• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 /**
24  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25  * @mult:	pointer to mult variable
26  * @shift:	pointer to shift variable
27  * @from:	frequency to convert from
28  * @to:		frequency to convert to
29  * @maxsec:	guaranteed runtime conversion range in seconds
30  *
31  * The function evaluates the shift/mult pair for the scaled math
32  * operations of clocksources and clockevents.
33  *
34  * @to and @from are frequency values in HZ. For clock sources @to is
35  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36  * event @to is the counter frequency and @from is NSEC_PER_SEC.
37  *
38  * The @maxsec conversion range argument controls the time frame in
39  * seconds which must be covered by the runtime conversion with the
40  * calculated mult and shift factors. This guarantees that no 64bit
41  * overflow happens when the input value of the conversion is
42  * multiplied with the calculated mult factor. Larger ranges may
43  * reduce the conversion accuracy by choosing smaller mult and shift
44  * factors.
45  */
46 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)47 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48 {
49 	u64 tmp;
50 	u32 sft, sftacc= 32;
51 
52 	/*
53 	 * Calculate the shift factor which is limiting the conversion
54 	 * range:
55 	 */
56 	tmp = ((u64)maxsec * from) >> 32;
57 	while (tmp) {
58 		tmp >>=1;
59 		sftacc--;
60 	}
61 
62 	/*
63 	 * Find the conversion shift/mult pair which has the best
64 	 * accuracy and fits the maxsec conversion range:
65 	 */
66 	for (sft = 32; sft > 0; sft--) {
67 		tmp = (u64) to << sft;
68 		tmp += from / 2;
69 		do_div(tmp, from);
70 		if ((tmp >> sftacc) == 0)
71 			break;
72 	}
73 	*mult = tmp;
74 	*shift = sft;
75 }
76 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77 
78 /*[Clocksource internal variables]---------
79  * curr_clocksource:
80  *	currently selected clocksource.
81  * suspend_clocksource:
82  *	used to calculate the suspend time.
83  * clocksource_list:
84  *	linked list with the registered clocksources
85  * clocksource_mutex:
86  *	protects manipulations to curr_clocksource and the clocksource_list
87  * override_name:
88  *	Name of the user-specified clocksource.
89  */
90 static struct clocksource *curr_clocksource;
91 static struct clocksource *suspend_clocksource;
92 static LIST_HEAD(clocksource_list);
93 static DEFINE_MUTEX(clocksource_mutex);
94 static char override_name[CS_NAME_LEN];
95 static int finished_booting;
96 static u64 suspend_start;
97 
98 /*
99  * Threshold: 0.0312s, when doubled: 0.0625s.
100  * Also a default for cs->uncertainty_margin when registering clocks.
101  */
102 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
103 
104 /*
105  * Maximum permissible delay between two readouts of the watchdog
106  * clocksource surrounding a read of the clocksource being validated.
107  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
108  * a lower bound for cs->uncertainty_margin values when registering clocks.
109  */
110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
111 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
112 #else
113 #define MAX_SKEW_USEC	100
114 #endif
115 
116 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
117 
118 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
119 static void clocksource_watchdog_work(struct work_struct *work);
120 static void clocksource_select(void);
121 
122 static LIST_HEAD(watchdog_list);
123 static struct clocksource *watchdog;
124 static struct timer_list watchdog_timer;
125 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
126 static DEFINE_SPINLOCK(watchdog_lock);
127 static int watchdog_running;
128 static atomic_t watchdog_reset_pending;
129 static int64_t watchdog_max_interval;
130 
clocksource_watchdog_lock(unsigned long * flags)131 static inline void clocksource_watchdog_lock(unsigned long *flags)
132 {
133 	spin_lock_irqsave(&watchdog_lock, *flags);
134 }
135 
clocksource_watchdog_unlock(unsigned long * flags)136 static inline void clocksource_watchdog_unlock(unsigned long *flags)
137 {
138 	spin_unlock_irqrestore(&watchdog_lock, *flags);
139 }
140 
141 static int clocksource_watchdog_kthread(void *data);
142 static void __clocksource_change_rating(struct clocksource *cs, int rating);
143 
144 /*
145  * Interval: 0.5sec.
146  */
147 #define WATCHDOG_INTERVAL (HZ >> 1)
148 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
149 
clocksource_watchdog_work(struct work_struct * work)150 static void clocksource_watchdog_work(struct work_struct *work)
151 {
152 	/*
153 	 * We cannot directly run clocksource_watchdog_kthread() here, because
154 	 * clocksource_select() calls timekeeping_notify() which uses
155 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
156 	 * lock inversions wrt CPU hotplug.
157 	 *
158 	 * Also, we only ever run this work once or twice during the lifetime
159 	 * of the kernel, so there is no point in creating a more permanent
160 	 * kthread for this.
161 	 *
162 	 * If kthread_run fails the next watchdog scan over the
163 	 * watchdog_list will find the unstable clock again.
164 	 */
165 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
166 }
167 
__clocksource_unstable(struct clocksource * cs)168 static void __clocksource_unstable(struct clocksource *cs)
169 {
170 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
171 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
172 
173 	/*
174 	 * If the clocksource is registered clocksource_watchdog_kthread() will
175 	 * re-rate and re-select.
176 	 */
177 	if (list_empty(&cs->list)) {
178 		cs->rating = 0;
179 		return;
180 	}
181 
182 	if (cs->mark_unstable)
183 		cs->mark_unstable(cs);
184 
185 	/* kick clocksource_watchdog_kthread() */
186 	if (finished_booting)
187 		schedule_work(&watchdog_work);
188 }
189 
190 /**
191  * clocksource_mark_unstable - mark clocksource unstable via watchdog
192  * @cs:		clocksource to be marked unstable
193  *
194  * This function is called by the x86 TSC code to mark clocksources as unstable;
195  * it defers demotion and re-selection to a kthread.
196  */
clocksource_mark_unstable(struct clocksource * cs)197 void clocksource_mark_unstable(struct clocksource *cs)
198 {
199 	unsigned long flags;
200 
201 	spin_lock_irqsave(&watchdog_lock, flags);
202 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
203 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
204 			list_add(&cs->wd_list, &watchdog_list);
205 		__clocksource_unstable(cs);
206 	}
207 	spin_unlock_irqrestore(&watchdog_lock, flags);
208 }
209 
210 ulong max_cswd_read_retries = 2;
211 module_param(max_cswd_read_retries, ulong, 0644);
212 EXPORT_SYMBOL_GPL(max_cswd_read_retries);
213 static int verify_n_cpus = 8;
214 module_param(verify_n_cpus, int, 0644);
215 
216 enum wd_read_status {
217 	WD_READ_SUCCESS,
218 	WD_READ_UNSTABLE,
219 	WD_READ_SKIP
220 };
221 
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)222 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
223 {
224 	unsigned int nretries;
225 	u64 wd_end, wd_end2, wd_delta;
226 	int64_t wd_delay, wd_seq_delay;
227 
228 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
229 		local_irq_disable();
230 		*wdnow = watchdog->read(watchdog);
231 		*csnow = cs->read(cs);
232 		wd_end = watchdog->read(watchdog);
233 		wd_end2 = watchdog->read(watchdog);
234 		local_irq_enable();
235 
236 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
237 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
238 					      watchdog->shift);
239 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
240 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
241 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
242 					smp_processor_id(), watchdog->name, nretries);
243 			}
244 			return WD_READ_SUCCESS;
245 		}
246 
247 		/*
248 		 * Now compute delay in consecutive watchdog read to see if
249 		 * there is too much external interferences that cause
250 		 * significant delay in reading both clocksource and watchdog.
251 		 *
252 		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
253 		 * report system busy, reinit the watchdog and skip the current
254 		 * watchdog test.
255 		 */
256 		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
257 		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
258 		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
259 			goto skip_test;
260 	}
261 
262 	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
263 		smp_processor_id(), watchdog->name, wd_delay, nretries);
264 	return WD_READ_UNSTABLE;
265 
266 skip_test:
267 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
268 		smp_processor_id(), watchdog->name, wd_seq_delay);
269 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
270 		cs->name, wd_delay);
271 	return WD_READ_SKIP;
272 }
273 
274 static u64 csnow_mid;
275 static cpumask_t cpus_ahead;
276 static cpumask_t cpus_behind;
277 static cpumask_t cpus_chosen;
278 
clocksource_verify_choose_cpus(void)279 static void clocksource_verify_choose_cpus(void)
280 {
281 	int cpu, i, n = verify_n_cpus;
282 
283 	if (n < 0) {
284 		/* Check all of the CPUs. */
285 		cpumask_copy(&cpus_chosen, cpu_online_mask);
286 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
287 		return;
288 	}
289 
290 	/* If no checking desired, or no other CPU to check, leave. */
291 	cpumask_clear(&cpus_chosen);
292 	if (n == 0 || num_online_cpus() <= 1)
293 		return;
294 
295 	/* Make sure to select at least one CPU other than the current CPU. */
296 	cpu = cpumask_first(cpu_online_mask);
297 	if (cpu == smp_processor_id())
298 		cpu = cpumask_next(cpu, cpu_online_mask);
299 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
300 		return;
301 	cpumask_set_cpu(cpu, &cpus_chosen);
302 
303 	/* Force a sane value for the boot parameter. */
304 	if (n > nr_cpu_ids)
305 		n = nr_cpu_ids;
306 
307 	/*
308 	 * Randomly select the specified number of CPUs.  If the same
309 	 * CPU is selected multiple times, that CPU is checked only once,
310 	 * and no replacement CPU is selected.  This gracefully handles
311 	 * situations where verify_n_cpus is greater than the number of
312 	 * CPUs that are currently online.
313 	 */
314 	for (i = 1; i < n; i++) {
315 		cpu = prandom_u32_max(nr_cpu_ids);
316 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
317 		if (cpu >= nr_cpu_ids)
318 			cpu = cpumask_first(cpu_online_mask);
319 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
320 			cpumask_set_cpu(cpu, &cpus_chosen);
321 	}
322 
323 	/* Don't verify ourselves. */
324 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
325 }
326 
clocksource_verify_one_cpu(void * csin)327 static void clocksource_verify_one_cpu(void *csin)
328 {
329 	struct clocksource *cs = (struct clocksource *)csin;
330 
331 	csnow_mid = cs->read(cs);
332 }
333 
clocksource_verify_percpu(struct clocksource * cs)334 void clocksource_verify_percpu(struct clocksource *cs)
335 {
336 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
337 	u64 csnow_begin, csnow_end;
338 	int cpu, testcpu;
339 	s64 delta;
340 
341 	if (verify_n_cpus == 0)
342 		return;
343 	cpumask_clear(&cpus_ahead);
344 	cpumask_clear(&cpus_behind);
345 	cpus_read_lock();
346 	preempt_disable();
347 	clocksource_verify_choose_cpus();
348 	if (cpumask_empty(&cpus_chosen)) {
349 		preempt_enable();
350 		cpus_read_unlock();
351 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
352 		return;
353 	}
354 	testcpu = smp_processor_id();
355 	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
356 	for_each_cpu(cpu, &cpus_chosen) {
357 		if (cpu == testcpu)
358 			continue;
359 		csnow_begin = cs->read(cs);
360 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
361 		csnow_end = cs->read(cs);
362 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
363 		if (delta < 0)
364 			cpumask_set_cpu(cpu, &cpus_behind);
365 		delta = (csnow_end - csnow_mid) & cs->mask;
366 		if (delta < 0)
367 			cpumask_set_cpu(cpu, &cpus_ahead);
368 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
369 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
370 		if (cs_nsec > cs_nsec_max)
371 			cs_nsec_max = cs_nsec;
372 		if (cs_nsec < cs_nsec_min)
373 			cs_nsec_min = cs_nsec;
374 	}
375 	preempt_enable();
376 	cpus_read_unlock();
377 	if (!cpumask_empty(&cpus_ahead))
378 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
379 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
380 	if (!cpumask_empty(&cpus_behind))
381 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
382 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
383 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
384 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
385 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
386 }
387 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
388 
clocksource_reset_watchdog(void)389 static inline void clocksource_reset_watchdog(void)
390 {
391 	struct clocksource *cs;
392 
393 	list_for_each_entry(cs, &watchdog_list, wd_list)
394 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
395 }
396 
397 
clocksource_watchdog(struct timer_list * unused)398 static void clocksource_watchdog(struct timer_list *unused)
399 {
400 	u64 csnow, wdnow, cslast, wdlast, delta;
401 	int64_t wd_nsec, cs_nsec, interval;
402 	int next_cpu, reset_pending;
403 	struct clocksource *cs;
404 	enum wd_read_status read_ret;
405 	unsigned long extra_wait = 0;
406 	u32 md;
407 
408 	spin_lock(&watchdog_lock);
409 	if (!watchdog_running)
410 		goto out;
411 
412 	reset_pending = atomic_read(&watchdog_reset_pending);
413 
414 	list_for_each_entry(cs, &watchdog_list, wd_list) {
415 
416 		/* Clocksource already marked unstable? */
417 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
418 			if (finished_booting)
419 				schedule_work(&watchdog_work);
420 			continue;
421 		}
422 
423 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
424 
425 		if (read_ret == WD_READ_UNSTABLE) {
426 			/* Clock readout unreliable, so give it up. */
427 			__clocksource_unstable(cs);
428 			continue;
429 		}
430 
431 		/*
432 		 * When WD_READ_SKIP is returned, it means the system is likely
433 		 * under very heavy load, where the latency of reading
434 		 * watchdog/clocksource is very big, and affect the accuracy of
435 		 * watchdog check. So give system some space and suspend the
436 		 * watchdog check for 5 minutes.
437 		 */
438 		if (read_ret == WD_READ_SKIP) {
439 			/*
440 			 * As the watchdog timer will be suspended, and
441 			 * cs->last could keep unchanged for 5 minutes, reset
442 			 * the counters.
443 			 */
444 			clocksource_reset_watchdog();
445 			extra_wait = HZ * 300;
446 			break;
447 		}
448 
449 		/* Clocksource initialized ? */
450 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
451 		    atomic_read(&watchdog_reset_pending)) {
452 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
453 			cs->wd_last = wdnow;
454 			cs->cs_last = csnow;
455 			continue;
456 		}
457 
458 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
459 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
460 					     watchdog->shift);
461 
462 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
463 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
464 		wdlast = cs->wd_last; /* save these in case we print them */
465 		cslast = cs->cs_last;
466 		cs->cs_last = csnow;
467 		cs->wd_last = wdnow;
468 
469 		if (atomic_read(&watchdog_reset_pending))
470 			continue;
471 
472 		/*
473 		 * The processing of timer softirqs can get delayed (usually
474 		 * on account of ksoftirqd not getting to run in a timely
475 		 * manner), which causes the watchdog interval to stretch.
476 		 * Skew detection may fail for longer watchdog intervals
477 		 * on account of fixed margins being used.
478 		 * Some clocksources, e.g. acpi_pm, cannot tolerate
479 		 * watchdog intervals longer than a few seconds.
480 		 */
481 		interval = max(cs_nsec, wd_nsec);
482 		if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
483 			if (system_state > SYSTEM_SCHEDULING &&
484 			    interval > 2 * watchdog_max_interval) {
485 				watchdog_max_interval = interval;
486 				pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
487 					cs_nsec, wd_nsec);
488 			}
489 			watchdog_timer.expires = jiffies;
490 			continue;
491 		}
492 
493 		/* Check the deviation from the watchdog clocksource. */
494 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
495 		if (abs(cs_nsec - wd_nsec) > md) {
496 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
497 				smp_processor_id(), cs->name);
498 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
499 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
500 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
501 				cs->name, cs_nsec, csnow, cslast, cs->mask);
502 			if (curr_clocksource == cs)
503 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
504 			else if (curr_clocksource)
505 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
506 			else
507 				pr_warn("                      No current clocksource.\n");
508 			__clocksource_unstable(cs);
509 			continue;
510 		}
511 
512 		if (cs == curr_clocksource && cs->tick_stable)
513 			cs->tick_stable(cs);
514 
515 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
516 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
517 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
518 			/* Mark it valid for high-res. */
519 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
520 
521 			/*
522 			 * clocksource_done_booting() will sort it if
523 			 * finished_booting is not set yet.
524 			 */
525 			if (!finished_booting)
526 				continue;
527 
528 			/*
529 			 * If this is not the current clocksource let
530 			 * the watchdog thread reselect it. Due to the
531 			 * change to high res this clocksource might
532 			 * be preferred now. If it is the current
533 			 * clocksource let the tick code know about
534 			 * that change.
535 			 */
536 			if (cs != curr_clocksource) {
537 				cs->flags |= CLOCK_SOURCE_RESELECT;
538 				schedule_work(&watchdog_work);
539 			} else {
540 				tick_clock_notify();
541 			}
542 		}
543 	}
544 
545 	/*
546 	 * We only clear the watchdog_reset_pending, when we did a
547 	 * full cycle through all clocksources.
548 	 */
549 	if (reset_pending)
550 		atomic_dec(&watchdog_reset_pending);
551 
552 	/*
553 	 * Cycle through CPUs to check if the CPUs stay synchronized
554 	 * to each other.
555 	 */
556 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
557 	if (next_cpu >= nr_cpu_ids)
558 		next_cpu = cpumask_first(cpu_online_mask);
559 
560 	/*
561 	 * Arm timer if not already pending: could race with concurrent
562 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
563 	 */
564 	if (!timer_pending(&watchdog_timer)) {
565 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
566 		add_timer_on(&watchdog_timer, next_cpu);
567 	}
568 out:
569 	spin_unlock(&watchdog_lock);
570 }
571 
clocksource_start_watchdog(void)572 static inline void clocksource_start_watchdog(void)
573 {
574 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
575 		return;
576 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
577 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
578 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
579 	watchdog_running = 1;
580 }
581 
clocksource_stop_watchdog(void)582 static inline void clocksource_stop_watchdog(void)
583 {
584 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
585 		return;
586 	del_timer(&watchdog_timer);
587 	watchdog_running = 0;
588 }
589 
clocksource_resume_watchdog(void)590 static void clocksource_resume_watchdog(void)
591 {
592 	atomic_inc(&watchdog_reset_pending);
593 }
594 
clocksource_enqueue_watchdog(struct clocksource * cs)595 static void clocksource_enqueue_watchdog(struct clocksource *cs)
596 {
597 	INIT_LIST_HEAD(&cs->wd_list);
598 
599 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
600 		/* cs is a clocksource to be watched. */
601 		list_add(&cs->wd_list, &watchdog_list);
602 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
603 	} else {
604 		/* cs is a watchdog. */
605 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
606 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
607 	}
608 }
609 
clocksource_select_watchdog(bool fallback)610 static void clocksource_select_watchdog(bool fallback)
611 {
612 	struct clocksource *cs, *old_wd;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&watchdog_lock, flags);
616 	/* save current watchdog */
617 	old_wd = watchdog;
618 	if (fallback)
619 		watchdog = NULL;
620 
621 	list_for_each_entry(cs, &clocksource_list, list) {
622 		/* cs is a clocksource to be watched. */
623 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
624 			continue;
625 
626 		/* Skip current if we were requested for a fallback. */
627 		if (fallback && cs == old_wd)
628 			continue;
629 
630 		/* Pick the best watchdog. */
631 		if (!watchdog || cs->rating > watchdog->rating)
632 			watchdog = cs;
633 	}
634 	/* If we failed to find a fallback restore the old one. */
635 	if (!watchdog)
636 		watchdog = old_wd;
637 
638 	/* If we changed the watchdog we need to reset cycles. */
639 	if (watchdog != old_wd)
640 		clocksource_reset_watchdog();
641 
642 	/* Check if the watchdog timer needs to be started. */
643 	clocksource_start_watchdog();
644 	spin_unlock_irqrestore(&watchdog_lock, flags);
645 }
646 
clocksource_dequeue_watchdog(struct clocksource * cs)647 static void clocksource_dequeue_watchdog(struct clocksource *cs)
648 {
649 	if (cs != watchdog) {
650 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
651 			/* cs is a watched clocksource. */
652 			list_del_init(&cs->wd_list);
653 			/* Check if the watchdog timer needs to be stopped. */
654 			clocksource_stop_watchdog();
655 		}
656 	}
657 }
658 
__clocksource_watchdog_kthread(void)659 static int __clocksource_watchdog_kthread(void)
660 {
661 	struct clocksource *cs, *tmp;
662 	unsigned long flags;
663 	int select = 0;
664 
665 	/* Do any required per-CPU skew verification. */
666 	if (curr_clocksource &&
667 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
668 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
669 		clocksource_verify_percpu(curr_clocksource);
670 
671 	spin_lock_irqsave(&watchdog_lock, flags);
672 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
673 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
674 			list_del_init(&cs->wd_list);
675 			__clocksource_change_rating(cs, 0);
676 			select = 1;
677 		}
678 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
679 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
680 			select = 1;
681 		}
682 	}
683 	/* Check if the watchdog timer needs to be stopped. */
684 	clocksource_stop_watchdog();
685 	spin_unlock_irqrestore(&watchdog_lock, flags);
686 
687 	return select;
688 }
689 
clocksource_watchdog_kthread(void * data)690 static int clocksource_watchdog_kthread(void *data)
691 {
692 	mutex_lock(&clocksource_mutex);
693 	if (__clocksource_watchdog_kthread())
694 		clocksource_select();
695 	mutex_unlock(&clocksource_mutex);
696 	return 0;
697 }
698 
clocksource_is_watchdog(struct clocksource * cs)699 static bool clocksource_is_watchdog(struct clocksource *cs)
700 {
701 	return cs == watchdog;
702 }
703 
704 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
705 
clocksource_enqueue_watchdog(struct clocksource * cs)706 static void clocksource_enqueue_watchdog(struct clocksource *cs)
707 {
708 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
709 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
710 }
711 
clocksource_select_watchdog(bool fallback)712 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)713 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)714 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)715 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)716 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)717 void clocksource_mark_unstable(struct clocksource *cs) { }
718 
clocksource_watchdog_lock(unsigned long * flags)719 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)720 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
721 
722 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
723 
clocksource_is_suspend(struct clocksource * cs)724 static bool clocksource_is_suspend(struct clocksource *cs)
725 {
726 	return cs == suspend_clocksource;
727 }
728 
__clocksource_suspend_select(struct clocksource * cs)729 static void __clocksource_suspend_select(struct clocksource *cs)
730 {
731 	/*
732 	 * Skip the clocksource which will be stopped in suspend state.
733 	 */
734 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
735 		return;
736 
737 	/*
738 	 * The nonstop clocksource can be selected as the suspend clocksource to
739 	 * calculate the suspend time, so it should not supply suspend/resume
740 	 * interfaces to suspend the nonstop clocksource when system suspends.
741 	 */
742 	if (cs->suspend || cs->resume) {
743 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
744 			cs->name);
745 	}
746 
747 	/* Pick the best rating. */
748 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
749 		suspend_clocksource = cs;
750 }
751 
752 /**
753  * clocksource_suspend_select - Select the best clocksource for suspend timing
754  * @fallback:	if select a fallback clocksource
755  */
clocksource_suspend_select(bool fallback)756 static void clocksource_suspend_select(bool fallback)
757 {
758 	struct clocksource *cs, *old_suspend;
759 
760 	old_suspend = suspend_clocksource;
761 	if (fallback)
762 		suspend_clocksource = NULL;
763 
764 	list_for_each_entry(cs, &clocksource_list, list) {
765 		/* Skip current if we were requested for a fallback. */
766 		if (fallback && cs == old_suspend)
767 			continue;
768 
769 		__clocksource_suspend_select(cs);
770 	}
771 }
772 
773 /**
774  * clocksource_start_suspend_timing - Start measuring the suspend timing
775  * @cs:			current clocksource from timekeeping
776  * @start_cycles:	current cycles from timekeeping
777  *
778  * This function will save the start cycle values of suspend timer to calculate
779  * the suspend time when resuming system.
780  *
781  * This function is called late in the suspend process from timekeeping_suspend(),
782  * that means processes are frozen, non-boot cpus and interrupts are disabled
783  * now. It is therefore possible to start the suspend timer without taking the
784  * clocksource mutex.
785  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)786 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
787 {
788 	if (!suspend_clocksource)
789 		return;
790 
791 	/*
792 	 * If current clocksource is the suspend timer, we should use the
793 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
794 	 * from suspend timer.
795 	 */
796 	if (clocksource_is_suspend(cs)) {
797 		suspend_start = start_cycles;
798 		return;
799 	}
800 
801 	if (suspend_clocksource->enable &&
802 	    suspend_clocksource->enable(suspend_clocksource)) {
803 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
804 		return;
805 	}
806 
807 	suspend_start = suspend_clocksource->read(suspend_clocksource);
808 }
809 
810 /**
811  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
812  * @cs:		current clocksource from timekeeping
813  * @cycle_now:	current cycles from timekeeping
814  *
815  * This function will calculate the suspend time from suspend timer.
816  *
817  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
818  *
819  * This function is called early in the resume process from timekeeping_resume(),
820  * that means there is only one cpu, no processes are running and the interrupts
821  * are disabled. It is therefore possible to stop the suspend timer without
822  * taking the clocksource mutex.
823  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)824 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
825 {
826 	u64 now, delta, nsec = 0;
827 
828 	if (!suspend_clocksource)
829 		return 0;
830 
831 	/*
832 	 * If current clocksource is the suspend timer, we should use the
833 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
834 	 * avoid same reading from suspend timer.
835 	 */
836 	if (clocksource_is_suspend(cs))
837 		now = cycle_now;
838 	else
839 		now = suspend_clocksource->read(suspend_clocksource);
840 
841 	if (now > suspend_start) {
842 		delta = clocksource_delta(now, suspend_start,
843 					  suspend_clocksource->mask);
844 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
845 				       suspend_clocksource->shift);
846 	}
847 
848 	/*
849 	 * Disable the suspend timer to save power if current clocksource is
850 	 * not the suspend timer.
851 	 */
852 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
853 		suspend_clocksource->disable(suspend_clocksource);
854 
855 	return nsec;
856 }
857 
858 /**
859  * clocksource_suspend - suspend the clocksource(s)
860  */
clocksource_suspend(void)861 void clocksource_suspend(void)
862 {
863 	struct clocksource *cs;
864 
865 	list_for_each_entry_reverse(cs, &clocksource_list, list)
866 		if (cs->suspend)
867 			cs->suspend(cs);
868 }
869 
870 /**
871  * clocksource_resume - resume the clocksource(s)
872  */
clocksource_resume(void)873 void clocksource_resume(void)
874 {
875 	struct clocksource *cs;
876 
877 	list_for_each_entry(cs, &clocksource_list, list)
878 		if (cs->resume)
879 			cs->resume(cs);
880 
881 	clocksource_resume_watchdog();
882 }
883 
884 /**
885  * clocksource_touch_watchdog - Update watchdog
886  *
887  * Update the watchdog after exception contexts such as kgdb so as not
888  * to incorrectly trip the watchdog. This might fail when the kernel
889  * was stopped in code which holds watchdog_lock.
890  */
clocksource_touch_watchdog(void)891 void clocksource_touch_watchdog(void)
892 {
893 	clocksource_resume_watchdog();
894 }
895 
896 /**
897  * clocksource_max_adjustment- Returns max adjustment amount
898  * @cs:         Pointer to clocksource
899  *
900  */
clocksource_max_adjustment(struct clocksource * cs)901 static u32 clocksource_max_adjustment(struct clocksource *cs)
902 {
903 	u64 ret;
904 	/*
905 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
906 	 */
907 	ret = (u64)cs->mult * 11;
908 	do_div(ret,100);
909 	return (u32)ret;
910 }
911 
912 /**
913  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
914  * @mult:	cycle to nanosecond multiplier
915  * @shift:	cycle to nanosecond divisor (power of two)
916  * @maxadj:	maximum adjustment value to mult (~11%)
917  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
918  * @max_cyc:	maximum cycle value before potential overflow (does not include
919  *		any safety margin)
920  *
921  * NOTE: This function includes a safety margin of 50%, in other words, we
922  * return half the number of nanoseconds the hardware counter can technically
923  * cover. This is done so that we can potentially detect problems caused by
924  * delayed timers or bad hardware, which might result in time intervals that
925  * are larger than what the math used can handle without overflows.
926  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)927 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
928 {
929 	u64 max_nsecs, max_cycles;
930 
931 	/*
932 	 * Calculate the maximum number of cycles that we can pass to the
933 	 * cyc2ns() function without overflowing a 64-bit result.
934 	 */
935 	max_cycles = ULLONG_MAX;
936 	do_div(max_cycles, mult+maxadj);
937 
938 	/*
939 	 * The actual maximum number of cycles we can defer the clocksource is
940 	 * determined by the minimum of max_cycles and mask.
941 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
942 	 * too long if there's a large negative adjustment.
943 	 */
944 	max_cycles = min(max_cycles, mask);
945 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
946 
947 	/* return the max_cycles value as well if requested */
948 	if (max_cyc)
949 		*max_cyc = max_cycles;
950 
951 	/* Return 50% of the actual maximum, so we can detect bad values */
952 	max_nsecs >>= 1;
953 
954 	return max_nsecs;
955 }
956 
957 /**
958  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
959  * @cs:         Pointer to clocksource to be updated
960  *
961  */
clocksource_update_max_deferment(struct clocksource * cs)962 static inline void clocksource_update_max_deferment(struct clocksource *cs)
963 {
964 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
965 						cs->maxadj, cs->mask,
966 						&cs->max_cycles);
967 }
968 
clocksource_find_best(bool oneshot,bool skipcur)969 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
970 {
971 	struct clocksource *cs;
972 
973 	if (!finished_booting || list_empty(&clocksource_list))
974 		return NULL;
975 
976 	/*
977 	 * We pick the clocksource with the highest rating. If oneshot
978 	 * mode is active, we pick the highres valid clocksource with
979 	 * the best rating.
980 	 */
981 	list_for_each_entry(cs, &clocksource_list, list) {
982 		if (skipcur && cs == curr_clocksource)
983 			continue;
984 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
985 			continue;
986 		return cs;
987 	}
988 	return NULL;
989 }
990 
__clocksource_select(bool skipcur)991 static void __clocksource_select(bool skipcur)
992 {
993 	bool oneshot = tick_oneshot_mode_active();
994 	struct clocksource *best, *cs;
995 
996 	/* Find the best suitable clocksource */
997 	best = clocksource_find_best(oneshot, skipcur);
998 	if (!best)
999 		return;
1000 
1001 	if (!strlen(override_name))
1002 		goto found;
1003 
1004 	/* Check for the override clocksource. */
1005 	list_for_each_entry(cs, &clocksource_list, list) {
1006 		if (skipcur && cs == curr_clocksource)
1007 			continue;
1008 		if (strcmp(cs->name, override_name) != 0)
1009 			continue;
1010 		/*
1011 		 * Check to make sure we don't switch to a non-highres
1012 		 * capable clocksource if the tick code is in oneshot
1013 		 * mode (highres or nohz)
1014 		 */
1015 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1016 			/* Override clocksource cannot be used. */
1017 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1018 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1019 					cs->name);
1020 				override_name[0] = 0;
1021 			} else {
1022 				/*
1023 				 * The override cannot be currently verified.
1024 				 * Deferring to let the watchdog check.
1025 				 */
1026 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1027 					cs->name);
1028 			}
1029 		} else
1030 			/* Override clocksource can be used. */
1031 			best = cs;
1032 		break;
1033 	}
1034 
1035 found:
1036 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1037 		pr_info("Switched to clocksource %s\n", best->name);
1038 		curr_clocksource = best;
1039 	}
1040 }
1041 
1042 /**
1043  * clocksource_select - Select the best clocksource available
1044  *
1045  * Private function. Must hold clocksource_mutex when called.
1046  *
1047  * Select the clocksource with the best rating, or the clocksource,
1048  * which is selected by userspace override.
1049  */
clocksource_select(void)1050 static void clocksource_select(void)
1051 {
1052 	__clocksource_select(false);
1053 }
1054 
clocksource_select_fallback(void)1055 static void clocksource_select_fallback(void)
1056 {
1057 	__clocksource_select(true);
1058 }
1059 
1060 /*
1061  * clocksource_done_booting - Called near the end of core bootup
1062  *
1063  * Hack to avoid lots of clocksource churn at boot time.
1064  * We use fs_initcall because we want this to start before
1065  * device_initcall but after subsys_initcall.
1066  */
clocksource_done_booting(void)1067 static int __init clocksource_done_booting(void)
1068 {
1069 	mutex_lock(&clocksource_mutex);
1070 	curr_clocksource = clocksource_default_clock();
1071 	finished_booting = 1;
1072 	/*
1073 	 * Run the watchdog first to eliminate unstable clock sources
1074 	 */
1075 	__clocksource_watchdog_kthread();
1076 	clocksource_select();
1077 	mutex_unlock(&clocksource_mutex);
1078 	return 0;
1079 }
1080 fs_initcall(clocksource_done_booting);
1081 
1082 /*
1083  * Enqueue the clocksource sorted by rating
1084  */
clocksource_enqueue(struct clocksource * cs)1085 static void clocksource_enqueue(struct clocksource *cs)
1086 {
1087 	struct list_head *entry = &clocksource_list;
1088 	struct clocksource *tmp;
1089 
1090 	list_for_each_entry(tmp, &clocksource_list, list) {
1091 		/* Keep track of the place, where to insert */
1092 		if (tmp->rating < cs->rating)
1093 			break;
1094 		entry = &tmp->list;
1095 	}
1096 	list_add(&cs->list, entry);
1097 }
1098 
1099 /**
1100  * __clocksource_update_freq_scale - Used update clocksource with new freq
1101  * @cs:		clocksource to be registered
1102  * @scale:	Scale factor multiplied against freq to get clocksource hz
1103  * @freq:	clocksource frequency (cycles per second) divided by scale
1104  *
1105  * This should only be called from the clocksource->enable() method.
1106  *
1107  * This *SHOULD NOT* be called directly! Please use the
1108  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1109  * functions.
1110  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)1111 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1112 {
1113 	u64 sec;
1114 
1115 	/*
1116 	 * Default clocksources are *special* and self-define their mult/shift.
1117 	 * But, you're not special, so you should specify a freq value.
1118 	 */
1119 	if (freq) {
1120 		/*
1121 		 * Calc the maximum number of seconds which we can run before
1122 		 * wrapping around. For clocksources which have a mask > 32-bit
1123 		 * we need to limit the max sleep time to have a good
1124 		 * conversion precision. 10 minutes is still a reasonable
1125 		 * amount. That results in a shift value of 24 for a
1126 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1127 		 * ~ 0.06ppm granularity for NTP.
1128 		 */
1129 		sec = cs->mask;
1130 		do_div(sec, freq);
1131 		do_div(sec, scale);
1132 		if (!sec)
1133 			sec = 1;
1134 		else if (sec > 600 && cs->mask > UINT_MAX)
1135 			sec = 600;
1136 
1137 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1138 				       NSEC_PER_SEC / scale, sec * scale);
1139 	}
1140 
1141 	/*
1142 	 * If the uncertainty margin is not specified, calculate it.
1143 	 * If both scale and freq are non-zero, calculate the clock
1144 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1145 	 * if either of scale or freq is zero, be very conservative and
1146 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1147 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1148 	 * to be specified by the caller for testing purposes, but warn
1149 	 * to discourage production use of this capability.
1150 	 */
1151 	if (scale && freq && !cs->uncertainty_margin) {
1152 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1153 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1154 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1155 	} else if (!cs->uncertainty_margin) {
1156 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1157 	}
1158 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1159 
1160 	/*
1161 	 * Ensure clocksources that have large 'mult' values don't overflow
1162 	 * when adjusted.
1163 	 */
1164 	cs->maxadj = clocksource_max_adjustment(cs);
1165 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1166 		|| (cs->mult - cs->maxadj > cs->mult))) {
1167 		cs->mult >>= 1;
1168 		cs->shift--;
1169 		cs->maxadj = clocksource_max_adjustment(cs);
1170 	}
1171 
1172 	/*
1173 	 * Only warn for *special* clocksources that self-define
1174 	 * their mult/shift values and don't specify a freq.
1175 	 */
1176 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1177 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1178 		cs->name);
1179 
1180 	clocksource_update_max_deferment(cs);
1181 
1182 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1183 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1184 }
1185 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1186 
1187 /**
1188  * __clocksource_register_scale - Used to install new clocksources
1189  * @cs:		clocksource to be registered
1190  * @scale:	Scale factor multiplied against freq to get clocksource hz
1191  * @freq:	clocksource frequency (cycles per second) divided by scale
1192  *
1193  * Returns -EBUSY if registration fails, zero otherwise.
1194  *
1195  * This *SHOULD NOT* be called directly! Please use the
1196  * clocksource_register_hz() or clocksource_register_khz helper functions.
1197  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1198 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1199 {
1200 	unsigned long flags;
1201 
1202 	clocksource_arch_init(cs);
1203 
1204 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1205 		cs->id = CSID_GENERIC;
1206 	if (cs->vdso_clock_mode < 0 ||
1207 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1208 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1209 			cs->name, cs->vdso_clock_mode);
1210 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1211 	}
1212 
1213 	/* Initialize mult/shift and max_idle_ns */
1214 	__clocksource_update_freq_scale(cs, scale, freq);
1215 
1216 	/* Add clocksource to the clocksource list */
1217 	mutex_lock(&clocksource_mutex);
1218 
1219 	clocksource_watchdog_lock(&flags);
1220 	clocksource_enqueue(cs);
1221 	clocksource_enqueue_watchdog(cs);
1222 	clocksource_watchdog_unlock(&flags);
1223 
1224 	clocksource_select();
1225 	clocksource_select_watchdog(false);
1226 	__clocksource_suspend_select(cs);
1227 	mutex_unlock(&clocksource_mutex);
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1231 
__clocksource_change_rating(struct clocksource * cs,int rating)1232 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1233 {
1234 	list_del(&cs->list);
1235 	cs->rating = rating;
1236 	clocksource_enqueue(cs);
1237 }
1238 
1239 /**
1240  * clocksource_change_rating - Change the rating of a registered clocksource
1241  * @cs:		clocksource to be changed
1242  * @rating:	new rating
1243  */
clocksource_change_rating(struct clocksource * cs,int rating)1244 void clocksource_change_rating(struct clocksource *cs, int rating)
1245 {
1246 	unsigned long flags;
1247 
1248 	mutex_lock(&clocksource_mutex);
1249 	clocksource_watchdog_lock(&flags);
1250 	__clocksource_change_rating(cs, rating);
1251 	clocksource_watchdog_unlock(&flags);
1252 
1253 	clocksource_select();
1254 	clocksource_select_watchdog(false);
1255 	clocksource_suspend_select(false);
1256 	mutex_unlock(&clocksource_mutex);
1257 }
1258 EXPORT_SYMBOL(clocksource_change_rating);
1259 
1260 /*
1261  * Unbind clocksource @cs. Called with clocksource_mutex held
1262  */
clocksource_unbind(struct clocksource * cs)1263 static int clocksource_unbind(struct clocksource *cs)
1264 {
1265 	unsigned long flags;
1266 
1267 	if (clocksource_is_watchdog(cs)) {
1268 		/* Select and try to install a replacement watchdog. */
1269 		clocksource_select_watchdog(true);
1270 		if (clocksource_is_watchdog(cs))
1271 			return -EBUSY;
1272 	}
1273 
1274 	if (cs == curr_clocksource) {
1275 		/* Select and try to install a replacement clock source */
1276 		clocksource_select_fallback();
1277 		if (curr_clocksource == cs)
1278 			return -EBUSY;
1279 	}
1280 
1281 	if (clocksource_is_suspend(cs)) {
1282 		/*
1283 		 * Select and try to install a replacement suspend clocksource.
1284 		 * If no replacement suspend clocksource, we will just let the
1285 		 * clocksource go and have no suspend clocksource.
1286 		 */
1287 		clocksource_suspend_select(true);
1288 	}
1289 
1290 	clocksource_watchdog_lock(&flags);
1291 	clocksource_dequeue_watchdog(cs);
1292 	list_del_init(&cs->list);
1293 	clocksource_watchdog_unlock(&flags);
1294 
1295 	return 0;
1296 }
1297 
1298 /**
1299  * clocksource_unregister - remove a registered clocksource
1300  * @cs:	clocksource to be unregistered
1301  */
clocksource_unregister(struct clocksource * cs)1302 int clocksource_unregister(struct clocksource *cs)
1303 {
1304 	int ret = 0;
1305 
1306 	mutex_lock(&clocksource_mutex);
1307 	if (!list_empty(&cs->list))
1308 		ret = clocksource_unbind(cs);
1309 	mutex_unlock(&clocksource_mutex);
1310 	return ret;
1311 }
1312 EXPORT_SYMBOL(clocksource_unregister);
1313 
1314 #ifdef CONFIG_SYSFS
1315 /**
1316  * current_clocksource_show - sysfs interface for current clocksource
1317  * @dev:	unused
1318  * @attr:	unused
1319  * @buf:	char buffer to be filled with clocksource list
1320  *
1321  * Provides sysfs interface for listing current clocksource.
1322  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1323 static ssize_t current_clocksource_show(struct device *dev,
1324 					struct device_attribute *attr,
1325 					char *buf)
1326 {
1327 	ssize_t count = 0;
1328 
1329 	mutex_lock(&clocksource_mutex);
1330 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1331 	mutex_unlock(&clocksource_mutex);
1332 
1333 	return count;
1334 }
1335 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1336 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1337 {
1338 	size_t ret = cnt;
1339 
1340 	/* strings from sysfs write are not 0 terminated! */
1341 	if (!cnt || cnt >= CS_NAME_LEN)
1342 		return -EINVAL;
1343 
1344 	/* strip of \n: */
1345 	if (buf[cnt-1] == '\n')
1346 		cnt--;
1347 	if (cnt > 0)
1348 		memcpy(dst, buf, cnt);
1349 	dst[cnt] = 0;
1350 	return ret;
1351 }
1352 
1353 /**
1354  * current_clocksource_store - interface for manually overriding clocksource
1355  * @dev:	unused
1356  * @attr:	unused
1357  * @buf:	name of override clocksource
1358  * @count:	length of buffer
1359  *
1360  * Takes input from sysfs interface for manually overriding the default
1361  * clocksource selection.
1362  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1363 static ssize_t current_clocksource_store(struct device *dev,
1364 					 struct device_attribute *attr,
1365 					 const char *buf, size_t count)
1366 {
1367 	ssize_t ret;
1368 
1369 	mutex_lock(&clocksource_mutex);
1370 
1371 	ret = sysfs_get_uname(buf, override_name, count);
1372 	if (ret >= 0)
1373 		clocksource_select();
1374 
1375 	mutex_unlock(&clocksource_mutex);
1376 
1377 	return ret;
1378 }
1379 static DEVICE_ATTR_RW(current_clocksource);
1380 
1381 /**
1382  * unbind_clocksource_store - interface for manually unbinding clocksource
1383  * @dev:	unused
1384  * @attr:	unused
1385  * @buf:	unused
1386  * @count:	length of buffer
1387  *
1388  * Takes input from sysfs interface for manually unbinding a clocksource.
1389  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1390 static ssize_t unbind_clocksource_store(struct device *dev,
1391 					struct device_attribute *attr,
1392 					const char *buf, size_t count)
1393 {
1394 	struct clocksource *cs;
1395 	char name[CS_NAME_LEN];
1396 	ssize_t ret;
1397 
1398 	ret = sysfs_get_uname(buf, name, count);
1399 	if (ret < 0)
1400 		return ret;
1401 
1402 	ret = -ENODEV;
1403 	mutex_lock(&clocksource_mutex);
1404 	list_for_each_entry(cs, &clocksource_list, list) {
1405 		if (strcmp(cs->name, name))
1406 			continue;
1407 		ret = clocksource_unbind(cs);
1408 		break;
1409 	}
1410 	mutex_unlock(&clocksource_mutex);
1411 
1412 	return ret ? ret : count;
1413 }
1414 static DEVICE_ATTR_WO(unbind_clocksource);
1415 
1416 /**
1417  * available_clocksource_show - sysfs interface for listing clocksource
1418  * @dev:	unused
1419  * @attr:	unused
1420  * @buf:	char buffer to be filled with clocksource list
1421  *
1422  * Provides sysfs interface for listing registered clocksources
1423  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1424 static ssize_t available_clocksource_show(struct device *dev,
1425 					  struct device_attribute *attr,
1426 					  char *buf)
1427 {
1428 	struct clocksource *src;
1429 	ssize_t count = 0;
1430 
1431 	mutex_lock(&clocksource_mutex);
1432 	list_for_each_entry(src, &clocksource_list, list) {
1433 		/*
1434 		 * Don't show non-HRES clocksource if the tick code is
1435 		 * in one shot mode (highres=on or nohz=on)
1436 		 */
1437 		if (!tick_oneshot_mode_active() ||
1438 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1439 			count += snprintf(buf + count,
1440 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1441 				  "%s ", src->name);
1442 	}
1443 	mutex_unlock(&clocksource_mutex);
1444 
1445 	count += snprintf(buf + count,
1446 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1447 
1448 	return count;
1449 }
1450 static DEVICE_ATTR_RO(available_clocksource);
1451 
1452 static struct attribute *clocksource_attrs[] = {
1453 	&dev_attr_current_clocksource.attr,
1454 	&dev_attr_unbind_clocksource.attr,
1455 	&dev_attr_available_clocksource.attr,
1456 	NULL
1457 };
1458 ATTRIBUTE_GROUPS(clocksource);
1459 
1460 static struct bus_type clocksource_subsys = {
1461 	.name = "clocksource",
1462 	.dev_name = "clocksource",
1463 };
1464 
1465 static struct device device_clocksource = {
1466 	.id	= 0,
1467 	.bus	= &clocksource_subsys,
1468 	.groups	= clocksource_groups,
1469 };
1470 
init_clocksource_sysfs(void)1471 static int __init init_clocksource_sysfs(void)
1472 {
1473 	int error = subsys_system_register(&clocksource_subsys, NULL);
1474 
1475 	if (!error)
1476 		error = device_register(&device_clocksource);
1477 
1478 	return error;
1479 }
1480 
1481 device_initcall(init_clocksource_sysfs);
1482 #endif /* CONFIG_SYSFS */
1483 
1484 /**
1485  * boot_override_clocksource - boot clock override
1486  * @str:	override name
1487  *
1488  * Takes a clocksource= boot argument and uses it
1489  * as the clocksource override name.
1490  */
boot_override_clocksource(char * str)1491 static int __init boot_override_clocksource(char* str)
1492 {
1493 	mutex_lock(&clocksource_mutex);
1494 	if (str)
1495 		strlcpy(override_name, str, sizeof(override_name));
1496 	mutex_unlock(&clocksource_mutex);
1497 	return 1;
1498 }
1499 
1500 __setup("clocksource=", boot_override_clocksource);
1501 
1502 /**
1503  * boot_override_clock - Compatibility layer for deprecated boot option
1504  * @str:	override name
1505  *
1506  * DEPRECATED! Takes a clock= boot argument and uses it
1507  * as the clocksource override name
1508  */
boot_override_clock(char * str)1509 static int __init boot_override_clock(char* str)
1510 {
1511 	if (!strcmp(str, "pmtmr")) {
1512 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1513 		return boot_override_clocksource("acpi_pm");
1514 	}
1515 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1516 	return boot_override_clocksource(str);
1517 }
1518 
1519 __setup("clock=", boot_override_clock);
1520