1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
31
32 #define TK_CLEAR_NTP (1 << 0)
33 #define TK_MIRROR (1 << 1)
34 #define TK_CLOCK_WAS_SET (1 << 2)
35
36 enum timekeeping_adv_mode {
37 /* Update timekeeper when a tick has passed */
38 TK_ADV_TICK,
39
40 /* Update timekeeper on a direct frequency change */
41 TK_ADV_FREQ
42 };
43
44 DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
46 /*
47 * The most important data for readout fits into a single 64 byte
48 * cache line.
49 */
50 static struct {
51 seqcount_raw_spinlock_t seq;
52 struct timekeeper timekeeper;
53 } tk_core ____cacheline_aligned = {
54 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
55 };
56
57 static struct timekeeper shadow_timekeeper;
58
59 /* flag for if timekeeping is suspended */
60 int __read_mostly timekeeping_suspended;
61
62 /**
63 * struct tk_fast - NMI safe timekeeper
64 * @seq: Sequence counter for protecting updates. The lowest bit
65 * is the index for the tk_read_base array
66 * @base: tk_read_base array. Access is indexed by the lowest bit of
67 * @seq.
68 *
69 * See @update_fast_timekeeper() below.
70 */
71 struct tk_fast {
72 seqcount_latch_t seq;
73 struct tk_read_base base[2];
74 };
75
76 /* Suspend-time cycles value for halted fast timekeeper. */
77 static u64 cycles_at_suspend;
78
dummy_clock_read(struct clocksource * cs)79 static u64 dummy_clock_read(struct clocksource *cs)
80 {
81 if (timekeeping_suspended)
82 return cycles_at_suspend;
83 return local_clock();
84 }
85
86 static struct clocksource dummy_clock = {
87 .read = dummy_clock_read,
88 };
89
90 /*
91 * Boot time initialization which allows local_clock() to be utilized
92 * during early boot when clocksources are not available. local_clock()
93 * returns nanoseconds already so no conversion is required, hence mult=1
94 * and shift=0. When the first proper clocksource is installed then
95 * the fast time keepers are updated with the correct values.
96 */
97 #define FAST_TK_INIT \
98 { \
99 .clock = &dummy_clock, \
100 .mask = CLOCKSOURCE_MASK(64), \
101 .mult = 1, \
102 .shift = 0, \
103 }
104
105 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107 .base[0] = FAST_TK_INIT,
108 .base[1] = FAST_TK_INIT,
109 };
110
111 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113 .base[0] = FAST_TK_INIT,
114 .base[1] = FAST_TK_INIT,
115 };
116
tk_normalize_xtime(struct timekeeper * tk)117 static inline void tk_normalize_xtime(struct timekeeper *tk)
118 {
119 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
121 tk->xtime_sec++;
122 }
123 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
125 tk->raw_sec++;
126 }
127 }
128
tk_xtime(const struct timekeeper * tk)129 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130 {
131 struct timespec64 ts;
132
133 ts.tv_sec = tk->xtime_sec;
134 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135 return ts;
136 }
137
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)138 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
139 {
140 tk->xtime_sec = ts->tv_sec;
141 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
142 }
143
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)144 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
145 {
146 tk->xtime_sec += ts->tv_sec;
147 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148 tk_normalize_xtime(tk);
149 }
150
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)151 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
152 {
153 struct timespec64 tmp;
154
155 /*
156 * Verify consistency of: offset_real = -wall_to_monotonic
157 * before modifying anything
158 */
159 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160 -tk->wall_to_monotonic.tv_nsec);
161 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162 tk->wall_to_monotonic = wtm;
163 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164 tk->offs_real = timespec64_to_ktime(tmp);
165 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
166 }
167
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)168 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
169 {
170 tk->offs_boot = ktime_add(tk->offs_boot, delta);
171 /*
172 * Timespec representation for VDSO update to avoid 64bit division
173 * on every update.
174 */
175 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
176 }
177
178 /*
179 * tk_clock_read - atomic clocksource read() helper
180 *
181 * This helper is necessary to use in the read paths because, while the
182 * seqcount ensures we don't return a bad value while structures are updated,
183 * it doesn't protect from potential crashes. There is the possibility that
184 * the tkr's clocksource may change between the read reference, and the
185 * clock reference passed to the read function. This can cause crashes if
186 * the wrong clocksource is passed to the wrong read function.
187 * This isn't necessary to use when holding the timekeeper_lock or doing
188 * a read of the fast-timekeeper tkrs (which is protected by its own locking
189 * and update logic).
190 */
tk_clock_read(const struct tk_read_base * tkr)191 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
192 {
193 struct clocksource *clock = READ_ONCE(tkr->clock);
194
195 return clock->read(clock);
196 }
197
198 #ifdef CONFIG_DEBUG_TIMEKEEPING
199 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
200
timekeeping_check_update(struct timekeeper * tk,u64 offset)201 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
202 {
203
204 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205 const char *name = tk->tkr_mono.clock->name;
206
207 if (offset > max_cycles) {
208 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209 offset, name, max_cycles);
210 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
211 } else {
212 if (offset > (max_cycles >> 1)) {
213 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214 offset, name, max_cycles >> 1);
215 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
216 }
217 }
218
219 if (tk->underflow_seen) {
220 if (jiffies - tk->last_warning > WARNING_FREQ) {
221 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
223 printk_deferred(" Your kernel is probably still fine.\n");
224 tk->last_warning = jiffies;
225 }
226 tk->underflow_seen = 0;
227 }
228
229 if (tk->overflow_seen) {
230 if (jiffies - tk->last_warning > WARNING_FREQ) {
231 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
233 printk_deferred(" Your kernel is probably still fine.\n");
234 tk->last_warning = jiffies;
235 }
236 tk->overflow_seen = 0;
237 }
238 }
239
timekeeping_get_delta(const struct tk_read_base * tkr)240 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
241 {
242 struct timekeeper *tk = &tk_core.timekeeper;
243 u64 now, last, mask, max, delta;
244 unsigned int seq;
245
246 /*
247 * Since we're called holding a seqcount, the data may shift
248 * under us while we're doing the calculation. This can cause
249 * false positives, since we'd note a problem but throw the
250 * results away. So nest another seqcount here to atomically
251 * grab the points we are checking with.
252 */
253 do {
254 seq = read_seqcount_begin(&tk_core.seq);
255 now = tk_clock_read(tkr);
256 last = tkr->cycle_last;
257 mask = tkr->mask;
258 max = tkr->clock->max_cycles;
259 } while (read_seqcount_retry(&tk_core.seq, seq));
260
261 delta = clocksource_delta(now, last, mask);
262
263 /*
264 * Try to catch underflows by checking if we are seeing small
265 * mask-relative negative values.
266 */
267 if (unlikely((~delta & mask) < (mask >> 3))) {
268 tk->underflow_seen = 1;
269 delta = 0;
270 }
271
272 /* Cap delta value to the max_cycles values to avoid mult overflows */
273 if (unlikely(delta > max)) {
274 tk->overflow_seen = 1;
275 delta = tkr->clock->max_cycles;
276 }
277
278 return delta;
279 }
280 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)281 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
282 {
283 }
timekeeping_get_delta(const struct tk_read_base * tkr)284 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
285 {
286 u64 cycle_now, delta;
287
288 /* read clocksource */
289 cycle_now = tk_clock_read(tkr);
290
291 /* calculate the delta since the last update_wall_time */
292 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
293
294 return delta;
295 }
296 #endif
297
298 /**
299 * tk_setup_internals - Set up internals to use clocksource clock.
300 *
301 * @tk: The target timekeeper to setup.
302 * @clock: Pointer to clocksource.
303 *
304 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305 * pair and interval request.
306 *
307 * Unless you're the timekeeping code, you should not be using this!
308 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)309 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
310 {
311 u64 interval;
312 u64 tmp, ntpinterval;
313 struct clocksource *old_clock;
314
315 ++tk->cs_was_changed_seq;
316 old_clock = tk->tkr_mono.clock;
317 tk->tkr_mono.clock = clock;
318 tk->tkr_mono.mask = clock->mask;
319 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
320
321 tk->tkr_raw.clock = clock;
322 tk->tkr_raw.mask = clock->mask;
323 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
324
325 /* Do the ns -> cycle conversion first, using original mult */
326 tmp = NTP_INTERVAL_LENGTH;
327 tmp <<= clock->shift;
328 ntpinterval = tmp;
329 tmp += clock->mult/2;
330 do_div(tmp, clock->mult);
331 if (tmp == 0)
332 tmp = 1;
333
334 interval = (u64) tmp;
335 tk->cycle_interval = interval;
336
337 /* Go back from cycles -> shifted ns */
338 tk->xtime_interval = interval * clock->mult;
339 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340 tk->raw_interval = interval * clock->mult;
341
342 /* if changing clocks, convert xtime_nsec shift units */
343 if (old_clock) {
344 int shift_change = clock->shift - old_clock->shift;
345 if (shift_change < 0) {
346 tk->tkr_mono.xtime_nsec >>= -shift_change;
347 tk->tkr_raw.xtime_nsec >>= -shift_change;
348 } else {
349 tk->tkr_mono.xtime_nsec <<= shift_change;
350 tk->tkr_raw.xtime_nsec <<= shift_change;
351 }
352 }
353
354 tk->tkr_mono.shift = clock->shift;
355 tk->tkr_raw.shift = clock->shift;
356
357 tk->ntp_error = 0;
358 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
360
361 /*
362 * The timekeeper keeps its own mult values for the currently
363 * active clocksource. These value will be adjusted via NTP
364 * to counteract clock drifting.
365 */
366 tk->tkr_mono.mult = clock->mult;
367 tk->tkr_raw.mult = clock->mult;
368 tk->ntp_err_mult = 0;
369 tk->skip_second_overflow = 0;
370 }
371
372 /* Timekeeper helper functions. */
373
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)374 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
375 {
376 u64 nsec;
377
378 nsec = delta * tkr->mult + tkr->xtime_nsec;
379 nsec >>= tkr->shift;
380
381 return nsec;
382 }
383
timekeeping_get_ns(const struct tk_read_base * tkr)384 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
385 {
386 u64 delta;
387
388 delta = timekeeping_get_delta(tkr);
389 return timekeeping_delta_to_ns(tkr, delta);
390 }
391
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)392 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
393 {
394 u64 delta;
395
396 /* calculate the delta since the last update_wall_time */
397 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
398 return timekeeping_delta_to_ns(tkr, delta);
399 }
400
401 /**
402 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
403 * @tkr: Timekeeping readout base from which we take the update
404 * @tkf: Pointer to NMI safe timekeeper
405 *
406 * We want to use this from any context including NMI and tracing /
407 * instrumenting the timekeeping code itself.
408 *
409 * Employ the latch technique; see @raw_write_seqcount_latch.
410 *
411 * So if a NMI hits the update of base[0] then it will use base[1]
412 * which is still consistent. In the worst case this can result is a
413 * slightly wrong timestamp (a few nanoseconds). See
414 * @ktime_get_mono_fast_ns.
415 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)416 static void update_fast_timekeeper(const struct tk_read_base *tkr,
417 struct tk_fast *tkf)
418 {
419 struct tk_read_base *base = tkf->base;
420
421 /* Force readers off to base[1] */
422 raw_write_seqcount_latch(&tkf->seq);
423
424 /* Update base[0] */
425 memcpy(base, tkr, sizeof(*base));
426
427 /* Force readers back to base[0] */
428 raw_write_seqcount_latch(&tkf->seq);
429
430 /* Update base[1] */
431 memcpy(base + 1, base, sizeof(*base));
432 }
433
fast_tk_get_delta_ns(struct tk_read_base * tkr)434 static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
435 {
436 u64 delta, cycles = tk_clock_read(tkr);
437
438 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
439 return timekeeping_delta_to_ns(tkr, delta);
440 }
441
__ktime_get_fast_ns(struct tk_fast * tkf)442 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
443 {
444 struct tk_read_base *tkr;
445 unsigned int seq;
446 u64 now;
447
448 do {
449 seq = raw_read_seqcount_latch(&tkf->seq);
450 tkr = tkf->base + (seq & 0x01);
451 now = ktime_to_ns(tkr->base);
452 now += fast_tk_get_delta_ns(tkr);
453 } while (read_seqcount_latch_retry(&tkf->seq, seq));
454
455 return now;
456 }
457
458 /**
459 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
460 *
461 * This timestamp is not guaranteed to be monotonic across an update.
462 * The timestamp is calculated by:
463 *
464 * now = base_mono + clock_delta * slope
465 *
466 * So if the update lowers the slope, readers who are forced to the
467 * not yet updated second array are still using the old steeper slope.
468 *
469 * tmono
470 * ^
471 * | o n
472 * | o n
473 * | u
474 * | o
475 * |o
476 * |12345678---> reader order
477 *
478 * o = old slope
479 * u = update
480 * n = new slope
481 *
482 * So reader 6 will observe time going backwards versus reader 5.
483 *
484 * While other CPUs are likely to be able to observe that, the only way
485 * for a CPU local observation is when an NMI hits in the middle of
486 * the update. Timestamps taken from that NMI context might be ahead
487 * of the following timestamps. Callers need to be aware of that and
488 * deal with it.
489 */
ktime_get_mono_fast_ns(void)490 u64 notrace ktime_get_mono_fast_ns(void)
491 {
492 return __ktime_get_fast_ns(&tk_fast_mono);
493 }
494 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
495
496 /**
497 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
498 *
499 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
500 * conversion factor is not affected by NTP/PTP correction.
501 */
ktime_get_raw_fast_ns(void)502 u64 notrace ktime_get_raw_fast_ns(void)
503 {
504 return __ktime_get_fast_ns(&tk_fast_raw);
505 }
506 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
507
508 /**
509 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
510 *
511 * To keep it NMI safe since we're accessing from tracing, we're not using a
512 * separate timekeeper with updates to monotonic clock and boot offset
513 * protected with seqcounts. This has the following minor side effects:
514 *
515 * (1) Its possible that a timestamp be taken after the boot offset is updated
516 * but before the timekeeper is updated. If this happens, the new boot offset
517 * is added to the old timekeeping making the clock appear to update slightly
518 * earlier:
519 * CPU 0 CPU 1
520 * timekeeping_inject_sleeptime64()
521 * __timekeeping_inject_sleeptime(tk, delta);
522 * timestamp();
523 * timekeeping_update(tk, TK_CLEAR_NTP...);
524 *
525 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
526 * partially updated. Since the tk->offs_boot update is a rare event, this
527 * should be a rare occurrence which postprocessing should be able to handle.
528 *
529 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
530 * apply as well.
531 */
ktime_get_boot_fast_ns(void)532 u64 notrace ktime_get_boot_fast_ns(void)
533 {
534 struct timekeeper *tk = &tk_core.timekeeper;
535
536 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
537 }
538 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
539
540 /**
541 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
542 *
543 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
544 * mono time and the TAI offset are not read atomically which may yield wrong
545 * readouts. However, an update of the TAI offset is an rare event e.g., caused
546 * by settime or adjtimex with an offset. The user of this function has to deal
547 * with the possibility of wrong timestamps in post processing.
548 */
ktime_get_tai_fast_ns(void)549 u64 notrace ktime_get_tai_fast_ns(void)
550 {
551 struct timekeeper *tk = &tk_core.timekeeper;
552
553 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
554 }
555 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
556
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)557 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
558 {
559 struct tk_read_base *tkr;
560 u64 basem, baser, delta;
561 unsigned int seq;
562
563 do {
564 seq = raw_read_seqcount_latch(&tkf->seq);
565 tkr = tkf->base + (seq & 0x01);
566 basem = ktime_to_ns(tkr->base);
567 baser = ktime_to_ns(tkr->base_real);
568 delta = fast_tk_get_delta_ns(tkr);
569 } while (read_seqcount_latch_retry(&tkf->seq, seq));
570
571 if (mono)
572 *mono = basem + delta;
573 return baser + delta;
574 }
575
576 /**
577 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
578 *
579 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
580 */
ktime_get_real_fast_ns(void)581 u64 ktime_get_real_fast_ns(void)
582 {
583 return __ktime_get_real_fast(&tk_fast_mono, NULL);
584 }
585 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
586
587 /**
588 * ktime_get_fast_timestamps: - NMI safe timestamps
589 * @snapshot: Pointer to timestamp storage
590 *
591 * Stores clock monotonic, boottime and realtime timestamps.
592 *
593 * Boot time is a racy access on 32bit systems if the sleep time injection
594 * happens late during resume and not in timekeeping_resume(). That could
595 * be avoided by expanding struct tk_read_base with boot offset for 32bit
596 * and adding more overhead to the update. As this is a hard to observe
597 * once per resume event which can be filtered with reasonable effort using
598 * the accurate mono/real timestamps, it's probably not worth the trouble.
599 *
600 * Aside of that it might be possible on 32 and 64 bit to observe the
601 * following when the sleep time injection happens late:
602 *
603 * CPU 0 CPU 1
604 * timekeeping_resume()
605 * ktime_get_fast_timestamps()
606 * mono, real = __ktime_get_real_fast()
607 * inject_sleep_time()
608 * update boot offset
609 * boot = mono + bootoffset;
610 *
611 * That means that boot time already has the sleep time adjustment, but
612 * real time does not. On the next readout both are in sync again.
613 *
614 * Preventing this for 64bit is not really feasible without destroying the
615 * careful cache layout of the timekeeper because the sequence count and
616 * struct tk_read_base would then need two cache lines instead of one.
617 *
618 * Access to the time keeper clock source is disabled across the innermost
619 * steps of suspend/resume. The accessors still work, but the timestamps
620 * are frozen until time keeping is resumed which happens very early.
621 *
622 * For regular suspend/resume there is no observable difference vs. sched
623 * clock, but it might affect some of the nasty low level debug printks.
624 *
625 * OTOH, access to sched clock is not guaranteed across suspend/resume on
626 * all systems either so it depends on the hardware in use.
627 *
628 * If that turns out to be a real problem then this could be mitigated by
629 * using sched clock in a similar way as during early boot. But it's not as
630 * trivial as on early boot because it needs some careful protection
631 * against the clock monotonic timestamp jumping backwards on resume.
632 */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)633 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
634 {
635 struct timekeeper *tk = &tk_core.timekeeper;
636
637 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
638 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
639 }
640
641 /**
642 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
643 * @tk: Timekeeper to snapshot.
644 *
645 * It generally is unsafe to access the clocksource after timekeeping has been
646 * suspended, so take a snapshot of the readout base of @tk and use it as the
647 * fast timekeeper's readout base while suspended. It will return the same
648 * number of cycles every time until timekeeping is resumed at which time the
649 * proper readout base for the fast timekeeper will be restored automatically.
650 */
halt_fast_timekeeper(const struct timekeeper * tk)651 static void halt_fast_timekeeper(const struct timekeeper *tk)
652 {
653 static struct tk_read_base tkr_dummy;
654 const struct tk_read_base *tkr = &tk->tkr_mono;
655
656 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
657 cycles_at_suspend = tk_clock_read(tkr);
658 tkr_dummy.clock = &dummy_clock;
659 tkr_dummy.base_real = tkr->base + tk->offs_real;
660 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
661
662 tkr = &tk->tkr_raw;
663 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
664 tkr_dummy.clock = &dummy_clock;
665 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
666 }
667
668 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
669
update_pvclock_gtod(struct timekeeper * tk,bool was_set)670 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
671 {
672 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
673 }
674
675 /**
676 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
677 * @nb: Pointer to the notifier block to register
678 */
pvclock_gtod_register_notifier(struct notifier_block * nb)679 int pvclock_gtod_register_notifier(struct notifier_block *nb)
680 {
681 struct timekeeper *tk = &tk_core.timekeeper;
682 unsigned long flags;
683 int ret;
684
685 raw_spin_lock_irqsave(&timekeeper_lock, flags);
686 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
687 update_pvclock_gtod(tk, true);
688 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
689
690 return ret;
691 }
692 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
693
694 /**
695 * pvclock_gtod_unregister_notifier - unregister a pvclock
696 * timedata update listener
697 * @nb: Pointer to the notifier block to unregister
698 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)699 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
700 {
701 unsigned long flags;
702 int ret;
703
704 raw_spin_lock_irqsave(&timekeeper_lock, flags);
705 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
706 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
707
708 return ret;
709 }
710 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
711
712 /*
713 * tk_update_leap_state - helper to update the next_leap_ktime
714 */
tk_update_leap_state(struct timekeeper * tk)715 static inline void tk_update_leap_state(struct timekeeper *tk)
716 {
717 tk->next_leap_ktime = ntp_get_next_leap();
718 if (tk->next_leap_ktime != KTIME_MAX)
719 /* Convert to monotonic time */
720 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
721 }
722
723 /*
724 * Update the ktime_t based scalar nsec members of the timekeeper
725 */
tk_update_ktime_data(struct timekeeper * tk)726 static inline void tk_update_ktime_data(struct timekeeper *tk)
727 {
728 u64 seconds;
729 u32 nsec;
730
731 /*
732 * The xtime based monotonic readout is:
733 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
734 * The ktime based monotonic readout is:
735 * nsec = base_mono + now();
736 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
737 */
738 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
739 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
740 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
741
742 /*
743 * The sum of the nanoseconds portions of xtime and
744 * wall_to_monotonic can be greater/equal one second. Take
745 * this into account before updating tk->ktime_sec.
746 */
747 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
748 if (nsec >= NSEC_PER_SEC)
749 seconds++;
750 tk->ktime_sec = seconds;
751
752 /* Update the monotonic raw base */
753 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
754 }
755
756 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)757 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
758 {
759 if (action & TK_CLEAR_NTP) {
760 tk->ntp_error = 0;
761 ntp_clear();
762 }
763
764 tk_update_leap_state(tk);
765 tk_update_ktime_data(tk);
766
767 update_vsyscall(tk);
768 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
769
770 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
771 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
772 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
773
774 if (action & TK_CLOCK_WAS_SET)
775 tk->clock_was_set_seq++;
776 /*
777 * The mirroring of the data to the shadow-timekeeper needs
778 * to happen last here to ensure we don't over-write the
779 * timekeeper structure on the next update with stale data
780 */
781 if (action & TK_MIRROR)
782 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
783 sizeof(tk_core.timekeeper));
784 }
785
786 /**
787 * timekeeping_forward_now - update clock to the current time
788 * @tk: Pointer to the timekeeper to update
789 *
790 * Forward the current clock to update its state since the last call to
791 * update_wall_time(). This is useful before significant clock changes,
792 * as it avoids having to deal with this time offset explicitly.
793 */
timekeeping_forward_now(struct timekeeper * tk)794 static void timekeeping_forward_now(struct timekeeper *tk)
795 {
796 u64 cycle_now, delta;
797
798 cycle_now = tk_clock_read(&tk->tkr_mono);
799 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
800 tk->tkr_mono.cycle_last = cycle_now;
801 tk->tkr_raw.cycle_last = cycle_now;
802
803 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
804 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
805
806 tk_normalize_xtime(tk);
807 }
808
809 /**
810 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
811 * @ts: pointer to the timespec to be set
812 *
813 * Returns the time of day in a timespec64 (WARN if suspended).
814 */
ktime_get_real_ts64(struct timespec64 * ts)815 void ktime_get_real_ts64(struct timespec64 *ts)
816 {
817 struct timekeeper *tk = &tk_core.timekeeper;
818 unsigned int seq;
819 u64 nsecs;
820
821 WARN_ON(timekeeping_suspended);
822
823 do {
824 seq = read_seqcount_begin(&tk_core.seq);
825
826 ts->tv_sec = tk->xtime_sec;
827 nsecs = timekeeping_get_ns(&tk->tkr_mono);
828
829 } while (read_seqcount_retry(&tk_core.seq, seq));
830
831 ts->tv_nsec = 0;
832 timespec64_add_ns(ts, nsecs);
833 }
834 EXPORT_SYMBOL(ktime_get_real_ts64);
835
ktime_get(void)836 ktime_t ktime_get(void)
837 {
838 struct timekeeper *tk = &tk_core.timekeeper;
839 unsigned int seq;
840 ktime_t base;
841 u64 nsecs;
842
843 WARN_ON(timekeeping_suspended);
844
845 do {
846 seq = read_seqcount_begin(&tk_core.seq);
847 base = tk->tkr_mono.base;
848 nsecs = timekeeping_get_ns(&tk->tkr_mono);
849
850 } while (read_seqcount_retry(&tk_core.seq, seq));
851
852 return ktime_add_ns(base, nsecs);
853 }
854 EXPORT_SYMBOL_GPL(ktime_get);
855
ktime_get_resolution_ns(void)856 u32 ktime_get_resolution_ns(void)
857 {
858 struct timekeeper *tk = &tk_core.timekeeper;
859 unsigned int seq;
860 u32 nsecs;
861
862 WARN_ON(timekeeping_suspended);
863
864 do {
865 seq = read_seqcount_begin(&tk_core.seq);
866 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
867 } while (read_seqcount_retry(&tk_core.seq, seq));
868
869 return nsecs;
870 }
871 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
872
873 static ktime_t *offsets[TK_OFFS_MAX] = {
874 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
875 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
876 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
877 };
878
ktime_get_with_offset(enum tk_offsets offs)879 ktime_t ktime_get_with_offset(enum tk_offsets offs)
880 {
881 struct timekeeper *tk = &tk_core.timekeeper;
882 unsigned int seq;
883 ktime_t base, *offset = offsets[offs];
884 u64 nsecs;
885
886 WARN_ON(timekeeping_suspended);
887
888 do {
889 seq = read_seqcount_begin(&tk_core.seq);
890 base = ktime_add(tk->tkr_mono.base, *offset);
891 nsecs = timekeeping_get_ns(&tk->tkr_mono);
892
893 } while (read_seqcount_retry(&tk_core.seq, seq));
894
895 return ktime_add_ns(base, nsecs);
896
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
899
ktime_get_coarse_with_offset(enum tk_offsets offs)900 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
901 {
902 struct timekeeper *tk = &tk_core.timekeeper;
903 unsigned int seq;
904 ktime_t base, *offset = offsets[offs];
905 u64 nsecs;
906
907 WARN_ON(timekeeping_suspended);
908
909 do {
910 seq = read_seqcount_begin(&tk_core.seq);
911 base = ktime_add(tk->tkr_mono.base, *offset);
912 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
913
914 } while (read_seqcount_retry(&tk_core.seq, seq));
915
916 return ktime_add_ns(base, nsecs);
917 }
918 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
919
920 /**
921 * ktime_mono_to_any() - convert monotonic time to any other time
922 * @tmono: time to convert.
923 * @offs: which offset to use
924 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)925 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
926 {
927 ktime_t *offset = offsets[offs];
928 unsigned int seq;
929 ktime_t tconv;
930
931 do {
932 seq = read_seqcount_begin(&tk_core.seq);
933 tconv = ktime_add(tmono, *offset);
934 } while (read_seqcount_retry(&tk_core.seq, seq));
935
936 return tconv;
937 }
938 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
939
940 /**
941 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
942 */
ktime_get_raw(void)943 ktime_t ktime_get_raw(void)
944 {
945 struct timekeeper *tk = &tk_core.timekeeper;
946 unsigned int seq;
947 ktime_t base;
948 u64 nsecs;
949
950 do {
951 seq = read_seqcount_begin(&tk_core.seq);
952 base = tk->tkr_raw.base;
953 nsecs = timekeeping_get_ns(&tk->tkr_raw);
954
955 } while (read_seqcount_retry(&tk_core.seq, seq));
956
957 return ktime_add_ns(base, nsecs);
958 }
959 EXPORT_SYMBOL_GPL(ktime_get_raw);
960
961 /**
962 * ktime_get_ts64 - get the monotonic clock in timespec64 format
963 * @ts: pointer to timespec variable
964 *
965 * The function calculates the monotonic clock from the realtime
966 * clock and the wall_to_monotonic offset and stores the result
967 * in normalized timespec64 format in the variable pointed to by @ts.
968 */
ktime_get_ts64(struct timespec64 * ts)969 void ktime_get_ts64(struct timespec64 *ts)
970 {
971 struct timekeeper *tk = &tk_core.timekeeper;
972 struct timespec64 tomono;
973 unsigned int seq;
974 u64 nsec;
975
976 WARN_ON(timekeeping_suspended);
977
978 do {
979 seq = read_seqcount_begin(&tk_core.seq);
980 ts->tv_sec = tk->xtime_sec;
981 nsec = timekeeping_get_ns(&tk->tkr_mono);
982 tomono = tk->wall_to_monotonic;
983
984 } while (read_seqcount_retry(&tk_core.seq, seq));
985
986 ts->tv_sec += tomono.tv_sec;
987 ts->tv_nsec = 0;
988 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
989 }
990 EXPORT_SYMBOL_GPL(ktime_get_ts64);
991
992 /**
993 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
994 *
995 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
996 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
997 * works on both 32 and 64 bit systems. On 32 bit systems the readout
998 * covers ~136 years of uptime which should be enough to prevent
999 * premature wrap arounds.
1000 */
ktime_get_seconds(void)1001 time64_t ktime_get_seconds(void)
1002 {
1003 struct timekeeper *tk = &tk_core.timekeeper;
1004
1005 WARN_ON(timekeeping_suspended);
1006 return tk->ktime_sec;
1007 }
1008 EXPORT_SYMBOL_GPL(ktime_get_seconds);
1009
1010 /**
1011 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1012 *
1013 * Returns the wall clock seconds since 1970.
1014 *
1015 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1016 * 32bit systems the access must be protected with the sequence
1017 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1018 * value.
1019 */
ktime_get_real_seconds(void)1020 time64_t ktime_get_real_seconds(void)
1021 {
1022 struct timekeeper *tk = &tk_core.timekeeper;
1023 time64_t seconds;
1024 unsigned int seq;
1025
1026 if (IS_ENABLED(CONFIG_64BIT))
1027 return tk->xtime_sec;
1028
1029 do {
1030 seq = read_seqcount_begin(&tk_core.seq);
1031 seconds = tk->xtime_sec;
1032
1033 } while (read_seqcount_retry(&tk_core.seq, seq));
1034
1035 return seconds;
1036 }
1037 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1038
1039 /**
1040 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1041 * but without the sequence counter protect. This internal function
1042 * is called just when timekeeping lock is already held.
1043 */
__ktime_get_real_seconds(void)1044 noinstr time64_t __ktime_get_real_seconds(void)
1045 {
1046 struct timekeeper *tk = &tk_core.timekeeper;
1047
1048 return tk->xtime_sec;
1049 }
1050
1051 /**
1052 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1053 * @systime_snapshot: pointer to struct receiving the system time snapshot
1054 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1055 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1056 {
1057 struct timekeeper *tk = &tk_core.timekeeper;
1058 u32 mono_mult, mono_shift;
1059 unsigned int seq;
1060 ktime_t base_raw;
1061 ktime_t base_real;
1062 ktime_t base_boot;
1063 u64 nsec_raw;
1064 u64 nsec_real;
1065 u64 now;
1066
1067 WARN_ON_ONCE(timekeeping_suspended);
1068
1069 do {
1070 seq = read_seqcount_begin(&tk_core.seq);
1071 now = tk_clock_read(&tk->tkr_mono);
1072 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1073 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1074 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1075 base_real = ktime_add(tk->tkr_mono.base,
1076 tk_core.timekeeper.offs_real);
1077 base_boot = ktime_add(tk->tkr_mono.base,
1078 tk_core.timekeeper.offs_boot);
1079 base_raw = tk->tkr_raw.base;
1080 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1081 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1082 mono_mult = tk->tkr_mono.mult;
1083 mono_shift = tk->tkr_mono.shift;
1084 } while (read_seqcount_retry(&tk_core.seq, seq));
1085
1086 systime_snapshot->cycles = now;
1087 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1088 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1089 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1090 systime_snapshot->mono_shift = mono_shift;
1091 systime_snapshot->mono_mult = mono_mult;
1092 }
1093 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1094
1095 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1096 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1097 {
1098 u64 tmp, rem;
1099
1100 tmp = div64_u64_rem(*base, div, &rem);
1101
1102 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1103 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1104 return -EOVERFLOW;
1105 tmp *= mult;
1106
1107 rem = div64_u64(rem * mult, div);
1108 *base = tmp + rem;
1109 return 0;
1110 }
1111
1112 /**
1113 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1114 * @history: Snapshot representing start of history
1115 * @partial_history_cycles: Cycle offset into history (fractional part)
1116 * @total_history_cycles: Total history length in cycles
1117 * @discontinuity: True indicates clock was set on history period
1118 * @ts: Cross timestamp that should be adjusted using
1119 * partial/total ratio
1120 *
1121 * Helper function used by get_device_system_crosststamp() to correct the
1122 * crosstimestamp corresponding to the start of the current interval to the
1123 * system counter value (timestamp point) provided by the driver. The
1124 * total_history_* quantities are the total history starting at the provided
1125 * reference point and ending at the start of the current interval. The cycle
1126 * count between the driver timestamp point and the start of the current
1127 * interval is partial_history_cycles.
1128 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1129 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1130 u64 partial_history_cycles,
1131 u64 total_history_cycles,
1132 bool discontinuity,
1133 struct system_device_crosststamp *ts)
1134 {
1135 struct timekeeper *tk = &tk_core.timekeeper;
1136 u64 corr_raw, corr_real;
1137 bool interp_forward;
1138 int ret;
1139
1140 if (total_history_cycles == 0 || partial_history_cycles == 0)
1141 return 0;
1142
1143 /* Interpolate shortest distance from beginning or end of history */
1144 interp_forward = partial_history_cycles > total_history_cycles / 2;
1145 partial_history_cycles = interp_forward ?
1146 total_history_cycles - partial_history_cycles :
1147 partial_history_cycles;
1148
1149 /*
1150 * Scale the monotonic raw time delta by:
1151 * partial_history_cycles / total_history_cycles
1152 */
1153 corr_raw = (u64)ktime_to_ns(
1154 ktime_sub(ts->sys_monoraw, history->raw));
1155 ret = scale64_check_overflow(partial_history_cycles,
1156 total_history_cycles, &corr_raw);
1157 if (ret)
1158 return ret;
1159
1160 /*
1161 * If there is a discontinuity in the history, scale monotonic raw
1162 * correction by:
1163 * mult(real)/mult(raw) yielding the realtime correction
1164 * Otherwise, calculate the realtime correction similar to monotonic
1165 * raw calculation
1166 */
1167 if (discontinuity) {
1168 corr_real = mul_u64_u32_div
1169 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1170 } else {
1171 corr_real = (u64)ktime_to_ns(
1172 ktime_sub(ts->sys_realtime, history->real));
1173 ret = scale64_check_overflow(partial_history_cycles,
1174 total_history_cycles, &corr_real);
1175 if (ret)
1176 return ret;
1177 }
1178
1179 /* Fixup monotonic raw and real time time values */
1180 if (interp_forward) {
1181 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1182 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1183 } else {
1184 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1185 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1186 }
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * cycle_between - true if test occurs chronologically between before and after
1193 */
cycle_between(u64 before,u64 test,u64 after)1194 static bool cycle_between(u64 before, u64 test, u64 after)
1195 {
1196 if (test > before && test < after)
1197 return true;
1198 if (test < before && before > after)
1199 return true;
1200 return false;
1201 }
1202
1203 /**
1204 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1205 * @get_time_fn: Callback to get simultaneous device time and
1206 * system counter from the device driver
1207 * @ctx: Context passed to get_time_fn()
1208 * @history_begin: Historical reference point used to interpolate system
1209 * time when counter provided by the driver is before the current interval
1210 * @xtstamp: Receives simultaneously captured system and device time
1211 *
1212 * Reads a timestamp from a device and correlates it to system time
1213 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1214 int get_device_system_crosststamp(int (*get_time_fn)
1215 (ktime_t *device_time,
1216 struct system_counterval_t *sys_counterval,
1217 void *ctx),
1218 void *ctx,
1219 struct system_time_snapshot *history_begin,
1220 struct system_device_crosststamp *xtstamp)
1221 {
1222 struct system_counterval_t system_counterval;
1223 struct timekeeper *tk = &tk_core.timekeeper;
1224 u64 cycles, now, interval_start;
1225 unsigned int clock_was_set_seq = 0;
1226 ktime_t base_real, base_raw;
1227 u64 nsec_real, nsec_raw;
1228 u8 cs_was_changed_seq;
1229 unsigned int seq;
1230 bool do_interp;
1231 int ret;
1232
1233 do {
1234 seq = read_seqcount_begin(&tk_core.seq);
1235 /*
1236 * Try to synchronously capture device time and a system
1237 * counter value calling back into the device driver
1238 */
1239 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1240 if (ret)
1241 return ret;
1242
1243 /*
1244 * Verify that the clocksource associated with the captured
1245 * system counter value is the same as the currently installed
1246 * timekeeper clocksource
1247 */
1248 if (tk->tkr_mono.clock != system_counterval.cs)
1249 return -ENODEV;
1250 cycles = system_counterval.cycles;
1251
1252 /*
1253 * Check whether the system counter value provided by the
1254 * device driver is on the current timekeeping interval.
1255 */
1256 now = tk_clock_read(&tk->tkr_mono);
1257 interval_start = tk->tkr_mono.cycle_last;
1258 if (!cycle_between(interval_start, cycles, now)) {
1259 clock_was_set_seq = tk->clock_was_set_seq;
1260 cs_was_changed_seq = tk->cs_was_changed_seq;
1261 cycles = interval_start;
1262 do_interp = true;
1263 } else {
1264 do_interp = false;
1265 }
1266
1267 base_real = ktime_add(tk->tkr_mono.base,
1268 tk_core.timekeeper.offs_real);
1269 base_raw = tk->tkr_raw.base;
1270
1271 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1272 system_counterval.cycles);
1273 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1274 system_counterval.cycles);
1275 } while (read_seqcount_retry(&tk_core.seq, seq));
1276
1277 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1278 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1279
1280 /*
1281 * Interpolate if necessary, adjusting back from the start of the
1282 * current interval
1283 */
1284 if (do_interp) {
1285 u64 partial_history_cycles, total_history_cycles;
1286 bool discontinuity;
1287
1288 /*
1289 * Check that the counter value occurs after the provided
1290 * history reference and that the history doesn't cross a
1291 * clocksource change
1292 */
1293 if (!history_begin ||
1294 !cycle_between(history_begin->cycles,
1295 system_counterval.cycles, cycles) ||
1296 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1297 return -EINVAL;
1298 partial_history_cycles = cycles - system_counterval.cycles;
1299 total_history_cycles = cycles - history_begin->cycles;
1300 discontinuity =
1301 history_begin->clock_was_set_seq != clock_was_set_seq;
1302
1303 ret = adjust_historical_crosststamp(history_begin,
1304 partial_history_cycles,
1305 total_history_cycles,
1306 discontinuity, xtstamp);
1307 if (ret)
1308 return ret;
1309 }
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1314
1315 /**
1316 * do_settimeofday64 - Sets the time of day.
1317 * @ts: pointer to the timespec64 variable containing the new time
1318 *
1319 * Sets the time of day to the new time and update NTP and notify hrtimers
1320 */
do_settimeofday64(const struct timespec64 * ts)1321 int do_settimeofday64(const struct timespec64 *ts)
1322 {
1323 struct timekeeper *tk = &tk_core.timekeeper;
1324 struct timespec64 ts_delta, xt;
1325 unsigned long flags;
1326 int ret = 0;
1327
1328 if (!timespec64_valid_settod(ts))
1329 return -EINVAL;
1330
1331 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1332 write_seqcount_begin(&tk_core.seq);
1333
1334 timekeeping_forward_now(tk);
1335
1336 xt = tk_xtime(tk);
1337 ts_delta = timespec64_sub(*ts, xt);
1338
1339 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1340 ret = -EINVAL;
1341 goto out;
1342 }
1343
1344 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1345
1346 tk_set_xtime(tk, ts);
1347 out:
1348 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1349
1350 write_seqcount_end(&tk_core.seq);
1351 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1352
1353 /* Signal hrtimers about time change */
1354 clock_was_set(CLOCK_SET_WALL);
1355
1356 if (!ret) {
1357 audit_tk_injoffset(ts_delta);
1358 add_device_randomness(ts, sizeof(*ts));
1359 }
1360
1361 return ret;
1362 }
1363 EXPORT_SYMBOL(do_settimeofday64);
1364
1365 /**
1366 * timekeeping_inject_offset - Adds or subtracts from the current time.
1367 * @ts: Pointer to the timespec variable containing the offset
1368 *
1369 * Adds or subtracts an offset value from the current time.
1370 */
timekeeping_inject_offset(const struct timespec64 * ts)1371 static int timekeeping_inject_offset(const struct timespec64 *ts)
1372 {
1373 struct timekeeper *tk = &tk_core.timekeeper;
1374 unsigned long flags;
1375 struct timespec64 tmp;
1376 int ret = 0;
1377
1378 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1379 return -EINVAL;
1380
1381 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1382 write_seqcount_begin(&tk_core.seq);
1383
1384 timekeeping_forward_now(tk);
1385
1386 /* Make sure the proposed value is valid */
1387 tmp = timespec64_add(tk_xtime(tk), *ts);
1388 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1389 !timespec64_valid_settod(&tmp)) {
1390 ret = -EINVAL;
1391 goto error;
1392 }
1393
1394 tk_xtime_add(tk, ts);
1395 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1396
1397 error: /* even if we error out, we forwarded the time, so call update */
1398 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1399
1400 write_seqcount_end(&tk_core.seq);
1401 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1402
1403 /* Signal hrtimers about time change */
1404 clock_was_set(CLOCK_SET_WALL);
1405
1406 return ret;
1407 }
1408
1409 /*
1410 * Indicates if there is an offset between the system clock and the hardware
1411 * clock/persistent clock/rtc.
1412 */
1413 int persistent_clock_is_local;
1414
1415 /*
1416 * Adjust the time obtained from the CMOS to be UTC time instead of
1417 * local time.
1418 *
1419 * This is ugly, but preferable to the alternatives. Otherwise we
1420 * would either need to write a program to do it in /etc/rc (and risk
1421 * confusion if the program gets run more than once; it would also be
1422 * hard to make the program warp the clock precisely n hours) or
1423 * compile in the timezone information into the kernel. Bad, bad....
1424 *
1425 * - TYT, 1992-01-01
1426 *
1427 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1428 * as real UNIX machines always do it. This avoids all headaches about
1429 * daylight saving times and warping kernel clocks.
1430 */
timekeeping_warp_clock(void)1431 void timekeeping_warp_clock(void)
1432 {
1433 if (sys_tz.tz_minuteswest != 0) {
1434 struct timespec64 adjust;
1435
1436 persistent_clock_is_local = 1;
1437 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1438 adjust.tv_nsec = 0;
1439 timekeeping_inject_offset(&adjust);
1440 }
1441 }
1442
1443 /*
1444 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1445 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1446 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1447 {
1448 tk->tai_offset = tai_offset;
1449 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1450 }
1451
1452 /*
1453 * change_clocksource - Swaps clocksources if a new one is available
1454 *
1455 * Accumulates current time interval and initializes new clocksource
1456 */
change_clocksource(void * data)1457 static int change_clocksource(void *data)
1458 {
1459 struct timekeeper *tk = &tk_core.timekeeper;
1460 struct clocksource *new, *old = NULL;
1461 unsigned long flags;
1462 bool change = false;
1463
1464 new = (struct clocksource *) data;
1465
1466 /*
1467 * If the cs is in module, get a module reference. Succeeds
1468 * for built-in code (owner == NULL) as well.
1469 */
1470 if (try_module_get(new->owner)) {
1471 if (!new->enable || new->enable(new) == 0)
1472 change = true;
1473 else
1474 module_put(new->owner);
1475 }
1476
1477 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1478 write_seqcount_begin(&tk_core.seq);
1479
1480 timekeeping_forward_now(tk);
1481
1482 if (change) {
1483 old = tk->tkr_mono.clock;
1484 tk_setup_internals(tk, new);
1485 }
1486
1487 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1488
1489 write_seqcount_end(&tk_core.seq);
1490 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1491
1492 if (old) {
1493 if (old->disable)
1494 old->disable(old);
1495
1496 module_put(old->owner);
1497 }
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * timekeeping_notify - Install a new clock source
1504 * @clock: pointer to the clock source
1505 *
1506 * This function is called from clocksource.c after a new, better clock
1507 * source has been registered. The caller holds the clocksource_mutex.
1508 */
timekeeping_notify(struct clocksource * clock)1509 int timekeeping_notify(struct clocksource *clock)
1510 {
1511 struct timekeeper *tk = &tk_core.timekeeper;
1512
1513 if (tk->tkr_mono.clock == clock)
1514 return 0;
1515 stop_machine(change_clocksource, clock, NULL);
1516 tick_clock_notify();
1517 return tk->tkr_mono.clock == clock ? 0 : -1;
1518 }
1519
1520 /**
1521 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1522 * @ts: pointer to the timespec64 to be set
1523 *
1524 * Returns the raw monotonic time (completely un-modified by ntp)
1525 */
ktime_get_raw_ts64(struct timespec64 * ts)1526 void ktime_get_raw_ts64(struct timespec64 *ts)
1527 {
1528 struct timekeeper *tk = &tk_core.timekeeper;
1529 unsigned int seq;
1530 u64 nsecs;
1531
1532 do {
1533 seq = read_seqcount_begin(&tk_core.seq);
1534 ts->tv_sec = tk->raw_sec;
1535 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1536
1537 } while (read_seqcount_retry(&tk_core.seq, seq));
1538
1539 ts->tv_nsec = 0;
1540 timespec64_add_ns(ts, nsecs);
1541 }
1542 EXPORT_SYMBOL(ktime_get_raw_ts64);
1543
1544
1545 /**
1546 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1547 */
timekeeping_valid_for_hres(void)1548 int timekeeping_valid_for_hres(void)
1549 {
1550 struct timekeeper *tk = &tk_core.timekeeper;
1551 unsigned int seq;
1552 int ret;
1553
1554 do {
1555 seq = read_seqcount_begin(&tk_core.seq);
1556
1557 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1558
1559 } while (read_seqcount_retry(&tk_core.seq, seq));
1560
1561 return ret;
1562 }
1563
1564 /**
1565 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1566 */
timekeeping_max_deferment(void)1567 u64 timekeeping_max_deferment(void)
1568 {
1569 struct timekeeper *tk = &tk_core.timekeeper;
1570 unsigned int seq;
1571 u64 ret;
1572
1573 do {
1574 seq = read_seqcount_begin(&tk_core.seq);
1575
1576 ret = tk->tkr_mono.clock->max_idle_ns;
1577
1578 } while (read_seqcount_retry(&tk_core.seq, seq));
1579
1580 return ret;
1581 }
1582
1583 /**
1584 * read_persistent_clock64 - Return time from the persistent clock.
1585 * @ts: Pointer to the storage for the readout value
1586 *
1587 * Weak dummy function for arches that do not yet support it.
1588 * Reads the time from the battery backed persistent clock.
1589 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1590 *
1591 * XXX - Do be sure to remove it once all arches implement it.
1592 */
read_persistent_clock64(struct timespec64 * ts)1593 void __weak read_persistent_clock64(struct timespec64 *ts)
1594 {
1595 ts->tv_sec = 0;
1596 ts->tv_nsec = 0;
1597 }
1598
1599 /**
1600 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1601 * from the boot.
1602 *
1603 * Weak dummy function for arches that do not yet support it.
1604 * @wall_time: - current time as returned by persistent clock
1605 * @boot_offset: - offset that is defined as wall_time - boot_time
1606 *
1607 * The default function calculates offset based on the current value of
1608 * local_clock(). This way architectures that support sched_clock() but don't
1609 * support dedicated boot time clock will provide the best estimate of the
1610 * boot time.
1611 */
1612 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1613 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1614 struct timespec64 *boot_offset)
1615 {
1616 read_persistent_clock64(wall_time);
1617 *boot_offset = ns_to_timespec64(local_clock());
1618 }
1619
1620 /*
1621 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1622 *
1623 * The flag starts of false and is only set when a suspend reaches
1624 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1625 * timekeeper clocksource is not stopping across suspend and has been
1626 * used to update sleep time. If the timekeeper clocksource has stopped
1627 * then the flag stays true and is used by the RTC resume code to decide
1628 * whether sleeptime must be injected and if so the flag gets false then.
1629 *
1630 * If a suspend fails before reaching timekeeping_resume() then the flag
1631 * stays false and prevents erroneous sleeptime injection.
1632 */
1633 static bool suspend_timing_needed;
1634
1635 /* Flag for if there is a persistent clock on this platform */
1636 static bool persistent_clock_exists;
1637
1638 /*
1639 * timekeeping_init - Initializes the clocksource and common timekeeping values
1640 */
timekeeping_init(void)1641 void __init timekeeping_init(void)
1642 {
1643 struct timespec64 wall_time, boot_offset, wall_to_mono;
1644 struct timekeeper *tk = &tk_core.timekeeper;
1645 struct clocksource *clock;
1646 unsigned long flags;
1647
1648 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1649 if (timespec64_valid_settod(&wall_time) &&
1650 timespec64_to_ns(&wall_time) > 0) {
1651 persistent_clock_exists = true;
1652 } else if (timespec64_to_ns(&wall_time) != 0) {
1653 pr_warn("Persistent clock returned invalid value");
1654 wall_time = (struct timespec64){0};
1655 }
1656
1657 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1658 boot_offset = (struct timespec64){0};
1659
1660 /*
1661 * We want set wall_to_mono, so the following is true:
1662 * wall time + wall_to_mono = boot time
1663 */
1664 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1665
1666 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1667 write_seqcount_begin(&tk_core.seq);
1668 ntp_init();
1669
1670 clock = clocksource_default_clock();
1671 if (clock->enable)
1672 clock->enable(clock);
1673 tk_setup_internals(tk, clock);
1674
1675 tk_set_xtime(tk, &wall_time);
1676 tk->raw_sec = 0;
1677
1678 tk_set_wall_to_mono(tk, wall_to_mono);
1679
1680 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1681
1682 write_seqcount_end(&tk_core.seq);
1683 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684 }
1685
1686 /* time in seconds when suspend began for persistent clock */
1687 static struct timespec64 timekeeping_suspend_time;
1688
1689 /**
1690 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1691 * @tk: Pointer to the timekeeper to be updated
1692 * @delta: Pointer to the delta value in timespec64 format
1693 *
1694 * Takes a timespec offset measuring a suspend interval and properly
1695 * adds the sleep offset to the timekeeping variables.
1696 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1697 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1698 const struct timespec64 *delta)
1699 {
1700 if (!timespec64_valid_strict(delta)) {
1701 printk_deferred(KERN_WARNING
1702 "__timekeeping_inject_sleeptime: Invalid "
1703 "sleep delta value!\n");
1704 return;
1705 }
1706 tk_xtime_add(tk, delta);
1707 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1708 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1709 tk_debug_account_sleep_time(delta);
1710 }
1711
1712 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1713 /**
1714 * We have three kinds of time sources to use for sleep time
1715 * injection, the preference order is:
1716 * 1) non-stop clocksource
1717 * 2) persistent clock (ie: RTC accessible when irqs are off)
1718 * 3) RTC
1719 *
1720 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1721 * If system has neither 1) nor 2), 3) will be used finally.
1722 *
1723 *
1724 * If timekeeping has injected sleeptime via either 1) or 2),
1725 * 3) becomes needless, so in this case we don't need to call
1726 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1727 * means.
1728 */
timekeeping_rtc_skipresume(void)1729 bool timekeeping_rtc_skipresume(void)
1730 {
1731 return !suspend_timing_needed;
1732 }
1733
1734 /**
1735 * 1) can be determined whether to use or not only when doing
1736 * timekeeping_resume() which is invoked after rtc_suspend(),
1737 * so we can't skip rtc_suspend() surely if system has 1).
1738 *
1739 * But if system has 2), 2) will definitely be used, so in this
1740 * case we don't need to call rtc_suspend(), and this is what
1741 * timekeeping_rtc_skipsuspend() means.
1742 */
timekeeping_rtc_skipsuspend(void)1743 bool timekeeping_rtc_skipsuspend(void)
1744 {
1745 return persistent_clock_exists;
1746 }
1747
1748 /**
1749 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1750 * @delta: pointer to a timespec64 delta value
1751 *
1752 * This hook is for architectures that cannot support read_persistent_clock64
1753 * because their RTC/persistent clock is only accessible when irqs are enabled.
1754 * and also don't have an effective nonstop clocksource.
1755 *
1756 * This function should only be called by rtc_resume(), and allows
1757 * a suspend offset to be injected into the timekeeping values.
1758 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1759 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1760 {
1761 struct timekeeper *tk = &tk_core.timekeeper;
1762 unsigned long flags;
1763
1764 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1765 write_seqcount_begin(&tk_core.seq);
1766
1767 suspend_timing_needed = false;
1768
1769 timekeeping_forward_now(tk);
1770
1771 __timekeeping_inject_sleeptime(tk, delta);
1772
1773 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1774
1775 write_seqcount_end(&tk_core.seq);
1776 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1777
1778 /* Signal hrtimers about time change */
1779 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1780 }
1781 #endif
1782
1783 /**
1784 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1785 */
timekeeping_resume(void)1786 void timekeeping_resume(void)
1787 {
1788 struct timekeeper *tk = &tk_core.timekeeper;
1789 struct clocksource *clock = tk->tkr_mono.clock;
1790 unsigned long flags;
1791 struct timespec64 ts_new, ts_delta;
1792 u64 cycle_now, nsec;
1793 bool inject_sleeptime = false;
1794
1795 read_persistent_clock64(&ts_new);
1796
1797 clockevents_resume();
1798 clocksource_resume();
1799
1800 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1801 write_seqcount_begin(&tk_core.seq);
1802
1803 /*
1804 * After system resumes, we need to calculate the suspended time and
1805 * compensate it for the OS time. There are 3 sources that could be
1806 * used: Nonstop clocksource during suspend, persistent clock and rtc
1807 * device.
1808 *
1809 * One specific platform may have 1 or 2 or all of them, and the
1810 * preference will be:
1811 * suspend-nonstop clocksource -> persistent clock -> rtc
1812 * The less preferred source will only be tried if there is no better
1813 * usable source. The rtc part is handled separately in rtc core code.
1814 */
1815 cycle_now = tk_clock_read(&tk->tkr_mono);
1816 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1817 if (nsec > 0) {
1818 ts_delta = ns_to_timespec64(nsec);
1819 inject_sleeptime = true;
1820 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1821 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1822 inject_sleeptime = true;
1823 }
1824
1825 if (inject_sleeptime) {
1826 suspend_timing_needed = false;
1827 __timekeeping_inject_sleeptime(tk, &ts_delta);
1828 }
1829
1830 /* Re-base the last cycle value */
1831 tk->tkr_mono.cycle_last = cycle_now;
1832 tk->tkr_raw.cycle_last = cycle_now;
1833
1834 tk->ntp_error = 0;
1835 timekeeping_suspended = 0;
1836 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1837 write_seqcount_end(&tk_core.seq);
1838 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1839
1840 touch_softlockup_watchdog();
1841
1842 /* Resume the clockevent device(s) and hrtimers */
1843 tick_resume();
1844 /* Notify timerfd as resume is equivalent to clock_was_set() */
1845 timerfd_resume();
1846 }
1847
timekeeping_suspend(void)1848 int timekeeping_suspend(void)
1849 {
1850 struct timekeeper *tk = &tk_core.timekeeper;
1851 unsigned long flags;
1852 struct timespec64 delta, delta_delta;
1853 static struct timespec64 old_delta;
1854 struct clocksource *curr_clock;
1855 u64 cycle_now;
1856
1857 read_persistent_clock64(&timekeeping_suspend_time);
1858
1859 /*
1860 * On some systems the persistent_clock can not be detected at
1861 * timekeeping_init by its return value, so if we see a valid
1862 * value returned, update the persistent_clock_exists flag.
1863 */
1864 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1865 persistent_clock_exists = true;
1866
1867 suspend_timing_needed = true;
1868
1869 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1870 write_seqcount_begin(&tk_core.seq);
1871 timekeeping_forward_now(tk);
1872 timekeeping_suspended = 1;
1873
1874 /*
1875 * Since we've called forward_now, cycle_last stores the value
1876 * just read from the current clocksource. Save this to potentially
1877 * use in suspend timing.
1878 */
1879 curr_clock = tk->tkr_mono.clock;
1880 cycle_now = tk->tkr_mono.cycle_last;
1881 clocksource_start_suspend_timing(curr_clock, cycle_now);
1882
1883 if (persistent_clock_exists) {
1884 /*
1885 * To avoid drift caused by repeated suspend/resumes,
1886 * which each can add ~1 second drift error,
1887 * try to compensate so the difference in system time
1888 * and persistent_clock time stays close to constant.
1889 */
1890 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1891 delta_delta = timespec64_sub(delta, old_delta);
1892 if (abs(delta_delta.tv_sec) >= 2) {
1893 /*
1894 * if delta_delta is too large, assume time correction
1895 * has occurred and set old_delta to the current delta.
1896 */
1897 old_delta = delta;
1898 } else {
1899 /* Otherwise try to adjust old_system to compensate */
1900 timekeeping_suspend_time =
1901 timespec64_add(timekeeping_suspend_time, delta_delta);
1902 }
1903 }
1904
1905 timekeeping_update(tk, TK_MIRROR);
1906 halt_fast_timekeeper(tk);
1907 write_seqcount_end(&tk_core.seq);
1908 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1909
1910 tick_suspend();
1911 clocksource_suspend();
1912 clockevents_suspend();
1913
1914 return 0;
1915 }
1916
1917 /* sysfs resume/suspend bits for timekeeping */
1918 static struct syscore_ops timekeeping_syscore_ops = {
1919 .resume = timekeeping_resume,
1920 .suspend = timekeeping_suspend,
1921 };
1922
timekeeping_init_ops(void)1923 static int __init timekeeping_init_ops(void)
1924 {
1925 register_syscore_ops(&timekeeping_syscore_ops);
1926 return 0;
1927 }
1928 device_initcall(timekeeping_init_ops);
1929
1930 /*
1931 * Apply a multiplier adjustment to the timekeeper
1932 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1933 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1934 s64 offset,
1935 s32 mult_adj)
1936 {
1937 s64 interval = tk->cycle_interval;
1938
1939 if (mult_adj == 0) {
1940 return;
1941 } else if (mult_adj == -1) {
1942 interval = -interval;
1943 offset = -offset;
1944 } else if (mult_adj != 1) {
1945 interval *= mult_adj;
1946 offset *= mult_adj;
1947 }
1948
1949 /*
1950 * So the following can be confusing.
1951 *
1952 * To keep things simple, lets assume mult_adj == 1 for now.
1953 *
1954 * When mult_adj != 1, remember that the interval and offset values
1955 * have been appropriately scaled so the math is the same.
1956 *
1957 * The basic idea here is that we're increasing the multiplier
1958 * by one, this causes the xtime_interval to be incremented by
1959 * one cycle_interval. This is because:
1960 * xtime_interval = cycle_interval * mult
1961 * So if mult is being incremented by one:
1962 * xtime_interval = cycle_interval * (mult + 1)
1963 * Its the same as:
1964 * xtime_interval = (cycle_interval * mult) + cycle_interval
1965 * Which can be shortened to:
1966 * xtime_interval += cycle_interval
1967 *
1968 * So offset stores the non-accumulated cycles. Thus the current
1969 * time (in shifted nanoseconds) is:
1970 * now = (offset * adj) + xtime_nsec
1971 * Now, even though we're adjusting the clock frequency, we have
1972 * to keep time consistent. In other words, we can't jump back
1973 * in time, and we also want to avoid jumping forward in time.
1974 *
1975 * So given the same offset value, we need the time to be the same
1976 * both before and after the freq adjustment.
1977 * now = (offset * adj_1) + xtime_nsec_1
1978 * now = (offset * adj_2) + xtime_nsec_2
1979 * So:
1980 * (offset * adj_1) + xtime_nsec_1 =
1981 * (offset * adj_2) + xtime_nsec_2
1982 * And we know:
1983 * adj_2 = adj_1 + 1
1984 * So:
1985 * (offset * adj_1) + xtime_nsec_1 =
1986 * (offset * (adj_1+1)) + xtime_nsec_2
1987 * (offset * adj_1) + xtime_nsec_1 =
1988 * (offset * adj_1) + offset + xtime_nsec_2
1989 * Canceling the sides:
1990 * xtime_nsec_1 = offset + xtime_nsec_2
1991 * Which gives us:
1992 * xtime_nsec_2 = xtime_nsec_1 - offset
1993 * Which simplifies to:
1994 * xtime_nsec -= offset
1995 */
1996 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1997 /* NTP adjustment caused clocksource mult overflow */
1998 WARN_ON_ONCE(1);
1999 return;
2000 }
2001
2002 tk->tkr_mono.mult += mult_adj;
2003 tk->xtime_interval += interval;
2004 tk->tkr_mono.xtime_nsec -= offset;
2005 }
2006
2007 /*
2008 * Adjust the timekeeper's multiplier to the correct frequency
2009 * and also to reduce the accumulated error value.
2010 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2011 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2012 {
2013 u32 mult;
2014
2015 /*
2016 * Determine the multiplier from the current NTP tick length.
2017 * Avoid expensive division when the tick length doesn't change.
2018 */
2019 if (likely(tk->ntp_tick == ntp_tick_length())) {
2020 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2021 } else {
2022 tk->ntp_tick = ntp_tick_length();
2023 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2024 tk->xtime_remainder, tk->cycle_interval);
2025 }
2026
2027 /*
2028 * If the clock is behind the NTP time, increase the multiplier by 1
2029 * to catch up with it. If it's ahead and there was a remainder in the
2030 * tick division, the clock will slow down. Otherwise it will stay
2031 * ahead until the tick length changes to a non-divisible value.
2032 */
2033 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2034 mult += tk->ntp_err_mult;
2035
2036 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2037
2038 if (unlikely(tk->tkr_mono.clock->maxadj &&
2039 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2040 > tk->tkr_mono.clock->maxadj))) {
2041 printk_once(KERN_WARNING
2042 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2043 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2044 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2045 }
2046
2047 /*
2048 * It may be possible that when we entered this function, xtime_nsec
2049 * was very small. Further, if we're slightly speeding the clocksource
2050 * in the code above, its possible the required corrective factor to
2051 * xtime_nsec could cause it to underflow.
2052 *
2053 * Now, since we have already accumulated the second and the NTP
2054 * subsystem has been notified via second_overflow(), we need to skip
2055 * the next update.
2056 */
2057 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2058 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2059 tk->tkr_mono.shift;
2060 tk->xtime_sec--;
2061 tk->skip_second_overflow = 1;
2062 }
2063 }
2064
2065 /*
2066 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2067 *
2068 * Helper function that accumulates the nsecs greater than a second
2069 * from the xtime_nsec field to the xtime_secs field.
2070 * It also calls into the NTP code to handle leapsecond processing.
2071 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2072 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2073 {
2074 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2075 unsigned int clock_set = 0;
2076
2077 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2078 int leap;
2079
2080 tk->tkr_mono.xtime_nsec -= nsecps;
2081 tk->xtime_sec++;
2082
2083 /*
2084 * Skip NTP update if this second was accumulated before,
2085 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2086 */
2087 if (unlikely(tk->skip_second_overflow)) {
2088 tk->skip_second_overflow = 0;
2089 continue;
2090 }
2091
2092 /* Figure out if its a leap sec and apply if needed */
2093 leap = second_overflow(tk->xtime_sec);
2094 if (unlikely(leap)) {
2095 struct timespec64 ts;
2096
2097 tk->xtime_sec += leap;
2098
2099 ts.tv_sec = leap;
2100 ts.tv_nsec = 0;
2101 tk_set_wall_to_mono(tk,
2102 timespec64_sub(tk->wall_to_monotonic, ts));
2103
2104 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2105
2106 clock_set = TK_CLOCK_WAS_SET;
2107 }
2108 }
2109 return clock_set;
2110 }
2111
2112 /*
2113 * logarithmic_accumulation - shifted accumulation of cycles
2114 *
2115 * This functions accumulates a shifted interval of cycles into
2116 * a shifted interval nanoseconds. Allows for O(log) accumulation
2117 * loop.
2118 *
2119 * Returns the unconsumed cycles.
2120 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2121 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2122 u32 shift, unsigned int *clock_set)
2123 {
2124 u64 interval = tk->cycle_interval << shift;
2125 u64 snsec_per_sec;
2126
2127 /* If the offset is smaller than a shifted interval, do nothing */
2128 if (offset < interval)
2129 return offset;
2130
2131 /* Accumulate one shifted interval */
2132 offset -= interval;
2133 tk->tkr_mono.cycle_last += interval;
2134 tk->tkr_raw.cycle_last += interval;
2135
2136 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2137 *clock_set |= accumulate_nsecs_to_secs(tk);
2138
2139 /* Accumulate raw time */
2140 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2141 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2142 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2143 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2144 tk->raw_sec++;
2145 }
2146
2147 /* Accumulate error between NTP and clock interval */
2148 tk->ntp_error += tk->ntp_tick << shift;
2149 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2150 (tk->ntp_error_shift + shift);
2151
2152 return offset;
2153 }
2154
2155 /*
2156 * timekeeping_advance - Updates the timekeeper to the current time and
2157 * current NTP tick length
2158 */
timekeeping_advance(enum timekeeping_adv_mode mode)2159 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2160 {
2161 struct timekeeper *real_tk = &tk_core.timekeeper;
2162 struct timekeeper *tk = &shadow_timekeeper;
2163 u64 offset;
2164 int shift = 0, maxshift;
2165 unsigned int clock_set = 0;
2166 unsigned long flags;
2167
2168 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2169
2170 /* Make sure we're fully resumed: */
2171 if (unlikely(timekeeping_suspended))
2172 goto out;
2173
2174 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2175 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2176
2177 /* Check if there's really nothing to do */
2178 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2179 goto out;
2180
2181 /* Do some additional sanity checking */
2182 timekeeping_check_update(tk, offset);
2183
2184 /*
2185 * With NO_HZ we may have to accumulate many cycle_intervals
2186 * (think "ticks") worth of time at once. To do this efficiently,
2187 * we calculate the largest doubling multiple of cycle_intervals
2188 * that is smaller than the offset. We then accumulate that
2189 * chunk in one go, and then try to consume the next smaller
2190 * doubled multiple.
2191 */
2192 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2193 shift = max(0, shift);
2194 /* Bound shift to one less than what overflows tick_length */
2195 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2196 shift = min(shift, maxshift);
2197 while (offset >= tk->cycle_interval) {
2198 offset = logarithmic_accumulation(tk, offset, shift,
2199 &clock_set);
2200 if (offset < tk->cycle_interval<<shift)
2201 shift--;
2202 }
2203
2204 /* Adjust the multiplier to correct NTP error */
2205 timekeeping_adjust(tk, offset);
2206
2207 /*
2208 * Finally, make sure that after the rounding
2209 * xtime_nsec isn't larger than NSEC_PER_SEC
2210 */
2211 clock_set |= accumulate_nsecs_to_secs(tk);
2212
2213 write_seqcount_begin(&tk_core.seq);
2214 /*
2215 * Update the real timekeeper.
2216 *
2217 * We could avoid this memcpy by switching pointers, but that
2218 * requires changes to all other timekeeper usage sites as
2219 * well, i.e. move the timekeeper pointer getter into the
2220 * spinlocked/seqcount protected sections. And we trade this
2221 * memcpy under the tk_core.seq against one before we start
2222 * updating.
2223 */
2224 timekeeping_update(tk, clock_set);
2225 memcpy(real_tk, tk, sizeof(*tk));
2226 /* The memcpy must come last. Do not put anything here! */
2227 write_seqcount_end(&tk_core.seq);
2228 out:
2229 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2230
2231 return !!clock_set;
2232 }
2233
2234 /**
2235 * update_wall_time - Uses the current clocksource to increment the wall time
2236 *
2237 */
update_wall_time(void)2238 void update_wall_time(void)
2239 {
2240 if (timekeeping_advance(TK_ADV_TICK))
2241 clock_was_set_delayed();
2242 }
2243
2244 /**
2245 * getboottime64 - Return the real time of system boot.
2246 * @ts: pointer to the timespec64 to be set
2247 *
2248 * Returns the wall-time of boot in a timespec64.
2249 *
2250 * This is based on the wall_to_monotonic offset and the total suspend
2251 * time. Calls to settimeofday will affect the value returned (which
2252 * basically means that however wrong your real time clock is at boot time,
2253 * you get the right time here).
2254 */
getboottime64(struct timespec64 * ts)2255 void getboottime64(struct timespec64 *ts)
2256 {
2257 struct timekeeper *tk = &tk_core.timekeeper;
2258 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2259
2260 *ts = ktime_to_timespec64(t);
2261 }
2262 EXPORT_SYMBOL_GPL(getboottime64);
2263
ktime_get_coarse_real_ts64(struct timespec64 * ts)2264 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2265 {
2266 struct timekeeper *tk = &tk_core.timekeeper;
2267 unsigned int seq;
2268
2269 do {
2270 seq = read_seqcount_begin(&tk_core.seq);
2271
2272 *ts = tk_xtime(tk);
2273 } while (read_seqcount_retry(&tk_core.seq, seq));
2274 }
2275 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2276
ktime_get_coarse_ts64(struct timespec64 * ts)2277 void ktime_get_coarse_ts64(struct timespec64 *ts)
2278 {
2279 struct timekeeper *tk = &tk_core.timekeeper;
2280 struct timespec64 now, mono;
2281 unsigned int seq;
2282
2283 do {
2284 seq = read_seqcount_begin(&tk_core.seq);
2285
2286 now = tk_xtime(tk);
2287 mono = tk->wall_to_monotonic;
2288 } while (read_seqcount_retry(&tk_core.seq, seq));
2289
2290 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2291 now.tv_nsec + mono.tv_nsec);
2292 }
2293 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2294
2295 /*
2296 * Must hold jiffies_lock
2297 */
do_timer(unsigned long ticks)2298 void do_timer(unsigned long ticks)
2299 {
2300 jiffies_64 += ticks;
2301 calc_global_load();
2302 }
2303
2304 /**
2305 * ktime_get_update_offsets_now - hrtimer helper
2306 * @cwsseq: pointer to check and store the clock was set sequence number
2307 * @offs_real: pointer to storage for monotonic -> realtime offset
2308 * @offs_boot: pointer to storage for monotonic -> boottime offset
2309 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2310 *
2311 * Returns current monotonic time and updates the offsets if the
2312 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2313 * different.
2314 *
2315 * Called from hrtimer_interrupt() or retrigger_next_event()
2316 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2317 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2318 ktime_t *offs_boot, ktime_t *offs_tai)
2319 {
2320 struct timekeeper *tk = &tk_core.timekeeper;
2321 unsigned int seq;
2322 ktime_t base;
2323 u64 nsecs;
2324
2325 do {
2326 seq = read_seqcount_begin(&tk_core.seq);
2327
2328 base = tk->tkr_mono.base;
2329 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2330 base = ktime_add_ns(base, nsecs);
2331
2332 if (*cwsseq != tk->clock_was_set_seq) {
2333 *cwsseq = tk->clock_was_set_seq;
2334 *offs_real = tk->offs_real;
2335 *offs_boot = tk->offs_boot;
2336 *offs_tai = tk->offs_tai;
2337 }
2338
2339 /* Handle leapsecond insertion adjustments */
2340 if (unlikely(base >= tk->next_leap_ktime))
2341 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2342
2343 } while (read_seqcount_retry(&tk_core.seq, seq));
2344
2345 return base;
2346 }
2347
2348 /*
2349 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2350 */
timekeeping_validate_timex(const struct __kernel_timex * txc)2351 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2352 {
2353 if (txc->modes & ADJ_ADJTIME) {
2354 /* singleshot must not be used with any other mode bits */
2355 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2356 return -EINVAL;
2357 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2358 !capable(CAP_SYS_TIME))
2359 return -EPERM;
2360 } else {
2361 /* In order to modify anything, you gotta be super-user! */
2362 if (txc->modes && !capable(CAP_SYS_TIME))
2363 return -EPERM;
2364 /*
2365 * if the quartz is off by more than 10% then
2366 * something is VERY wrong!
2367 */
2368 if (txc->modes & ADJ_TICK &&
2369 (txc->tick < 900000/USER_HZ ||
2370 txc->tick > 1100000/USER_HZ))
2371 return -EINVAL;
2372 }
2373
2374 if (txc->modes & ADJ_SETOFFSET) {
2375 /* In order to inject time, you gotta be super-user! */
2376 if (!capable(CAP_SYS_TIME))
2377 return -EPERM;
2378
2379 /*
2380 * Validate if a timespec/timeval used to inject a time
2381 * offset is valid. Offsets can be positive or negative, so
2382 * we don't check tv_sec. The value of the timeval/timespec
2383 * is the sum of its fields,but *NOTE*:
2384 * The field tv_usec/tv_nsec must always be non-negative and
2385 * we can't have more nanoseconds/microseconds than a second.
2386 */
2387 if (txc->time.tv_usec < 0)
2388 return -EINVAL;
2389
2390 if (txc->modes & ADJ_NANO) {
2391 if (txc->time.tv_usec >= NSEC_PER_SEC)
2392 return -EINVAL;
2393 } else {
2394 if (txc->time.tv_usec >= USEC_PER_SEC)
2395 return -EINVAL;
2396 }
2397 }
2398
2399 /*
2400 * Check for potential multiplication overflows that can
2401 * only happen on 64-bit systems:
2402 */
2403 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2404 if (LLONG_MIN / PPM_SCALE > txc->freq)
2405 return -EINVAL;
2406 if (LLONG_MAX / PPM_SCALE < txc->freq)
2407 return -EINVAL;
2408 }
2409
2410 return 0;
2411 }
2412
2413 /**
2414 * random_get_entropy_fallback - Returns the raw clock source value,
2415 * used by random.c for platforms with no valid random_get_entropy().
2416 */
random_get_entropy_fallback(void)2417 unsigned long random_get_entropy_fallback(void)
2418 {
2419 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2420 struct clocksource *clock = READ_ONCE(tkr->clock);
2421
2422 if (unlikely(timekeeping_suspended || !clock))
2423 return 0;
2424 return clock->read(clock);
2425 }
2426 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2427
2428 /**
2429 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2430 */
do_adjtimex(struct __kernel_timex * txc)2431 int do_adjtimex(struct __kernel_timex *txc)
2432 {
2433 struct timekeeper *tk = &tk_core.timekeeper;
2434 struct audit_ntp_data ad;
2435 bool clock_set = false;
2436 struct timespec64 ts;
2437 unsigned long flags;
2438 s32 orig_tai, tai;
2439 int ret;
2440
2441 /* Validate the data before disabling interrupts */
2442 ret = timekeeping_validate_timex(txc);
2443 if (ret)
2444 return ret;
2445 add_device_randomness(txc, sizeof(*txc));
2446
2447 if (txc->modes & ADJ_SETOFFSET) {
2448 struct timespec64 delta;
2449 delta.tv_sec = txc->time.tv_sec;
2450 delta.tv_nsec = txc->time.tv_usec;
2451 if (!(txc->modes & ADJ_NANO))
2452 delta.tv_nsec *= 1000;
2453 ret = timekeeping_inject_offset(&delta);
2454 if (ret)
2455 return ret;
2456
2457 audit_tk_injoffset(delta);
2458 }
2459
2460 audit_ntp_init(&ad);
2461
2462 ktime_get_real_ts64(&ts);
2463 add_device_randomness(&ts, sizeof(ts));
2464
2465 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2466 write_seqcount_begin(&tk_core.seq);
2467
2468 orig_tai = tai = tk->tai_offset;
2469 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2470
2471 if (tai != orig_tai) {
2472 __timekeeping_set_tai_offset(tk, tai);
2473 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2474 clock_set = true;
2475 }
2476 tk_update_leap_state(tk);
2477
2478 write_seqcount_end(&tk_core.seq);
2479 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2480
2481 audit_ntp_log(&ad);
2482
2483 /* Update the multiplier immediately if frequency was set directly */
2484 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2485 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2486
2487 if (clock_set)
2488 clock_was_set(CLOCK_REALTIME);
2489
2490 ntp_notify_cmos_timer();
2491
2492 return ret;
2493 }
2494
2495 #ifdef CONFIG_NTP_PPS
2496 /**
2497 * hardpps() - Accessor function to NTP __hardpps function
2498 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2499 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2500 {
2501 unsigned long flags;
2502
2503 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2504 write_seqcount_begin(&tk_core.seq);
2505
2506 __hardpps(phase_ts, raw_ts);
2507
2508 write_seqcount_end(&tk_core.seq);
2509 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2510 }
2511 EXPORT_SYMBOL(hardpps);
2512 #endif /* CONFIG_NTP_PPS */
2513