• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/math.h>
12 #include <linux/moduleparam.h>
13 #include <linux/sched.h>
14 #include <linux/sched/clock.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 #include <trace/hooks/epoch.h>
21 
22 #include "timekeeping.h"
23 
24 /**
25  * struct clock_data - all data needed for sched_clock() (including
26  *                     registration of a new clock source)
27  *
28  * @seq:		Sequence counter for protecting updates. The lowest
29  *			bit is the index for @read_data.
30  * @read_data:		Data required to read from sched_clock.
31  * @wrap_kt:		Duration for which clock can run before wrapping.
32  * @rate:		Tick rate of the registered clock.
33  * @actual_read_sched_clock: Registered hardware level clock read function.
34  *
35  * The ordering of this structure has been chosen to optimize cache
36  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
37  * into a single 64-byte cache line.
38  */
39 struct clock_data {
40 	seqcount_latch_t	seq;
41 	struct clock_read_data	read_data[2];
42 	ktime_t			wrap_kt;
43 	unsigned long		rate;
44 
45 	u64 (*actual_read_sched_clock)(void);
46 };
47 
48 static struct hrtimer sched_clock_timer;
49 static int irqtime = -1;
50 
51 core_param(irqtime, irqtime, int, 0400);
52 
jiffy_sched_clock_read(void)53 static u64 notrace jiffy_sched_clock_read(void)
54 {
55 	/*
56 	 * We don't need to use get_jiffies_64 on 32-bit arches here
57 	 * because we register with BITS_PER_LONG
58 	 */
59 	return (u64)(jiffies - INITIAL_JIFFIES);
60 }
61 
62 static struct clock_data cd ____cacheline_aligned = {
63 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
64 			  .read_sched_clock = jiffy_sched_clock_read, },
65 	.actual_read_sched_clock = jiffy_sched_clock_read,
66 };
67 
cyc_to_ns(u64 cyc,u32 mult,u32 shift)68 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
69 {
70 	return (cyc * mult) >> shift;
71 }
72 
sched_clock_read_begin(unsigned int * seq)73 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
74 {
75 	*seq = raw_read_seqcount_latch(&cd.seq);
76 	return cd.read_data + (*seq & 1);
77 }
78 
sched_clock_read_retry(unsigned int seq)79 notrace int sched_clock_read_retry(unsigned int seq)
80 {
81 	return read_seqcount_latch_retry(&cd.seq, seq);
82 }
83 
sched_clock(void)84 unsigned long long notrace sched_clock(void)
85 {
86 	u64 cyc, res;
87 	unsigned int seq;
88 	struct clock_read_data *rd;
89 
90 	do {
91 		rd = sched_clock_read_begin(&seq);
92 
93 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
94 		      rd->sched_clock_mask;
95 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
96 	} while (sched_clock_read_retry(seq));
97 
98 	return res;
99 }
100 
101 /*
102  * Updating the data required to read the clock.
103  *
104  * sched_clock() will never observe mis-matched data even if called from
105  * an NMI. We do this by maintaining an odd/even copy of the data and
106  * steering sched_clock() to one or the other using a sequence counter.
107  * In order to preserve the data cache profile of sched_clock() as much
108  * as possible the system reverts back to the even copy when the update
109  * completes; the odd copy is used *only* during an update.
110  */
update_clock_read_data(struct clock_read_data * rd)111 static void update_clock_read_data(struct clock_read_data *rd)
112 {
113 	/* update the backup (odd) copy with the new data */
114 	cd.read_data[1] = *rd;
115 
116 	/* steer readers towards the odd copy */
117 	raw_write_seqcount_latch(&cd.seq);
118 
119 	/* now its safe for us to update the normal (even) copy */
120 	cd.read_data[0] = *rd;
121 
122 	/* switch readers back to the even copy */
123 	raw_write_seqcount_latch(&cd.seq);
124 }
125 
126 /*
127  * Atomically update the sched_clock() epoch.
128  */
update_sched_clock(void)129 static void update_sched_clock(void)
130 {
131 	u64 cyc;
132 	u64 ns;
133 	struct clock_read_data rd;
134 
135 	rd = cd.read_data[0];
136 
137 	cyc = cd.actual_read_sched_clock();
138 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
139 
140 	rd.epoch_ns = ns;
141 	rd.epoch_cyc = cyc;
142 
143 	update_clock_read_data(&rd);
144 }
145 
sched_clock_poll(struct hrtimer * hrt)146 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
147 {
148 	update_sched_clock();
149 	hrtimer_forward_now(hrt, cd.wrap_kt);
150 
151 	return HRTIMER_RESTART;
152 }
153 
sched_clock_register(u64 (* read)(void),int bits,unsigned long rate)154 void sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
155 {
156 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
157 	u32 new_mult, new_shift;
158 	unsigned long r, flags;
159 	char r_unit;
160 	struct clock_read_data rd;
161 
162 	if (cd.rate > rate)
163 		return;
164 
165 	/* Cannot register a sched_clock with interrupts on */
166 	local_irq_save(flags);
167 
168 	/* Calculate the mult/shift to convert counter ticks to ns. */
169 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
170 
171 	new_mask = CLOCKSOURCE_MASK(bits);
172 	cd.rate = rate;
173 
174 	/* Calculate how many nanosecs until we risk wrapping */
175 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
176 	cd.wrap_kt = ns_to_ktime(wrap);
177 
178 	rd = cd.read_data[0];
179 
180 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
181 	new_epoch = read();
182 	cyc = cd.actual_read_sched_clock();
183 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
184 	cd.actual_read_sched_clock = read;
185 
186 	rd.read_sched_clock	= read;
187 	rd.sched_clock_mask	= new_mask;
188 	rd.mult			= new_mult;
189 	rd.shift		= new_shift;
190 	rd.epoch_cyc		= new_epoch;
191 	rd.epoch_ns		= ns;
192 
193 	update_clock_read_data(&rd);
194 
195 	if (sched_clock_timer.function != NULL) {
196 		/* update timeout for clock wrap */
197 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
198 			      HRTIMER_MODE_REL_HARD);
199 	}
200 
201 	r = rate;
202 	if (r >= 4000000) {
203 		r = DIV_ROUND_CLOSEST(r, 1000000);
204 		r_unit = 'M';
205 	} else if (r >= 4000) {
206 		r = DIV_ROUND_CLOSEST(r, 1000);
207 		r_unit = 'k';
208 	} else {
209 		r_unit = ' ';
210 	}
211 
212 	/* Calculate the ns resolution of this counter */
213 	res = cyc_to_ns(1ULL, new_mult, new_shift);
214 
215 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
216 		bits, r, r_unit, res, wrap);
217 
218 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
219 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
220 		enable_sched_clock_irqtime();
221 
222 	local_irq_restore(flags);
223 
224 	pr_debug("Registered %pS as sched_clock source\n", read);
225 }
226 EXPORT_SYMBOL_GPL(sched_clock_register);
227 
generic_sched_clock_init(void)228 void __init generic_sched_clock_init(void)
229 {
230 	/*
231 	 * If no sched_clock() function has been provided at that point,
232 	 * make it the final one.
233 	 */
234 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
235 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
236 
237 	update_sched_clock();
238 
239 	/*
240 	 * Start the timer to keep sched_clock() properly updated and
241 	 * sets the initial epoch.
242 	 */
243 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
244 	sched_clock_timer.function = sched_clock_poll;
245 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
246 }
247 
248 /*
249  * Clock read function for use when the clock is suspended.
250  *
251  * This function makes it appear to sched_clock() as if the clock
252  * stopped counting at its last update.
253  *
254  * This function must only be called from the critical
255  * section in sched_clock(). It relies on the read_seqcount_retry()
256  * at the end of the critical section to be sure we observe the
257  * correct copy of 'epoch_cyc'.
258  */
suspended_sched_clock_read(void)259 static u64 notrace suspended_sched_clock_read(void)
260 {
261 	unsigned int seq = raw_read_seqcount_latch(&cd.seq);
262 
263 	return cd.read_data[seq & 1].epoch_cyc;
264 }
265 
sched_clock_suspend(void)266 int sched_clock_suspend(void)
267 {
268 	struct clock_read_data *rd = &cd.read_data[0];
269 
270 	update_sched_clock();
271 	hrtimer_cancel(&sched_clock_timer);
272 	rd->read_sched_clock = suspended_sched_clock_read;
273 	trace_android_vh_show_suspend_epoch_val(rd->epoch_ns, rd->epoch_cyc);
274 
275 	return 0;
276 }
277 
sched_clock_resume(void)278 void sched_clock_resume(void)
279 {
280 	struct clock_read_data *rd = &cd.read_data[0];
281 
282 	rd->epoch_cyc = cd.actual_read_sched_clock();
283 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
284 	rd->read_sched_clock = cd.actual_read_sched_clock;
285 	trace_android_vh_show_resume_epoch_val(rd->epoch_cyc);
286 }
287 
288 static struct syscore_ops sched_clock_ops = {
289 	.suspend	= sched_clock_suspend,
290 	.resume		= sched_clock_resume,
291 };
292 
sched_clock_syscore_init(void)293 static int __init sched_clock_syscore_init(void)
294 {
295 	register_syscore_ops(&sched_clock_ops);
296 
297 	return 0;
298 }
299 device_initcall(sched_clock_syscore_init);
300