1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * kernel/stop_machine.c
4 *
5 * Copyright (C) 2008, 2005 IBM Corporation.
6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
7 * Copyright (C) 2010 SUSE Linux Products GmbH
8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25
26 /*
27 * Structure to determine completion condition and record errors. May
28 * be shared by works on different cpus.
29 */
30 struct cpu_stop_done {
31 atomic_t nr_todo; /* nr left to execute */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34 };
35
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 struct task_struct *thread;
39
40 raw_spinlock_t lock;
41 bool enabled; /* is this stopper enabled? */
42 struct list_head works; /* list of pending works */
43
44 struct cpu_stop_work stop_work; /* for stop_cpus */
45 unsigned long caller;
46 cpu_stop_fn_t fn;
47 };
48
49 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
50 static bool stop_machine_initialized = false;
51
print_stop_info(const char * log_lvl,struct task_struct * task)52 void print_stop_info(const char *log_lvl, struct task_struct *task)
53 {
54 /*
55 * If @task is a stopper task, it cannot migrate and task_cpu() is
56 * stable.
57 */
58 struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
59
60 if (task != stopper->thread)
61 return;
62
63 printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
64 }
65
66 /* static data for stop_cpus */
67 static DEFINE_MUTEX(stop_cpus_mutex);
68 static bool stop_cpus_in_progress;
69
cpu_stop_init_done(struct cpu_stop_done * done,unsigned int nr_todo)70 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
71 {
72 memset(done, 0, sizeof(*done));
73 atomic_set(&done->nr_todo, nr_todo);
74 init_completion(&done->completion);
75 }
76
77 /* signal completion unless @done is NULL */
cpu_stop_signal_done(struct cpu_stop_done * done)78 static void cpu_stop_signal_done(struct cpu_stop_done *done)
79 {
80 if (atomic_dec_and_test(&done->nr_todo))
81 complete(&done->completion);
82 }
83
__cpu_stop_queue_work(struct cpu_stopper * stopper,struct cpu_stop_work * work,struct wake_q_head * wakeq)84 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
85 struct cpu_stop_work *work,
86 struct wake_q_head *wakeq)
87 {
88 list_add_tail(&work->list, &stopper->works);
89 wake_q_add(wakeq, stopper->thread);
90 }
91
92 /* queue @work to @stopper. if offline, @work is completed immediately */
cpu_stop_queue_work(unsigned int cpu,struct cpu_stop_work * work)93 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
94 {
95 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
96 DEFINE_WAKE_Q(wakeq);
97 unsigned long flags;
98 bool enabled;
99
100 preempt_disable();
101 raw_spin_lock_irqsave(&stopper->lock, flags);
102 enabled = stopper->enabled;
103 if (enabled)
104 __cpu_stop_queue_work(stopper, work, &wakeq);
105 else if (work->done)
106 cpu_stop_signal_done(work->done);
107 raw_spin_unlock_irqrestore(&stopper->lock, flags);
108
109 wake_up_q(&wakeq);
110 preempt_enable();
111
112 return enabled;
113 }
114
115 /**
116 * stop_one_cpu - stop a cpu
117 * @cpu: cpu to stop
118 * @fn: function to execute
119 * @arg: argument to @fn
120 *
121 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
122 * the highest priority preempting any task on the cpu and
123 * monopolizing it. This function returns after the execution is
124 * complete.
125 *
126 * This function doesn't guarantee @cpu stays online till @fn
127 * completes. If @cpu goes down in the middle, execution may happen
128 * partially or fully on different cpus. @fn should either be ready
129 * for that or the caller should ensure that @cpu stays online until
130 * this function completes.
131 *
132 * CONTEXT:
133 * Might sleep.
134 *
135 * RETURNS:
136 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
137 * otherwise, the return value of @fn.
138 */
stop_one_cpu(unsigned int cpu,cpu_stop_fn_t fn,void * arg)139 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
140 {
141 struct cpu_stop_done done;
142 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
143
144 cpu_stop_init_done(&done, 1);
145 if (!cpu_stop_queue_work(cpu, &work))
146 return -ENOENT;
147 /*
148 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
149 * cycle by doing a preemption:
150 */
151 cond_resched();
152 wait_for_completion(&done.completion);
153 return done.ret;
154 }
155 EXPORT_SYMBOL_GPL(stop_one_cpu);
156
157 /* This controls the threads on each CPU. */
158 enum multi_stop_state {
159 /* Dummy starting state for thread. */
160 MULTI_STOP_NONE,
161 /* Awaiting everyone to be scheduled. */
162 MULTI_STOP_PREPARE,
163 /* Disable interrupts. */
164 MULTI_STOP_DISABLE_IRQ,
165 /* Run the function */
166 MULTI_STOP_RUN,
167 /* Exit */
168 MULTI_STOP_EXIT,
169 };
170
171 struct multi_stop_data {
172 cpu_stop_fn_t fn;
173 void *data;
174 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
175 unsigned int num_threads;
176 const struct cpumask *active_cpus;
177
178 enum multi_stop_state state;
179 atomic_t thread_ack;
180 };
181
set_state(struct multi_stop_data * msdata,enum multi_stop_state newstate)182 static void set_state(struct multi_stop_data *msdata,
183 enum multi_stop_state newstate)
184 {
185 /* Reset ack counter. */
186 atomic_set(&msdata->thread_ack, msdata->num_threads);
187 smp_wmb();
188 WRITE_ONCE(msdata->state, newstate);
189 }
190
191 /* Last one to ack a state moves to the next state. */
ack_state(struct multi_stop_data * msdata)192 static void ack_state(struct multi_stop_data *msdata)
193 {
194 if (atomic_dec_and_test(&msdata->thread_ack))
195 set_state(msdata, msdata->state + 1);
196 }
197
stop_machine_yield(const struct cpumask * cpumask)198 notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
199 {
200 cpu_relax();
201 }
202
203 /* This is the cpu_stop function which stops the CPU. */
multi_cpu_stop(void * data)204 static int multi_cpu_stop(void *data)
205 {
206 struct multi_stop_data *msdata = data;
207 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
208 int cpu = smp_processor_id(), err = 0;
209 const struct cpumask *cpumask;
210 unsigned long flags;
211 bool is_active;
212
213 /*
214 * When called from stop_machine_from_inactive_cpu(), irq might
215 * already be disabled. Save the state and restore it on exit.
216 */
217 local_save_flags(flags);
218
219 if (!msdata->active_cpus) {
220 cpumask = cpu_online_mask;
221 is_active = cpu == cpumask_first(cpumask);
222 } else {
223 cpumask = msdata->active_cpus;
224 is_active = cpumask_test_cpu(cpu, cpumask);
225 }
226
227 /* Simple state machine */
228 do {
229 /* Chill out and ensure we re-read multi_stop_state. */
230 stop_machine_yield(cpumask);
231 newstate = READ_ONCE(msdata->state);
232 if (newstate != curstate) {
233 curstate = newstate;
234 switch (curstate) {
235 case MULTI_STOP_DISABLE_IRQ:
236 local_irq_disable();
237 hard_irq_disable();
238 break;
239 case MULTI_STOP_RUN:
240 if (is_active)
241 err = msdata->fn(msdata->data);
242 break;
243 default:
244 break;
245 }
246 ack_state(msdata);
247 } else if (curstate > MULTI_STOP_PREPARE) {
248 /*
249 * At this stage all other CPUs we depend on must spin
250 * in the same loop. Any reason for hard-lockup should
251 * be detected and reported on their side.
252 */
253 touch_nmi_watchdog();
254 }
255 rcu_momentary_dyntick_idle();
256 } while (curstate != MULTI_STOP_EXIT);
257
258 local_irq_restore(flags);
259 return err;
260 }
261
cpu_stop_queue_two_works(int cpu1,struct cpu_stop_work * work1,int cpu2,struct cpu_stop_work * work2)262 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
263 int cpu2, struct cpu_stop_work *work2)
264 {
265 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
266 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
267 DEFINE_WAKE_Q(wakeq);
268 int err;
269
270 retry:
271 /*
272 * The waking up of stopper threads has to happen in the same
273 * scheduling context as the queueing. Otherwise, there is a
274 * possibility of one of the above stoppers being woken up by another
275 * CPU, and preempting us. This will cause us to not wake up the other
276 * stopper forever.
277 */
278 preempt_disable();
279 raw_spin_lock_irq(&stopper1->lock);
280 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
281
282 if (!stopper1->enabled || !stopper2->enabled) {
283 err = -ENOENT;
284 goto unlock;
285 }
286
287 /*
288 * Ensure that if we race with __stop_cpus() the stoppers won't get
289 * queued up in reverse order leading to system deadlock.
290 *
291 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
292 * queued a work on cpu1 but not on cpu2, we hold both locks.
293 *
294 * It can be falsely true but it is safe to spin until it is cleared,
295 * queue_stop_cpus_work() does everything under preempt_disable().
296 */
297 if (unlikely(stop_cpus_in_progress)) {
298 err = -EDEADLK;
299 goto unlock;
300 }
301
302 err = 0;
303 __cpu_stop_queue_work(stopper1, work1, &wakeq);
304 __cpu_stop_queue_work(stopper2, work2, &wakeq);
305
306 unlock:
307 raw_spin_unlock(&stopper2->lock);
308 raw_spin_unlock_irq(&stopper1->lock);
309
310 if (unlikely(err == -EDEADLK)) {
311 preempt_enable();
312
313 while (stop_cpus_in_progress)
314 cpu_relax();
315
316 goto retry;
317 }
318
319 wake_up_q(&wakeq);
320 preempt_enable();
321
322 return err;
323 }
324 /**
325 * stop_two_cpus - stops two cpus
326 * @cpu1: the cpu to stop
327 * @cpu2: the other cpu to stop
328 * @fn: function to execute
329 * @arg: argument to @fn
330 *
331 * Stops both the current and specified CPU and runs @fn on one of them.
332 *
333 * returns when both are completed.
334 */
stop_two_cpus(unsigned int cpu1,unsigned int cpu2,cpu_stop_fn_t fn,void * arg)335 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
336 {
337 struct cpu_stop_done done;
338 struct cpu_stop_work work1, work2;
339 struct multi_stop_data msdata;
340
341 msdata = (struct multi_stop_data){
342 .fn = fn,
343 .data = arg,
344 .num_threads = 2,
345 .active_cpus = cpumask_of(cpu1),
346 };
347
348 work1 = work2 = (struct cpu_stop_work){
349 .fn = multi_cpu_stop,
350 .arg = &msdata,
351 .done = &done,
352 .caller = _RET_IP_,
353 };
354
355 cpu_stop_init_done(&done, 2);
356 set_state(&msdata, MULTI_STOP_PREPARE);
357
358 if (cpu1 > cpu2)
359 swap(cpu1, cpu2);
360 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
361 return -ENOENT;
362
363 wait_for_completion(&done.completion);
364 return done.ret;
365 }
366
367 /**
368 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
369 * @cpu: cpu to stop
370 * @fn: function to execute
371 * @arg: argument to @fn
372 * @work_buf: pointer to cpu_stop_work structure
373 *
374 * Similar to stop_one_cpu() but doesn't wait for completion. The
375 * caller is responsible for ensuring @work_buf is currently unused
376 * and will remain untouched until stopper starts executing @fn.
377 *
378 * CONTEXT:
379 * Don't care.
380 *
381 * RETURNS:
382 * true if cpu_stop_work was queued successfully and @fn will be called,
383 * false otherwise.
384 */
stop_one_cpu_nowait(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf)385 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
386 struct cpu_stop_work *work_buf)
387 {
388 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
389 return cpu_stop_queue_work(cpu, work_buf);
390 }
391 EXPORT_SYMBOL_GPL(stop_one_cpu_nowait);
392
queue_stop_cpus_work(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg,struct cpu_stop_done * done)393 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
394 cpu_stop_fn_t fn, void *arg,
395 struct cpu_stop_done *done)
396 {
397 struct cpu_stop_work *work;
398 unsigned int cpu;
399 bool queued = false;
400
401 /*
402 * Disable preemption while queueing to avoid getting
403 * preempted by a stopper which might wait for other stoppers
404 * to enter @fn which can lead to deadlock.
405 */
406 preempt_disable();
407 stop_cpus_in_progress = true;
408 barrier();
409 for_each_cpu(cpu, cpumask) {
410 work = &per_cpu(cpu_stopper.stop_work, cpu);
411 work->fn = fn;
412 work->arg = arg;
413 work->done = done;
414 work->caller = _RET_IP_;
415 if (cpu_stop_queue_work(cpu, work))
416 queued = true;
417 }
418 barrier();
419 stop_cpus_in_progress = false;
420 preempt_enable();
421
422 return queued;
423 }
424
__stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)425 static int __stop_cpus(const struct cpumask *cpumask,
426 cpu_stop_fn_t fn, void *arg)
427 {
428 struct cpu_stop_done done;
429
430 cpu_stop_init_done(&done, cpumask_weight(cpumask));
431 if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
432 return -ENOENT;
433 wait_for_completion(&done.completion);
434 return done.ret;
435 }
436
437 /**
438 * stop_cpus - stop multiple cpus
439 * @cpumask: cpus to stop
440 * @fn: function to execute
441 * @arg: argument to @fn
442 *
443 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
444 * @fn is run in a process context with the highest priority
445 * preempting any task on the cpu and monopolizing it. This function
446 * returns after all executions are complete.
447 *
448 * This function doesn't guarantee the cpus in @cpumask stay online
449 * till @fn completes. If some cpus go down in the middle, execution
450 * on the cpu may happen partially or fully on different cpus. @fn
451 * should either be ready for that or the caller should ensure that
452 * the cpus stay online until this function completes.
453 *
454 * All stop_cpus() calls are serialized making it safe for @fn to wait
455 * for all cpus to start executing it.
456 *
457 * CONTEXT:
458 * Might sleep.
459 *
460 * RETURNS:
461 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
462 * @cpumask were offline; otherwise, 0 if all executions of @fn
463 * returned 0, any non zero return value if any returned non zero.
464 */
stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)465 static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
466 {
467 int ret;
468
469 /* static works are used, process one request at a time */
470 mutex_lock(&stop_cpus_mutex);
471 ret = __stop_cpus(cpumask, fn, arg);
472 mutex_unlock(&stop_cpus_mutex);
473 return ret;
474 }
475
cpu_stop_should_run(unsigned int cpu)476 static int cpu_stop_should_run(unsigned int cpu)
477 {
478 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
479 unsigned long flags;
480 int run;
481
482 raw_spin_lock_irqsave(&stopper->lock, flags);
483 run = !list_empty(&stopper->works);
484 raw_spin_unlock_irqrestore(&stopper->lock, flags);
485 return run;
486 }
487
cpu_stopper_thread(unsigned int cpu)488 static void cpu_stopper_thread(unsigned int cpu)
489 {
490 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
491 struct cpu_stop_work *work;
492
493 repeat:
494 work = NULL;
495 raw_spin_lock_irq(&stopper->lock);
496 if (!list_empty(&stopper->works)) {
497 work = list_first_entry(&stopper->works,
498 struct cpu_stop_work, list);
499 list_del_init(&work->list);
500 }
501 raw_spin_unlock_irq(&stopper->lock);
502
503 if (work) {
504 cpu_stop_fn_t fn = work->fn;
505 void *arg = work->arg;
506 struct cpu_stop_done *done = work->done;
507 int ret;
508
509 /* cpu stop callbacks must not sleep, make in_atomic() == T */
510 stopper->caller = work->caller;
511 stopper->fn = fn;
512 preempt_count_inc();
513 ret = fn(arg);
514 if (done) {
515 if (ret)
516 done->ret = ret;
517 cpu_stop_signal_done(done);
518 }
519 preempt_count_dec();
520 stopper->fn = NULL;
521 stopper->caller = 0;
522 WARN_ONCE(preempt_count(),
523 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
524 goto repeat;
525 }
526 }
527
stop_machine_park(int cpu)528 void stop_machine_park(int cpu)
529 {
530 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
531 /*
532 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
533 * the pending works before it parks, until then it is fine to queue
534 * the new works.
535 */
536 stopper->enabled = false;
537 kthread_park(stopper->thread);
538 }
539
cpu_stop_create(unsigned int cpu)540 static void cpu_stop_create(unsigned int cpu)
541 {
542 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
543 }
544
cpu_stop_park(unsigned int cpu)545 static void cpu_stop_park(unsigned int cpu)
546 {
547 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
548
549 WARN_ON(!list_empty(&stopper->works));
550 }
551
stop_machine_unpark(int cpu)552 void stop_machine_unpark(int cpu)
553 {
554 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
555
556 stopper->enabled = true;
557 kthread_unpark(stopper->thread);
558 }
559
560 static struct smp_hotplug_thread cpu_stop_threads = {
561 .store = &cpu_stopper.thread,
562 .thread_should_run = cpu_stop_should_run,
563 .thread_fn = cpu_stopper_thread,
564 .thread_comm = "migration/%u",
565 .create = cpu_stop_create,
566 .park = cpu_stop_park,
567 .selfparking = true,
568 };
569
cpu_stop_init(void)570 static int __init cpu_stop_init(void)
571 {
572 unsigned int cpu;
573
574 for_each_possible_cpu(cpu) {
575 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
576
577 raw_spin_lock_init(&stopper->lock);
578 INIT_LIST_HEAD(&stopper->works);
579 }
580
581 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
582 stop_machine_unpark(raw_smp_processor_id());
583 stop_machine_initialized = true;
584 return 0;
585 }
586 early_initcall(cpu_stop_init);
587
stop_machine_cpuslocked(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)588 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
589 const struct cpumask *cpus)
590 {
591 struct multi_stop_data msdata = {
592 .fn = fn,
593 .data = data,
594 .num_threads = num_online_cpus(),
595 .active_cpus = cpus,
596 };
597
598 lockdep_assert_cpus_held();
599
600 if (!stop_machine_initialized) {
601 /*
602 * Handle the case where stop_machine() is called
603 * early in boot before stop_machine() has been
604 * initialized.
605 */
606 unsigned long flags;
607 int ret;
608
609 WARN_ON_ONCE(msdata.num_threads != 1);
610
611 local_irq_save(flags);
612 hard_irq_disable();
613 ret = (*fn)(data);
614 local_irq_restore(flags);
615
616 return ret;
617 }
618
619 /* Set the initial state and stop all online cpus. */
620 set_state(&msdata, MULTI_STOP_PREPARE);
621 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
622 }
623
stop_machine(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)624 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
625 {
626 int ret;
627
628 /* No CPUs can come up or down during this. */
629 cpus_read_lock();
630 ret = stop_machine_cpuslocked(fn, data, cpus);
631 cpus_read_unlock();
632 return ret;
633 }
634 EXPORT_SYMBOL_GPL(stop_machine);
635
636 #ifdef CONFIG_SCHED_SMT
stop_core_cpuslocked(unsigned int cpu,cpu_stop_fn_t fn,void * data)637 int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data)
638 {
639 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
640
641 struct multi_stop_data msdata = {
642 .fn = fn,
643 .data = data,
644 .num_threads = cpumask_weight(smt_mask),
645 .active_cpus = smt_mask,
646 };
647
648 lockdep_assert_cpus_held();
649
650 /* Set the initial state and stop all online cpus. */
651 set_state(&msdata, MULTI_STOP_PREPARE);
652 return stop_cpus(smt_mask, multi_cpu_stop, &msdata);
653 }
654 EXPORT_SYMBOL_GPL(stop_core_cpuslocked);
655 #endif
656
657 /**
658 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
659 * @fn: the function to run
660 * @data: the data ptr for the @fn()
661 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
662 *
663 * This is identical to stop_machine() but can be called from a CPU which
664 * is not active. The local CPU is in the process of hotplug (so no other
665 * CPU hotplug can start) and not marked active and doesn't have enough
666 * context to sleep.
667 *
668 * This function provides stop_machine() functionality for such state by
669 * using busy-wait for synchronization and executing @fn directly for local
670 * CPU.
671 *
672 * CONTEXT:
673 * Local CPU is inactive. Temporarily stops all active CPUs.
674 *
675 * RETURNS:
676 * 0 if all executions of @fn returned 0, any non zero return value if any
677 * returned non zero.
678 */
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)679 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
680 const struct cpumask *cpus)
681 {
682 struct multi_stop_data msdata = { .fn = fn, .data = data,
683 .active_cpus = cpus };
684 struct cpu_stop_done done;
685 int ret;
686
687 /* Local CPU must be inactive and CPU hotplug in progress. */
688 BUG_ON(cpu_active(raw_smp_processor_id()));
689 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
690
691 /* No proper task established and can't sleep - busy wait for lock. */
692 while (!mutex_trylock(&stop_cpus_mutex))
693 cpu_relax();
694
695 /* Schedule work on other CPUs and execute directly for local CPU */
696 set_state(&msdata, MULTI_STOP_PREPARE);
697 cpu_stop_init_done(&done, num_active_cpus());
698 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
699 &done);
700 ret = multi_cpu_stop(&msdata);
701
702 /* Busy wait for completion. */
703 while (!completion_done(&done.completion))
704 cpu_relax();
705
706 mutex_unlock(&stop_cpus_mutex);
707 return ret ?: done.ret;
708 }
709