• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic helpers for smp ipi calls
4  *
5  * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/irq_work.h>
11 #include <linux/rcupdate.h>
12 #include <linux/rculist.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/gfp.h>
19 #include <linux/smp.h>
20 #include <linux/cpu.h>
21 #include <linux/sched.h>
22 #include <linux/sched/idle.h>
23 #include <linux/hypervisor.h>
24 #include <linux/sched/clock.h>
25 #include <linux/nmi.h>
26 #include <linux/sched/debug.h>
27 #include <linux/jump_label.h>
28 
29 #include "smpboot.h"
30 #include "sched/smp.h"
31 
32 #define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
33 
34 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
35 union cfd_seq_cnt {
36 	u64		val;
37 	struct {
38 		u64	src:16;
39 		u64	dst:16;
40 #define CFD_SEQ_NOCPU	0xffff
41 		u64	type:4;
42 #define CFD_SEQ_QUEUE	0
43 #define CFD_SEQ_IPI	1
44 #define CFD_SEQ_NOIPI	2
45 #define CFD_SEQ_PING	3
46 #define CFD_SEQ_PINGED	4
47 #define CFD_SEQ_HANDLE	5
48 #define CFD_SEQ_DEQUEUE	6
49 #define CFD_SEQ_IDLE	7
50 #define CFD_SEQ_GOTIPI	8
51 #define CFD_SEQ_HDLEND	9
52 		u64	cnt:28;
53 	}		u;
54 };
55 
56 static char *seq_type[] = {
57 	[CFD_SEQ_QUEUE]		= "queue",
58 	[CFD_SEQ_IPI]		= "ipi",
59 	[CFD_SEQ_NOIPI]		= "noipi",
60 	[CFD_SEQ_PING]		= "ping",
61 	[CFD_SEQ_PINGED]	= "pinged",
62 	[CFD_SEQ_HANDLE]	= "handle",
63 	[CFD_SEQ_DEQUEUE]	= "dequeue (src CPU 0 == empty)",
64 	[CFD_SEQ_IDLE]		= "idle",
65 	[CFD_SEQ_GOTIPI]	= "gotipi",
66 	[CFD_SEQ_HDLEND]	= "hdlend (src CPU 0 == early)",
67 };
68 
69 struct cfd_seq_local {
70 	u64	ping;
71 	u64	pinged;
72 	u64	handle;
73 	u64	dequeue;
74 	u64	idle;
75 	u64	gotipi;
76 	u64	hdlend;
77 };
78 #endif
79 
80 struct cfd_percpu {
81 	call_single_data_t	csd;
82 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
83 	u64	seq_queue;
84 	u64	seq_ipi;
85 	u64	seq_noipi;
86 #endif
87 };
88 
89 struct call_function_data {
90 	struct cfd_percpu	__percpu *pcpu;
91 	cpumask_var_t		cpumask;
92 	cpumask_var_t		cpumask_ipi;
93 };
94 
95 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
96 
97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
98 
99 static void __flush_smp_call_function_queue(bool warn_cpu_offline);
100 
smpcfd_prepare_cpu(unsigned int cpu)101 int smpcfd_prepare_cpu(unsigned int cpu)
102 {
103 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
104 
105 	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
106 				     cpu_to_node(cpu)))
107 		return -ENOMEM;
108 	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
109 				     cpu_to_node(cpu))) {
110 		free_cpumask_var(cfd->cpumask);
111 		return -ENOMEM;
112 	}
113 	cfd->pcpu = alloc_percpu(struct cfd_percpu);
114 	if (!cfd->pcpu) {
115 		free_cpumask_var(cfd->cpumask);
116 		free_cpumask_var(cfd->cpumask_ipi);
117 		return -ENOMEM;
118 	}
119 
120 	return 0;
121 }
122 
smpcfd_dead_cpu(unsigned int cpu)123 int smpcfd_dead_cpu(unsigned int cpu)
124 {
125 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
126 
127 	free_cpumask_var(cfd->cpumask);
128 	free_cpumask_var(cfd->cpumask_ipi);
129 	free_percpu(cfd->pcpu);
130 	return 0;
131 }
132 
smpcfd_dying_cpu(unsigned int cpu)133 int smpcfd_dying_cpu(unsigned int cpu)
134 {
135 	/*
136 	 * The IPIs for the smp-call-function callbacks queued by other
137 	 * CPUs might arrive late, either due to hardware latencies or
138 	 * because this CPU disabled interrupts (inside stop-machine)
139 	 * before the IPIs were sent. So flush out any pending callbacks
140 	 * explicitly (without waiting for the IPIs to arrive), to
141 	 * ensure that the outgoing CPU doesn't go offline with work
142 	 * still pending.
143 	 */
144 	__flush_smp_call_function_queue(false);
145 	irq_work_run();
146 	return 0;
147 }
148 
call_function_init(void)149 void __init call_function_init(void)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i)
154 		init_llist_head(&per_cpu(call_single_queue, i));
155 
156 	smpcfd_prepare_cpu(smp_processor_id());
157 }
158 
159 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
160 
161 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
162 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
163 
csdlock_debug(char * str)164 static int __init csdlock_debug(char *str)
165 {
166 	unsigned int val = 0;
167 
168 	if (str && !strcmp(str, "ext")) {
169 		val = 1;
170 		static_branch_enable(&csdlock_debug_extended);
171 	} else
172 		get_option(&str, &val);
173 
174 	if (val)
175 		static_branch_enable(&csdlock_debug_enabled);
176 
177 	return 1;
178 }
179 __setup("csdlock_debug=", csdlock_debug);
180 
181 static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
182 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
183 static DEFINE_PER_CPU(void *, cur_csd_info);
184 static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
185 
186 static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
187 module_param(csd_lock_timeout, ulong, 0444);
188 static int panic_on_ipistall;  /* CSD panic timeout in milliseconds, 300000 for five minutes. */
189 module_param(panic_on_ipistall, int, 0444);
190 
191 static atomic_t csd_bug_count = ATOMIC_INIT(0);
192 static u64 cfd_seq;
193 
194 #define CFD_SEQ(s, d, t, c)	\
195 	(union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
196 
cfd_seq_inc(unsigned int src,unsigned int dst,unsigned int type)197 static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
198 {
199 	union cfd_seq_cnt new, old;
200 
201 	new = CFD_SEQ(src, dst, type, 0);
202 
203 	do {
204 		old.val = READ_ONCE(cfd_seq);
205 		new.u.cnt = old.u.cnt + 1;
206 	} while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
207 
208 	return old.val;
209 }
210 
211 #define cfd_seq_store(var, src, dst, type)				\
212 	do {								\
213 		if (static_branch_unlikely(&csdlock_debug_extended))	\
214 			var = cfd_seq_inc(src, dst, type);		\
215 	} while (0)
216 
217 /* Record current CSD work for current CPU, NULL to erase. */
__csd_lock_record(struct __call_single_data * csd)218 static void __csd_lock_record(struct __call_single_data *csd)
219 {
220 	if (!csd) {
221 		smp_mb(); /* NULL cur_csd after unlock. */
222 		__this_cpu_write(cur_csd, NULL);
223 		return;
224 	}
225 	__this_cpu_write(cur_csd_func, csd->func);
226 	__this_cpu_write(cur_csd_info, csd->info);
227 	smp_wmb(); /* func and info before csd. */
228 	__this_cpu_write(cur_csd, csd);
229 	smp_mb(); /* Update cur_csd before function call. */
230 		  /* Or before unlock, as the case may be. */
231 }
232 
csd_lock_record(struct __call_single_data * csd)233 static __always_inline void csd_lock_record(struct __call_single_data *csd)
234 {
235 	if (static_branch_unlikely(&csdlock_debug_enabled))
236 		__csd_lock_record(csd);
237 }
238 
csd_lock_wait_getcpu(struct __call_single_data * csd)239 static int csd_lock_wait_getcpu(struct __call_single_data *csd)
240 {
241 	unsigned int csd_type;
242 
243 	csd_type = CSD_TYPE(csd);
244 	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
245 		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
246 	return -1;
247 }
248 
cfd_seq_data_add(u64 val,unsigned int src,unsigned int dst,unsigned int type,union cfd_seq_cnt * data,unsigned int * n_data,unsigned int now)249 static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
250 			     unsigned int type, union cfd_seq_cnt *data,
251 			     unsigned int *n_data, unsigned int now)
252 {
253 	union cfd_seq_cnt new[2];
254 	unsigned int i, j, k;
255 
256 	new[0].val = val;
257 	new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
258 
259 	for (i = 0; i < 2; i++) {
260 		if (new[i].u.cnt <= now)
261 			new[i].u.cnt |= 0x80000000U;
262 		for (j = 0; j < *n_data; j++) {
263 			if (new[i].u.cnt == data[j].u.cnt) {
264 				/* Direct read value trumps generated one. */
265 				if (i == 0)
266 					data[j].val = new[i].val;
267 				break;
268 			}
269 			if (new[i].u.cnt < data[j].u.cnt) {
270 				for (k = *n_data; k > j; k--)
271 					data[k].val = data[k - 1].val;
272 				data[j].val = new[i].val;
273 				(*n_data)++;
274 				break;
275 			}
276 		}
277 		if (j == *n_data) {
278 			data[j].val = new[i].val;
279 			(*n_data)++;
280 		}
281 	}
282 }
283 
csd_lock_get_type(unsigned int type)284 static const char *csd_lock_get_type(unsigned int type)
285 {
286 	return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
287 }
288 
csd_lock_print_extended(struct __call_single_data * csd,int cpu)289 static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
290 {
291 	struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
292 	unsigned int srccpu = csd->node.src;
293 	struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
294 	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
295 	unsigned int now;
296 	union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
297 	unsigned int n_data = 0, i;
298 
299 	data[0].val = READ_ONCE(cfd_seq);
300 	now = data[0].u.cnt;
301 
302 	cfd_seq_data_add(pcpu->seq_queue,			srccpu, cpu,	       CFD_SEQ_QUEUE,  data, &n_data, now);
303 	cfd_seq_data_add(pcpu->seq_ipi,				srccpu, cpu,	       CFD_SEQ_IPI,    data, &n_data, now);
304 	cfd_seq_data_add(pcpu->seq_noipi,			srccpu, cpu,	       CFD_SEQ_NOIPI,  data, &n_data, now);
305 
306 	cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu),	srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING,   data, &n_data, now);
307 	cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
308 
309 	cfd_seq_data_add(seq->idle,    CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE,    data, &n_data, now);
310 	cfd_seq_data_add(seq->gotipi,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI,  data, &n_data, now);
311 	cfd_seq_data_add(seq->handle,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE,  data, &n_data, now);
312 	cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
313 	cfd_seq_data_add(seq->hdlend,  CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND,  data, &n_data, now);
314 
315 	for (i = 0; i < n_data; i++) {
316 		pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
317 			 data[i].u.cnt & ~0x80000000U, data[i].u.src,
318 			 data[i].u.dst, csd_lock_get_type(data[i].u.type));
319 	}
320 	pr_alert("\tcsd: cnt now: %07x\n", now);
321 }
322 
323 /*
324  * Complain if too much time spent waiting.  Note that only
325  * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
326  * so waiting on other types gets much less information.
327  */
csd_lock_wait_toolong(struct __call_single_data * csd,u64 ts0,u64 * ts1,int * bug_id)328 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
329 {
330 	int cpu = -1;
331 	int cpux;
332 	bool firsttime;
333 	u64 ts2, ts_delta;
334 	call_single_data_t *cpu_cur_csd;
335 	unsigned int flags = READ_ONCE(csd->node.u_flags);
336 	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
337 
338 	if (!(flags & CSD_FLAG_LOCK)) {
339 		if (!unlikely(*bug_id))
340 			return true;
341 		cpu = csd_lock_wait_getcpu(csd);
342 		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
343 			 *bug_id, raw_smp_processor_id(), cpu);
344 		return true;
345 	}
346 
347 	ts2 = sched_clock();
348 	/* How long since we last checked for a stuck CSD lock.*/
349 	ts_delta = ts2 - *ts1;
350 	if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
351 		return false;
352 
353 	firsttime = !*bug_id;
354 	if (firsttime)
355 		*bug_id = atomic_inc_return(&csd_bug_count);
356 	cpu = csd_lock_wait_getcpu(csd);
357 	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
358 		cpux = 0;
359 	else
360 		cpux = cpu;
361 	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
362 	/* How long since this CSD lock was stuck. */
363 	ts_delta = ts2 - ts0;
364 	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
365 		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts_delta,
366 		 cpu, csd->func, csd->info);
367 	/*
368 	 * If the CSD lock is still stuck after 5 minutes, it is unlikely
369 	 * to become unstuck. Use a signed comparison to avoid triggering
370 	 * on underflows when the TSC is out of sync between sockets.
371 	 */
372 	BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC));
373 	if (cpu_cur_csd && csd != cpu_cur_csd) {
374 		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
375 			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
376 			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
377 	} else {
378 		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
379 			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
380 	}
381 	if (cpu >= 0) {
382 		if (static_branch_unlikely(&csdlock_debug_extended))
383 			csd_lock_print_extended(csd, cpu);
384 		dump_cpu_task(cpu);
385 		if (!cpu_cur_csd) {
386 			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
387 			arch_send_call_function_single_ipi(cpu);
388 		}
389 	}
390 	dump_stack();
391 	*ts1 = ts2;
392 
393 	return false;
394 }
395 
396 /*
397  * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
398  *
399  * For non-synchronous ipi calls the csd can still be in use by the
400  * previous function call. For multi-cpu calls its even more interesting
401  * as we'll have to ensure no other cpu is observing our csd.
402  */
__csd_lock_wait(struct __call_single_data * csd)403 static void __csd_lock_wait(struct __call_single_data *csd)
404 {
405 	int bug_id = 0;
406 	u64 ts0, ts1;
407 
408 	ts1 = ts0 = sched_clock();
409 	for (;;) {
410 		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
411 			break;
412 		cpu_relax();
413 	}
414 	smp_acquire__after_ctrl_dep();
415 }
416 
csd_lock_wait(struct __call_single_data * csd)417 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
418 {
419 	if (static_branch_unlikely(&csdlock_debug_enabled)) {
420 		__csd_lock_wait(csd);
421 		return;
422 	}
423 
424 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
425 }
426 
__smp_call_single_queue_debug(int cpu,struct llist_node * node)427 static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
428 {
429 	unsigned int this_cpu = smp_processor_id();
430 	struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
431 	struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
432 	struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
433 
434 	cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
435 	if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
436 		cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
437 		cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
438 		send_call_function_single_ipi(cpu);
439 		cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
440 	} else {
441 		cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
442 	}
443 }
444 #else
445 #define cfd_seq_store(var, src, dst, type)
446 
csd_lock_record(struct __call_single_data * csd)447 static void csd_lock_record(struct __call_single_data *csd)
448 {
449 }
450 
csd_lock_wait(struct __call_single_data * csd)451 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
452 {
453 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
454 }
455 #endif
456 
csd_lock(struct __call_single_data * csd)457 static __always_inline void csd_lock(struct __call_single_data *csd)
458 {
459 	csd_lock_wait(csd);
460 	csd->node.u_flags |= CSD_FLAG_LOCK;
461 
462 	/*
463 	 * prevent CPU from reordering the above assignment
464 	 * to ->flags with any subsequent assignments to other
465 	 * fields of the specified call_single_data_t structure:
466 	 */
467 	smp_wmb();
468 }
469 
csd_unlock(struct __call_single_data * csd)470 static __always_inline void csd_unlock(struct __call_single_data *csd)
471 {
472 	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
473 
474 	/*
475 	 * ensure we're all done before releasing data:
476 	 */
477 	smp_store_release(&csd->node.u_flags, 0);
478 }
479 
480 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
481 
__smp_call_single_queue(int cpu,struct llist_node * node)482 void __smp_call_single_queue(int cpu, struct llist_node *node)
483 {
484 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
485 	if (static_branch_unlikely(&csdlock_debug_extended)) {
486 		unsigned int type;
487 
488 		type = CSD_TYPE(container_of(node, call_single_data_t,
489 					     node.llist));
490 		if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
491 			__smp_call_single_queue_debug(cpu, node);
492 			return;
493 		}
494 	}
495 #endif
496 
497 	/*
498 	 * The list addition should be visible before sending the IPI
499 	 * handler locks the list to pull the entry off it because of
500 	 * normal cache coherency rules implied by spinlocks.
501 	 *
502 	 * If IPIs can go out of order to the cache coherency protocol
503 	 * in an architecture, sufficient synchronisation should be added
504 	 * to arch code to make it appear to obey cache coherency WRT
505 	 * locking and barrier primitives. Generic code isn't really
506 	 * equipped to do the right thing...
507 	 */
508 	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
509 		send_call_function_single_ipi(cpu);
510 }
511 
512 /*
513  * Insert a previously allocated call_single_data_t element
514  * for execution on the given CPU. data must already have
515  * ->func, ->info, and ->flags set.
516  */
generic_exec_single(int cpu,struct __call_single_data * csd)517 static int generic_exec_single(int cpu, struct __call_single_data *csd)
518 {
519 	if (cpu == smp_processor_id()) {
520 		smp_call_func_t func = csd->func;
521 		void *info = csd->info;
522 		unsigned long flags;
523 
524 		/*
525 		 * We can unlock early even for the synchronous on-stack case,
526 		 * since we're doing this from the same CPU..
527 		 */
528 		csd_lock_record(csd);
529 		csd_unlock(csd);
530 		local_irq_save(flags);
531 		func(info);
532 		csd_lock_record(NULL);
533 		local_irq_restore(flags);
534 		return 0;
535 	}
536 
537 	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
538 		csd_unlock(csd);
539 		return -ENXIO;
540 	}
541 
542 	__smp_call_single_queue(cpu, &csd->node.llist);
543 
544 	return 0;
545 }
546 
547 /**
548  * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
549  *
550  * Invoked by arch to handle an IPI for call function single.
551  * Must be called with interrupts disabled.
552  */
generic_smp_call_function_single_interrupt(void)553 void generic_smp_call_function_single_interrupt(void)
554 {
555 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
556 		      smp_processor_id(), CFD_SEQ_GOTIPI);
557 	__flush_smp_call_function_queue(true);
558 }
559 
560 /**
561  * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
562  *
563  * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
564  *		      offline CPU. Skip this check if set to 'false'.
565  *
566  * Flush any pending smp-call-function callbacks queued on this CPU. This is
567  * invoked by the generic IPI handler, as well as by a CPU about to go offline,
568  * to ensure that all pending IPI callbacks are run before it goes completely
569  * offline.
570  *
571  * Loop through the call_single_queue and run all the queued callbacks.
572  * Must be called with interrupts disabled.
573  */
__flush_smp_call_function_queue(bool warn_cpu_offline)574 static void __flush_smp_call_function_queue(bool warn_cpu_offline)
575 {
576 	call_single_data_t *csd, *csd_next;
577 	struct llist_node *entry, *prev;
578 	struct llist_head *head;
579 	static bool warned;
580 
581 	lockdep_assert_irqs_disabled();
582 
583 	head = this_cpu_ptr(&call_single_queue);
584 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
585 		      smp_processor_id(), CFD_SEQ_HANDLE);
586 	entry = llist_del_all(head);
587 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
588 		      /* Special meaning of source cpu: 0 == queue empty */
589 		      entry ? CFD_SEQ_NOCPU : 0,
590 		      smp_processor_id(), CFD_SEQ_DEQUEUE);
591 	entry = llist_reverse_order(entry);
592 
593 	/* There shouldn't be any pending callbacks on an offline CPU. */
594 	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
595 		     !warned && entry != NULL)) {
596 		warned = true;
597 		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
598 
599 		/*
600 		 * We don't have to use the _safe() variant here
601 		 * because we are not invoking the IPI handlers yet.
602 		 */
603 		llist_for_each_entry(csd, entry, node.llist) {
604 			switch (CSD_TYPE(csd)) {
605 			case CSD_TYPE_ASYNC:
606 			case CSD_TYPE_SYNC:
607 			case CSD_TYPE_IRQ_WORK:
608 				pr_warn("IPI callback %pS sent to offline CPU\n",
609 					csd->func);
610 				break;
611 
612 			case CSD_TYPE_TTWU:
613 				pr_warn("IPI task-wakeup sent to offline CPU\n");
614 				break;
615 
616 			default:
617 				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
618 					CSD_TYPE(csd));
619 				break;
620 			}
621 		}
622 	}
623 
624 	/*
625 	 * First; run all SYNC callbacks, people are waiting for us.
626 	 */
627 	prev = NULL;
628 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
629 		/* Do we wait until *after* callback? */
630 		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
631 			smp_call_func_t func = csd->func;
632 			void *info = csd->info;
633 
634 			if (prev) {
635 				prev->next = &csd_next->node.llist;
636 			} else {
637 				entry = &csd_next->node.llist;
638 			}
639 
640 			csd_lock_record(csd);
641 			func(info);
642 			csd_unlock(csd);
643 			csd_lock_record(NULL);
644 		} else {
645 			prev = &csd->node.llist;
646 		}
647 	}
648 
649 	if (!entry) {
650 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
651 			      0, smp_processor_id(),
652 			      CFD_SEQ_HDLEND);
653 		return;
654 	}
655 
656 	/*
657 	 * Second; run all !SYNC callbacks.
658 	 */
659 	prev = NULL;
660 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
661 		int type = CSD_TYPE(csd);
662 
663 		if (type != CSD_TYPE_TTWU) {
664 			if (prev) {
665 				prev->next = &csd_next->node.llist;
666 			} else {
667 				entry = &csd_next->node.llist;
668 			}
669 
670 			if (type == CSD_TYPE_ASYNC) {
671 				smp_call_func_t func = csd->func;
672 				void *info = csd->info;
673 
674 				csd_lock_record(csd);
675 				csd_unlock(csd);
676 				func(info);
677 				csd_lock_record(NULL);
678 			} else if (type == CSD_TYPE_IRQ_WORK) {
679 				irq_work_single(csd);
680 			}
681 
682 		} else {
683 			prev = &csd->node.llist;
684 		}
685 	}
686 
687 	/*
688 	 * Third; only CSD_TYPE_TTWU is left, issue those.
689 	 */
690 	if (entry)
691 		sched_ttwu_pending(entry);
692 
693 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
694 		      smp_processor_id(), CFD_SEQ_HDLEND);
695 }
696 
697 
698 /**
699  * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
700  *				   from task context (idle, migration thread)
701  *
702  * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
703  * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
704  * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
705  * handle queued SMP function calls before scheduling.
706  *
707  * The migration thread has to ensure that an eventually pending wakeup has
708  * been handled before it migrates a task.
709  */
flush_smp_call_function_queue(void)710 void flush_smp_call_function_queue(void)
711 {
712 	unsigned int was_pending;
713 	unsigned long flags;
714 
715 	if (llist_empty(this_cpu_ptr(&call_single_queue)))
716 		return;
717 
718 	cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
719 		      smp_processor_id(), CFD_SEQ_IDLE);
720 	local_irq_save(flags);
721 	/* Get the already pending soft interrupts for RT enabled kernels */
722 	was_pending = local_softirq_pending();
723 	__flush_smp_call_function_queue(true);
724 	if (local_softirq_pending())
725 		do_softirq_post_smp_call_flush(was_pending);
726 
727 	local_irq_restore(flags);
728 }
729 
730 /*
731  * smp_call_function_single - Run a function on a specific CPU
732  * @func: The function to run. This must be fast and non-blocking.
733  * @info: An arbitrary pointer to pass to the function.
734  * @wait: If true, wait until function has completed on other CPUs.
735  *
736  * Returns 0 on success, else a negative status code.
737  */
smp_call_function_single(int cpu,smp_call_func_t func,void * info,int wait)738 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
739 			     int wait)
740 {
741 	call_single_data_t *csd;
742 	call_single_data_t csd_stack = {
743 		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
744 	};
745 	int this_cpu;
746 	int err;
747 
748 	/*
749 	 * prevent preemption and reschedule on another processor,
750 	 * as well as CPU removal
751 	 */
752 	this_cpu = get_cpu();
753 
754 	/*
755 	 * Can deadlock when called with interrupts disabled.
756 	 * We allow cpu's that are not yet online though, as no one else can
757 	 * send smp call function interrupt to this cpu and as such deadlocks
758 	 * can't happen.
759 	 */
760 	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
761 		     && !oops_in_progress);
762 
763 	/*
764 	 * When @wait we can deadlock when we interrupt between llist_add() and
765 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
766 	 * csd_lock() on because the interrupt context uses the same csd
767 	 * storage.
768 	 */
769 	WARN_ON_ONCE(!in_task());
770 
771 	csd = &csd_stack;
772 	if (!wait) {
773 		csd = this_cpu_ptr(&csd_data);
774 		csd_lock(csd);
775 	}
776 
777 	csd->func = func;
778 	csd->info = info;
779 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
780 	csd->node.src = smp_processor_id();
781 	csd->node.dst = cpu;
782 #endif
783 
784 	err = generic_exec_single(cpu, csd);
785 
786 	if (wait)
787 		csd_lock_wait(csd);
788 
789 	put_cpu();
790 
791 	return err;
792 }
793 EXPORT_SYMBOL(smp_call_function_single);
794 
795 /**
796  * smp_call_function_single_async() - Run an asynchronous function on a
797  * 			         specific CPU.
798  * @cpu: The CPU to run on.
799  * @csd: Pre-allocated and setup data structure
800  *
801  * Like smp_call_function_single(), but the call is asynchonous and
802  * can thus be done from contexts with disabled interrupts.
803  *
804  * The caller passes his own pre-allocated data structure
805  * (ie: embedded in an object) and is responsible for synchronizing it
806  * such that the IPIs performed on the @csd are strictly serialized.
807  *
808  * If the function is called with one csd which has not yet been
809  * processed by previous call to smp_call_function_single_async(), the
810  * function will return immediately with -EBUSY showing that the csd
811  * object is still in progress.
812  *
813  * NOTE: Be careful, there is unfortunately no current debugging facility to
814  * validate the correctness of this serialization.
815  *
816  * Return: %0 on success or negative errno value on error
817  */
smp_call_function_single_async(int cpu,struct __call_single_data * csd)818 int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
819 {
820 	int err = 0;
821 
822 	preempt_disable();
823 
824 	if (csd->node.u_flags & CSD_FLAG_LOCK) {
825 		err = -EBUSY;
826 		goto out;
827 	}
828 
829 	csd->node.u_flags = CSD_FLAG_LOCK;
830 	smp_wmb();
831 
832 	err = generic_exec_single(cpu, csd);
833 
834 out:
835 	preempt_enable();
836 
837 	return err;
838 }
839 EXPORT_SYMBOL_GPL(smp_call_function_single_async);
840 
841 /*
842  * smp_call_function_any - Run a function on any of the given cpus
843  * @mask: The mask of cpus it can run on.
844  * @func: The function to run. This must be fast and non-blocking.
845  * @info: An arbitrary pointer to pass to the function.
846  * @wait: If true, wait until function has completed.
847  *
848  * Returns 0 on success, else a negative status code (if no cpus were online).
849  *
850  * Selection preference:
851  *	1) current cpu if in @mask
852  *	2) any cpu of current node if in @mask
853  *	3) any other online cpu in @mask
854  */
smp_call_function_any(const struct cpumask * mask,smp_call_func_t func,void * info,int wait)855 int smp_call_function_any(const struct cpumask *mask,
856 			  smp_call_func_t func, void *info, int wait)
857 {
858 	unsigned int cpu;
859 	const struct cpumask *nodemask;
860 	int ret;
861 
862 	/* Try for same CPU (cheapest) */
863 	cpu = get_cpu();
864 	if (cpumask_test_cpu(cpu, mask))
865 		goto call;
866 
867 	/* Try for same node. */
868 	nodemask = cpumask_of_node(cpu_to_node(cpu));
869 	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
870 	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
871 		if (cpu_online(cpu))
872 			goto call;
873 	}
874 
875 	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
876 	cpu = cpumask_any_and(mask, cpu_online_mask);
877 call:
878 	ret = smp_call_function_single(cpu, func, info, wait);
879 	put_cpu();
880 	return ret;
881 }
882 EXPORT_SYMBOL_GPL(smp_call_function_any);
883 
884 /*
885  * Flags to be used as scf_flags argument of smp_call_function_many_cond().
886  *
887  * %SCF_WAIT:		Wait until function execution is completed
888  * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
889  */
890 #define SCF_WAIT	(1U << 0)
891 #define SCF_RUN_LOCAL	(1U << 1)
892 
smp_call_function_many_cond(const struct cpumask * mask,smp_call_func_t func,void * info,unsigned int scf_flags,smp_cond_func_t cond_func)893 static void smp_call_function_many_cond(const struct cpumask *mask,
894 					smp_call_func_t func, void *info,
895 					unsigned int scf_flags,
896 					smp_cond_func_t cond_func)
897 {
898 	int cpu, last_cpu, this_cpu = smp_processor_id();
899 	struct call_function_data *cfd;
900 	bool wait = scf_flags & SCF_WAIT;
901 	bool run_remote = false;
902 	bool run_local = false;
903 	int nr_cpus = 0;
904 
905 	lockdep_assert_preemption_disabled();
906 
907 	/*
908 	 * Can deadlock when called with interrupts disabled.
909 	 * We allow cpu's that are not yet online though, as no one else can
910 	 * send smp call function interrupt to this cpu and as such deadlocks
911 	 * can't happen.
912 	 */
913 	if (cpu_online(this_cpu) && !oops_in_progress &&
914 	    !early_boot_irqs_disabled)
915 		lockdep_assert_irqs_enabled();
916 
917 	/*
918 	 * When @wait we can deadlock when we interrupt between llist_add() and
919 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
920 	 * csd_lock() on because the interrupt context uses the same csd
921 	 * storage.
922 	 */
923 	WARN_ON_ONCE(!in_task());
924 
925 	/* Check if we need local execution. */
926 	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
927 		run_local = true;
928 
929 	/* Check if we need remote execution, i.e., any CPU excluding this one. */
930 	cpu = cpumask_first_and(mask, cpu_online_mask);
931 	if (cpu == this_cpu)
932 		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
933 	if (cpu < nr_cpu_ids)
934 		run_remote = true;
935 
936 	if (run_remote) {
937 		cfd = this_cpu_ptr(&cfd_data);
938 		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
939 		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
940 
941 		cpumask_clear(cfd->cpumask_ipi);
942 		for_each_cpu(cpu, cfd->cpumask) {
943 			struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
944 			call_single_data_t *csd = &pcpu->csd;
945 
946 			if (cond_func && !cond_func(cpu, info))
947 				continue;
948 
949 			csd_lock(csd);
950 			if (wait)
951 				csd->node.u_flags |= CSD_TYPE_SYNC;
952 			csd->func = func;
953 			csd->info = info;
954 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
955 			csd->node.src = smp_processor_id();
956 			csd->node.dst = cpu;
957 #endif
958 			cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
959 			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
960 				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
961 				nr_cpus++;
962 				last_cpu = cpu;
963 
964 				cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
965 			} else {
966 				cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
967 			}
968 		}
969 
970 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
971 
972 		/*
973 		 * Choose the most efficient way to send an IPI. Note that the
974 		 * number of CPUs might be zero due to concurrent changes to the
975 		 * provided mask.
976 		 */
977 		if (nr_cpus == 1)
978 			send_call_function_single_ipi(last_cpu);
979 		else if (likely(nr_cpus > 1))
980 			arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
981 
982 		cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
983 	}
984 
985 	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
986 		unsigned long flags;
987 
988 		local_irq_save(flags);
989 		func(info);
990 		local_irq_restore(flags);
991 	}
992 
993 	if (run_remote && wait) {
994 		for_each_cpu(cpu, cfd->cpumask) {
995 			call_single_data_t *csd;
996 
997 			csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
998 			csd_lock_wait(csd);
999 		}
1000 	}
1001 }
1002 
1003 /**
1004  * smp_call_function_many(): Run a function on a set of CPUs.
1005  * @mask: The set of cpus to run on (only runs on online subset).
1006  * @func: The function to run. This must be fast and non-blocking.
1007  * @info: An arbitrary pointer to pass to the function.
1008  * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
1009  *        (atomically) until function has completed on other CPUs. If
1010  *        %SCF_RUN_LOCAL is set, the function will also be run locally
1011  *        if the local CPU is set in the @cpumask.
1012  *
1013  * If @wait is true, then returns once @func has returned.
1014  *
1015  * You must not call this function with disabled interrupts or from a
1016  * hardware interrupt handler or from a bottom half handler. Preemption
1017  * must be disabled when calling this function.
1018  */
smp_call_function_many(const struct cpumask * mask,smp_call_func_t func,void * info,bool wait)1019 void smp_call_function_many(const struct cpumask *mask,
1020 			    smp_call_func_t func, void *info, bool wait)
1021 {
1022 	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
1023 }
1024 EXPORT_SYMBOL(smp_call_function_many);
1025 
1026 /**
1027  * smp_call_function(): Run a function on all other CPUs.
1028  * @func: The function to run. This must be fast and non-blocking.
1029  * @info: An arbitrary pointer to pass to the function.
1030  * @wait: If true, wait (atomically) until function has completed
1031  *        on other CPUs.
1032  *
1033  * Returns 0.
1034  *
1035  * If @wait is true, then returns once @func has returned; otherwise
1036  * it returns just before the target cpu calls @func.
1037  *
1038  * You must not call this function with disabled interrupts or from a
1039  * hardware interrupt handler or from a bottom half handler.
1040  */
smp_call_function(smp_call_func_t func,void * info,int wait)1041 void smp_call_function(smp_call_func_t func, void *info, int wait)
1042 {
1043 	preempt_disable();
1044 	smp_call_function_many(cpu_online_mask, func, info, wait);
1045 	preempt_enable();
1046 }
1047 EXPORT_SYMBOL(smp_call_function);
1048 
1049 /* Setup configured maximum number of CPUs to activate */
1050 unsigned int setup_max_cpus = NR_CPUS;
1051 EXPORT_SYMBOL(setup_max_cpus);
1052 
1053 
1054 /*
1055  * Setup routine for controlling SMP activation
1056  *
1057  * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1058  * activation entirely (the MPS table probe still happens, though).
1059  *
1060  * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1061  * greater than 0, limits the maximum number of CPUs activated in
1062  * SMP mode to <NUM>.
1063  */
1064 
arch_disable_smp_support(void)1065 void __weak arch_disable_smp_support(void) { }
1066 
nosmp(char * str)1067 static int __init nosmp(char *str)
1068 {
1069 	setup_max_cpus = 0;
1070 	arch_disable_smp_support();
1071 
1072 	return 0;
1073 }
1074 
1075 early_param("nosmp", nosmp);
1076 
1077 /* this is hard limit */
nrcpus(char * str)1078 static int __init nrcpus(char *str)
1079 {
1080 	int nr_cpus;
1081 
1082 	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1083 		set_nr_cpu_ids(nr_cpus);
1084 
1085 	return 0;
1086 }
1087 
1088 early_param("nr_cpus", nrcpus);
1089 
maxcpus(char * str)1090 static int __init maxcpus(char *str)
1091 {
1092 	get_option(&str, &setup_max_cpus);
1093 	if (setup_max_cpus == 0)
1094 		arch_disable_smp_support();
1095 
1096 	return 0;
1097 }
1098 
1099 early_param("maxcpus", maxcpus);
1100 
1101 #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
1102 /* Setup number of possible processor ids */
1103 unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1104 EXPORT_SYMBOL(nr_cpu_ids);
1105 #endif
1106 
1107 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
setup_nr_cpu_ids(void)1108 void __init setup_nr_cpu_ids(void)
1109 {
1110 	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
1111 }
1112 
1113 /* Called by boot processor to activate the rest. */
smp_init(void)1114 void __init smp_init(void)
1115 {
1116 	int num_nodes, num_cpus;
1117 
1118 	idle_threads_init();
1119 	cpuhp_threads_init();
1120 
1121 	pr_info("Bringing up secondary CPUs ...\n");
1122 
1123 	bringup_nonboot_cpus(setup_max_cpus);
1124 
1125 	num_nodes = num_online_nodes();
1126 	num_cpus  = num_online_cpus();
1127 	pr_info("Brought up %d node%s, %d CPU%s\n",
1128 		num_nodes, (num_nodes > 1 ? "s" : ""),
1129 		num_cpus,  (num_cpus  > 1 ? "s" : ""));
1130 
1131 	/* Any cleanup work */
1132 	smp_cpus_done(setup_max_cpus);
1133 }
1134 
1135 /*
1136  * on_each_cpu_cond(): Call a function on each processor for which
1137  * the supplied function cond_func returns true, optionally waiting
1138  * for all the required CPUs to finish. This may include the local
1139  * processor.
1140  * @cond_func:	A callback function that is passed a cpu id and
1141  *		the info parameter. The function is called
1142  *		with preemption disabled. The function should
1143  *		return a blooean value indicating whether to IPI
1144  *		the specified CPU.
1145  * @func:	The function to run on all applicable CPUs.
1146  *		This must be fast and non-blocking.
1147  * @info:	An arbitrary pointer to pass to both functions.
1148  * @wait:	If true, wait (atomically) until function has
1149  *		completed on other CPUs.
1150  *
1151  * Preemption is disabled to protect against CPUs going offline but not online.
1152  * CPUs going online during the call will not be seen or sent an IPI.
1153  *
1154  * You must not call this function with disabled interrupts or
1155  * from a hardware interrupt handler or from a bottom half handler.
1156  */
on_each_cpu_cond_mask(smp_cond_func_t cond_func,smp_call_func_t func,void * info,bool wait,const struct cpumask * mask)1157 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1158 			   void *info, bool wait, const struct cpumask *mask)
1159 {
1160 	unsigned int scf_flags = SCF_RUN_LOCAL;
1161 
1162 	if (wait)
1163 		scf_flags |= SCF_WAIT;
1164 
1165 	preempt_disable();
1166 	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1167 	preempt_enable();
1168 }
1169 EXPORT_SYMBOL(on_each_cpu_cond_mask);
1170 
do_nothing(void * unused)1171 static void do_nothing(void *unused)
1172 {
1173 }
1174 
1175 /**
1176  * kick_all_cpus_sync - Force all cpus out of idle
1177  *
1178  * Used to synchronize the update of pm_idle function pointer. It's
1179  * called after the pointer is updated and returns after the dummy
1180  * callback function has been executed on all cpus. The execution of
1181  * the function can only happen on the remote cpus after they have
1182  * left the idle function which had been called via pm_idle function
1183  * pointer. So it's guaranteed that nothing uses the previous pointer
1184  * anymore.
1185  */
kick_all_cpus_sync(void)1186 void kick_all_cpus_sync(void)
1187 {
1188 	/* Make sure the change is visible before we kick the cpus */
1189 	smp_mb();
1190 	smp_call_function(do_nothing, NULL, 1);
1191 }
1192 EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1193 
1194 /**
1195  * wake_up_all_idle_cpus - break all cpus out of idle
1196  * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1197  * including idle polling cpus, for non-idle cpus, we will do nothing
1198  * for them.
1199  */
wake_up_all_idle_cpus(void)1200 void wake_up_all_idle_cpus(void)
1201 {
1202 	int cpu;
1203 
1204 	for_each_possible_cpu(cpu) {
1205 		preempt_disable();
1206 		if (cpu != smp_processor_id() && cpu_online(cpu))
1207 			wake_up_if_idle(cpu);
1208 		preempt_enable();
1209 	}
1210 }
1211 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1212 
1213 /**
1214  * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1215  * @work: &work_struct
1216  * @done: &completion to signal
1217  * @func: function to call
1218  * @data: function's data argument
1219  * @ret: return value from @func
1220  * @cpu: target CPU (%-1 for any CPU)
1221  *
1222  * Used to call a function on a specific cpu and wait for it to return.
1223  * Optionally make sure the call is done on a specified physical cpu via vcpu
1224  * pinning in order to support virtualized environments.
1225  */
1226 struct smp_call_on_cpu_struct {
1227 	struct work_struct	work;
1228 	struct completion	done;
1229 	int			(*func)(void *);
1230 	void			*data;
1231 	int			ret;
1232 	int			cpu;
1233 };
1234 
smp_call_on_cpu_callback(struct work_struct * work)1235 static void smp_call_on_cpu_callback(struct work_struct *work)
1236 {
1237 	struct smp_call_on_cpu_struct *sscs;
1238 
1239 	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1240 	if (sscs->cpu >= 0)
1241 		hypervisor_pin_vcpu(sscs->cpu);
1242 	sscs->ret = sscs->func(sscs->data);
1243 	if (sscs->cpu >= 0)
1244 		hypervisor_pin_vcpu(-1);
1245 
1246 	complete(&sscs->done);
1247 }
1248 
smp_call_on_cpu(unsigned int cpu,int (* func)(void *),void * par,bool phys)1249 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1250 {
1251 	struct smp_call_on_cpu_struct sscs = {
1252 		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1253 		.func = func,
1254 		.data = par,
1255 		.cpu  = phys ? cpu : -1,
1256 	};
1257 
1258 	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1259 
1260 	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1261 		return -ENXIO;
1262 
1263 	queue_work_on(cpu, system_wq, &sscs.work);
1264 	wait_for_completion(&sscs.done);
1265 
1266 	return sscs.ret;
1267 }
1268 EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1269