rq) { }
1436 #endif
1437 
1438 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1439 static inline struct task_struct *task_of(struct sched_entity *se)
1440 {
1441 	SCHED_WARN_ON(!entity_is_task(se));
1442 	return container_of(se, struct task_struct, se);
1443 }
1444 
task_cfs_rq(struct task_struct * p)1445 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1446 {
1447 	return p->se.cfs_rq;
1448 }
1449 
1450 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)1451 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1452 {
1453 	return se->cfs_rq;
1454 }
1455 
1456 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1457 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1458 {
1459 	return grp->my_q;
1460 }
1461 
1462 #else
1463 
task_of(struct sched_entity * se)1464 static inline struct task_struct *task_of(struct sched_entity *se)
1465 {
1466 	return container_of(se, struct task_struct, se);
1467 }
1468 
task_cfs_rq(struct task_struct * p)1469 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1470 {
1471 	return &task_rq(p)->cfs;
1472 }
1473 
cfs_rq_of(struct sched_entity * se)1474 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1475 {
1476 	struct task_struct *p = task_of(se);
1477 	struct rq *rq = task_rq(p);
1478 
1479 	return &rq->cfs;
1480 }
1481 
1482 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1483 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1484 {
1485 	return NULL;
1486 }
1487 #endif
1488 
1489 extern void update_rq_clock(struct rq *rq);
1490 
1491 /*
1492  * rq::clock_update_flags bits
1493  *
1494  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1495  *  call to __schedule(). This is an optimisation to avoid
1496  *  neighbouring rq clock updates.
1497  *
1498  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1499  *  in effect and calls to update_rq_clock() are being ignored.
1500  *
1501  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1502  *  made to update_rq_clock() since the last time rq::lock was pinned.
1503  *
1504  * If inside of __schedule(), clock_update_flags will have been
1505  * shifted left (a left shift is a cheap operation for the fast path
1506  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1507  *
1508  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1509  *
1510  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1511  * one position though, because the next rq_unpin_lock() will shift it
1512  * back.
1513  */
1514 #define RQCF_REQ_SKIP		0x01
1515 #define RQCF_ACT_SKIP		0x02
1516 #define RQCF_UPDATED		0x04
1517 
assert_clock_updated(struct rq * rq)1518 static inline void assert_clock_updated(struct rq *rq)
1519 {
1520 	/*
1521 	 * The only reason for not seeing a clock update since the
1522 	 * last rq_pin_lock() is if we're currently skipping updates.
1523 	 */
1524 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1525 }
1526 
rq_clock(struct rq * rq)1527 static inline u64 rq_clock(struct rq *rq)
1528 {
1529 	lockdep_assert_rq_held(rq);
1530 	assert_clock_updated(rq);
1531 
1532 	return rq->clock;
1533 }
1534 
rq_clock_task(struct rq * rq)1535 static inline u64 rq_clock_task(struct rq *rq)
1536 {
1537 	lockdep_assert_rq_held(rq);
1538 	assert_clock_updated(rq);
1539 
1540 	return rq->clock_task;
1541 }
1542 
1543 /**
1544  * By default the decay is the default pelt decay period.
1545  * The decay shift can change the decay period in
1546  * multiples of 32.
1547  *  Decay shift		Decay period(ms)
1548  *	0			32
1549  *	1			64
1550  *	2			128
1551  *	3			256
1552  *	4			512
1553  */
1554 extern int sched_thermal_decay_shift;
1555 
rq_clock_thermal(struct rq * rq)1556 static inline u64 rq_clock_thermal(struct rq *rq)
1557 {
1558 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1559 }
1560 
rq_clock_skip_update(struct rq * rq)1561 static inline void rq_clock_skip_update(struct rq *rq)
1562 {
1563 	lockdep_assert_rq_held(rq);
1564 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1565 }
1566 
1567 /*
1568  * See rt task throttling, which is the only time a skip
1569  * request is canceled.
1570  */
rq_clock_cancel_skipupdate(struct rq * rq)1571 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1572 {
1573 	lockdep_assert_rq_held(rq);
1574 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1575 }
1576 
1577 struct rq_flags {
1578 	unsigned long flags;
1579 	struct pin_cookie cookie;
1580 #ifdef CONFIG_SCHED_DEBUG
1581 	/*
1582 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1583 	 * current pin context is stashed here in case it needs to be
1584 	 * restored in rq_repin_lock().
1585 	 */
1586 	unsigned int clock_update_flags;
1587 #endif
1588 };
1589 
1590 #ifdef CONFIG_SMP
1591 extern struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1592 				 struct task_struct *p, int dest_cpu);
1593 #endif
1594 
1595 extern struct balance_callback balance_push_callback;
1596 
1597 /*
1598  * Lockdep annotation that avoids accidental unlocks; it's like a
1599  * sticky/continuous lockdep_assert_held().
1600  *
1601  * This avoids code that has access to 'struct rq *rq' (basically everything in
1602  * the scheduler) from accidentally unlocking the rq if they do not also have a
1603  * copy of the (on-stack) 'struct rq_flags rf'.
1604  *
1605  * Also see Documentation/locking/lockdep-design.rst.
1606  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1607 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1608 {
1609 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1610 
1611 #ifdef CONFIG_SCHED_DEBUG
1612 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1613 	rf->clock_update_flags = 0;
1614 #ifdef CONFIG_SMP
1615 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1616 #endif
1617 #endif
1618 }
1619 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1620 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1621 {
1622 #ifdef CONFIG_SCHED_DEBUG
1623 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1624 		rf->clock_update_flags = RQCF_UPDATED;
1625 #endif
1626 
1627 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1628 }
1629 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1630 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1631 {
1632 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1633 
1634 #ifdef CONFIG_SCHED_DEBUG
1635 	/*
1636 	 * Restore the value we stashed in @rf for this pin context.
1637 	 */
1638 	rq->clock_update_flags |= rf->clock_update_flags;
1639 #endif
1640 }
1641 
1642 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1643 	__acquires(rq->lock);
1644 
1645 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1646 	__acquires(p->pi_lock)
1647 	__acquires(rq->lock);
1648 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1649 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1650 	__releases(rq->lock)
1651 {
1652 	rq_unpin_lock(rq, rf);
1653 	raw_spin_rq_unlock(rq);
1654 }
1655 
1656 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1657 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1658 	__releases(rq->lock)
1659 	__releases(p->pi_lock)
1660 {
1661 	rq_unpin_lock(rq, rf);
1662 	raw_spin_rq_unlock(rq);
1663 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1664 }
1665 
1666 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1667 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1668 	__acquires(rq->lock)
1669 {
1670 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1671 	rq_pin_lock(rq, rf);
1672 }
1673 
1674 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1675 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1676 	__acquires(rq->lock)
1677 {
1678 	raw_spin_rq_lock_irq(rq);
1679 	rq_pin_lock(rq, rf);
1680 }
1681 
1682 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1683 rq_lock(struct rq *rq, struct rq_flags *rf)
1684 	__acquires(rq->lock)
1685 {
1686 	raw_spin_rq_lock(rq);
1687 	rq_pin_lock(rq, rf);
1688 }
1689 
1690 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1691 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1692 	__releases(rq->lock)
1693 {
1694 	rq_unpin_lock(rq, rf);
1695 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1696 }
1697 
1698 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1699 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1700 	__releases(rq->lock)
1701 {
1702 	rq_unpin_lock(rq, rf);
1703 	raw_spin_rq_unlock_irq(rq);
1704 }
1705 
1706 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1707 rq_unlock(struct rq *rq, struct rq_flags *rf)
1708 	__releases(rq->lock)
1709 {
1710 	rq_unpin_lock(rq, rf);
1711 	raw_spin_rq_unlock(rq);
1712 }
1713 
1714 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1715 this_rq_lock_irq(struct rq_flags *rf)
1716 	__acquires(rq->lock)
1717 {
1718 	struct rq *rq;
1719 
1720 	local_irq_disable();
1721 	rq = this_rq();
1722 	rq_lock(rq, rf);
1723 	return rq;
1724 }
1725 
1726 #ifdef CONFIG_NUMA
1727 enum numa_topology_type {
1728 	NUMA_DIRECT,
1729 	NUMA_GLUELESS_MESH,
1730 	NUMA_BACKPLANE,
1731 };
1732 extern enum numa_topology_type sched_numa_topology_type;
1733 extern int sched_max_numa_distance;
1734 extern bool find_numa_distance(int distance);
1735 extern void sched_init_numa(int offline_node);
1736 extern void sched_update_numa(int cpu, bool online);
1737 extern void sched_domains_numa_masks_set(unsigned int cpu);
1738 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1739 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1740 #else
sched_init_numa(int offline_node)1741 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1742 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1743 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1744 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1745 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1746 {
1747 	return nr_cpu_ids;
1748 }
1749 #endif
1750 
1751 #ifdef CONFIG_NUMA_BALANCING
1752 /* The regions in numa_faults array from task_struct */
1753 enum numa_faults_stats {
1754 	NUMA_MEM = 0,
1755 	NUMA_CPU,
1756 	NUMA_MEMBUF,
1757 	NUMA_CPUBUF
1758 };
1759 extern void sched_setnuma(struct task_struct *p, int node);
1760 extern int migrate_task_to(struct task_struct *p, int cpu);
1761 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1762 #else
1763 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1764 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1765 {
1766 }
1767 #endif /* CONFIG_NUMA_BALANCING */
1768 
1769 #ifdef CONFIG_SMP
1770 
1771 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1772 			int cpu, int scpu);
1773 
1774 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1775 queue_balance_callback(struct rq *rq,
1776 		       struct balance_callback *head,
1777 		       void (*func)(struct rq *rq))
1778 {
1779 	lockdep_assert_rq_held(rq);
1780 
1781 	/*
1782 	 * Don't (re)queue an already queued item; nor queue anything when
1783 	 * balance_push() is active, see the comment with
1784 	 * balance_push_callback.
1785 	 */
1786 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1787 		return;
1788 
1789 	head->func = func;
1790 	head->next = rq->balance_callback;
1791 	rq->balance_callback = head;
1792 }
1793 
1794 #define rcu_dereference_check_sched_domain(p) \
1795 	rcu_dereference_check((p), \
1796 			      lockdep_is_held(&sched_domains_mutex))
1797 
1798 /*
1799  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1800  * See destroy_sched_domains: call_rcu for details.
1801  *
1802  * The domain tree of any CPU may only be accessed from within
1803  * preempt-disabled sections.
1804  */
1805 #define for_each_domain(cpu, __sd) \
1806 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1807 			__sd; __sd = __sd->parent)
1808 
1809 /**
1810  * highest_flag_domain - Return highest sched_domain containing flag.
1811  * @cpu:	The CPU whose highest level of sched domain is to
1812  *		be returned.
1813  * @flag:	The flag to check for the highest sched_domain
1814  *		for the given CPU.
1815  *
1816  * Returns the highest sched_domain of a CPU which contains the given flag.
1817  */
highest_flag_domain(int cpu,int flag)1818 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1819 {
1820 	struct sched_domain *sd, *hsd = NULL;
1821 
1822 	for_each_domain(cpu, sd) {
1823 		if (!(sd->flags & flag))
1824 			break;
1825 		hsd = sd;
1826 	}
1827 
1828 	return hsd;
1829 }
1830 
lowest_flag_domain(int cpu,int flag)1831 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1832 {
1833 	struct sched_domain *sd;
1834 
1835 	for_each_domain(cpu, sd) {
1836 		if (sd->flags & flag)
1837 			break;
1838 	}
1839 
1840 	return sd;
1841 }
1842 
1843 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1844 DECLARE_PER_CPU(int, sd_llc_size);
1845 DECLARE_PER_CPU(int, sd_llc_id);
1846 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1847 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1848 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1849 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1850 extern struct static_key_false sched_asym_cpucapacity;
1851 
sched_asym_cpucap_active(void)1852 static __always_inline bool sched_asym_cpucap_active(void)
1853 {
1854 	return static_branch_unlikely(&sched_asym_cpucapacity);
1855 }
1856 
1857 struct sched_group_capacity {
1858 	atomic_t		ref;
1859 	/*
1860 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1861 	 * for a single CPU.
1862 	 */
1863 	unsigned long		capacity;
1864 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1865 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1866 	unsigned long		next_update;
1867 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1868 
1869 #ifdef CONFIG_SCHED_DEBUG
1870 	int			id;
1871 #endif
1872 
1873 	unsigned long		cpumask[];		/* Balance mask */
1874 };
1875 
1876 struct sched_group {
1877 	struct sched_group	*next;			/* Must be a circular list */
1878 	atomic_t		ref;
1879 
1880 	unsigned int		group_weight;
1881 	struct sched_group_capacity *sgc;
1882 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1883 	int			flags;
1884 
1885 	/*
1886 	 * The CPUs this group covers.
1887 	 *
1888 	 * NOTE: this field is variable length. (Allocated dynamically
1889 	 * by attaching extra space to the end of the structure,
1890 	 * depending on how many CPUs the kernel has booted up with)
1891 	 */
1892 	unsigned long		cpumask[];
1893 };
1894 
sched_group_span(struct sched_group * sg)1895 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1896 {
1897 	return to_cpumask(sg->cpumask);
1898 }
1899 
1900 /*
1901  * See build_balance_mask().
1902  */
group_balance_mask(struct sched_group * sg)1903 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1904 {
1905 	return to_cpumask(sg->sgc->cpumask);
1906 }
1907 
1908 extern int group_balance_cpu(struct sched_group *sg);
1909 
1910 #ifdef CONFIG_SCHED_DEBUG
1911 void update_sched_domain_debugfs(void);
1912 void dirty_sched_domain_sysctl(int cpu);
1913 #else
update_sched_domain_debugfs(void)1914 static inline void update_sched_domain_debugfs(void)
1915 {
1916 }
dirty_sched_domain_sysctl(int cpu)1917 static inline void dirty_sched_domain_sysctl(int cpu)
1918 {
1919 }
1920 #endif
1921 
1922 extern int sched_update_scaling(void);
1923 #endif /* CONFIG_SMP */
1924 
1925 #include "stats.h"
1926 
1927 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1928 
1929 extern void __sched_core_account_forceidle(struct rq *rq);
1930 
sched_core_account_forceidle(struct rq * rq)1931 static inline void sched_core_account_forceidle(struct rq *rq)
1932 {
1933 	if (schedstat_enabled())
1934 		__sched_core_account_forceidle(rq);
1935 }
1936 
1937 extern void __sched_core_tick(struct rq *rq);
1938 
sched_core_tick(struct rq * rq)1939 static inline void sched_core_tick(struct rq *rq)
1940 {
1941 	if (sched_core_enabled(rq) && schedstat_enabled())
1942 		__sched_core_tick(rq);
1943 }
1944 
1945 #else
1946 
sched_core_account_forceidle(struct rq * rq)1947 static inline void sched_core_account_forceidle(struct rq *rq) {}
1948 
sched_core_tick(struct rq * rq)1949 static inline void sched_core_tick(struct rq *rq) {}
1950 
1951 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1952 
1953 #ifdef CONFIG_CGROUP_SCHED
1954 
1955 /*
1956  * Return the group to which this tasks belongs.
1957  *
1958  * We cannot use task_css() and friends because the cgroup subsystem
1959  * changes that value before the cgroup_subsys::attach() method is called,
1960  * therefore we cannot pin it and might observe the wrong value.
1961  *
1962  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1963  * core changes this before calling sched_move_task().
1964  *
1965  * Instead we use a 'copy' which is updated from sched_move_task() while
1966  * holding both task_struct::pi_lock and rq::lock.
1967  */
task_group(struct task_struct * p)1968 static inline struct task_group *task_group(struct task_struct *p)
1969 {
1970 	return p->sched_task_group;
1971 }
1972 
1973 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1974 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1975 {
1976 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1977 	struct task_group *tg = task_group(p);
1978 #endif
1979 
1980 #ifdef CONFIG_FAIR_GROUP_SCHED
1981 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1982 	p->se.cfs_rq = tg->cfs_rq[cpu];
1983 	p->se.parent = tg->se[cpu];
1984 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1985 #endif
1986 
1987 #ifdef CONFIG_RT_GROUP_SCHED
1988 	p->rt.rt_rq  = tg->rt_rq[cpu];
1989 	p->rt.parent = tg->rt_se[cpu];
1990 #endif
1991 }
1992 
1993 #else /* CONFIG_CGROUP_SCHED */
1994 
set_task_rq(struct task_struct * p,unsigned int cpu)1995 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1996 static inline struct task_group *task_group(struct task_struct *p)
1997 {
1998 	return NULL;
1999 }
2000 
2001 #endif /* CONFIG_CGROUP_SCHED */
2002 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2003 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2004 {
2005 	set_task_rq(p, cpu);
2006 #ifdef CONFIG_SMP
2007 	/*
2008 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2009 	 * successfully executed on another CPU. We must ensure that updates of
2010 	 * per-task data have been completed by this moment.
2011 	 */
2012 	smp_wmb();
2013 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2014 	p->wake_cpu = cpu;
2015 #endif
2016 }
2017 
2018 /*
2019  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2020  */
2021 #ifdef CONFIG_SCHED_DEBUG
2022 # define const_debug __read_mostly
2023 #else
2024 # define const_debug const
2025 #endif
2026 
2027 #define SCHED_FEAT(name, enabled)	\
2028 	__SCHED_FEAT_##name ,
2029 
2030 enum {
2031 #include "features.h"
2032 	__SCHED_FEAT_NR,
2033 };
2034 
2035 #undef SCHED_FEAT
2036 
2037 #ifdef CONFIG_SCHED_DEBUG
2038 
2039 /*
2040  * To support run-time toggling of sched features, all the translation units
2041  * (but core.c) reference the sysctl_sched_features defined in core.c.
2042  */
2043 extern const_debug unsigned int sysctl_sched_features;
2044 
2045 #ifdef CONFIG_JUMP_LABEL
2046 #define SCHED_FEAT(name, enabled)					\
2047 static __always_inline bool static_branch_##name(struct static_key *key) \
2048 {									\
2049 	return static_key_##enabled(key);				\
2050 }
2051 
2052 #include "features.h"
2053 #undef SCHED_FEAT
2054 
2055 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2056 extern const char * const sched_feat_names[__SCHED_FEAT_NR];
2057 
2058 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2059 
2060 #else /* !CONFIG_JUMP_LABEL */
2061 
2062 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2063 
2064 #endif /* CONFIG_JUMP_LABEL */
2065 
2066 #else /* !SCHED_DEBUG */
2067 
2068 /*
2069  * Each translation unit has its own copy of sysctl_sched_features to allow
2070  * constants propagation at compile time and compiler optimization based on
2071  * features default.
2072  */
2073 #define SCHED_FEAT(name, enabled)	\
2074 	(1UL << __SCHED_FEAT_##name) * enabled |
2075 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2076 #include "features.h"
2077 	0;
2078 #undef SCHED_FEAT
2079 
2080 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2081 
2082 #endif /* SCHED_DEBUG */
2083 
2084 extern struct static_key_false sched_numa_balancing;
2085 extern struct static_key_false sched_schedstats;
2086 
global_rt_period(void)2087 static inline u64 global_rt_period(void)
2088 {
2089 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2090 }
2091 
global_rt_runtime(void)2092 static inline u64 global_rt_runtime(void)
2093 {
2094 	if (sysctl_sched_rt_runtime < 0)
2095 		return RUNTIME_INF;
2096 
2097 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2098 }
2099 
task_current(struct rq * rq,struct task_struct * p)2100 static inline int task_current(struct rq *rq, struct task_struct *p)
2101 {
2102 	return rq->curr == p;
2103 }
2104 
task_on_cpu(struct rq * rq,struct task_struct * p)2105 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2106 {
2107 #ifdef CONFIG_SMP
2108 	return p->on_cpu;
2109 #else
2110 	return task_current(rq, p);
2111 #endif
2112 }
2113 
task_on_rq_queued(struct task_struct * p)2114 static inline int task_on_rq_queued(struct task_struct *p)
2115 {
2116 	return p->on_rq == TASK_ON_RQ_QUEUED;
2117 }
2118 
task_on_rq_migrating(struct task_struct * p)2119 static inline int task_on_rq_migrating(struct task_struct *p)
2120 {
2121 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2122 }
2123 
2124 /* Wake flags. The first three directly map to some SD flag value */
2125 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2126 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2127 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2128 
2129 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2130 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2131 
2132 #define WF_ANDROID_VENDOR	0x1000 /* Vendor specific for Android */
2133 
2134 #ifdef CONFIG_SMP
2135 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2136 static_assert(WF_FORK == SD_BALANCE_FORK);
2137 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2138 #endif
2139 
2140 /*
2141  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2142  * of tasks with abnormal "nice" values across CPUs the contribution that
2143  * each task makes to its run queue's load is weighted according to its
2144  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2145  * scaled version of the new time slice allocation that they receive on time
2146  * slice expiry etc.
2147  */
2148 
2149 #define WEIGHT_IDLEPRIO		3
2150 #define WMULT_IDLEPRIO		1431655765
2151 
2152 extern const int		sched_prio_to_weight[40];
2153 extern const u32		sched_prio_to_wmult[40];
2154 
2155 /*
2156  * {de,en}queue flags:
2157  *
2158  * DEQUEUE_SLEEP  - task is no longer runnable
2159  * ENQUEUE_WAKEUP - task just became runnable
2160  *
2161  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2162  *                are in a known state which allows modification. Such pairs
2163  *                should preserve as much state as possible.
2164  *
2165  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2166  *        in the runqueue.
2167  *
2168  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2169  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2170  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2171  *
2172  */
2173 
2174 #define DEQUEUE_SLEEP		0x01
2175 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2176 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2177 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2178 
2179 #define ENQUEUE_WAKEUP		0x01
2180 #define ENQUEUE_RESTORE		0x02
2181 #define ENQUEUE_MOVE		0x04
2182 #define ENQUEUE_NOCLOCK		0x08
2183 
2184 #define ENQUEUE_HEAD		0x10
2185 #define ENQUEUE_REPLENISH	0x20
2186 #ifdef CONFIG_SMP
2187 #define ENQUEUE_MIGRATED	0x40
2188 #else
2189 #define ENQUEUE_MIGRATED	0x00
2190 #endif
2191 
2192 #define ENQUEUE_WAKEUP_SYNC	0x80
2193 
2194 #define RETRY_TASK		((void *)-1UL)
2195 
2196 struct sched_class {
2197 
2198 #ifdef CONFIG_UCLAMP_TASK
2199 	int uclamp_enabled;
2200 #endif
2201 
2202 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2203 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2204 	void (*yield_task)   (struct rq *rq);
2205 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2206 
2207 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2208 
2209 	struct task_struct *(*pick_next_task)(struct rq *rq);
2210 
2211 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2212 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2213 
2214 #ifdef CONFIG_SMP
2215 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2216 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2217 
2218 	struct task_struct * (*pick_task)(struct rq *rq);
2219 
2220 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2221 
2222 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2223 
2224 	void (*set_cpus_allowed)(struct task_struct *p,
2225 				 const struct cpumask *newmask,
2226 				 u32 flags);
2227 
2228 	void (*rq_online)(struct rq *rq);
2229 	void (*rq_offline)(struct rq *rq);
2230 
2231 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2232 #endif
2233 
2234 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2235 	void (*task_fork)(struct task_struct *p);
2236 	void (*task_dead)(struct task_struct *p);
2237 
2238 	/*
2239 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2240 	 * cannot assume the switched_from/switched_to pair is serialized by
2241 	 * rq->lock. They are however serialized by p->pi_lock.
2242 	 */
2243 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2244 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2245 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2246 			      int oldprio);
2247 
2248 	unsigned int (*get_rr_interval)(struct rq *rq,
2249 					struct task_struct *task);
2250 
2251 	void (*update_curr)(struct rq *rq);
2252 
2253 #ifdef CONFIG_FAIR_GROUP_SCHED
2254 	void (*task_change_group)(struct task_struct *p);
2255 #endif
2256 };
2257 
put_prev_task(struct rq * rq,struct task_struct * prev)2258 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2259 {
2260 	WARN_ON_ONCE(rq->curr != prev);
2261 	prev->sched_class->put_prev_task(rq, prev);
2262 }
2263 
set_next_task(struct rq * rq,struct task_struct * next)2264 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2265 {
2266 	next->sched_class->set_next_task(rq, next, false);
2267 }
2268 
2269 
2270 /*
2271  * Helper to define a sched_class instance; each one is placed in a separate
2272  * section which is ordered by the linker script:
2273  *
2274  *   include/asm-generic/vmlinux.lds.h
2275  *
2276  * *CAREFUL* they are laid out in *REVERSE* order!!!
2277  *
2278  * Also enforce alignment on the instance, not the type, to guarantee layout.
2279  */
2280 #define DEFINE_SCHED_CLASS(name) \
2281 const struct sched_class name##_sched_class \
2282 	__aligned(__alignof__(struct sched_class)) \
2283 	__section("__" #name "_sched_class")
2284 
2285 /* Defined in include/asm-generic/vmlinux.lds.h */
2286 extern struct sched_class __sched_class_highest[];
2287 extern struct sched_class __sched_class_lowest[];
2288 
2289 #define for_class_range(class, _from, _to) \
2290 	for (class = (_from); class < (_to); class++)
2291 
2292 #define for_each_class(class) \
2293 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2294 
2295 #define sched_class_above(_a, _b)	((_a) < (_b))
2296 
2297 extern const struct sched_class stop_sched_class;
2298 extern const struct sched_class dl_sched_class;
2299 extern const struct sched_class rt_sched_class;
2300 extern const struct sched_class fair_sched_class;
2301 extern const struct sched_class idle_sched_class;
2302 
sched_stop_runnable(struct rq * rq)2303 static inline bool sched_stop_runnable(struct rq *rq)
2304 {
2305 	return rq->stop && task_on_rq_queued(rq->stop);
2306 }
2307 
sched_dl_runnable(struct rq * rq)2308 static inline bool sched_dl_runnable(struct rq *rq)
2309 {
2310 	return rq->dl.dl_nr_running > 0;
2311 }
2312 
sched_rt_runnable(struct rq * rq)2313 static inline bool sched_rt_runnable(struct rq *rq)
2314 {
2315 	return rq->rt.rt_queued > 0;
2316 }
2317 
sched_fair_runnable(struct rq * rq)2318 static inline bool sched_fair_runnable(struct rq *rq)
2319 {
2320 	return rq->cfs.nr_running > 0;
2321 }
2322 
2323 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2324 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2325 
2326 #define SCA_CHECK		0x01
2327 #define SCA_MIGRATE_DISABLE	0x02
2328 #define SCA_MIGRATE_ENABLE	0x04
2329 #define SCA_USER		0x08
2330 
2331 #ifdef CONFIG_SMP
2332 
2333 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2334 
2335 extern void trigger_load_balance(struct rq *rq);
2336 
2337 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2338 
get_push_task(struct rq * rq)2339 static inline struct task_struct *get_push_task(struct rq *rq)
2340 {
2341 	struct task_struct *p = rq->curr;
2342 
2343 	lockdep_assert_rq_held(rq);
2344 
2345 	if (rq->push_busy)
2346 		return NULL;
2347 
2348 	if (p->nr_cpus_allowed == 1)
2349 		return NULL;
2350 
2351 	if (p->migration_disabled)
2352 		return NULL;
2353 
2354 	rq->push_busy = true;
2355 	return get_task_struct(p);
2356 }
2357 
2358 extern int push_cpu_stop(void *arg);
2359 
2360 extern unsigned long __read_mostly max_load_balance_interval;
2361 #endif
2362 
2363 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2364 static inline void idle_set_state(struct rq *rq,
2365 				  struct cpuidle_state *idle_state)
2366 {
2367 	rq->idle_state = idle_state;
2368 }
2369 
idle_get_state(struct rq * rq)2370 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2371 {
2372 	SCHED_WARN_ON(!rcu_read_lock_held());
2373 
2374 	return rq->idle_state;
2375 }
2376 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2377 static inline void idle_set_state(struct rq *rq,
2378 				  struct cpuidle_state *idle_state)
2379 {
2380 }
2381 
idle_get_state(struct rq * rq)2382 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2383 {
2384 	return NULL;
2385 }
2386 #endif
2387 
2388 extern void schedule_idle(void);
2389 
2390 extern void sysrq_sched_debug_show(void);
2391 extern void sched_init_granularity(void);
2392 extern void update_max_interval(void);
2393 
2394 extern void init_sched_dl_class(void);
2395 extern void init_sched_rt_class(void);
2396 extern void init_sched_fair_class(void);
2397 
2398 extern void reweight_task(struct task_struct *p, int prio);
2399 
2400 extern void resched_curr(struct rq *rq);
2401 extern void resched_cpu(int cpu);
2402 
2403 extern struct rt_bandwidth def_rt_bandwidth;
2404 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2405 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2406 
2407 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2408 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2409 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2410 
2411 #define BW_SHIFT		20
2412 #define BW_UNIT			(1 << BW_SHIFT)
2413 #define RATIO_SHIFT		8
2414 #define MAX_BW_BITS		(64 - BW_SHIFT)
2415 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2416 unsigned long to_ratio(u64 period, u64 runtime);
2417 
2418 extern void init_entity_runnable_average(struct sched_entity *se);
2419 extern void post_init_entity_util_avg(struct task_struct *p);
2420 
2421 #ifdef CONFIG_NO_HZ_FULL
2422 extern bool sched_can_stop_tick(struct rq *rq);
2423 extern int __init sched_tick_offload_init(void);
2424 
2425 /*
2426  * Tick may be needed by tasks in the runqueue depending on their policy and
2427  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2428  * nohz mode if necessary.
2429  */
sched_update_tick_dependency(struct rq * rq)2430 static inline void sched_update_tick_dependency(struct rq *rq)
2431 {
2432 	int cpu = cpu_of(rq);
2433 
2434 	if (!tick_nohz_full_cpu(cpu))
2435 		return;
2436 
2437 	if (sched_can_stop_tick(rq))
2438 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2439 	else
2440 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2441 }
2442 #else
sched_tick_offload_init(void)2443 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2444 static inline void sched_update_tick_dependency(struct rq *rq) { }
2445 #endif
2446 
add_nr_running(struct rq * rq,unsigned count)2447 static inline void add_nr_running(struct rq *rq, unsigned count)
2448 {
2449 	unsigned prev_nr = rq->nr_running;
2450 
2451 	rq->nr_running = prev_nr + count;
2452 	if (trace_sched_update_nr_running_tp_enabled()) {
2453 		call_trace_sched_update_nr_running(rq, count);
2454 	}
2455 
2456 #ifdef CONFIG_SMP
2457 	if (prev_nr < 2 && rq->nr_running >= 2) {
2458 		if (!READ_ONCE(rq->rd->overload))
2459 			WRITE_ONCE(rq->rd->overload, 1);
2460 	}
2461 #endif
2462 
2463 	sched_update_tick_dependency(rq);
2464 }
2465 
sub_nr_running(struct rq * rq,unsigned count)2466 static inline void sub_nr_running(struct rq *rq, unsigned count)
2467 {
2468 	rq->nr_running -= count;
2469 	if (trace_sched_update_nr_running_tp_enabled()) {
2470 		call_trace_sched_update_nr_running(rq, -count);
2471 	}
2472 
2473 	/* Check if we still need preemption */
2474 	sched_update_tick_dependency(rq);
2475 }
2476 
2477 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2478 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2479 
2480 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2481 
2482 #ifdef CONFIG_PREEMPT_RT
2483 #define SCHED_NR_MIGRATE_BREAK 8
2484 #else
2485 #define SCHED_NR_MIGRATE_BREAK 32
2486 #endif
2487 
2488 extern const_debug unsigned int sysctl_sched_nr_migrate;
2489 extern const_debug unsigned int sysctl_sched_migration_cost;
2490 
2491 #ifdef CONFIG_SCHED_DEBUG
2492 extern unsigned int sysctl_sched_latency;
2493 extern unsigned int sysctl_sched_min_granularity;
2494 extern unsigned int sysctl_sched_idle_min_granularity;
2495 extern unsigned int sysctl_sched_wakeup_granularity;
2496 extern int sysctl_resched_latency_warn_ms;
2497 extern int sysctl_resched_latency_warn_once;
2498 
2499 extern unsigned int sysctl_sched_tunable_scaling;
2500 
2501 extern unsigned int sysctl_numa_balancing_scan_delay;
2502 extern unsigned int sysctl_numa_balancing_scan_period_min;
2503 extern unsigned int sysctl_numa_balancing_scan_period_max;
2504 extern unsigned int sysctl_numa_balancing_scan_size;
2505 extern unsigned int sysctl_numa_balancing_hot_threshold;
2506 #endif
2507 
2508 #ifdef CONFIG_SCHED_HRTICK
2509 
2510 /*
2511  * Use hrtick when:
2512  *  - enabled by features
2513  *  - hrtimer is actually high res
2514  */
hrtick_enabled(struct rq * rq)2515 static inline int hrtick_enabled(struct rq *rq)
2516 {
2517 	if (!cpu_active(cpu_of(rq)))
2518 		return 0;
2519 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2520 }
2521 
hrtick_enabled_fair(struct rq * rq)2522 static inline int hrtick_enabled_fair(struct rq *rq)
2523 {
2524 	if (!sched_feat(HRTICK))
2525 		return 0;
2526 	return hrtick_enabled(rq);
2527 }
2528 
hrtick_enabled_dl(struct rq * rq)2529 static inline int hrtick_enabled_dl(struct rq *rq)
2530 {
2531 	if (!sched_feat(HRTICK_DL))
2532 		return 0;
2533 	return hrtick_enabled(rq);
2534 }
2535 
2536 void hrtick_start(struct rq *rq, u64 delay);
2537 
2538 #else
2539 
hrtick_enabled_fair(struct rq * rq)2540 static inline int hrtick_enabled_fair(struct rq *rq)
2541 {
2542 	return 0;
2543 }
2544 
hrtick_enabled_dl(struct rq * rq)2545 static inline int hrtick_enabled_dl(struct rq *rq)
2546 {
2547 	return 0;
2548 }
2549 
hrtick_enabled(struct rq * rq)2550 static inline int hrtick_enabled(struct rq *rq)
2551 {
2552 	return 0;
2553 }
2554 
2555 #endif /* CONFIG_SCHED_HRTICK */
2556 
2557 #ifndef arch_scale_freq_tick
2558 static __always_inline
arch_scale_freq_tick(void)2559 void arch_scale_freq_tick(void)
2560 {
2561 }
2562 #endif
2563 
2564 #ifndef arch_scale_freq_capacity
2565 /**
2566  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2567  * @cpu: the CPU in question.
2568  *
2569  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2570  *
2571  *     f_curr
2572  *     ------ * SCHED_CAPACITY_SCALE
2573  *     f_max
2574  */
2575 static __always_inline
arch_scale_freq_capacity(int cpu)2576 unsigned long arch_scale_freq_capacity(int cpu)
2577 {
2578 	return SCHED_CAPACITY_SCALE;
2579 }
2580 #endif
2581 
2582 #ifdef CONFIG_SCHED_DEBUG
2583 /*
2584  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2585  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2586  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2587  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2588  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2589 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2590 {
2591 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2592 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2593 #ifdef CONFIG_SMP
2594 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2595 #endif
2596 }
2597 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2598 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2599 #endif
2600 
2601 #ifdef CONFIG_SMP
2602 
rq_order_less(struct rq * rq1,struct rq * rq2)2603 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2604 {
2605 #ifdef CONFIG_SCHED_CORE
2606 	/*
2607 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2608 	 * order by core-id first and cpu-id second.
2609 	 *
2610 	 * Notably:
2611 	 *
2612 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2613 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2614 	 *
2615 	 * when only cpu-id is considered.
2616 	 */
2617 	if (rq1->core->cpu < rq2->core->cpu)
2618 		return true;
2619 	if (rq1->core->cpu > rq2->core->cpu)
2620 		return false;
2621 
2622 	/*
2623 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2624 	 */
2625 #endif
2626 	return rq1->cpu < rq2->cpu;
2627 }
2628 
2629 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2630 
2631 #ifdef CONFIG_PREEMPTION
2632 
2633 /*
2634  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2635  * way at the expense of forcing extra atomic operations in all
2636  * invocations.  This assures that the double_lock is acquired using the
2637  * same underlying policy as the spinlock_t on this architecture, which
2638  * reduces latency compared to the unfair variant below.  However, it
2639  * also adds more overhead and therefore may reduce throughput.
2640  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2641 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2642 	__releases(this_rq->lock)
2643 	__acquires(busiest->lock)
2644 	__acquires(this_rq->lock)
2645 {
2646 	raw_spin_rq_unlock(this_rq);
2647 	double_rq_lock(this_rq, busiest);
2648 
2649 	return 1;
2650 }
2651 
2652 #else
2653 /*
2654  * Unfair double_lock_balance: Optimizes throughput at the expense of
2655  * latency by eliminating extra atomic operations when the locks are
2656  * already in proper order on entry.  This favors lower CPU-ids and will
2657  * grant the double lock to lower CPUs over higher ids under contention,
2658  * regardless of entry order into the function.
2659  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2660 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2661 	__releases(this_rq->lock)
2662 	__acquires(busiest->lock)
2663 	__acquires(this_rq->lock)
2664 {
2665 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2666 	    likely(raw_spin_rq_trylock(busiest))) {
2667 		double_rq_clock_clear_update(this_rq, busiest);
2668 		return 0;
2669 	}
2670 
2671 	if (rq_order_less(this_rq, busiest)) {
2672 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2673 		double_rq_clock_clear_update(this_rq, busiest);
2674 		return 0;
2675 	}
2676 
2677 	raw_spin_rq_unlock(this_rq);
2678 	double_rq_lock(this_rq, busiest);
2679 
2680 	return 1;
2681 }
2682 
2683 #endif /* CONFIG_PREEMPTION */
2684 
2685 /*
2686  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2687  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2688 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2689 {
2690 	lockdep_assert_irqs_disabled();
2691 
2692 	return _double_lock_balance(this_rq, busiest);
2693 }
2694 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2695 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2696 	__releases(busiest->lock)
2697 {
2698 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2699 		raw_spin_rq_unlock(busiest);
2700 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2701 }
2702 
double_lock(spinlock_t * l1,spinlock_t * l2)2703 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2704 {
2705 	if (l1 > l2)
2706 		swap(l1, l2);
2707 
2708 	spin_lock(l1);
2709 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2710 }
2711 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2712 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2713 {
2714 	if (l1 > l2)
2715 		swap(l1, l2);
2716 
2717 	spin_lock_irq(l1);
2718 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2719 }
2720 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2721 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2722 {
2723 	if (l1 > l2)
2724 		swap(l1, l2);
2725 
2726 	raw_spin_lock(l1);
2727 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2728 }
2729 
2730 /*
2731  * double_rq_unlock - safely unlock two runqueues
2732  *
2733  * Note this does not restore interrupts like task_rq_unlock,
2734  * you need to do so manually after calling.
2735  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2736 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2737 	__releases(rq1->lock)
2738 	__releases(rq2->lock)
2739 {
2740 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2741 		raw_spin_rq_unlock(rq2);
2742 	else
2743 		__release(rq2->lock);
2744 	raw_spin_rq_unlock(rq1);
2745 }
2746 
2747 extern void set_rq_online (struct rq *rq);
2748 extern void set_rq_offline(struct rq *rq);
2749 extern bool sched_smp_initialized;
2750 
2751 #else /* CONFIG_SMP */
2752 
2753 /*
2754  * double_rq_lock - safely lock two runqueues
2755  *
2756  * Note this does not disable interrupts like task_rq_lock,
2757  * you need to do so manually before calling.
2758  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2759 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2760 	__acquires(rq1->lock)
2761 	__acquires(rq2->lock)
2762 {
2763 	WARN_ON_ONCE(!irqs_disabled());
2764 	WARN_ON_ONCE(rq1 != rq2);
2765 	raw_spin_rq_lock(rq1);
2766 	__acquire(rq2->lock);	/* Fake it out ;) */
2767 	double_rq_clock_clear_update(rq1, rq2);
2768 }
2769 
2770 /*
2771  * double_rq_unlock - safely unlock two runqueues
2772  *
2773  * Note this does not restore interrupts like task_rq_unlock,
2774  * you need to do so manually after calling.
2775  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2776 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2777 	__releases(rq1->lock)
2778 	__releases(rq2->lock)
2779 {
2780 	WARN_ON_ONCE(rq1 != rq2);
2781 	raw_spin_rq_unlock(rq1);
2782 	__release(rq2->lock);
2783 }
2784 
2785 #endif
2786 
2787 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2788 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2789 
2790 #ifdef	CONFIG_SCHED_DEBUG
2791 extern bool sched_debug_verbose;
2792 
2793 extern void print_cfs_stats(struct seq_file *m, int cpu);
2794 extern void print_rt_stats(struct seq_file *m, int cpu);
2795 extern void print_dl_stats(struct seq_file *m, int cpu);
2796 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2797 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2798 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2799 
2800 extern void resched_latency_warn(int cpu, u64 latency);
2801 #ifdef CONFIG_NUMA_BALANCING
2802 extern void
2803 show_numa_stats(struct task_struct *p, struct seq_file *m);
2804 extern void
2805 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2806 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2807 #endif /* CONFIG_NUMA_BALANCING */
2808 #else
resched_latency_warn(int cpu,u64 latency)2809 static inline void resched_latency_warn(int cpu, u64 latency) {}
2810 #endif /* CONFIG_SCHED_DEBUG */
2811 
2812 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2813 extern void init_rt_rq(struct rt_rq *rt_rq);
2814 extern void init_dl_rq(struct dl_rq *dl_rq);
2815 
2816 extern void cfs_bandwidth_usage_inc(void);
2817 extern void cfs_bandwidth_usage_dec(void);
2818 
2819 #ifdef CONFIG_NO_HZ_COMMON
2820 #define NOHZ_BALANCE_KICK_BIT	0
2821 #define NOHZ_STATS_KICK_BIT	1
2822 #define NOHZ_NEWILB_KICK_BIT	2
2823 #define NOHZ_NEXT_KICK_BIT	3
2824 
2825 /* Run rebalance_domains() */
2826 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2827 /* Update blocked load */
2828 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2829 /* Update blocked load when entering idle */
2830 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2831 /* Update nohz.next_balance */
2832 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2833 
2834 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2835 
2836 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2837 
2838 extern void nohz_balance_exit_idle(struct rq *rq);
2839 #else
nohz_balance_exit_idle(struct rq * rq)2840 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2841 #endif
2842 
2843 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2844 extern void nohz_run_idle_balance(int cpu);
2845 #else
nohz_run_idle_balance(int cpu)2846 static inline void nohz_run_idle_balance(int cpu) { }
2847 #endif
2848 
2849 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2850 struct irqtime {
2851 	u64			total;
2852 	u64			tick_delta;
2853 	u64			irq_start_time;
2854 	struct u64_stats_sync	sync;
2855 };
2856 
2857 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2858 
2859 /*
2860  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2861  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2862  * and never move forward.
2863  */
irq_time_read(int cpu)2864 static inline u64 irq_time_read(int cpu)
2865 {
2866 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2867 	unsigned int seq;
2868 	u64 total;
2869 
2870 	do {
2871 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2872 		total = irqtime->total;
2873 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2874 
2875 	return total;
2876 }
2877 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2878 
2879 #ifdef CONFIG_CPU_FREQ
2880 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2881 
2882 /**
2883  * cpufreq_update_util - Take a note about CPU utilization changes.
2884  * @rq: Runqueue to carry out the update for.
2885  * @flags: Update reason flags.
2886  *
2887  * This function is called by the scheduler on the CPU whose utilization is
2888  * being updated.
2889  *
2890  * It can only be called from RCU-sched read-side critical sections.
2891  *
2892  * The way cpufreq is currently arranged requires it to evaluate the CPU
2893  * performance state (frequency/voltage) on a regular basis to prevent it from
2894  * being stuck in a completely inadequate performance level for too long.
2895  * That is not guaranteed to happen if the updates are only triggered from CFS
2896  * and DL, though, because they may not be coming in if only RT tasks are
2897  * active all the time (or there are RT tasks only).
2898  *
2899  * As a workaround for that issue, this function is called periodically by the
2900  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2901  * but that really is a band-aid.  Going forward it should be replaced with
2902  * solutions targeted more specifically at RT tasks.
2903  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2904 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2905 {
2906 	struct update_util_data *data;
2907 
2908 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2909 						  cpu_of(rq)));
2910 	if (data)
2911 		data->func(data, rq_clock(rq), flags);
2912 }
2913 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2914 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2915 #endif /* CONFIG_CPU_FREQ */
2916 
2917 #ifdef arch_scale_freq_capacity
2918 # ifndef arch_scale_freq_invariant
2919 #  define arch_scale_freq_invariant()	true
2920 # endif
2921 #else
2922 # define arch_scale_freq_invariant()	false
2923 #endif
2924 
2925 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2926 static inline unsigned long capacity_orig_of(int cpu)
2927 {
2928 	return cpu_rq(cpu)->cpu_capacity_orig;
2929 }
2930 
2931 /**
2932  * enum cpu_util_type - CPU utilization type
2933  * @FREQUENCY_UTIL:	Utilization used to select frequency
2934  * @ENERGY_UTIL:	Utilization used during energy calculation
2935  *
2936  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2937  * need to be aggregated differently depending on the usage made of them. This
2938  * enum is used within effective_cpu_util() to differentiate the types of
2939  * utilization expected by the callers, and adjust the aggregation accordingly.
2940  */
2941 enum cpu_util_type {
2942 	FREQUENCY_UTIL,
2943 	ENERGY_UTIL,
2944 };
2945 
2946 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2947 				 enum cpu_util_type type,
2948 				 struct task_struct *p);
2949 
2950 /*
2951  * Verify the fitness of task @p to run on @cpu taking into account the
2952  * CPU original capacity and the runtime/deadline ratio of the task.
2953  *
2954  * The function will return true if the original capacity of @cpu is
2955  * greater than or equal to task's deadline density right shifted by
2956  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2957  */
dl_task_fits_capacity(struct task_struct * p,int cpu)2958 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2959 {
2960 	unsigned long cap = arch_scale_cpu_capacity(cpu);
2961 
2962 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2963 }
2964 
cpu_bw_dl(struct rq * rq)2965 static inline unsigned long cpu_bw_dl(struct rq *rq)
2966 {
2967 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2968 }
2969 
cpu_util_dl(struct rq * rq)2970 static inline unsigned long cpu_util_dl(struct rq *rq)
2971 {
2972 	return READ_ONCE(rq->avg_dl.util_avg);
2973 }
2974 
2975 /**
2976  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2977  * @cpu: the CPU to get the utilization for.
2978  *
2979  * The unit of the return value must be the same as the one of CPU capacity
2980  * so that CPU utilization can be compared with CPU capacity.
2981  *
2982  * CPU utilization is the sum of running time of runnable tasks plus the
2983  * recent utilization of currently non-runnable tasks on that CPU.
2984  * It represents the amount of CPU capacity currently used by CFS tasks in
2985  * the range [0..max CPU capacity] with max CPU capacity being the CPU
2986  * capacity at f_max.
2987  *
2988  * The estimated CPU utilization is defined as the maximum between CPU
2989  * utilization and sum of the estimated utilization of the currently
2990  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2991  * previously-executed tasks, which helps better deduce how busy a CPU will
2992  * be when a long-sleeping task wakes up. The contribution to CPU utilization
2993  * of such a task would be significantly decayed at this point of time.
2994  *
2995  * CPU utilization can be higher than the current CPU capacity
2996  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2997  * of rounding errors as well as task migrations or wakeups of new tasks.
2998  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2999  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
3000  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
3001  * capacity. CPU utilization is allowed to overshoot current CPU capacity
3002  * though since this is useful for predicting the CPU capacity required
3003  * after task migrations (scheduler-driven DVFS).
3004  *
3005  * Return: (Estimated) utilization for the specified CPU.
3006  */
cpu_util_cfs(int cpu)3007 static inline unsigned long cpu_util_cfs(int cpu)
3008 {
3009 	struct cfs_rq *cfs_rq;
3010 	unsigned long util;
3011 
3012 	cfs_rq = &cpu_rq(cpu)->cfs;
3013 	util = READ_ONCE(cfs_rq->avg.util_avg);
3014 
3015 	if (sched_feat(UTIL_EST)) {
3016 		util = max_t(unsigned long, util,
3017 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
3018 	}
3019 
3020 	return min(util, capacity_orig_of(cpu));
3021 }
3022 
cpu_util_rt(struct rq * rq)3023 static inline unsigned long cpu_util_rt(struct rq *rq)
3024 {
3025 	return READ_ONCE(rq->avg_rt.util_avg);
3026 }
3027 #endif
3028 
3029 #ifdef CONFIG_UCLAMP_TASK
3030 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3031 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3032 static inline unsigned long uclamp_rq_get(struct rq *rq,
3033 					  enum uclamp_id clamp_id)
3034 {
3035 	return READ_ONCE(rq->uclamp[clamp_id].value);
3036 }
3037 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3038 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3039 				 unsigned int value)
3040 {
3041 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3042 }
3043 
uclamp_rq_is_idle(struct rq * rq)3044 static inline bool uclamp_rq_is_idle(struct rq *rq)
3045 {
3046 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3047 }
3048 
3049 /**
3050  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3051  * @rq:		The rq to clamp against. Must not be NULL.
3052  * @util:	The util value to clamp.
3053  * @p:		The task to clamp against. Can be NULL if you want to clamp
3054  *		against @rq only.
3055  *
3056  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3057  *
3058  * If sched_uclamp_used static key is disabled, then just return the util
3059  * without any clamping since uclamp aggregation at the rq level in the fast
3060  * path is disabled, rendering this operation a NOP.
3061  *
3062  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3063  * will return the correct effective uclamp value of the task even if the
3064  * static key is disabled.
3065  */
3066 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3067 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3068 				  struct task_struct *p)
3069 {
3070 	unsigned long min_util = 0;
3071 	unsigned long max_util = 0;
3072 
3073 	if (!static_branch_likely(&sched_uclamp_used))
3074 		return util;
3075 
3076 	if (p) {
3077 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3078 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3079 
3080 		/*
3081 		 * Ignore last runnable task's max clamp, as this task will
3082 		 * reset it. Similarly, no need to read the rq's min clamp.
3083 		 */
3084 		if (uclamp_rq_is_idle(rq))
3085 			goto out;
3086 	}
3087 
3088 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3089 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3090 out:
3091 	/*
3092 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3093 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3094 	 * inversion. Fix it now when the clamps are applied.
3095 	 */
3096 	if (unlikely(min_util >= max_util))
3097 		return min_util;
3098 
3099 	return clamp(util, min_util, max_util);
3100 }
3101 
3102 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3103 static inline bool uclamp_rq_is_capped(struct rq *rq)
3104 {
3105 	unsigned long rq_util;
3106 	unsigned long max_util;
3107 
3108 	if (!static_branch_likely(&sched_uclamp_used))
3109 		return false;
3110 
3111 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3112 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3113 
3114 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3115 }
3116 
3117 /*
3118  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3119  * by default in the fast path and only gets turned on once userspace performs
3120  * an operation that requires it.
3121  *
3122  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3123  * hence is active.
3124  */
uclamp_is_used(void)3125 static inline bool uclamp_is_used(void)
3126 {
3127 	return static_branch_likely(&sched_uclamp_used);
3128 }
3129 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3130 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3131 					     enum uclamp_id clamp_id)
3132 {
3133 	if (clamp_id == UCLAMP_MIN)
3134 		return 0;
3135 
3136 	return SCHED_CAPACITY_SCALE;
3137 }
3138 
3139 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3140 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3141 				  struct task_struct *p)
3142 {
3143 	return util;
3144 }
3145 
uclamp_rq_is_capped(struct rq * rq)3146 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3147 
uclamp_is_used(void)3148 static inline bool uclamp_is_used(void)
3149 {
3150 	return false;
3151 }
3152 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3153 static inline unsigned long uclamp_rq_get(struct rq *rq,
3154 					  enum uclamp_id clamp_id)
3155 {
3156 	if (clamp_id == UCLAMP_MIN)
3157 		return 0;
3158 
3159 	return SCHED_CAPACITY_SCALE;
3160 }
3161 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3162 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3163 				 unsigned int value)
3164 {
3165 }
3166 
uclamp_rq_is_idle(struct rq * rq)3167 static inline bool uclamp_rq_is_idle(struct rq *rq)
3168 {
3169 	return false;
3170 }
3171 #endif /* CONFIG_UCLAMP_TASK */
3172 
3173 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3174 static inline unsigned long cpu_util_irq(struct rq *rq)
3175 {
3176 	return rq->avg_irq.util_avg;
3177 }
3178 
3179 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3180 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3181 {
3182 	util *= (max - irq);
3183 	util /= max;
3184 
3185 	return util;
3186 
3187 }
3188 #else
cpu_util_irq(struct rq * rq)3189 static inline unsigned long cpu_util_irq(struct rq *rq)
3190 {
3191 	return 0;
3192 }
3193 
3194 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3195 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3196 {
3197 	return util;
3198 }
3199 #endif
3200 
3201 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3202 
3203 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3204 
3205 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3206 
sched_energy_enabled(void)3207 static inline bool sched_energy_enabled(void)
3208 {
3209 	return static_branch_unlikely(&sched_energy_present);
3210 }
3211 
3212 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3213 
3214 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3215 static inline bool sched_energy_enabled(void) { return false; }
3216 
3217 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3218 
3219 #ifdef CONFIG_MEMBARRIER
3220 /*
3221  * The scheduler provides memory barriers required by membarrier between:
3222  * - prior user-space memory accesses and store to rq->membarrier_state,
3223  * - store to rq->membarrier_state and following user-space memory accesses.
3224  * In the same way it provides those guarantees around store to rq->curr.
3225  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3226 static inline void membarrier_switch_mm(struct rq *rq,
3227 					struct mm_struct *prev_mm,
3228 					struct mm_struct *next_mm)
3229 {
3230 	int membarrier_state;
3231 
3232 	if (prev_mm == next_mm)
3233 		return;
3234 
3235 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3236 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3237 		return;
3238 
3239 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3240 }
3241 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3242 static inline void membarrier_switch_mm(struct rq *rq,
3243 					struct mm_struct *prev_mm,
3244 					struct mm_struct *next_mm)
3245 {
3246 }
3247 #endif
3248 
3249 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3250 static inline bool is_per_cpu_kthread(struct task_struct *p)
3251 {
3252 	if (!(p->flags & PF_KTHREAD))
3253 		return false;
3254 
3255 	if (p->nr_cpus_allowed != 1)
3256 		return false;
3257 
3258 	return true;
3259 }
3260 #endif
3261 
3262 extern void swake_up_all_locked(struct swait_queue_head *q);
3263 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3264 
3265 #ifdef CONFIG_PREEMPT_DYNAMIC
3266 extern int preempt_dynamic_mode;
3267 extern int sched_dynamic_mode(const char *str);
3268 extern void sched_dynamic_update(int mode);
3269 #endif
3270 
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3271 static inline void update_current_exec_runtime(struct task_struct *curr,
3272 						u64 now, u64 delta_exec)
3273 {
3274 	curr->se.sum_exec_runtime += delta_exec;
3275 	account_group_exec_runtime(curr, delta_exec);
3276 
3277 	curr->se.exec_start = now;
3278 	cgroup_account_cputime(curr, delta_exec);
3279 }
3280 
3281 extern bool cpu_busy_with_softirqs(int cpu);
3282 #endif /* _KERNEL_SCHED_SCHED_H */
3283