• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 
6 #include <trace/hooks/sched.h>
7 
8 DEFINE_MUTEX(sched_domains_mutex);
9 #ifdef CONFIG_LOCKDEP
10 EXPORT_SYMBOL_GPL(sched_domains_mutex);
11 #endif
12 
13 /* Protected by sched_domains_mutex: */
14 static cpumask_var_t sched_domains_tmpmask;
15 static cpumask_var_t sched_domains_tmpmask2;
16 
17 #ifdef CONFIG_SCHED_DEBUG
18 
sched_debug_setup(char * str)19 static int __init sched_debug_setup(char *str)
20 {
21 	sched_debug_verbose = true;
22 
23 	return 0;
24 }
25 early_param("sched_verbose", sched_debug_setup);
26 
sched_debug(void)27 static inline bool sched_debug(void)
28 {
29 	return sched_debug_verbose;
30 }
31 
32 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
33 const struct sd_flag_debug sd_flag_debug[] = {
34 #include <linux/sched/sd_flags.h>
35 };
36 #undef SD_FLAG
37 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)38 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
39 				  struct cpumask *groupmask)
40 {
41 	struct sched_group *group = sd->groups;
42 	unsigned long flags = sd->flags;
43 	unsigned int idx;
44 
45 	cpumask_clear(groupmask);
46 
47 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
48 	printk(KERN_CONT "span=%*pbl level=%s\n",
49 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
50 
51 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
52 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
53 	}
54 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
55 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
56 	}
57 
58 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
59 		unsigned int flag = BIT(idx);
60 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
61 
62 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
63 		    !(sd->child->flags & flag))
64 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
65 			       sd_flag_debug[idx].name);
66 
67 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
68 		    !(sd->parent->flags & flag))
69 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
70 			       sd_flag_debug[idx].name);
71 	}
72 
73 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
74 	do {
75 		if (!group) {
76 			printk("\n");
77 			printk(KERN_ERR "ERROR: group is NULL\n");
78 			break;
79 		}
80 
81 		if (cpumask_empty(sched_group_span(group))) {
82 			printk(KERN_CONT "\n");
83 			printk(KERN_ERR "ERROR: empty group\n");
84 			break;
85 		}
86 
87 		if (!(sd->flags & SD_OVERLAP) &&
88 		    cpumask_intersects(groupmask, sched_group_span(group))) {
89 			printk(KERN_CONT "\n");
90 			printk(KERN_ERR "ERROR: repeated CPUs\n");
91 			break;
92 		}
93 
94 		cpumask_or(groupmask, groupmask, sched_group_span(group));
95 
96 		printk(KERN_CONT " %d:{ span=%*pbl",
97 				group->sgc->id,
98 				cpumask_pr_args(sched_group_span(group)));
99 
100 		if ((sd->flags & SD_OVERLAP) &&
101 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
102 			printk(KERN_CONT " mask=%*pbl",
103 				cpumask_pr_args(group_balance_mask(group)));
104 		}
105 
106 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
107 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
108 
109 		if (group == sd->groups && sd->child &&
110 		    !cpumask_equal(sched_domain_span(sd->child),
111 				   sched_group_span(group))) {
112 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
113 		}
114 
115 		printk(KERN_CONT " }");
116 
117 		group = group->next;
118 
119 		if (group != sd->groups)
120 			printk(KERN_CONT ",");
121 
122 	} while (group != sd->groups);
123 	printk(KERN_CONT "\n");
124 
125 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
126 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
127 
128 	if (sd->parent &&
129 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
130 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
131 	return 0;
132 }
133 
sched_domain_debug(struct sched_domain * sd,int cpu)134 static void sched_domain_debug(struct sched_domain *sd, int cpu)
135 {
136 	int level = 0;
137 
138 	if (!sched_debug_verbose)
139 		return;
140 
141 	if (!sd) {
142 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
143 		return;
144 	}
145 
146 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
147 
148 	for (;;) {
149 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
150 			break;
151 		level++;
152 		sd = sd->parent;
153 		if (!sd)
154 			break;
155 	}
156 }
157 #else /* !CONFIG_SCHED_DEBUG */
158 
159 # define sched_debug_verbose 0
160 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)161 static inline bool sched_debug(void)
162 {
163 	return false;
164 }
165 #endif /* CONFIG_SCHED_DEBUG */
166 
167 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
168 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
169 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
170 #include <linux/sched/sd_flags.h>
171 0;
172 #undef SD_FLAG
173 
sd_degenerate(struct sched_domain * sd)174 static int sd_degenerate(struct sched_domain *sd)
175 {
176 	if (cpumask_weight(sched_domain_span(sd)) == 1)
177 		return 1;
178 
179 	/* Following flags need at least 2 groups */
180 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
181 	    (sd->groups != sd->groups->next))
182 		return 0;
183 
184 	/* Following flags don't use groups */
185 	if (sd->flags & (SD_WAKE_AFFINE))
186 		return 0;
187 
188 	return 1;
189 }
190 
191 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)192 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
193 {
194 	unsigned long cflags = sd->flags, pflags = parent->flags;
195 
196 	if (sd_degenerate(parent))
197 		return 1;
198 
199 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
200 		return 0;
201 
202 	/* Flags needing groups don't count if only 1 group in parent */
203 	if (parent->groups == parent->groups->next)
204 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
205 
206 	if (~cflags & pflags)
207 		return 0;
208 
209 	return 1;
210 }
211 
212 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
213 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
214 static unsigned int sysctl_sched_energy_aware = 1;
215 DEFINE_MUTEX(sched_energy_mutex);
216 bool sched_energy_update;
217 
rebuild_sched_domains_energy(void)218 void rebuild_sched_domains_energy(void)
219 {
220 	mutex_lock(&sched_energy_mutex);
221 	sched_energy_update = true;
222 	rebuild_sched_domains();
223 	sched_energy_update = false;
224 	mutex_unlock(&sched_energy_mutex);
225 }
226 
227 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)228 static int sched_energy_aware_handler(struct ctl_table *table, int write,
229 		void *buffer, size_t *lenp, loff_t *ppos)
230 {
231 	int ret, state;
232 
233 	if (write && !capable(CAP_SYS_ADMIN))
234 		return -EPERM;
235 
236 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
237 	if (!ret && write) {
238 		state = static_branch_unlikely(&sched_energy_present);
239 		if (state != sysctl_sched_energy_aware)
240 			rebuild_sched_domains_energy();
241 	}
242 
243 	return ret;
244 }
245 
246 static struct ctl_table sched_energy_aware_sysctls[] = {
247 	{
248 		.procname       = "sched_energy_aware",
249 		.data           = &sysctl_sched_energy_aware,
250 		.maxlen         = sizeof(unsigned int),
251 		.mode           = 0644,
252 		.proc_handler   = sched_energy_aware_handler,
253 		.extra1         = SYSCTL_ZERO,
254 		.extra2         = SYSCTL_ONE,
255 	},
256 	{}
257 };
258 
sched_energy_aware_sysctl_init(void)259 static int __init sched_energy_aware_sysctl_init(void)
260 {
261 	register_sysctl_init("kernel", sched_energy_aware_sysctls);
262 	return 0;
263 }
264 
265 late_initcall(sched_energy_aware_sysctl_init);
266 #endif
267 
free_pd(struct perf_domain * pd)268 static void free_pd(struct perf_domain *pd)
269 {
270 	struct perf_domain *tmp;
271 
272 	while (pd) {
273 		tmp = pd->next;
274 		kfree(pd);
275 		pd = tmp;
276 	}
277 }
278 
find_pd(struct perf_domain * pd,int cpu)279 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
280 {
281 	while (pd) {
282 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
283 			return pd;
284 		pd = pd->next;
285 	}
286 
287 	return NULL;
288 }
289 
pd_init(int cpu)290 static struct perf_domain *pd_init(int cpu)
291 {
292 	struct em_perf_domain *obj = em_cpu_get(cpu);
293 	struct perf_domain *pd;
294 
295 	if (!obj) {
296 		if (sched_debug())
297 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
298 		return NULL;
299 	}
300 
301 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
302 	if (!pd)
303 		return NULL;
304 	pd->em_pd = obj;
305 
306 	return pd;
307 }
308 
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)309 static void perf_domain_debug(const struct cpumask *cpu_map,
310 						struct perf_domain *pd)
311 {
312 	if (!sched_debug() || !pd)
313 		return;
314 
315 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
316 
317 	while (pd) {
318 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
319 				cpumask_first(perf_domain_span(pd)),
320 				cpumask_pr_args(perf_domain_span(pd)),
321 				em_pd_nr_perf_states(pd->em_pd));
322 		pd = pd->next;
323 	}
324 
325 	printk(KERN_CONT "\n");
326 }
327 
destroy_perf_domain_rcu(struct rcu_head * rp)328 static void destroy_perf_domain_rcu(struct rcu_head *rp)
329 {
330 	struct perf_domain *pd;
331 
332 	pd = container_of(rp, struct perf_domain, rcu);
333 	free_pd(pd);
334 }
335 
sched_energy_set(bool has_eas)336 static void sched_energy_set(bool has_eas)
337 {
338 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
339 		if (sched_debug())
340 			pr_info("%s: stopping EAS\n", __func__);
341 		static_branch_disable_cpuslocked(&sched_energy_present);
342 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
343 		if (sched_debug())
344 			pr_info("%s: starting EAS\n", __func__);
345 		static_branch_enable_cpuslocked(&sched_energy_present);
346 	}
347 }
348 
349 /*
350  * EAS can be used on a root domain if it meets all the following conditions:
351  *    1. an Energy Model (EM) is available;
352  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
353  *    3. no SMT is detected.
354  *    4. the EM complexity is low enough to keep scheduling overheads low;
355  *    5. frequency invariance support is present;
356  *
357  * The complexity of the Energy Model is defined as:
358  *
359  *              C = nr_pd * (nr_cpus + nr_ps)
360  *
361  * with parameters defined as:
362  *  - nr_pd:    the number of performance domains
363  *  - nr_cpus:  the number of CPUs
364  *  - nr_ps:    the sum of the number of performance states of all performance
365  *              domains (for example, on a system with 2 performance domains,
366  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
367  *
368  * It is generally not a good idea to use such a model in the wake-up path on
369  * very complex platforms because of the associated scheduling overheads. The
370  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
371  * with per-CPU DVFS and less than 8 performance states each, for example.
372  */
373 #define EM_MAX_COMPLEXITY 2048
374 
build_perf_domains(const struct cpumask * cpu_map)375 static bool build_perf_domains(const struct cpumask *cpu_map)
376 {
377 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
378 	struct perf_domain *pd = NULL, *tmp;
379 	int cpu = cpumask_first(cpu_map);
380 	struct root_domain *rd = cpu_rq(cpu)->rd;
381 	bool eas_check = false;
382 
383 	if (!sysctl_sched_energy_aware)
384 		goto free;
385 
386 	/*
387 	 * EAS is enabled for asymmetric CPU capacity topologies.
388 	 * Allow vendor to override if desired.
389 	 */
390 	trace_android_rvh_build_perf_domains(&eas_check);
391 	if (!per_cpu(sd_asym_cpucapacity, cpu) && !eas_check) {
392 		if (sched_debug()) {
393 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
394 					cpumask_pr_args(cpu_map));
395 		}
396 		goto free;
397 	}
398 
399 	/* EAS definitely does *not* handle SMT */
400 	if (sched_smt_active()) {
401 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
402 			cpumask_pr_args(cpu_map));
403 		goto free;
404 	}
405 
406 	if (!arch_scale_freq_invariant()) {
407 		if (sched_debug()) {
408 			pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
409 				cpumask_pr_args(cpu_map));
410 		}
411 		goto free;
412 	}
413 
414 	for_each_cpu(i, cpu_map) {
415 		/* Skip already covered CPUs. */
416 		if (find_pd(pd, i))
417 			continue;
418 
419 		/* Create the new pd and add it to the local list. */
420 		tmp = pd_init(i);
421 		if (!tmp)
422 			goto free;
423 		tmp->next = pd;
424 		pd = tmp;
425 
426 		/*
427 		 * Count performance domains and performance states for the
428 		 * complexity check.
429 		 */
430 		nr_pd++;
431 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
432 	}
433 
434 	/* Bail out if the Energy Model complexity is too high. */
435 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
436 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
437 						cpumask_pr_args(cpu_map));
438 		goto free;
439 	}
440 
441 	perf_domain_debug(cpu_map, pd);
442 
443 	/* Attach the new list of performance domains to the root domain. */
444 	tmp = rd->pd;
445 	rcu_assign_pointer(rd->pd, pd);
446 	if (tmp)
447 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
448 
449 	return !!pd;
450 
451 free:
452 	free_pd(pd);
453 	tmp = rd->pd;
454 	rcu_assign_pointer(rd->pd, NULL);
455 	if (tmp)
456 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
457 
458 	return false;
459 }
460 #else
free_pd(struct perf_domain * pd)461 static void free_pd(struct perf_domain *pd) { }
462 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
463 
free_rootdomain(struct rcu_head * rcu)464 static void free_rootdomain(struct rcu_head *rcu)
465 {
466 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
467 
468 	cpupri_cleanup(&rd->cpupri);
469 	cpudl_cleanup(&rd->cpudl);
470 	free_cpumask_var(rd->dlo_mask);
471 	free_cpumask_var(rd->rto_mask);
472 	free_cpumask_var(rd->online);
473 	free_cpumask_var(rd->span);
474 	free_pd(rd->pd);
475 	kfree(rd);
476 }
477 
rq_attach_root(struct rq * rq,struct root_domain * rd)478 void rq_attach_root(struct rq *rq, struct root_domain *rd)
479 {
480 	struct root_domain *old_rd = NULL;
481 	unsigned long flags;
482 
483 	raw_spin_rq_lock_irqsave(rq, flags);
484 
485 	if (rq->rd) {
486 		old_rd = rq->rd;
487 
488 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
489 			set_rq_offline(rq);
490 
491 		cpumask_clear_cpu(rq->cpu, old_rd->span);
492 
493 		/*
494 		 * If we dont want to free the old_rd yet then
495 		 * set old_rd to NULL to skip the freeing later
496 		 * in this function:
497 		 */
498 		if (!atomic_dec_and_test(&old_rd->refcount))
499 			old_rd = NULL;
500 	}
501 
502 	atomic_inc(&rd->refcount);
503 	rq->rd = rd;
504 
505 	cpumask_set_cpu(rq->cpu, rd->span);
506 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
507 		set_rq_online(rq);
508 
509 	raw_spin_rq_unlock_irqrestore(rq, flags);
510 
511 	if (old_rd)
512 		call_rcu(&old_rd->rcu, free_rootdomain);
513 }
514 
sched_get_rd(struct root_domain * rd)515 void sched_get_rd(struct root_domain *rd)
516 {
517 	atomic_inc(&rd->refcount);
518 }
519 
sched_put_rd(struct root_domain * rd)520 void sched_put_rd(struct root_domain *rd)
521 {
522 	if (!atomic_dec_and_test(&rd->refcount))
523 		return;
524 
525 	call_rcu(&rd->rcu, free_rootdomain);
526 }
527 
init_rootdomain(struct root_domain * rd)528 static int init_rootdomain(struct root_domain *rd)
529 {
530 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
531 		goto out;
532 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
533 		goto free_span;
534 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
535 		goto free_online;
536 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
537 		goto free_dlo_mask;
538 
539 #ifdef HAVE_RT_PUSH_IPI
540 	rd->rto_cpu = -1;
541 	raw_spin_lock_init(&rd->rto_lock);
542 	rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
543 #endif
544 
545 	rd->visit_gen = 0;
546 	init_dl_bw(&rd->dl_bw);
547 	if (cpudl_init(&rd->cpudl) != 0)
548 		goto free_rto_mask;
549 
550 	if (cpupri_init(&rd->cpupri) != 0)
551 		goto free_cpudl;
552 	return 0;
553 
554 free_cpudl:
555 	cpudl_cleanup(&rd->cpudl);
556 free_rto_mask:
557 	free_cpumask_var(rd->rto_mask);
558 free_dlo_mask:
559 	free_cpumask_var(rd->dlo_mask);
560 free_online:
561 	free_cpumask_var(rd->online);
562 free_span:
563 	free_cpumask_var(rd->span);
564 out:
565 	return -ENOMEM;
566 }
567 
568 /*
569  * By default the system creates a single root-domain with all CPUs as
570  * members (mimicking the global state we have today).
571  */
572 struct root_domain def_root_domain;
573 
init_defrootdomain(void)574 void init_defrootdomain(void)
575 {
576 	init_rootdomain(&def_root_domain);
577 
578 	atomic_set(&def_root_domain.refcount, 1);
579 }
580 
alloc_rootdomain(void)581 static struct root_domain *alloc_rootdomain(void)
582 {
583 	struct root_domain *rd;
584 
585 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
586 	if (!rd)
587 		return NULL;
588 
589 	if (init_rootdomain(rd) != 0) {
590 		kfree(rd);
591 		return NULL;
592 	}
593 
594 	return rd;
595 }
596 
free_sched_groups(struct sched_group * sg,int free_sgc)597 static void free_sched_groups(struct sched_group *sg, int free_sgc)
598 {
599 	struct sched_group *tmp, *first;
600 
601 	if (!sg)
602 		return;
603 
604 	first = sg;
605 	do {
606 		tmp = sg->next;
607 
608 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
609 			kfree(sg->sgc);
610 
611 		if (atomic_dec_and_test(&sg->ref))
612 			kfree(sg);
613 		sg = tmp;
614 	} while (sg != first);
615 }
616 
destroy_sched_domain(struct sched_domain * sd)617 static void destroy_sched_domain(struct sched_domain *sd)
618 {
619 	/*
620 	 * A normal sched domain may have multiple group references, an
621 	 * overlapping domain, having private groups, only one.  Iterate,
622 	 * dropping group/capacity references, freeing where none remain.
623 	 */
624 	free_sched_groups(sd->groups, 1);
625 
626 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
627 		kfree(sd->shared);
628 	kfree(sd);
629 }
630 
destroy_sched_domains_rcu(struct rcu_head * rcu)631 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
632 {
633 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
634 
635 	while (sd) {
636 		struct sched_domain *parent = sd->parent;
637 		destroy_sched_domain(sd);
638 		sd = parent;
639 	}
640 }
641 
destroy_sched_domains(struct sched_domain * sd)642 static void destroy_sched_domains(struct sched_domain *sd)
643 {
644 	if (sd)
645 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
646 }
647 
648 /*
649  * Keep a special pointer to the highest sched_domain that has
650  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
651  * allows us to avoid some pointer chasing select_idle_sibling().
652  *
653  * Also keep a unique ID per domain (we use the first CPU number in
654  * the cpumask of the domain), this allows us to quickly tell if
655  * two CPUs are in the same cache domain, see cpus_share_cache().
656  */
657 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
658 DEFINE_PER_CPU(int, sd_llc_size);
659 DEFINE_PER_CPU(int, sd_llc_id);
660 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
661 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
662 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
663 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
664 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
665 
update_top_cache_domain(int cpu)666 static void update_top_cache_domain(int cpu)
667 {
668 	struct sched_domain_shared *sds = NULL;
669 	struct sched_domain *sd;
670 	int id = cpu;
671 	int size = 1;
672 
673 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
674 	if (sd) {
675 		id = cpumask_first(sched_domain_span(sd));
676 		size = cpumask_weight(sched_domain_span(sd));
677 		sds = sd->shared;
678 	}
679 
680 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
681 	per_cpu(sd_llc_size, cpu) = size;
682 	per_cpu(sd_llc_id, cpu) = id;
683 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
684 
685 	sd = lowest_flag_domain(cpu, SD_NUMA);
686 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
687 
688 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
689 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
690 
691 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
692 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
693 }
694 
695 /*
696  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
697  * hold the hotplug lock.
698  */
699 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)700 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
701 {
702 	struct rq *rq = cpu_rq(cpu);
703 	struct sched_domain *tmp;
704 
705 	/* Remove the sched domains which do not contribute to scheduling. */
706 	for (tmp = sd; tmp; ) {
707 		struct sched_domain *parent = tmp->parent;
708 		if (!parent)
709 			break;
710 
711 		if (sd_parent_degenerate(tmp, parent)) {
712 			tmp->parent = parent->parent;
713 			if (parent->parent)
714 				parent->parent->child = tmp;
715 			/*
716 			 * Transfer SD_PREFER_SIBLING down in case of a
717 			 * degenerate parent; the spans match for this
718 			 * so the property transfers.
719 			 */
720 			if (parent->flags & SD_PREFER_SIBLING)
721 				tmp->flags |= SD_PREFER_SIBLING;
722 			destroy_sched_domain(parent);
723 		} else
724 			tmp = tmp->parent;
725 	}
726 
727 	if (sd && sd_degenerate(sd)) {
728 		tmp = sd;
729 		sd = sd->parent;
730 		destroy_sched_domain(tmp);
731 		if (sd) {
732 			struct sched_group *sg = sd->groups;
733 
734 			/*
735 			 * sched groups hold the flags of the child sched
736 			 * domain for convenience. Clear such flags since
737 			 * the child is being destroyed.
738 			 */
739 			do {
740 				sg->flags = 0;
741 			} while (sg != sd->groups);
742 
743 			sd->child = NULL;
744 		}
745 	}
746 
747 	sched_domain_debug(sd, cpu);
748 
749 	rq_attach_root(rq, rd);
750 	tmp = rq->sd;
751 	rcu_assign_pointer(rq->sd, sd);
752 	dirty_sched_domain_sysctl(cpu);
753 	destroy_sched_domains(tmp);
754 
755 	update_top_cache_domain(cpu);
756 }
757 
758 struct s_data {
759 	struct sched_domain * __percpu *sd;
760 	struct root_domain	*rd;
761 };
762 
763 enum s_alloc {
764 	sa_rootdomain,
765 	sa_sd,
766 	sa_sd_storage,
767 	sa_none,
768 };
769 
770 /*
771  * Return the canonical balance CPU for this group, this is the first CPU
772  * of this group that's also in the balance mask.
773  *
774  * The balance mask are all those CPUs that could actually end up at this
775  * group. See build_balance_mask().
776  *
777  * Also see should_we_balance().
778  */
group_balance_cpu(struct sched_group * sg)779 int group_balance_cpu(struct sched_group *sg)
780 {
781 	return cpumask_first(group_balance_mask(sg));
782 }
783 
784 
785 /*
786  * NUMA topology (first read the regular topology blurb below)
787  *
788  * Given a node-distance table, for example:
789  *
790  *   node   0   1   2   3
791  *     0:  10  20  30  20
792  *     1:  20  10  20  30
793  *     2:  30  20  10  20
794  *     3:  20  30  20  10
795  *
796  * which represents a 4 node ring topology like:
797  *
798  *   0 ----- 1
799  *   |       |
800  *   |       |
801  *   |       |
802  *   3 ----- 2
803  *
804  * We want to construct domains and groups to represent this. The way we go
805  * about doing this is to build the domains on 'hops'. For each NUMA level we
806  * construct the mask of all nodes reachable in @level hops.
807  *
808  * For the above NUMA topology that gives 3 levels:
809  *
810  * NUMA-2	0-3		0-3		0-3		0-3
811  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
812  *
813  * NUMA-1	0-1,3		0-2		1-3		0,2-3
814  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
815  *
816  * NUMA-0	0		1		2		3
817  *
818  *
819  * As can be seen; things don't nicely line up as with the regular topology.
820  * When we iterate a domain in child domain chunks some nodes can be
821  * represented multiple times -- hence the "overlap" naming for this part of
822  * the topology.
823  *
824  * In order to minimize this overlap, we only build enough groups to cover the
825  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
826  *
827  * Because:
828  *
829  *  - the first group of each domain is its child domain; this
830  *    gets us the first 0-1,3
831  *  - the only uncovered node is 2, who's child domain is 1-3.
832  *
833  * However, because of the overlap, computing a unique CPU for each group is
834  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
835  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
836  * end up at those groups (they would end up in group: 0-1,3).
837  *
838  * To correct this we have to introduce the group balance mask. This mask
839  * will contain those CPUs in the group that can reach this group given the
840  * (child) domain tree.
841  *
842  * With this we can once again compute balance_cpu and sched_group_capacity
843  * relations.
844  *
845  * XXX include words on how balance_cpu is unique and therefore can be
846  * used for sched_group_capacity links.
847  *
848  *
849  * Another 'interesting' topology is:
850  *
851  *   node   0   1   2   3
852  *     0:  10  20  20  30
853  *     1:  20  10  20  20
854  *     2:  20  20  10  20
855  *     3:  30  20  20  10
856  *
857  * Which looks a little like:
858  *
859  *   0 ----- 1
860  *   |     / |
861  *   |   /   |
862  *   | /     |
863  *   2 ----- 3
864  *
865  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
866  * are not.
867  *
868  * This leads to a few particularly weird cases where the sched_domain's are
869  * not of the same number for each CPU. Consider:
870  *
871  * NUMA-2	0-3						0-3
872  *  groups:	{0-2},{1-3}					{1-3},{0-2}
873  *
874  * NUMA-1	0-2		0-3		0-3		1-3
875  *
876  * NUMA-0	0		1		2		3
877  *
878  */
879 
880 
881 /*
882  * Build the balance mask; it contains only those CPUs that can arrive at this
883  * group and should be considered to continue balancing.
884  *
885  * We do this during the group creation pass, therefore the group information
886  * isn't complete yet, however since each group represents a (child) domain we
887  * can fully construct this using the sched_domain bits (which are already
888  * complete).
889  */
890 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)891 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
892 {
893 	const struct cpumask *sg_span = sched_group_span(sg);
894 	struct sd_data *sdd = sd->private;
895 	struct sched_domain *sibling;
896 	int i;
897 
898 	cpumask_clear(mask);
899 
900 	for_each_cpu(i, sg_span) {
901 		sibling = *per_cpu_ptr(sdd->sd, i);
902 
903 		/*
904 		 * Can happen in the asymmetric case, where these siblings are
905 		 * unused. The mask will not be empty because those CPUs that
906 		 * do have the top domain _should_ span the domain.
907 		 */
908 		if (!sibling->child)
909 			continue;
910 
911 		/* If we would not end up here, we can't continue from here */
912 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
913 			continue;
914 
915 		cpumask_set_cpu(i, mask);
916 	}
917 
918 	/* We must not have empty masks here */
919 	WARN_ON_ONCE(cpumask_empty(mask));
920 }
921 
922 /*
923  * XXX: This creates per-node group entries; since the load-balancer will
924  * immediately access remote memory to construct this group's load-balance
925  * statistics having the groups node local is of dubious benefit.
926  */
927 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)928 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
929 {
930 	struct sched_group *sg;
931 	struct cpumask *sg_span;
932 
933 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
934 			GFP_KERNEL, cpu_to_node(cpu));
935 
936 	if (!sg)
937 		return NULL;
938 
939 	sg_span = sched_group_span(sg);
940 	if (sd->child) {
941 		cpumask_copy(sg_span, sched_domain_span(sd->child));
942 		sg->flags = sd->child->flags;
943 	} else {
944 		cpumask_copy(sg_span, sched_domain_span(sd));
945 	}
946 
947 	atomic_inc(&sg->ref);
948 	return sg;
949 }
950 
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)951 static void init_overlap_sched_group(struct sched_domain *sd,
952 				     struct sched_group *sg)
953 {
954 	struct cpumask *mask = sched_domains_tmpmask2;
955 	struct sd_data *sdd = sd->private;
956 	struct cpumask *sg_span;
957 	int cpu;
958 
959 	build_balance_mask(sd, sg, mask);
960 	cpu = cpumask_first(mask);
961 
962 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
963 	if (atomic_inc_return(&sg->sgc->ref) == 1)
964 		cpumask_copy(group_balance_mask(sg), mask);
965 	else
966 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
967 
968 	/*
969 	 * Initialize sgc->capacity such that even if we mess up the
970 	 * domains and no possible iteration will get us here, we won't
971 	 * die on a /0 trap.
972 	 */
973 	sg_span = sched_group_span(sg);
974 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
975 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
976 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
977 }
978 
979 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)980 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
981 {
982 	/*
983 	 * The proper descendant would be the one whose child won't span out
984 	 * of sd
985 	 */
986 	while (sibling->child &&
987 	       !cpumask_subset(sched_domain_span(sibling->child),
988 			       sched_domain_span(sd)))
989 		sibling = sibling->child;
990 
991 	/*
992 	 * As we are referencing sgc across different topology level, we need
993 	 * to go down to skip those sched_domains which don't contribute to
994 	 * scheduling because they will be degenerated in cpu_attach_domain
995 	 */
996 	while (sibling->child &&
997 	       cpumask_equal(sched_domain_span(sibling->child),
998 			     sched_domain_span(sibling)))
999 		sibling = sibling->child;
1000 
1001 	return sibling;
1002 }
1003 
1004 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1005 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1006 {
1007 	struct sched_group *first = NULL, *last = NULL, *sg;
1008 	const struct cpumask *span = sched_domain_span(sd);
1009 	struct cpumask *covered = sched_domains_tmpmask;
1010 	struct sd_data *sdd = sd->private;
1011 	struct sched_domain *sibling;
1012 	int i;
1013 
1014 	cpumask_clear(covered);
1015 
1016 	for_each_cpu_wrap(i, span, cpu) {
1017 		struct cpumask *sg_span;
1018 
1019 		if (cpumask_test_cpu(i, covered))
1020 			continue;
1021 
1022 		sibling = *per_cpu_ptr(sdd->sd, i);
1023 
1024 		/*
1025 		 * Asymmetric node setups can result in situations where the
1026 		 * domain tree is of unequal depth, make sure to skip domains
1027 		 * that already cover the entire range.
1028 		 *
1029 		 * In that case build_sched_domains() will have terminated the
1030 		 * iteration early and our sibling sd spans will be empty.
1031 		 * Domains should always include the CPU they're built on, so
1032 		 * check that.
1033 		 */
1034 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1035 			continue;
1036 
1037 		/*
1038 		 * Usually we build sched_group by sibling's child sched_domain
1039 		 * But for machines whose NUMA diameter are 3 or above, we move
1040 		 * to build sched_group by sibling's proper descendant's child
1041 		 * domain because sibling's child sched_domain will span out of
1042 		 * the sched_domain being built as below.
1043 		 *
1044 		 * Smallest diameter=3 topology is:
1045 		 *
1046 		 *   node   0   1   2   3
1047 		 *     0:  10  20  30  40
1048 		 *     1:  20  10  20  30
1049 		 *     2:  30  20  10  20
1050 		 *     3:  40  30  20  10
1051 		 *
1052 		 *   0 --- 1 --- 2 --- 3
1053 		 *
1054 		 * NUMA-3       0-3             N/A             N/A             0-3
1055 		 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
1056 		 *
1057 		 * NUMA-2       0-2             0-3             0-3             1-3
1058 		 *  groups:     {0-1},{1-3}     {0-2},{2-3}     {1-3},{0-1}     {2-3},{0-2}
1059 		 *
1060 		 * NUMA-1       0-1             0-2             1-3             2-3
1061 		 *  groups:     {0},{1}         {1},{2},{0}     {2},{3},{1}     {3},{2}
1062 		 *
1063 		 * NUMA-0       0               1               2               3
1064 		 *
1065 		 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1066 		 * group span isn't a subset of the domain span.
1067 		 */
1068 		if (sibling->child &&
1069 		    !cpumask_subset(sched_domain_span(sibling->child), span))
1070 			sibling = find_descended_sibling(sd, sibling);
1071 
1072 		sg = build_group_from_child_sched_domain(sibling, cpu);
1073 		if (!sg)
1074 			goto fail;
1075 
1076 		sg_span = sched_group_span(sg);
1077 		cpumask_or(covered, covered, sg_span);
1078 
1079 		init_overlap_sched_group(sibling, sg);
1080 
1081 		if (!first)
1082 			first = sg;
1083 		if (last)
1084 			last->next = sg;
1085 		last = sg;
1086 		last->next = first;
1087 	}
1088 	sd->groups = first;
1089 
1090 	return 0;
1091 
1092 fail:
1093 	free_sched_groups(first, 0);
1094 
1095 	return -ENOMEM;
1096 }
1097 
1098 
1099 /*
1100  * Package topology (also see the load-balance blurb in fair.c)
1101  *
1102  * The scheduler builds a tree structure to represent a number of important
1103  * topology features. By default (default_topology[]) these include:
1104  *
1105  *  - Simultaneous multithreading (SMT)
1106  *  - Multi-Core Cache (MC)
1107  *  - Package (DIE)
1108  *
1109  * Where the last one more or less denotes everything up to a NUMA node.
1110  *
1111  * The tree consists of 3 primary data structures:
1112  *
1113  *	sched_domain -> sched_group -> sched_group_capacity
1114  *	    ^ ^             ^ ^
1115  *          `-'             `-'
1116  *
1117  * The sched_domains are per-CPU and have a two way link (parent & child) and
1118  * denote the ever growing mask of CPUs belonging to that level of topology.
1119  *
1120  * Each sched_domain has a circular (double) linked list of sched_group's, each
1121  * denoting the domains of the level below (or individual CPUs in case of the
1122  * first domain level). The sched_group linked by a sched_domain includes the
1123  * CPU of that sched_domain [*].
1124  *
1125  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1126  *
1127  * CPU   0   1   2   3   4   5   6   7
1128  *
1129  * DIE  [                             ]
1130  * MC   [             ] [             ]
1131  * SMT  [     ] [     ] [     ] [     ]
1132  *
1133  *  - or -
1134  *
1135  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1136  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1137  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1138  *
1139  * CPU   0   1   2   3   4   5   6   7
1140  *
1141  * One way to think about it is: sched_domain moves you up and down among these
1142  * topology levels, while sched_group moves you sideways through it, at child
1143  * domain granularity.
1144  *
1145  * sched_group_capacity ensures each unique sched_group has shared storage.
1146  *
1147  * There are two related construction problems, both require a CPU that
1148  * uniquely identify each group (for a given domain):
1149  *
1150  *  - The first is the balance_cpu (see should_we_balance() and the
1151  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1152  *    continue balancing at a higher domain.
1153  *
1154  *  - The second is the sched_group_capacity; we want all identical groups
1155  *    to share a single sched_group_capacity.
1156  *
1157  * Since these topologies are exclusive by construction. That is, its
1158  * impossible for an SMT thread to belong to multiple cores, and cores to
1159  * be part of multiple caches. There is a very clear and unique location
1160  * for each CPU in the hierarchy.
1161  *
1162  * Therefore computing a unique CPU for each group is trivial (the iteration
1163  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1164  * group), we can simply pick the first CPU in each group.
1165  *
1166  *
1167  * [*] in other words, the first group of each domain is its child domain.
1168  */
1169 
get_group(int cpu,struct sd_data * sdd)1170 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1171 {
1172 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1173 	struct sched_domain *child = sd->child;
1174 	struct sched_group *sg;
1175 	bool already_visited;
1176 
1177 	if (child)
1178 		cpu = cpumask_first(sched_domain_span(child));
1179 
1180 	sg = *per_cpu_ptr(sdd->sg, cpu);
1181 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1182 
1183 	/* Increase refcounts for claim_allocations: */
1184 	already_visited = atomic_inc_return(&sg->ref) > 1;
1185 	/* sgc visits should follow a similar trend as sg */
1186 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1187 
1188 	/* If we have already visited that group, it's already initialized. */
1189 	if (already_visited)
1190 		return sg;
1191 
1192 	if (child) {
1193 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1194 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1195 		sg->flags = child->flags;
1196 	} else {
1197 		cpumask_set_cpu(cpu, sched_group_span(sg));
1198 		cpumask_set_cpu(cpu, group_balance_mask(sg));
1199 	}
1200 
1201 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1202 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1203 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1204 
1205 	return sg;
1206 }
1207 
1208 /*
1209  * build_sched_groups will build a circular linked list of the groups
1210  * covered by the given span, will set each group's ->cpumask correctly,
1211  * and will initialize their ->sgc.
1212  *
1213  * Assumes the sched_domain tree is fully constructed
1214  */
1215 static int
build_sched_groups(struct sched_domain * sd,int cpu)1216 build_sched_groups(struct sched_domain *sd, int cpu)
1217 {
1218 	struct sched_group *first = NULL, *last = NULL;
1219 	struct sd_data *sdd = sd->private;
1220 	const struct cpumask *span = sched_domain_span(sd);
1221 	struct cpumask *covered;
1222 	int i;
1223 
1224 	lockdep_assert_held(&sched_domains_mutex);
1225 	covered = sched_domains_tmpmask;
1226 
1227 	cpumask_clear(covered);
1228 
1229 	for_each_cpu_wrap(i, span, cpu) {
1230 		struct sched_group *sg;
1231 
1232 		if (cpumask_test_cpu(i, covered))
1233 			continue;
1234 
1235 		sg = get_group(i, sdd);
1236 
1237 		cpumask_or(covered, covered, sched_group_span(sg));
1238 
1239 		if (!first)
1240 			first = sg;
1241 		if (last)
1242 			last->next = sg;
1243 		last = sg;
1244 	}
1245 	last->next = first;
1246 	sd->groups = first;
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Initialize sched groups cpu_capacity.
1253  *
1254  * cpu_capacity indicates the capacity of sched group, which is used while
1255  * distributing the load between different sched groups in a sched domain.
1256  * Typically cpu_capacity for all the groups in a sched domain will be same
1257  * unless there are asymmetries in the topology. If there are asymmetries,
1258  * group having more cpu_capacity will pickup more load compared to the
1259  * group having less cpu_capacity.
1260  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1261 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1262 {
1263 	struct sched_group *sg = sd->groups;
1264 
1265 	WARN_ON(!sg);
1266 
1267 	do {
1268 		int cpu, max_cpu = -1;
1269 
1270 		sg->group_weight = cpumask_weight(sched_group_span(sg));
1271 
1272 		if (!(sd->flags & SD_ASYM_PACKING))
1273 			goto next;
1274 
1275 		for_each_cpu(cpu, sched_group_span(sg)) {
1276 			if (max_cpu < 0)
1277 				max_cpu = cpu;
1278 			else if (sched_asym_prefer(cpu, max_cpu))
1279 				max_cpu = cpu;
1280 		}
1281 		sg->asym_prefer_cpu = max_cpu;
1282 
1283 next:
1284 		sg = sg->next;
1285 	} while (sg != sd->groups);
1286 
1287 	if (cpu != group_balance_cpu(sg))
1288 		return;
1289 
1290 	update_group_capacity(sd, cpu);
1291 }
1292 
1293 /*
1294  * Asymmetric CPU capacity bits
1295  */
1296 struct asym_cap_data {
1297 	struct list_head link;
1298 	unsigned long capacity;
1299 	unsigned long cpus[];
1300 };
1301 
1302 /*
1303  * Set of available CPUs grouped by their corresponding capacities
1304  * Each list entry contains a CPU mask reflecting CPUs that share the same
1305  * capacity.
1306  * The lifespan of data is unlimited.
1307  */
1308 static LIST_HEAD(asym_cap_list);
1309 
1310 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
1311 
1312 /*
1313  * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1314  * Provides sd_flags reflecting the asymmetry scope.
1315  */
1316 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1317 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1318 			   const struct cpumask *cpu_map)
1319 {
1320 	struct asym_cap_data *entry;
1321 	int count = 0, miss = 0;
1322 
1323 	/*
1324 	 * Count how many unique CPU capacities this domain spans across
1325 	 * (compare sched_domain CPUs mask with ones representing  available
1326 	 * CPUs capacities). Take into account CPUs that might be offline:
1327 	 * skip those.
1328 	 */
1329 	list_for_each_entry(entry, &asym_cap_list, link) {
1330 		if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1331 			++count;
1332 		else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1333 			++miss;
1334 	}
1335 
1336 	WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1337 
1338 	/* No asymmetry detected */
1339 	if (count < 2)
1340 		return 0;
1341 	/* Some of the available CPU capacity values have not been detected */
1342 	if (miss)
1343 		return SD_ASYM_CPUCAPACITY;
1344 
1345 	/* Full asymmetry */
1346 	return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1347 
1348 }
1349 
asym_cpu_capacity_update_data(int cpu)1350 static inline void asym_cpu_capacity_update_data(int cpu)
1351 {
1352 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
1353 	struct asym_cap_data *entry = NULL;
1354 
1355 	list_for_each_entry(entry, &asym_cap_list, link) {
1356 		if (capacity == entry->capacity)
1357 			goto done;
1358 	}
1359 
1360 	entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1361 	if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1362 		return;
1363 	entry->capacity = capacity;
1364 	list_add(&entry->link, &asym_cap_list);
1365 done:
1366 	__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1367 }
1368 
1369 /*
1370  * Build-up/update list of CPUs grouped by their capacities
1371  * An update requires explicit request to rebuild sched domains
1372  * with state indicating CPU topology changes.
1373  */
asym_cpu_capacity_scan(void)1374 static void asym_cpu_capacity_scan(void)
1375 {
1376 	struct asym_cap_data *entry, *next;
1377 	int cpu;
1378 
1379 	list_for_each_entry(entry, &asym_cap_list, link)
1380 		cpumask_clear(cpu_capacity_span(entry));
1381 
1382 	for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1383 		asym_cpu_capacity_update_data(cpu);
1384 
1385 	list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1386 		if (cpumask_empty(cpu_capacity_span(entry))) {
1387 			list_del(&entry->link);
1388 			kfree(entry);
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Only one capacity value has been detected i.e. this system is symmetric.
1394 	 * No need to keep this data around.
1395 	 */
1396 	if (list_is_singular(&asym_cap_list)) {
1397 		entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1398 		list_del(&entry->link);
1399 		kfree(entry);
1400 	}
1401 }
1402 
1403 /*
1404  * Initializers for schedule domains
1405  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1406  */
1407 
1408 static int default_relax_domain_level = -1;
1409 int sched_domain_level_max;
1410 
setup_relax_domain_level(char * str)1411 static int __init setup_relax_domain_level(char *str)
1412 {
1413 	if (kstrtoint(str, 0, &default_relax_domain_level))
1414 		pr_warn("Unable to set relax_domain_level\n");
1415 
1416 	return 1;
1417 }
1418 __setup("relax_domain_level=", setup_relax_domain_level);
1419 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1420 static void set_domain_attribute(struct sched_domain *sd,
1421 				 struct sched_domain_attr *attr)
1422 {
1423 	int request;
1424 
1425 	if (!attr || attr->relax_domain_level < 0) {
1426 		if (default_relax_domain_level < 0)
1427 			return;
1428 		request = default_relax_domain_level;
1429 	} else
1430 		request = attr->relax_domain_level;
1431 
1432 	if (sd->level > request) {
1433 		/* Turn off idle balance on this domain: */
1434 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1435 	}
1436 }
1437 
1438 static void __sdt_free(const struct cpumask *cpu_map);
1439 static int __sdt_alloc(const struct cpumask *cpu_map);
1440 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1441 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1442 				 const struct cpumask *cpu_map)
1443 {
1444 	switch (what) {
1445 	case sa_rootdomain:
1446 		if (!atomic_read(&d->rd->refcount))
1447 			free_rootdomain(&d->rd->rcu);
1448 		fallthrough;
1449 	case sa_sd:
1450 		free_percpu(d->sd);
1451 		fallthrough;
1452 	case sa_sd_storage:
1453 		__sdt_free(cpu_map);
1454 		fallthrough;
1455 	case sa_none:
1456 		break;
1457 	}
1458 }
1459 
1460 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1461 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1462 {
1463 	memset(d, 0, sizeof(*d));
1464 
1465 	if (__sdt_alloc(cpu_map))
1466 		return sa_sd_storage;
1467 	d->sd = alloc_percpu(struct sched_domain *);
1468 	if (!d->sd)
1469 		return sa_sd_storage;
1470 	d->rd = alloc_rootdomain();
1471 	if (!d->rd)
1472 		return sa_sd;
1473 
1474 	return sa_rootdomain;
1475 }
1476 
1477 /*
1478  * NULL the sd_data elements we've used to build the sched_domain and
1479  * sched_group structure so that the subsequent __free_domain_allocs()
1480  * will not free the data we're using.
1481  */
claim_allocations(int cpu,struct sched_domain * sd)1482 static void claim_allocations(int cpu, struct sched_domain *sd)
1483 {
1484 	struct sd_data *sdd = sd->private;
1485 
1486 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1487 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
1488 
1489 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1490 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
1491 
1492 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1493 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
1494 
1495 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1496 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
1497 }
1498 
1499 #ifdef CONFIG_NUMA
1500 enum numa_topology_type sched_numa_topology_type;
1501 
1502 static int			sched_domains_numa_levels;
1503 static int			sched_domains_curr_level;
1504 
1505 int				sched_max_numa_distance;
1506 static int			*sched_domains_numa_distance;
1507 static struct cpumask		***sched_domains_numa_masks;
1508 #endif
1509 
1510 /*
1511  * SD_flags allowed in topology descriptions.
1512  *
1513  * These flags are purely descriptive of the topology and do not prescribe
1514  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1515  * function:
1516  *
1517  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1518  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1519  *   SD_NUMA                - describes NUMA topologies
1520  *
1521  * Odd one out, which beside describing the topology has a quirk also
1522  * prescribes the desired behaviour that goes along with it:
1523  *
1524  *   SD_ASYM_PACKING        - describes SMT quirks
1525  */
1526 #define TOPOLOGY_SD_FLAGS		\
1527 	(SD_SHARE_CPUCAPACITY	|	\
1528 	 SD_SHARE_PKG_RESOURCES |	\
1529 	 SD_NUMA		|	\
1530 	 SD_ASYM_PACKING)
1531 
1532 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1533 sd_init(struct sched_domain_topology_level *tl,
1534 	const struct cpumask *cpu_map,
1535 	struct sched_domain *child, int cpu)
1536 {
1537 	struct sd_data *sdd = &tl->data;
1538 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1539 	int sd_id, sd_weight, sd_flags = 0;
1540 	struct cpumask *sd_span;
1541 
1542 #ifdef CONFIG_NUMA
1543 	/*
1544 	 * Ugly hack to pass state to sd_numa_mask()...
1545 	 */
1546 	sched_domains_curr_level = tl->numa_level;
1547 #endif
1548 
1549 	sd_weight = cpumask_weight(tl->mask(cpu));
1550 
1551 	if (tl->sd_flags)
1552 		sd_flags = (*tl->sd_flags)();
1553 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1554 			"wrong sd_flags in topology description\n"))
1555 		sd_flags &= TOPOLOGY_SD_FLAGS;
1556 
1557 	*sd = (struct sched_domain){
1558 		.min_interval		= sd_weight,
1559 		.max_interval		= 2*sd_weight,
1560 		.busy_factor		= 16,
1561 		.imbalance_pct		= 117,
1562 
1563 		.cache_nice_tries	= 0,
1564 
1565 		.flags			= 1*SD_BALANCE_NEWIDLE
1566 					| 1*SD_BALANCE_EXEC
1567 					| 1*SD_BALANCE_FORK
1568 					| 0*SD_BALANCE_WAKE
1569 					| 1*SD_WAKE_AFFINE
1570 					| 0*SD_SHARE_CPUCAPACITY
1571 					| 0*SD_SHARE_PKG_RESOURCES
1572 					| 0*SD_SERIALIZE
1573 					| 1*SD_PREFER_SIBLING
1574 					| 0*SD_NUMA
1575 					| sd_flags
1576 					,
1577 
1578 		.last_balance		= jiffies,
1579 		.balance_interval	= sd_weight,
1580 		.max_newidle_lb_cost	= 0,
1581 		.last_decay_max_lb_cost	= jiffies,
1582 		.child			= child,
1583 #ifdef CONFIG_SCHED_DEBUG
1584 		.name			= tl->name,
1585 #endif
1586 	};
1587 
1588 	sd_span = sched_domain_span(sd);
1589 	cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1590 	sd_id = cpumask_first(sd_span);
1591 
1592 	sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1593 
1594 	WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1595 		  (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1596 		  "CPU capacity asymmetry not supported on SMT\n");
1597 
1598 	/*
1599 	 * Convert topological properties into behaviour.
1600 	 */
1601 	/* Don't attempt to spread across CPUs of different capacities. */
1602 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1603 		sd->child->flags &= ~SD_PREFER_SIBLING;
1604 
1605 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
1606 		sd->imbalance_pct = 110;
1607 
1608 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1609 		sd->imbalance_pct = 117;
1610 		sd->cache_nice_tries = 1;
1611 
1612 #ifdef CONFIG_NUMA
1613 	} else if (sd->flags & SD_NUMA) {
1614 		sd->cache_nice_tries = 2;
1615 
1616 		sd->flags &= ~SD_PREFER_SIBLING;
1617 		sd->flags |= SD_SERIALIZE;
1618 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1619 			sd->flags &= ~(SD_BALANCE_EXEC |
1620 				       SD_BALANCE_FORK |
1621 				       SD_WAKE_AFFINE);
1622 		}
1623 
1624 #endif
1625 	} else {
1626 		sd->cache_nice_tries = 1;
1627 	}
1628 
1629 	/*
1630 	 * For all levels sharing cache; connect a sched_domain_shared
1631 	 * instance.
1632 	 */
1633 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1634 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1635 		atomic_inc(&sd->shared->ref);
1636 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1637 	}
1638 
1639 	sd->private = sdd;
1640 
1641 	return sd;
1642 }
1643 
1644 /*
1645  * Topology list, bottom-up.
1646  */
1647 static struct sched_domain_topology_level default_topology[] = {
1648 #ifdef CONFIG_SCHED_SMT
1649 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1650 #endif
1651 
1652 #ifdef CONFIG_SCHED_CLUSTER
1653 	{ cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1654 #endif
1655 
1656 #ifdef CONFIG_SCHED_MC
1657 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1658 #endif
1659 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
1660 	{ NULL, },
1661 };
1662 
1663 static struct sched_domain_topology_level *sched_domain_topology =
1664 	default_topology;
1665 static struct sched_domain_topology_level *sched_domain_topology_saved;
1666 
1667 #define for_each_sd_topology(tl)			\
1668 	for (tl = sched_domain_topology; tl->mask; tl++)
1669 
set_sched_topology(struct sched_domain_topology_level * tl)1670 void set_sched_topology(struct sched_domain_topology_level *tl)
1671 {
1672 	if (WARN_ON_ONCE(sched_smp_initialized))
1673 		return;
1674 
1675 	sched_domain_topology = tl;
1676 	sched_domain_topology_saved = NULL;
1677 }
1678 
1679 #ifdef CONFIG_NUMA
1680 
sd_numa_mask(int cpu)1681 static const struct cpumask *sd_numa_mask(int cpu)
1682 {
1683 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1684 }
1685 
sched_numa_warn(const char * str)1686 static void sched_numa_warn(const char *str)
1687 {
1688 	static int done = false;
1689 	int i,j;
1690 
1691 	if (done)
1692 		return;
1693 
1694 	done = true;
1695 
1696 	printk(KERN_WARNING "ERROR: %s\n\n", str);
1697 
1698 	for (i = 0; i < nr_node_ids; i++) {
1699 		printk(KERN_WARNING "  ");
1700 		for (j = 0; j < nr_node_ids; j++) {
1701 			if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1702 				printk(KERN_CONT "(%02d) ", node_distance(i,j));
1703 			else
1704 				printk(KERN_CONT " %02d  ", node_distance(i,j));
1705 		}
1706 		printk(KERN_CONT "\n");
1707 	}
1708 	printk(KERN_WARNING "\n");
1709 }
1710 
find_numa_distance(int distance)1711 bool find_numa_distance(int distance)
1712 {
1713 	bool found = false;
1714 	int i, *distances;
1715 
1716 	if (distance == node_distance(0, 0))
1717 		return true;
1718 
1719 	rcu_read_lock();
1720 	distances = rcu_dereference(sched_domains_numa_distance);
1721 	if (!distances)
1722 		goto unlock;
1723 	for (i = 0; i < sched_domains_numa_levels; i++) {
1724 		if (distances[i] == distance) {
1725 			found = true;
1726 			break;
1727 		}
1728 	}
1729 unlock:
1730 	rcu_read_unlock();
1731 
1732 	return found;
1733 }
1734 
1735 #define for_each_cpu_node_but(n, nbut)		\
1736 	for_each_node_state(n, N_CPU)		\
1737 		if (n == nbut)			\
1738 			continue;		\
1739 		else
1740 
1741 /*
1742  * A system can have three types of NUMA topology:
1743  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1744  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1745  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1746  *
1747  * The difference between a glueless mesh topology and a backplane
1748  * topology lies in whether communication between not directly
1749  * connected nodes goes through intermediary nodes (where programs
1750  * could run), or through backplane controllers. This affects
1751  * placement of programs.
1752  *
1753  * The type of topology can be discerned with the following tests:
1754  * - If the maximum distance between any nodes is 1 hop, the system
1755  *   is directly connected.
1756  * - If for two nodes A and B, located N > 1 hops away from each other,
1757  *   there is an intermediary node C, which is < N hops away from both
1758  *   nodes A and B, the system is a glueless mesh.
1759  */
init_numa_topology_type(int offline_node)1760 static void init_numa_topology_type(int offline_node)
1761 {
1762 	int a, b, c, n;
1763 
1764 	n = sched_max_numa_distance;
1765 
1766 	if (sched_domains_numa_levels <= 2) {
1767 		sched_numa_topology_type = NUMA_DIRECT;
1768 		return;
1769 	}
1770 
1771 	for_each_cpu_node_but(a, offline_node) {
1772 		for_each_cpu_node_but(b, offline_node) {
1773 			/* Find two nodes furthest removed from each other. */
1774 			if (node_distance(a, b) < n)
1775 				continue;
1776 
1777 			/* Is there an intermediary node between a and b? */
1778 			for_each_cpu_node_but(c, offline_node) {
1779 				if (node_distance(a, c) < n &&
1780 				    node_distance(b, c) < n) {
1781 					sched_numa_topology_type =
1782 							NUMA_GLUELESS_MESH;
1783 					return;
1784 				}
1785 			}
1786 
1787 			sched_numa_topology_type = NUMA_BACKPLANE;
1788 			return;
1789 		}
1790 	}
1791 
1792 	pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1793 	sched_numa_topology_type = NUMA_DIRECT;
1794 }
1795 
1796 
1797 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1798 
sched_init_numa(int offline_node)1799 void sched_init_numa(int offline_node)
1800 {
1801 	struct sched_domain_topology_level *tl;
1802 	unsigned long *distance_map;
1803 	int nr_levels = 0;
1804 	int i, j;
1805 	int *distances;
1806 	struct cpumask ***masks;
1807 
1808 	/*
1809 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1810 	 * unique distances in the node_distance() table.
1811 	 */
1812 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1813 	if (!distance_map)
1814 		return;
1815 
1816 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1817 	for_each_cpu_node_but(i, offline_node) {
1818 		for_each_cpu_node_but(j, offline_node) {
1819 			int distance = node_distance(i, j);
1820 
1821 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1822 				sched_numa_warn("Invalid distance value range");
1823 				bitmap_free(distance_map);
1824 				return;
1825 			}
1826 
1827 			bitmap_set(distance_map, distance, 1);
1828 		}
1829 	}
1830 	/*
1831 	 * We can now figure out how many unique distance values there are and
1832 	 * allocate memory accordingly.
1833 	 */
1834 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1835 
1836 	distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1837 	if (!distances) {
1838 		bitmap_free(distance_map);
1839 		return;
1840 	}
1841 
1842 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
1843 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1844 		distances[i] = j;
1845 	}
1846 	rcu_assign_pointer(sched_domains_numa_distance, distances);
1847 
1848 	bitmap_free(distance_map);
1849 
1850 	/*
1851 	 * 'nr_levels' contains the number of unique distances
1852 	 *
1853 	 * The sched_domains_numa_distance[] array includes the actual distance
1854 	 * numbers.
1855 	 */
1856 
1857 	/*
1858 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1859 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1860 	 * the array will contain less then 'nr_levels' members. This could be
1861 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1862 	 * in other functions.
1863 	 *
1864 	 * We reset it to 'nr_levels' at the end of this function.
1865 	 */
1866 	sched_domains_numa_levels = 0;
1867 
1868 	masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1869 	if (!masks)
1870 		return;
1871 
1872 	/*
1873 	 * Now for each level, construct a mask per node which contains all
1874 	 * CPUs of nodes that are that many hops away from us.
1875 	 */
1876 	for (i = 0; i < nr_levels; i++) {
1877 		masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1878 		if (!masks[i])
1879 			return;
1880 
1881 		for_each_cpu_node_but(j, offline_node) {
1882 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1883 			int k;
1884 
1885 			if (!mask)
1886 				return;
1887 
1888 			masks[i][j] = mask;
1889 
1890 			for_each_cpu_node_but(k, offline_node) {
1891 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1892 					sched_numa_warn("Node-distance not symmetric");
1893 
1894 				if (node_distance(j, k) > sched_domains_numa_distance[i])
1895 					continue;
1896 
1897 				cpumask_or(mask, mask, cpumask_of_node(k));
1898 			}
1899 		}
1900 	}
1901 	rcu_assign_pointer(sched_domains_numa_masks, masks);
1902 
1903 	/* Compute default topology size */
1904 	for (i = 0; sched_domain_topology[i].mask; i++);
1905 
1906 	tl = kzalloc((i + nr_levels + 1) *
1907 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1908 	if (!tl)
1909 		return;
1910 
1911 	/*
1912 	 * Copy the default topology bits..
1913 	 */
1914 	for (i = 0; sched_domain_topology[i].mask; i++)
1915 		tl[i] = sched_domain_topology[i];
1916 
1917 	/*
1918 	 * Add the NUMA identity distance, aka single NODE.
1919 	 */
1920 	tl[i++] = (struct sched_domain_topology_level){
1921 		.mask = sd_numa_mask,
1922 		.numa_level = 0,
1923 		SD_INIT_NAME(NODE)
1924 	};
1925 
1926 	/*
1927 	 * .. and append 'j' levels of NUMA goodness.
1928 	 */
1929 	for (j = 1; j < nr_levels; i++, j++) {
1930 		tl[i] = (struct sched_domain_topology_level){
1931 			.mask = sd_numa_mask,
1932 			.sd_flags = cpu_numa_flags,
1933 			.flags = SDTL_OVERLAP,
1934 			.numa_level = j,
1935 			SD_INIT_NAME(NUMA)
1936 		};
1937 	}
1938 
1939 	sched_domain_topology_saved = sched_domain_topology;
1940 	sched_domain_topology = tl;
1941 
1942 	sched_domains_numa_levels = nr_levels;
1943 	WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1944 
1945 	init_numa_topology_type(offline_node);
1946 }
1947 
1948 
sched_reset_numa(void)1949 static void sched_reset_numa(void)
1950 {
1951 	int nr_levels, *distances;
1952 	struct cpumask ***masks;
1953 
1954 	nr_levels = sched_domains_numa_levels;
1955 	sched_domains_numa_levels = 0;
1956 	sched_max_numa_distance = 0;
1957 	sched_numa_topology_type = NUMA_DIRECT;
1958 	distances = sched_domains_numa_distance;
1959 	rcu_assign_pointer(sched_domains_numa_distance, NULL);
1960 	masks = sched_domains_numa_masks;
1961 	rcu_assign_pointer(sched_domains_numa_masks, NULL);
1962 	if (distances || masks) {
1963 		int i, j;
1964 
1965 		synchronize_rcu();
1966 		kfree(distances);
1967 		for (i = 0; i < nr_levels && masks; i++) {
1968 			if (!masks[i])
1969 				continue;
1970 			for_each_node(j)
1971 				kfree(masks[i][j]);
1972 			kfree(masks[i]);
1973 		}
1974 		kfree(masks);
1975 	}
1976 	if (sched_domain_topology_saved) {
1977 		kfree(sched_domain_topology);
1978 		sched_domain_topology = sched_domain_topology_saved;
1979 		sched_domain_topology_saved = NULL;
1980 	}
1981 }
1982 
1983 /*
1984  * Call with hotplug lock held
1985  */
sched_update_numa(int cpu,bool online)1986 void sched_update_numa(int cpu, bool online)
1987 {
1988 	int node;
1989 
1990 	node = cpu_to_node(cpu);
1991 	/*
1992 	 * Scheduler NUMA topology is updated when the first CPU of a
1993 	 * node is onlined or the last CPU of a node is offlined.
1994 	 */
1995 	if (cpumask_weight(cpumask_of_node(node)) != 1)
1996 		return;
1997 
1998 	sched_reset_numa();
1999 	sched_init_numa(online ? NUMA_NO_NODE : node);
2000 }
2001 
sched_domains_numa_masks_set(unsigned int cpu)2002 void sched_domains_numa_masks_set(unsigned int cpu)
2003 {
2004 	int node = cpu_to_node(cpu);
2005 	int i, j;
2006 
2007 	for (i = 0; i < sched_domains_numa_levels; i++) {
2008 		for (j = 0; j < nr_node_ids; j++) {
2009 			if (!node_state(j, N_CPU))
2010 				continue;
2011 
2012 			/* Set ourselves in the remote node's masks */
2013 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
2014 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2015 		}
2016 	}
2017 }
2018 
sched_domains_numa_masks_clear(unsigned int cpu)2019 void sched_domains_numa_masks_clear(unsigned int cpu)
2020 {
2021 	int i, j;
2022 
2023 	for (i = 0; i < sched_domains_numa_levels; i++) {
2024 		for (j = 0; j < nr_node_ids; j++) {
2025 			if (sched_domains_numa_masks[i][j])
2026 				cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2027 		}
2028 	}
2029 }
2030 
2031 /*
2032  * sched_numa_find_closest() - given the NUMA topology, find the cpu
2033  *                             closest to @cpu from @cpumask.
2034  * cpumask: cpumask to find a cpu from
2035  * cpu: cpu to be close to
2036  *
2037  * returns: cpu, or nr_cpu_ids when nothing found.
2038  */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2039 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2040 {
2041 	int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2042 	struct cpumask ***masks;
2043 
2044 	rcu_read_lock();
2045 	masks = rcu_dereference(sched_domains_numa_masks);
2046 	if (!masks)
2047 		goto unlock;
2048 	for (i = 0; i < sched_domains_numa_levels; i++) {
2049 		if (!masks[i][j])
2050 			break;
2051 		cpu = cpumask_any_and(cpus, masks[i][j]);
2052 		if (cpu < nr_cpu_ids) {
2053 			found = cpu;
2054 			break;
2055 		}
2056 	}
2057 unlock:
2058 	rcu_read_unlock();
2059 
2060 	return found;
2061 }
2062 
2063 #endif /* CONFIG_NUMA */
2064 
__sdt_alloc(const struct cpumask * cpu_map)2065 static int __sdt_alloc(const struct cpumask *cpu_map)
2066 {
2067 	struct sched_domain_topology_level *tl;
2068 	int j;
2069 
2070 	for_each_sd_topology(tl) {
2071 		struct sd_data *sdd = &tl->data;
2072 
2073 		sdd->sd = alloc_percpu(struct sched_domain *);
2074 		if (!sdd->sd)
2075 			return -ENOMEM;
2076 
2077 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
2078 		if (!sdd->sds)
2079 			return -ENOMEM;
2080 
2081 		sdd->sg = alloc_percpu(struct sched_group *);
2082 		if (!sdd->sg)
2083 			return -ENOMEM;
2084 
2085 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2086 		if (!sdd->sgc)
2087 			return -ENOMEM;
2088 
2089 		for_each_cpu(j, cpu_map) {
2090 			struct sched_domain *sd;
2091 			struct sched_domain_shared *sds;
2092 			struct sched_group *sg;
2093 			struct sched_group_capacity *sgc;
2094 
2095 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2096 					GFP_KERNEL, cpu_to_node(j));
2097 			if (!sd)
2098 				return -ENOMEM;
2099 
2100 			*per_cpu_ptr(sdd->sd, j) = sd;
2101 
2102 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
2103 					GFP_KERNEL, cpu_to_node(j));
2104 			if (!sds)
2105 				return -ENOMEM;
2106 
2107 			*per_cpu_ptr(sdd->sds, j) = sds;
2108 
2109 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2110 					GFP_KERNEL, cpu_to_node(j));
2111 			if (!sg)
2112 				return -ENOMEM;
2113 
2114 			sg->next = sg;
2115 
2116 			*per_cpu_ptr(sdd->sg, j) = sg;
2117 
2118 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2119 					GFP_KERNEL, cpu_to_node(j));
2120 			if (!sgc)
2121 				return -ENOMEM;
2122 
2123 #ifdef CONFIG_SCHED_DEBUG
2124 			sgc->id = j;
2125 #endif
2126 
2127 			*per_cpu_ptr(sdd->sgc, j) = sgc;
2128 		}
2129 	}
2130 
2131 	return 0;
2132 }
2133 
__sdt_free(const struct cpumask * cpu_map)2134 static void __sdt_free(const struct cpumask *cpu_map)
2135 {
2136 	struct sched_domain_topology_level *tl;
2137 	int j;
2138 
2139 	for_each_sd_topology(tl) {
2140 		struct sd_data *sdd = &tl->data;
2141 
2142 		for_each_cpu(j, cpu_map) {
2143 			struct sched_domain *sd;
2144 
2145 			if (sdd->sd) {
2146 				sd = *per_cpu_ptr(sdd->sd, j);
2147 				if (sd && (sd->flags & SD_OVERLAP))
2148 					free_sched_groups(sd->groups, 0);
2149 				kfree(*per_cpu_ptr(sdd->sd, j));
2150 			}
2151 
2152 			if (sdd->sds)
2153 				kfree(*per_cpu_ptr(sdd->sds, j));
2154 			if (sdd->sg)
2155 				kfree(*per_cpu_ptr(sdd->sg, j));
2156 			if (sdd->sgc)
2157 				kfree(*per_cpu_ptr(sdd->sgc, j));
2158 		}
2159 		free_percpu(sdd->sd);
2160 		sdd->sd = NULL;
2161 		free_percpu(sdd->sds);
2162 		sdd->sds = NULL;
2163 		free_percpu(sdd->sg);
2164 		sdd->sg = NULL;
2165 		free_percpu(sdd->sgc);
2166 		sdd->sgc = NULL;
2167 	}
2168 }
2169 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2170 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2171 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2172 		struct sched_domain *child, int cpu)
2173 {
2174 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2175 
2176 	if (child) {
2177 		sd->level = child->level + 1;
2178 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
2179 		child->parent = sd;
2180 
2181 		if (!cpumask_subset(sched_domain_span(child),
2182 				    sched_domain_span(sd))) {
2183 			pr_err("BUG: arch topology borken\n");
2184 #ifdef CONFIG_SCHED_DEBUG
2185 			pr_err("     the %s domain not a subset of the %s domain\n",
2186 					child->name, sd->name);
2187 #endif
2188 			/* Fixup, ensure @sd has at least @child CPUs. */
2189 			cpumask_or(sched_domain_span(sd),
2190 				   sched_domain_span(sd),
2191 				   sched_domain_span(child));
2192 		}
2193 
2194 	}
2195 	set_domain_attribute(sd, attr);
2196 
2197 	return sd;
2198 }
2199 
2200 /*
2201  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2202  * any two given CPUs at this (non-NUMA) topology level.
2203  */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)2204 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2205 			      const struct cpumask *cpu_map, int cpu)
2206 {
2207 	int i;
2208 
2209 	/* NUMA levels are allowed to overlap */
2210 	if (tl->flags & SDTL_OVERLAP)
2211 		return true;
2212 
2213 	/*
2214 	 * Non-NUMA levels cannot partially overlap - they must be either
2215 	 * completely equal or completely disjoint. Otherwise we can end up
2216 	 * breaking the sched_group lists - i.e. a later get_group() pass
2217 	 * breaks the linking done for an earlier span.
2218 	 */
2219 	for_each_cpu(i, cpu_map) {
2220 		if (i == cpu)
2221 			continue;
2222 		/*
2223 		 * We should 'and' all those masks with 'cpu_map' to exactly
2224 		 * match the topology we're about to build, but that can only
2225 		 * remove CPUs, which only lessens our ability to detect
2226 		 * overlaps
2227 		 */
2228 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2229 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2230 			return false;
2231 	}
2232 
2233 	return true;
2234 }
2235 
2236 /*
2237  * Build sched domains for a given set of CPUs and attach the sched domains
2238  * to the individual CPUs
2239  */
2240 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2241 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2242 {
2243 	enum s_alloc alloc_state = sa_none;
2244 	struct sched_domain *sd;
2245 	struct s_data d;
2246 	struct rq *rq = NULL;
2247 	int i, ret = -ENOMEM;
2248 	bool has_asym = false;
2249 
2250 	if (WARN_ON(cpumask_empty(cpu_map)))
2251 		goto error;
2252 
2253 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2254 	if (alloc_state != sa_rootdomain)
2255 		goto error;
2256 
2257 	/* Set up domains for CPUs specified by the cpu_map: */
2258 	for_each_cpu(i, cpu_map) {
2259 		struct sched_domain_topology_level *tl;
2260 
2261 		sd = NULL;
2262 		for_each_sd_topology(tl) {
2263 
2264 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2265 				goto error;
2266 
2267 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2268 
2269 			has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2270 
2271 			if (tl == sched_domain_topology)
2272 				*per_cpu_ptr(d.sd, i) = sd;
2273 			if (tl->flags & SDTL_OVERLAP)
2274 				sd->flags |= SD_OVERLAP;
2275 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2276 				break;
2277 		}
2278 	}
2279 
2280 	/* Build the groups for the domains */
2281 	for_each_cpu(i, cpu_map) {
2282 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2283 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
2284 			if (sd->flags & SD_OVERLAP) {
2285 				if (build_overlap_sched_groups(sd, i))
2286 					goto error;
2287 			} else {
2288 				if (build_sched_groups(sd, i))
2289 					goto error;
2290 			}
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * Calculate an allowed NUMA imbalance such that LLCs do not get
2296 	 * imbalanced.
2297 	 */
2298 	for_each_cpu(i, cpu_map) {
2299 		unsigned int imb = 0;
2300 		unsigned int imb_span = 1;
2301 
2302 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2303 			struct sched_domain *child = sd->child;
2304 
2305 			if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
2306 			    (child->flags & SD_SHARE_PKG_RESOURCES)) {
2307 				struct sched_domain __rcu *top_p;
2308 				unsigned int nr_llcs;
2309 
2310 				/*
2311 				 * For a single LLC per node, allow an
2312 				 * imbalance up to 12.5% of the node. This is
2313 				 * arbitrary cutoff based two factors -- SMT and
2314 				 * memory channels. For SMT-2, the intent is to
2315 				 * avoid premature sharing of HT resources but
2316 				 * SMT-4 or SMT-8 *may* benefit from a different
2317 				 * cutoff. For memory channels, this is a very
2318 				 * rough estimate of how many channels may be
2319 				 * active and is based on recent CPUs with
2320 				 * many cores.
2321 				 *
2322 				 * For multiple LLCs, allow an imbalance
2323 				 * until multiple tasks would share an LLC
2324 				 * on one node while LLCs on another node
2325 				 * remain idle. This assumes that there are
2326 				 * enough logical CPUs per LLC to avoid SMT
2327 				 * factors and that there is a correlation
2328 				 * between LLCs and memory channels.
2329 				 */
2330 				nr_llcs = sd->span_weight / child->span_weight;
2331 				if (nr_llcs == 1)
2332 					imb = sd->span_weight >> 3;
2333 				else
2334 					imb = nr_llcs;
2335 				imb = max(1U, imb);
2336 				sd->imb_numa_nr = imb;
2337 
2338 				/* Set span based on the first NUMA domain. */
2339 				top_p = sd->parent;
2340 				while (top_p && !(top_p->flags & SD_NUMA)) {
2341 					top_p = top_p->parent;
2342 				}
2343 				imb_span = top_p ? top_p->span_weight : sd->span_weight;
2344 			} else {
2345 				int factor = max(1U, (sd->span_weight / imb_span));
2346 
2347 				sd->imb_numa_nr = imb * factor;
2348 			}
2349 		}
2350 	}
2351 
2352 	/* Calculate CPU capacity for physical packages and nodes */
2353 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
2354 		if (!cpumask_test_cpu(i, cpu_map))
2355 			continue;
2356 
2357 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2358 			claim_allocations(i, sd);
2359 			init_sched_groups_capacity(i, sd);
2360 		}
2361 	}
2362 
2363 	/* Attach the domains */
2364 	rcu_read_lock();
2365 	for_each_cpu(i, cpu_map) {
2366 		rq = cpu_rq(i);
2367 		sd = *per_cpu_ptr(d.sd, i);
2368 
2369 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2370 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2371 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2372 
2373 		cpu_attach_domain(sd, d.rd, i);
2374 	}
2375 	rcu_read_unlock();
2376 
2377 	if (has_asym)
2378 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2379 
2380 	if (rq && sched_debug_verbose) {
2381 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2382 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2383 	}
2384 	trace_android_vh_build_sched_domains(has_asym);
2385 
2386 	ret = 0;
2387 error:
2388 	__free_domain_allocs(&d, alloc_state, cpu_map);
2389 
2390 	return ret;
2391 }
2392 
2393 /* Current sched domains: */
2394 static cpumask_var_t			*doms_cur;
2395 
2396 /* Number of sched domains in 'doms_cur': */
2397 static int				ndoms_cur;
2398 
2399 /* Attributes of custom domains in 'doms_cur' */
2400 static struct sched_domain_attr		*dattr_cur;
2401 
2402 /*
2403  * Special case: If a kmalloc() of a doms_cur partition (array of
2404  * cpumask) fails, then fallback to a single sched domain,
2405  * as determined by the single cpumask fallback_doms.
2406  */
2407 static cpumask_var_t			fallback_doms;
2408 
2409 /*
2410  * arch_update_cpu_topology lets virtualized architectures update the
2411  * CPU core maps. It is supposed to return 1 if the topology changed
2412  * or 0 if it stayed the same.
2413  */
arch_update_cpu_topology(void)2414 int __weak arch_update_cpu_topology(void)
2415 {
2416 	return 0;
2417 }
2418 
alloc_sched_domains(unsigned int ndoms)2419 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2420 {
2421 	int i;
2422 	cpumask_var_t *doms;
2423 
2424 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2425 	if (!doms)
2426 		return NULL;
2427 	for (i = 0; i < ndoms; i++) {
2428 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2429 			free_sched_domains(doms, i);
2430 			return NULL;
2431 		}
2432 	}
2433 	return doms;
2434 }
2435 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2436 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2437 {
2438 	unsigned int i;
2439 	for (i = 0; i < ndoms; i++)
2440 		free_cpumask_var(doms[i]);
2441 	kfree(doms);
2442 }
2443 
2444 /*
2445  * Set up scheduler domains and groups.  For now this just excludes isolated
2446  * CPUs, but could be used to exclude other special cases in the future.
2447  */
sched_init_domains(const struct cpumask * cpu_map)2448 int sched_init_domains(const struct cpumask *cpu_map)
2449 {
2450 	int err;
2451 
2452 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2453 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2454 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2455 
2456 	arch_update_cpu_topology();
2457 	asym_cpu_capacity_scan();
2458 	ndoms_cur = 1;
2459 	doms_cur = alloc_sched_domains(ndoms_cur);
2460 	if (!doms_cur)
2461 		doms_cur = &fallback_doms;
2462 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2463 	err = build_sched_domains(doms_cur[0], NULL);
2464 
2465 	return err;
2466 }
2467 
2468 /*
2469  * Detach sched domains from a group of CPUs specified in cpu_map
2470  * These CPUs will now be attached to the NULL domain
2471  */
detach_destroy_domains(const struct cpumask * cpu_map)2472 static void detach_destroy_domains(const struct cpumask *cpu_map)
2473 {
2474 	unsigned int cpu = cpumask_any(cpu_map);
2475 	int i;
2476 
2477 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2478 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2479 
2480 	rcu_read_lock();
2481 	for_each_cpu(i, cpu_map)
2482 		cpu_attach_domain(NULL, &def_root_domain, i);
2483 	rcu_read_unlock();
2484 }
2485 
2486 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2487 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2488 			struct sched_domain_attr *new, int idx_new)
2489 {
2490 	struct sched_domain_attr tmp;
2491 
2492 	/* Fast path: */
2493 	if (!new && !cur)
2494 		return 1;
2495 
2496 	tmp = SD_ATTR_INIT;
2497 
2498 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
2499 			new ? (new + idx_new) : &tmp,
2500 			sizeof(struct sched_domain_attr));
2501 }
2502 
2503 /*
2504  * Partition sched domains as specified by the 'ndoms_new'
2505  * cpumasks in the array doms_new[] of cpumasks. This compares
2506  * doms_new[] to the current sched domain partitioning, doms_cur[].
2507  * It destroys each deleted domain and builds each new domain.
2508  *
2509  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2510  * The masks don't intersect (don't overlap.) We should setup one
2511  * sched domain for each mask. CPUs not in any of the cpumasks will
2512  * not be load balanced. If the same cpumask appears both in the
2513  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2514  * it as it is.
2515  *
2516  * The passed in 'doms_new' should be allocated using
2517  * alloc_sched_domains.  This routine takes ownership of it and will
2518  * free_sched_domains it when done with it. If the caller failed the
2519  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2520  * and partition_sched_domains() will fallback to the single partition
2521  * 'fallback_doms', it also forces the domains to be rebuilt.
2522  *
2523  * If doms_new == NULL it will be replaced with cpu_online_mask.
2524  * ndoms_new == 0 is a special case for destroying existing domains,
2525  * and it will not create the default domain.
2526  *
2527  * Call with hotplug lock and sched_domains_mutex held
2528  */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2529 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2530 				    struct sched_domain_attr *dattr_new)
2531 {
2532 	bool __maybe_unused has_eas = false;
2533 	int i, j, n;
2534 	int new_topology;
2535 
2536 	lockdep_assert_held(&sched_domains_mutex);
2537 
2538 	/* Let the architecture update CPU core mappings: */
2539 	new_topology = arch_update_cpu_topology();
2540 	/* Trigger rebuilding CPU capacity asymmetry data */
2541 	if (new_topology)
2542 		asym_cpu_capacity_scan();
2543 
2544 	if (!doms_new) {
2545 		WARN_ON_ONCE(dattr_new);
2546 		n = 0;
2547 		doms_new = alloc_sched_domains(1);
2548 		if (doms_new) {
2549 			n = 1;
2550 			cpumask_and(doms_new[0], cpu_active_mask,
2551 				    housekeeping_cpumask(HK_TYPE_DOMAIN));
2552 		}
2553 	} else {
2554 		n = ndoms_new;
2555 	}
2556 
2557 	/* Destroy deleted domains: */
2558 	for (i = 0; i < ndoms_cur; i++) {
2559 		for (j = 0; j < n && !new_topology; j++) {
2560 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2561 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
2562 				struct root_domain *rd;
2563 
2564 				/*
2565 				 * This domain won't be destroyed and as such
2566 				 * its dl_bw->total_bw needs to be cleared.  It
2567 				 * will be recomputed in function
2568 				 * update_tasks_root_domain().
2569 				 */
2570 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2571 				dl_clear_root_domain(rd);
2572 				goto match1;
2573 			}
2574 		}
2575 		/* No match - a current sched domain not in new doms_new[] */
2576 		detach_destroy_domains(doms_cur[i]);
2577 match1:
2578 		;
2579 	}
2580 
2581 	n = ndoms_cur;
2582 	if (!doms_new) {
2583 		n = 0;
2584 		doms_new = &fallback_doms;
2585 		cpumask_and(doms_new[0], cpu_active_mask,
2586 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
2587 	}
2588 
2589 	/* Build new domains: */
2590 	for (i = 0; i < ndoms_new; i++) {
2591 		for (j = 0; j < n && !new_topology; j++) {
2592 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2593 			    dattrs_equal(dattr_new, i, dattr_cur, j))
2594 				goto match2;
2595 		}
2596 		/* No match - add a new doms_new */
2597 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2598 match2:
2599 		;
2600 	}
2601 
2602 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2603 	/* Build perf. domains: */
2604 	for (i = 0; i < ndoms_new; i++) {
2605 		for (j = 0; j < n && !sched_energy_update; j++) {
2606 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2607 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2608 				has_eas = true;
2609 				goto match3;
2610 			}
2611 		}
2612 		/* No match - add perf. domains for a new rd */
2613 		has_eas |= build_perf_domains(doms_new[i]);
2614 match3:
2615 		;
2616 	}
2617 	sched_energy_set(has_eas);
2618 #endif
2619 
2620 	/* Remember the new sched domains: */
2621 	if (doms_cur != &fallback_doms)
2622 		free_sched_domains(doms_cur, ndoms_cur);
2623 
2624 	kfree(dattr_cur);
2625 	doms_cur = doms_new;
2626 	dattr_cur = dattr_new;
2627 	ndoms_cur = ndoms_new;
2628 
2629 	update_sched_domain_debugfs();
2630 }
2631 
2632 /*
2633  * Call with hotplug lock held
2634  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2635 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2636 			     struct sched_domain_attr *dattr_new)
2637 {
2638 	mutex_lock(&sched_domains_mutex);
2639 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2640 	mutex_unlock(&sched_domains_mutex);
2641 }
2642