• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 
15 #include "trace.h"
16 #include "trace_output.h"
17 
18 #define DEFAULT_SYS_FILTER_MESSAGE					\
19 	"### global filter ###\n"					\
20 	"# Use this to set filters for multiple events.\n"		\
21 	"# Only events with the given fields will be affected.\n"	\
22 	"# If no events are modified, an error message will be displayed here"
23 
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS					\
26 	C( OP_GLOB,	"~"  ),			\
27 	C( OP_NE,	"!=" ),			\
28 	C( OP_EQ,	"==" ),			\
29 	C( OP_LE,	"<=" ),			\
30 	C( OP_LT,	"<"  ),			\
31 	C( OP_GE,	">=" ),			\
32 	C( OP_GT,	">"  ),			\
33 	C( OP_BAND,	"&"  ),			\
34 	C( OP_MAX,	NULL )
35 
36 #undef C
37 #define C(a, b)	a
38 
39 enum filter_op_ids { OPS };
40 
41 #undef C
42 #define C(a, b)	b
43 
44 static const char * ops[] = { OPS };
45 
46 enum filter_pred_fn {
47 	FILTER_PRED_FN_NOP,
48 	FILTER_PRED_FN_64,
49 	FILTER_PRED_FN_S64,
50 	FILTER_PRED_FN_U64,
51 	FILTER_PRED_FN_32,
52 	FILTER_PRED_FN_S32,
53 	FILTER_PRED_FN_U32,
54 	FILTER_PRED_FN_16,
55 	FILTER_PRED_FN_S16,
56 	FILTER_PRED_FN_U16,
57 	FILTER_PRED_FN_8,
58 	FILTER_PRED_FN_S8,
59 	FILTER_PRED_FN_U8,
60 	FILTER_PRED_FN_COMM,
61 	FILTER_PRED_FN_STRING,
62 	FILTER_PRED_FN_STRLOC,
63 	FILTER_PRED_FN_STRRELLOC,
64 	FILTER_PRED_FN_PCHAR_USER,
65 	FILTER_PRED_FN_PCHAR,
66 	FILTER_PRED_FN_CPU,
67 	FILTER_PRED_FN_,
68 	FILTER_PRED_TEST_VISITED,
69 };
70 
71 struct filter_pred {
72 	enum filter_pred_fn 	fn_num;
73 	u64 			val;
74 	struct regex		regex;
75 	unsigned short		*ops;
76 	struct ftrace_event_field *field;
77 	int 			offset;
78 	int			not;
79 	int 			op;
80 };
81 
82 /*
83  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
84  * pred_funcs_##type below must match the order of them above.
85  */
86 #define PRED_FUNC_START			OP_LE
87 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
88 
89 #define ERRORS								\
90 	C(NONE,			"No error"),				\
91 	C(INVALID_OP,		"Invalid operator"),			\
92 	C(TOO_MANY_OPEN,	"Too many '('"),			\
93 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
94 	C(MISSING_QUOTE,	"Missing matching quote"),		\
95 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
96 	C(EXPECT_STRING,	"Expecting string field"),		\
97 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
98 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
99 	C(FIELD_NOT_FOUND,	"Field not found"),			\
100 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
101 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
102 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
103 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
104 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
105 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
106 	C(ERRNO,		"Error"),				\
107 	C(NO_FILTER,		"No filter found")
108 
109 #undef C
110 #define C(a, b)		FILT_ERR_##a
111 
112 enum { ERRORS };
113 
114 #undef C
115 #define C(a, b)		b
116 
117 static const char *err_text[] = { ERRORS };
118 
119 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)120 static bool is_not(const char *str)
121 {
122 	switch (str[1]) {
123 	case '=':
124 	case '~':
125 		return false;
126 	}
127 	return true;
128 }
129 
130 /**
131  * prog_entry - a singe entry in the filter program
132  * @target:	     Index to jump to on a branch (actually one minus the index)
133  * @when_to_branch:  The value of the result of the predicate to do a branch
134  * @pred:	     The predicate to execute.
135  */
136 struct prog_entry {
137 	int			target;
138 	int			when_to_branch;
139 	struct filter_pred	*pred;
140 };
141 
142 /**
143  * update_preds- assign a program entry a label target
144  * @prog: The program array
145  * @N: The index of the current entry in @prog
146  * @when_to_branch: What to assign a program entry for its branch condition
147  *
148  * The program entry at @N has a target that points to the index of a program
149  * entry that can have its target and when_to_branch fields updated.
150  * Update the current program entry denoted by index @N target field to be
151  * that of the updated entry. This will denote the entry to update if
152  * we are processing an "||" after an "&&"
153  */
update_preds(struct prog_entry * prog,int N,int invert)154 static void update_preds(struct prog_entry *prog, int N, int invert)
155 {
156 	int t, s;
157 
158 	t = prog[N].target;
159 	s = prog[t].target;
160 	prog[t].when_to_branch = invert;
161 	prog[t].target = N;
162 	prog[N].target = s;
163 }
164 
165 struct filter_parse_error {
166 	int lasterr;
167 	int lasterr_pos;
168 };
169 
parse_error(struct filter_parse_error * pe,int err,int pos)170 static void parse_error(struct filter_parse_error *pe, int err, int pos)
171 {
172 	pe->lasterr = err;
173 	pe->lasterr_pos = pos;
174 }
175 
176 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
177 			     struct filter_parse_error *pe,
178 			     struct filter_pred **pred);
179 
180 enum {
181 	INVERT		= 1,
182 	PROCESS_AND	= 2,
183 	PROCESS_OR	= 4,
184 };
185 
186 /*
187  * Without going into a formal proof, this explains the method that is used in
188  * parsing the logical expressions.
189  *
190  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
191  * The first pass will convert it into the following program:
192  *
193  * n1: r=a;       l1: if (!r) goto l4;
194  * n2: r=b;       l2: if (!r) goto l4;
195  * n3: r=c; r=!r; l3: if (r) goto l4;
196  * n4: r=g; r=!r; l4: if (r) goto l5;
197  * n5: r=d;       l5: if (r) goto T
198  * n6: r=e;       l6: if (!r) goto l7;
199  * n7: r=f; r=!r; l7: if (!r) goto F
200  * T: return TRUE
201  * F: return FALSE
202  *
203  * To do this, we use a data structure to represent each of the above
204  * predicate and conditions that has:
205  *
206  *  predicate, when_to_branch, invert, target
207  *
208  * The "predicate" will hold the function to determine the result "r".
209  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
210  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
211  * The "invert" holds whether the value should be reversed before testing.
212  * The "target" contains the label "l#" to jump to.
213  *
214  * A stack is created to hold values when parentheses are used.
215  *
216  * To simplify the logic, the labels will start at 0 and not 1.
217  *
218  * The possible invert values are 1 and 0. The number of "!"s that are in scope
219  * before the predicate determines the invert value, if the number is odd then
220  * the invert value is 1 and 0 otherwise. This means the invert value only
221  * needs to be toggled when a new "!" is introduced compared to what is stored
222  * on the stack, where parentheses were used.
223  *
224  * The top of the stack and "invert" are initialized to zero.
225  *
226  * ** FIRST PASS **
227  *
228  * #1 A loop through all the tokens is done:
229  *
230  * #2 If the token is an "(", the stack is push, and the current stack value
231  *    gets the current invert value, and the loop continues to the next token.
232  *    The top of the stack saves the "invert" value to keep track of what
233  *    the current inversion is. As "!(a && !b || c)" would require all
234  *    predicates being affected separately by the "!" before the parentheses.
235  *    And that would end up being equivalent to "(!a || b) && !c"
236  *
237  * #3 If the token is an "!", the current "invert" value gets inverted, and
238  *    the loop continues. Note, if the next token is a predicate, then
239  *    this "invert" value is only valid for the current program entry,
240  *    and does not affect other predicates later on.
241  *
242  * The only other acceptable token is the predicate string.
243  *
244  * #4 A new entry into the program is added saving: the predicate and the
245  *    current value of "invert". The target is currently assigned to the
246  *    previous program index (this will not be its final value).
247  *
248  * #5 We now enter another loop and look at the next token. The only valid
249  *    tokens are ")", "&&", "||" or end of the input string "\0".
250  *
251  * #6 The invert variable is reset to the current value saved on the top of
252  *    the stack.
253  *
254  * #7 The top of the stack holds not only the current invert value, but also
255  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
256  *    precedence than "||". That is "a && b || c && d" is equivalent to
257  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
258  *    to be processed. This is the case if an "&&" was the last token. If it was
259  *    then we call update_preds(). This takes the program, the current index in
260  *    the program, and the current value of "invert".  More will be described
261  *    below about this function.
262  *
263  * #8 If the next token is "&&" then we set a flag in the top of the stack
264  *    that denotes that "&&" needs to be processed, break out of this loop
265  *    and continue with the outer loop.
266  *
267  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
268  *    This is called with the program, the current index in the program, but
269  *    this time with an inverted value of "invert" (that is !invert). This is
270  *    because the value taken will become the "when_to_branch" value of the
271  *    program.
272  *    Note, this is called when the next token is not an "&&". As stated before,
273  *    "&&" takes higher precedence, and "||" should not be processed yet if the
274  *    next logical operation is "&&".
275  *
276  * #10 If the next token is "||" then we set a flag in the top of the stack
277  *     that denotes that "||" needs to be processed, break out of this loop
278  *     and continue with the outer loop.
279  *
280  * #11 If this is the end of the input string "\0" then we break out of both
281  *     loops.
282  *
283  * #12 Otherwise, the next token is ")", where we pop the stack and continue
284  *     this inner loop.
285  *
286  * Now to discuss the update_pred() function, as that is key to the setting up
287  * of the program. Remember the "target" of the program is initialized to the
288  * previous index and not the "l" label. The target holds the index into the
289  * program that gets affected by the operand. Thus if we have something like
290  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
291  * When we process "b", its target is "0", which is the index of "a", as that's
292  * the predicate that is affected by "||". But because the next token after "b"
293  * is "&&" we don't call update_preds(). Instead continue to "c". As the
294  * next token after "c" is not "&&" but the end of input, we first process the
295  * "&&" by calling update_preds() for the "&&" then we process the "||" by
296  * calling updates_preds() with the values for processing "||".
297  *
298  * What does that mean? What update_preds() does is to first save the "target"
299  * of the program entry indexed by the current program entry's "target"
300  * (remember the "target" is initialized to previous program entry), and then
301  * sets that "target" to the current index which represents the label "l#".
302  * That entry's "when_to_branch" is set to the value passed in (the "invert"
303  * or "!invert"). Then it sets the current program entry's target to the saved
304  * "target" value (the old value of the program that had its "target" updated
305  * to the label).
306  *
307  * Looking back at "a || b && c", we have the following steps:
308  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
309  *  "||" - flag that we need to process "||"; continue outer loop
310  *  "b"  - prog[1] = { "b", X, 0 }
311  *  "&&" - flag that we need to process "&&"; continue outer loop
312  * (Notice we did not process "||")
313  *  "c"  - prog[2] = { "c", X, 1 }
314  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
315  *    t = prog[2].target; // t = 1
316  *    s = prog[t].target; // s = 0
317  *    prog[t].target = 2; // Set target to "l2"
318  *    prog[t].when_to_branch = 0;
319  *    prog[2].target = s;
320  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
321  *    t = prog[2].target; // t = 0
322  *    s = prog[t].target; // s = -1
323  *    prog[t].target = 2; // Set target to "l2"
324  *    prog[t].when_to_branch = 1;
325  *    prog[2].target = s;
326  *
327  * #13 Which brings us to the final step of the first pass, which is to set
328  *     the last program entry's when_to_branch and target, which will be
329  *     when_to_branch = 0; target = N; ( the label after the program entry after
330  *     the last program entry processed above).
331  *
332  * If we denote "TRUE" to be the entry after the last program entry processed,
333  * and "FALSE" the program entry after that, we are now done with the first
334  * pass.
335  *
336  * Making the above "a || b && c" have a program of:
337  *  prog[0] = { "a", 1, 2 }
338  *  prog[1] = { "b", 0, 2 }
339  *  prog[2] = { "c", 0, 3 }
340  *
341  * Which translates into:
342  * n0: r = a; l0: if (r) goto l2;
343  * n1: r = b; l1: if (!r) goto l2;
344  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
345  * T: return TRUE; l3:
346  * F: return FALSE
347  *
348  * Although, after the first pass, the program is correct, it is
349  * inefficient. The simple sample of "a || b && c" could be easily been
350  * converted into:
351  * n0: r = a; if (r) goto T
352  * n1: r = b; if (!r) goto F
353  * n2: r = c; if (!r) goto F
354  * T: return TRUE;
355  * F: return FALSE;
356  *
357  * The First Pass is over the input string. The next too passes are over
358  * the program itself.
359  *
360  * ** SECOND PASS **
361  *
362  * Which brings us to the second pass. If a jump to a label has the
363  * same condition as that label, it can instead jump to its target.
364  * The original example of "a && !(!b || (c && g)) || d || e && !f"
365  * where the first pass gives us:
366  *
367  * n1: r=a;       l1: if (!r) goto l4;
368  * n2: r=b;       l2: if (!r) goto l4;
369  * n3: r=c; r=!r; l3: if (r) goto l4;
370  * n4: r=g; r=!r; l4: if (r) goto l5;
371  * n5: r=d;       l5: if (r) goto T
372  * n6: r=e;       l6: if (!r) goto l7;
373  * n7: r=f; r=!r; l7: if (!r) goto F:
374  * T: return TRUE;
375  * F: return FALSE
376  *
377  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
378  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
379  * to go directly to T. To accomplish this, we start from the last
380  * entry in the program and work our way back. If the target of the entry
381  * has the same "when_to_branch" then we could use that entry's target.
382  * Doing this, the above would end up as:
383  *
384  * n1: r=a;       l1: if (!r) goto l4;
385  * n2: r=b;       l2: if (!r) goto l4;
386  * n3: r=c; r=!r; l3: if (r) goto T;
387  * n4: r=g; r=!r; l4: if (r) goto T;
388  * n5: r=d;       l5: if (r) goto T;
389  * n6: r=e;       l6: if (!r) goto F;
390  * n7: r=f; r=!r; l7: if (!r) goto F;
391  * T: return TRUE
392  * F: return FALSE
393  *
394  * In that same pass, if the "when_to_branch" doesn't match, we can simply
395  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
396  * where "l4: if (r) goto T;", then we can convert l2 to be:
397  * "l2: if (!r) goto n5;".
398  *
399  * This will have the second pass give us:
400  * n1: r=a;       l1: if (!r) goto n5;
401  * n2: r=b;       l2: if (!r) goto n5;
402  * n3: r=c; r=!r; l3: if (r) goto T;
403  * n4: r=g; r=!r; l4: if (r) goto T;
404  * n5: r=d;       l5: if (r) goto T
405  * n6: r=e;       l6: if (!r) goto F;
406  * n7: r=f; r=!r; l7: if (!r) goto F
407  * T: return TRUE
408  * F: return FALSE
409  *
410  * Notice, all the "l#" labels are no longer used, and they can now
411  * be discarded.
412  *
413  * ** THIRD PASS **
414  *
415  * For the third pass we deal with the inverts. As they simply just
416  * make the "when_to_branch" get inverted, a simple loop over the
417  * program to that does: "when_to_branch ^= invert;" will do the
418  * job, leaving us with:
419  * n1: r=a; if (!r) goto n5;
420  * n2: r=b; if (!r) goto n5;
421  * n3: r=c: if (!r) goto T;
422  * n4: r=g; if (!r) goto T;
423  * n5: r=d; if (r) goto T
424  * n6: r=e; if (!r) goto F;
425  * n7: r=f; if (r) goto F
426  * T: return TRUE
427  * F: return FALSE
428  *
429  * As "r = a; if (!r) goto n5;" is obviously the same as
430  * "if (!a) goto n5;" without doing anything we can interpret the
431  * program as:
432  * n1: if (!a) goto n5;
433  * n2: if (!b) goto n5;
434  * n3: if (!c) goto T;
435  * n4: if (!g) goto T;
436  * n5: if (d) goto T
437  * n6: if (!e) goto F;
438  * n7: if (f) goto F
439  * T: return TRUE
440  * F: return FALSE
441  *
442  * Since the inverts are discarded at the end, there's no reason to store
443  * them in the program array (and waste memory). A separate array to hold
444  * the inverts is used and freed at the end.
445  */
446 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)447 predicate_parse(const char *str, int nr_parens, int nr_preds,
448 		parse_pred_fn parse_pred, void *data,
449 		struct filter_parse_error *pe)
450 {
451 	struct prog_entry *prog_stack;
452 	struct prog_entry *prog;
453 	const char *ptr = str;
454 	char *inverts = NULL;
455 	int *op_stack;
456 	int *top;
457 	int invert = 0;
458 	int ret = -ENOMEM;
459 	int len;
460 	int N = 0;
461 	int i;
462 
463 	nr_preds += 2; /* For TRUE and FALSE */
464 
465 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
466 	if (!op_stack)
467 		return ERR_PTR(-ENOMEM);
468 	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
469 	if (!prog_stack) {
470 		parse_error(pe, -ENOMEM, 0);
471 		goto out_free;
472 	}
473 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
474 	if (!inverts) {
475 		parse_error(pe, -ENOMEM, 0);
476 		goto out_free;
477 	}
478 
479 	top = op_stack;
480 	prog = prog_stack;
481 	*top = 0;
482 
483 	/* First pass */
484 	while (*ptr) {						/* #1 */
485 		const char *next = ptr++;
486 
487 		if (isspace(*next))
488 			continue;
489 
490 		switch (*next) {
491 		case '(':					/* #2 */
492 			if (top - op_stack > nr_parens) {
493 				ret = -EINVAL;
494 				goto out_free;
495 			}
496 			*(++top) = invert;
497 			continue;
498 		case '!':					/* #3 */
499 			if (!is_not(next))
500 				break;
501 			invert = !invert;
502 			continue;
503 		}
504 
505 		if (N >= nr_preds) {
506 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
507 			goto out_free;
508 		}
509 
510 		inverts[N] = invert;				/* #4 */
511 		prog[N].target = N-1;
512 
513 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
514 		if (len < 0) {
515 			ret = len;
516 			goto out_free;
517 		}
518 		ptr = next + len;
519 
520 		N++;
521 
522 		ret = -1;
523 		while (1) {					/* #5 */
524 			next = ptr++;
525 			if (isspace(*next))
526 				continue;
527 
528 			switch (*next) {
529 			case ')':
530 			case '\0':
531 				break;
532 			case '&':
533 			case '|':
534 				/* accepting only "&&" or "||" */
535 				if (next[1] == next[0]) {
536 					ptr++;
537 					break;
538 				}
539 				fallthrough;
540 			default:
541 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
542 					    next - str);
543 				goto out_free;
544 			}
545 
546 			invert = *top & INVERT;
547 
548 			if (*top & PROCESS_AND) {		/* #7 */
549 				update_preds(prog, N - 1, invert);
550 				*top &= ~PROCESS_AND;
551 			}
552 			if (*next == '&') {			/* #8 */
553 				*top |= PROCESS_AND;
554 				break;
555 			}
556 			if (*top & PROCESS_OR) {		/* #9 */
557 				update_preds(prog, N - 1, !invert);
558 				*top &= ~PROCESS_OR;
559 			}
560 			if (*next == '|') {			/* #10 */
561 				*top |= PROCESS_OR;
562 				break;
563 			}
564 			if (!*next)				/* #11 */
565 				goto out;
566 
567 			if (top == op_stack) {
568 				ret = -1;
569 				/* Too few '(' */
570 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
571 				goto out_free;
572 			}
573 			top--;					/* #12 */
574 		}
575 	}
576  out:
577 	if (top != op_stack) {
578 		/* Too many '(' */
579 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
580 		goto out_free;
581 	}
582 
583 	if (!N) {
584 		/* No program? */
585 		ret = -EINVAL;
586 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
587 		goto out_free;
588 	}
589 
590 	prog[N].pred = NULL;					/* #13 */
591 	prog[N].target = 1;		/* TRUE */
592 	prog[N+1].pred = NULL;
593 	prog[N+1].target = 0;		/* FALSE */
594 	prog[N-1].target = N;
595 	prog[N-1].when_to_branch = false;
596 
597 	/* Second Pass */
598 	for (i = N-1 ; i--; ) {
599 		int target = prog[i].target;
600 		if (prog[i].when_to_branch == prog[target].when_to_branch)
601 			prog[i].target = prog[target].target;
602 	}
603 
604 	/* Third Pass */
605 	for (i = 0; i < N; i++) {
606 		invert = inverts[i] ^ prog[i].when_to_branch;
607 		prog[i].when_to_branch = invert;
608 		/* Make sure the program always moves forward */
609 		if (WARN_ON(prog[i].target <= i)) {
610 			ret = -EINVAL;
611 			goto out_free;
612 		}
613 	}
614 
615 	kfree(op_stack);
616 	kfree(inverts);
617 	return prog;
618 out_free:
619 	kfree(op_stack);
620 	kfree(inverts);
621 	if (prog_stack) {
622 		for (i = 0; prog_stack[i].pred; i++)
623 			kfree(prog_stack[i].pred);
624 		kfree(prog_stack);
625 	}
626 	return ERR_PTR(ret);
627 }
628 
629 enum pred_cmp_types {
630 	PRED_CMP_TYPE_NOP,
631 	PRED_CMP_TYPE_LT,
632 	PRED_CMP_TYPE_LE,
633 	PRED_CMP_TYPE_GT,
634 	PRED_CMP_TYPE_GE,
635 	PRED_CMP_TYPE_BAND,
636 };
637 
638 #define DEFINE_COMPARISON_PRED(type)					\
639 static int filter_pred_##type(struct filter_pred *pred, void *event)	\
640 {									\
641 	switch (pred->op) {						\
642 	case OP_LT: {							\
643 		type *addr = (type *)(event + pred->offset);		\
644 		type val = (type)pred->val;				\
645 		return *addr < val;					\
646 	}								\
647 	case OP_LE: {					\
648 		type *addr = (type *)(event + pred->offset);		\
649 		type val = (type)pred->val;				\
650 		return *addr <= val;					\
651 	}								\
652 	case OP_GT: {					\
653 		type *addr = (type *)(event + pred->offset);		\
654 		type val = (type)pred->val;				\
655 		return *addr > val;					\
656 	}								\
657 	case OP_GE: {					\
658 		type *addr = (type *)(event + pred->offset);		\
659 		type val = (type)pred->val;				\
660 		return *addr >= val;					\
661 	}								\
662 	case OP_BAND: {					\
663 		type *addr = (type *)(event + pred->offset);		\
664 		type val = (type)pred->val;				\
665 		return !!(*addr & val);					\
666 	}								\
667 	default:							\
668 		return 0;						\
669 	}								\
670 }
671 
672 #define DEFINE_EQUALITY_PRED(size)					\
673 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
674 {									\
675 	u##size *addr = (u##size *)(event + pred->offset);		\
676 	u##size val = (u##size)pred->val;				\
677 	int match;							\
678 									\
679 	match = (val == *addr) ^ pred->not;				\
680 									\
681 	return match;							\
682 }
683 
684 DEFINE_COMPARISON_PRED(s64);
685 DEFINE_COMPARISON_PRED(u64);
686 DEFINE_COMPARISON_PRED(s32);
687 DEFINE_COMPARISON_PRED(u32);
688 DEFINE_COMPARISON_PRED(s16);
689 DEFINE_COMPARISON_PRED(u16);
690 DEFINE_COMPARISON_PRED(s8);
691 DEFINE_COMPARISON_PRED(u8);
692 
693 DEFINE_EQUALITY_PRED(64);
694 DEFINE_EQUALITY_PRED(32);
695 DEFINE_EQUALITY_PRED(16);
696 DEFINE_EQUALITY_PRED(8);
697 
698 /* user space strings temp buffer */
699 #define USTRING_BUF_SIZE	1024
700 
701 struct ustring_buffer {
702 	char		buffer[USTRING_BUF_SIZE];
703 };
704 
705 static __percpu struct ustring_buffer *ustring_per_cpu;
706 
test_string(char * str)707 static __always_inline char *test_string(char *str)
708 {
709 	struct ustring_buffer *ubuf;
710 	char *kstr;
711 
712 	if (!ustring_per_cpu)
713 		return NULL;
714 
715 	ubuf = this_cpu_ptr(ustring_per_cpu);
716 	kstr = ubuf->buffer;
717 
718 	/* For safety, do not trust the string pointer */
719 	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
720 		return NULL;
721 	return kstr;
722 }
723 
test_ustring(char * str)724 static __always_inline char *test_ustring(char *str)
725 {
726 	struct ustring_buffer *ubuf;
727 	char __user *ustr;
728 	char *kstr;
729 
730 	if (!ustring_per_cpu)
731 		return NULL;
732 
733 	ubuf = this_cpu_ptr(ustring_per_cpu);
734 	kstr = ubuf->buffer;
735 
736 	/* user space address? */
737 	ustr = (char __user *)str;
738 	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
739 		return NULL;
740 
741 	return kstr;
742 }
743 
744 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)745 static int filter_pred_string(struct filter_pred *pred, void *event)
746 {
747 	char *addr = (char *)(event + pred->offset);
748 	int cmp, match;
749 
750 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
751 
752 	match = cmp ^ pred->not;
753 
754 	return match;
755 }
756 
filter_pchar(struct filter_pred * pred,char * str)757 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
758 {
759 	int cmp, match;
760 	int len;
761 
762 	len = strlen(str) + 1;	/* including tailing '\0' */
763 	cmp = pred->regex.match(str, &pred->regex, len);
764 
765 	match = cmp ^ pred->not;
766 
767 	return match;
768 }
769 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)770 static int filter_pred_pchar(struct filter_pred *pred, void *event)
771 {
772 	char **addr = (char **)(event + pred->offset);
773 	char *str;
774 
775 	str = test_string(*addr);
776 	if (!str)
777 		return 0;
778 
779 	return filter_pchar(pred, str);
780 }
781 
782 /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)783 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
784 {
785 	char **addr = (char **)(event + pred->offset);
786 	char *str;
787 
788 	str = test_ustring(*addr);
789 	if (!str)
790 		return 0;
791 
792 	return filter_pchar(pred, str);
793 }
794 
795 /*
796  * Filter predicate for dynamic sized arrays of characters.
797  * These are implemented through a list of strings at the end
798  * of the entry.
799  * Also each of these strings have a field in the entry which
800  * contains its offset from the beginning of the entry.
801  * We have then first to get this field, dereference it
802  * and add it to the address of the entry, and at last we have
803  * the address of the string.
804  */
filter_pred_strloc(struct filter_pred * pred,void * event)805 static int filter_pred_strloc(struct filter_pred *pred, void *event)
806 {
807 	u32 str_item = *(u32 *)(event + pred->offset);
808 	int str_loc = str_item & 0xffff;
809 	int str_len = str_item >> 16;
810 	char *addr = (char *)(event + str_loc);
811 	int cmp, match;
812 
813 	cmp = pred->regex.match(addr, &pred->regex, str_len);
814 
815 	match = cmp ^ pred->not;
816 
817 	return match;
818 }
819 
820 /*
821  * Filter predicate for relative dynamic sized arrays of characters.
822  * These are implemented through a list of strings at the end
823  * of the entry as same as dynamic string.
824  * The difference is that the relative one records the location offset
825  * from the field itself, not the event entry.
826  */
filter_pred_strrelloc(struct filter_pred * pred,void * event)827 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
828 {
829 	u32 *item = (u32 *)(event + pred->offset);
830 	u32 str_item = *item;
831 	int str_loc = str_item & 0xffff;
832 	int str_len = str_item >> 16;
833 	char *addr = (char *)(&item[1]) + str_loc;
834 	int cmp, match;
835 
836 	cmp = pred->regex.match(addr, &pred->regex, str_len);
837 
838 	match = cmp ^ pred->not;
839 
840 	return match;
841 }
842 
843 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)844 static int filter_pred_cpu(struct filter_pred *pred, void *event)
845 {
846 	int cpu, cmp;
847 
848 	cpu = raw_smp_processor_id();
849 	cmp = pred->val;
850 
851 	switch (pred->op) {
852 	case OP_EQ:
853 		return cpu == cmp;
854 	case OP_NE:
855 		return cpu != cmp;
856 	case OP_LT:
857 		return cpu < cmp;
858 	case OP_LE:
859 		return cpu <= cmp;
860 	case OP_GT:
861 		return cpu > cmp;
862 	case OP_GE:
863 		return cpu >= cmp;
864 	default:
865 		return 0;
866 	}
867 }
868 
869 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)870 static int filter_pred_comm(struct filter_pred *pred, void *event)
871 {
872 	int cmp;
873 
874 	cmp = pred->regex.match(current->comm, &pred->regex,
875 				TASK_COMM_LEN);
876 	return cmp ^ pred->not;
877 }
878 
879 /*
880  * regex_match_foo - Basic regex callbacks
881  *
882  * @str: the string to be searched
883  * @r:   the regex structure containing the pattern string
884  * @len: the length of the string to be searched (including '\0')
885  *
886  * Note:
887  * - @str might not be NULL-terminated if it's of type DYN_STRING
888  *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
889  */
890 
regex_match_full(char * str,struct regex * r,int len)891 static int regex_match_full(char *str, struct regex *r, int len)
892 {
893 	/* len of zero means str is dynamic and ends with '\0' */
894 	if (!len)
895 		return strcmp(str, r->pattern) == 0;
896 
897 	return strncmp(str, r->pattern, len) == 0;
898 }
899 
regex_match_front(char * str,struct regex * r,int len)900 static int regex_match_front(char *str, struct regex *r, int len)
901 {
902 	if (len && len < r->len)
903 		return 0;
904 
905 	return strncmp(str, r->pattern, r->len) == 0;
906 }
907 
regex_match_middle(char * str,struct regex * r,int len)908 static int regex_match_middle(char *str, struct regex *r, int len)
909 {
910 	if (!len)
911 		return strstr(str, r->pattern) != NULL;
912 
913 	return strnstr(str, r->pattern, len) != NULL;
914 }
915 
regex_match_end(char * str,struct regex * r,int len)916 static int regex_match_end(char *str, struct regex *r, int len)
917 {
918 	int strlen = len - 1;
919 
920 	if (strlen >= r->len &&
921 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
922 		return 1;
923 	return 0;
924 }
925 
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)926 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
927 {
928 	if (glob_match(r->pattern, str))
929 		return 1;
930 	return 0;
931 }
932 
933 /**
934  * filter_parse_regex - parse a basic regex
935  * @buff:   the raw regex
936  * @len:    length of the regex
937  * @search: will point to the beginning of the string to compare
938  * @not:    tell whether the match will have to be inverted
939  *
940  * This passes in a buffer containing a regex and this function will
941  * set search to point to the search part of the buffer and
942  * return the type of search it is (see enum above).
943  * This does modify buff.
944  *
945  * Returns enum type.
946  *  search returns the pointer to use for comparison.
947  *  not returns 1 if buff started with a '!'
948  *     0 otherwise.
949  */
filter_parse_regex(char * buff,int len,char ** search,int * not)950 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
951 {
952 	int type = MATCH_FULL;
953 	int i;
954 
955 	if (buff[0] == '!') {
956 		*not = 1;
957 		buff++;
958 		len--;
959 	} else
960 		*not = 0;
961 
962 	*search = buff;
963 
964 	if (isdigit(buff[0]))
965 		return MATCH_INDEX;
966 
967 	for (i = 0; i < len; i++) {
968 		if (buff[i] == '*') {
969 			if (!i) {
970 				type = MATCH_END_ONLY;
971 			} else if (i == len - 1) {
972 				if (type == MATCH_END_ONLY)
973 					type = MATCH_MIDDLE_ONLY;
974 				else
975 					type = MATCH_FRONT_ONLY;
976 				buff[i] = 0;
977 				break;
978 			} else {	/* pattern continues, use full glob */
979 				return MATCH_GLOB;
980 			}
981 		} else if (strchr("[?\\", buff[i])) {
982 			return MATCH_GLOB;
983 		}
984 	}
985 	if (buff[0] == '*')
986 		*search = buff + 1;
987 
988 	return type;
989 }
990 
filter_build_regex(struct filter_pred * pred)991 static void filter_build_regex(struct filter_pred *pred)
992 {
993 	struct regex *r = &pred->regex;
994 	char *search;
995 	enum regex_type type = MATCH_FULL;
996 
997 	if (pred->op == OP_GLOB) {
998 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
999 		r->len = strlen(search);
1000 		memmove(r->pattern, search, r->len+1);
1001 	}
1002 
1003 	switch (type) {
1004 	/* MATCH_INDEX should not happen, but if it does, match full */
1005 	case MATCH_INDEX:
1006 	case MATCH_FULL:
1007 		r->match = regex_match_full;
1008 		break;
1009 	case MATCH_FRONT_ONLY:
1010 		r->match = regex_match_front;
1011 		break;
1012 	case MATCH_MIDDLE_ONLY:
1013 		r->match = regex_match_middle;
1014 		break;
1015 	case MATCH_END_ONLY:
1016 		r->match = regex_match_end;
1017 		break;
1018 	case MATCH_GLOB:
1019 		r->match = regex_match_glob;
1020 		break;
1021 	}
1022 }
1023 
1024 
1025 #ifdef CONFIG_FTRACE_STARTUP_TEST
1026 static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1027 #else
test_pred_visited_fn(struct filter_pred * pred,void * event)1028 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1029 {
1030 	return 0;
1031 }
1032 #endif
1033 
1034 
1035 static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1036 
1037 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)1038 int filter_match_preds(struct event_filter *filter, void *rec)
1039 {
1040 	struct prog_entry *prog;
1041 	int i;
1042 
1043 	/* no filter is considered a match */
1044 	if (!filter)
1045 		return 1;
1046 
1047 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1048 	prog = rcu_dereference_raw(filter->prog);
1049 	if (!prog)
1050 		return 1;
1051 
1052 	for (i = 0; prog[i].pred; i++) {
1053 		struct filter_pred *pred = prog[i].pred;
1054 		int match = filter_pred_fn_call(pred, rec);
1055 		if (match == prog[i].when_to_branch)
1056 			i = prog[i].target;
1057 	}
1058 	return prog[i].target;
1059 }
1060 EXPORT_SYMBOL_GPL(filter_match_preds);
1061 
remove_filter_string(struct event_filter * filter)1062 static void remove_filter_string(struct event_filter *filter)
1063 {
1064 	if (!filter)
1065 		return;
1066 
1067 	kfree(filter->filter_string);
1068 	filter->filter_string = NULL;
1069 }
1070 
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1071 static void append_filter_err(struct trace_array *tr,
1072 			      struct filter_parse_error *pe,
1073 			      struct event_filter *filter)
1074 {
1075 	struct trace_seq *s;
1076 	int pos = pe->lasterr_pos;
1077 	char *buf;
1078 	int len;
1079 
1080 	if (WARN_ON(!filter->filter_string))
1081 		return;
1082 
1083 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1084 	if (!s)
1085 		return;
1086 	trace_seq_init(s);
1087 
1088 	len = strlen(filter->filter_string);
1089 	if (pos > len)
1090 		pos = len;
1091 
1092 	/* indexing is off by one */
1093 	if (pos)
1094 		pos++;
1095 
1096 	trace_seq_puts(s, filter->filter_string);
1097 	if (pe->lasterr > 0) {
1098 		trace_seq_printf(s, "\n%*s", pos, "^");
1099 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1100 		tracing_log_err(tr, "event filter parse error",
1101 				filter->filter_string, err_text,
1102 				pe->lasterr, pe->lasterr_pos);
1103 	} else {
1104 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1105 		tracing_log_err(tr, "event filter parse error",
1106 				filter->filter_string, err_text,
1107 				FILT_ERR_ERRNO, 0);
1108 	}
1109 	trace_seq_putc(s, 0);
1110 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1111 	if (buf) {
1112 		kfree(filter->filter_string);
1113 		filter->filter_string = buf;
1114 	}
1115 	kfree(s);
1116 }
1117 
event_filter(struct trace_event_file * file)1118 static inline struct event_filter *event_filter(struct trace_event_file *file)
1119 {
1120 	return file->filter;
1121 }
1122 
1123 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1124 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1125 {
1126 	struct event_filter *filter = event_filter(file);
1127 
1128 	if (filter && filter->filter_string)
1129 		trace_seq_printf(s, "%s\n", filter->filter_string);
1130 	else
1131 		trace_seq_puts(s, "none\n");
1132 }
1133 
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1134 void print_subsystem_event_filter(struct event_subsystem *system,
1135 				  struct trace_seq *s)
1136 {
1137 	struct event_filter *filter;
1138 
1139 	mutex_lock(&event_mutex);
1140 	filter = system->filter;
1141 	if (filter && filter->filter_string)
1142 		trace_seq_printf(s, "%s\n", filter->filter_string);
1143 	else
1144 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1145 	mutex_unlock(&event_mutex);
1146 }
1147 
free_prog(struct event_filter * filter)1148 static void free_prog(struct event_filter *filter)
1149 {
1150 	struct prog_entry *prog;
1151 	int i;
1152 
1153 	prog = rcu_access_pointer(filter->prog);
1154 	if (!prog)
1155 		return;
1156 
1157 	for (i = 0; prog[i].pred; i++)
1158 		kfree(prog[i].pred);
1159 	kfree(prog);
1160 }
1161 
filter_disable(struct trace_event_file * file)1162 static void filter_disable(struct trace_event_file *file)
1163 {
1164 	unsigned long old_flags = file->flags;
1165 
1166 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1167 
1168 	if (old_flags != file->flags)
1169 		trace_buffered_event_disable();
1170 }
1171 
__free_filter(struct event_filter * filter)1172 static void __free_filter(struct event_filter *filter)
1173 {
1174 	if (!filter)
1175 		return;
1176 
1177 	free_prog(filter);
1178 	kfree(filter->filter_string);
1179 	kfree(filter);
1180 }
1181 
free_event_filter(struct event_filter * filter)1182 void free_event_filter(struct event_filter *filter)
1183 {
1184 	__free_filter(filter);
1185 }
1186 
__remove_filter(struct trace_event_file * file)1187 static inline void __remove_filter(struct trace_event_file *file)
1188 {
1189 	filter_disable(file);
1190 	remove_filter_string(file->filter);
1191 }
1192 
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1193 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1194 					struct trace_array *tr)
1195 {
1196 	struct trace_event_file *file;
1197 
1198 	list_for_each_entry(file, &tr->events, list) {
1199 		if (file->system != dir)
1200 			continue;
1201 		__remove_filter(file);
1202 	}
1203 }
1204 
__free_subsystem_filter(struct trace_event_file * file)1205 static inline void __free_subsystem_filter(struct trace_event_file *file)
1206 {
1207 	__free_filter(file->filter);
1208 	file->filter = NULL;
1209 }
1210 
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr)1211 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1212 					  struct trace_array *tr)
1213 {
1214 	struct trace_event_file *file;
1215 
1216 	list_for_each_entry(file, &tr->events, list) {
1217 		if (file->system != dir)
1218 			continue;
1219 		__free_subsystem_filter(file);
1220 	}
1221 }
1222 
filter_assign_type(const char * type)1223 int filter_assign_type(const char *type)
1224 {
1225 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1226 		return FILTER_DYN_STRING;
1227 
1228 	if (strstr(type, "__rel_loc") && strstr(type, "char"))
1229 		return FILTER_RDYN_STRING;
1230 
1231 	if (strchr(type, '[') && strstr(type, "char"))
1232 		return FILTER_STATIC_STRING;
1233 
1234 	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1235 		return FILTER_PTR_STRING;
1236 
1237 	return FILTER_OTHER;
1238 }
1239 
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1240 static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1241 						int field_size, int field_is_signed)
1242 {
1243 	enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1244 	int pred_func_index = -1;
1245 
1246 	switch (op) {
1247 	case OP_EQ:
1248 	case OP_NE:
1249 		break;
1250 	default:
1251 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1252 			return fn;
1253 		pred_func_index = op - PRED_FUNC_START;
1254 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1255 			return fn;
1256 	}
1257 
1258 	switch (field_size) {
1259 	case 8:
1260 		if (pred_func_index < 0)
1261 			fn = FILTER_PRED_FN_64;
1262 		else if (field_is_signed)
1263 			fn = FILTER_PRED_FN_S64;
1264 		else
1265 			fn = FILTER_PRED_FN_U64;
1266 		break;
1267 	case 4:
1268 		if (pred_func_index < 0)
1269 			fn = FILTER_PRED_FN_32;
1270 		else if (field_is_signed)
1271 			fn = FILTER_PRED_FN_S32;
1272 		else
1273 			fn = FILTER_PRED_FN_U32;
1274 		break;
1275 	case 2:
1276 		if (pred_func_index < 0)
1277 			fn = FILTER_PRED_FN_16;
1278 		else if (field_is_signed)
1279 			fn = FILTER_PRED_FN_S16;
1280 		else
1281 			fn = FILTER_PRED_FN_U16;
1282 		break;
1283 	case 1:
1284 		if (pred_func_index < 0)
1285 			fn = FILTER_PRED_FN_8;
1286 		else if (field_is_signed)
1287 			fn = FILTER_PRED_FN_S8;
1288 		else
1289 			fn = FILTER_PRED_FN_U8;
1290 		break;
1291 	}
1292 
1293 	return fn;
1294 }
1295 
1296 
filter_pred_fn_call(struct filter_pred * pred,void * event)1297 static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1298 {
1299 	switch (pred->fn_num) {
1300 	case FILTER_PRED_FN_64:
1301 		return filter_pred_64(pred, event);
1302 	case FILTER_PRED_FN_S64:
1303 		return filter_pred_s64(pred, event);
1304 	case FILTER_PRED_FN_U64:
1305 		return filter_pred_u64(pred, event);
1306 	case FILTER_PRED_FN_32:
1307 		return filter_pred_32(pred, event);
1308 	case FILTER_PRED_FN_S32:
1309 		return filter_pred_s32(pred, event);
1310 	case FILTER_PRED_FN_U32:
1311 		return filter_pred_u32(pred, event);
1312 	case FILTER_PRED_FN_16:
1313 		return filter_pred_16(pred, event);
1314 	case FILTER_PRED_FN_S16:
1315 		return filter_pred_s16(pred, event);
1316 	case FILTER_PRED_FN_U16:
1317 		return filter_pred_u16(pred, event);
1318 	case FILTER_PRED_FN_8:
1319 		return filter_pred_8(pred, event);
1320 	case FILTER_PRED_FN_S8:
1321 		return filter_pred_s8(pred, event);
1322 	case FILTER_PRED_FN_U8:
1323 		return filter_pred_u8(pred, event);
1324 	case FILTER_PRED_FN_COMM:
1325 		return filter_pred_comm(pred, event);
1326 	case FILTER_PRED_FN_STRING:
1327 		return filter_pred_string(pred, event);
1328 	case FILTER_PRED_FN_STRLOC:
1329 		return filter_pred_strloc(pred, event);
1330 	case FILTER_PRED_FN_STRRELLOC:
1331 		return filter_pred_strrelloc(pred, event);
1332 	case FILTER_PRED_FN_PCHAR_USER:
1333 		return filter_pred_pchar_user(pred, event);
1334 	case FILTER_PRED_FN_PCHAR:
1335 		return filter_pred_pchar(pred, event);
1336 	case FILTER_PRED_FN_CPU:
1337 		return filter_pred_cpu(pred, event);
1338 	case FILTER_PRED_TEST_VISITED:
1339 		return test_pred_visited_fn(pred, event);
1340 	default:
1341 		return 0;
1342 	}
1343 }
1344 
1345 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1346 static int parse_pred(const char *str, void *data,
1347 		      int pos, struct filter_parse_error *pe,
1348 		      struct filter_pred **pred_ptr)
1349 {
1350 	struct trace_event_call *call = data;
1351 	struct ftrace_event_field *field;
1352 	struct filter_pred *pred = NULL;
1353 	char num_buf[24];	/* Big enough to hold an address */
1354 	char *field_name;
1355 	bool ustring = false;
1356 	char q;
1357 	u64 val;
1358 	int len;
1359 	int ret;
1360 	int op;
1361 	int s;
1362 	int i = 0;
1363 
1364 	/* First find the field to associate to */
1365 	while (isspace(str[i]))
1366 		i++;
1367 	s = i;
1368 
1369 	while (isalnum(str[i]) || str[i] == '_')
1370 		i++;
1371 
1372 	len = i - s;
1373 
1374 	if (!len)
1375 		return -1;
1376 
1377 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1378 	if (!field_name)
1379 		return -ENOMEM;
1380 
1381 	/* Make sure that the field exists */
1382 
1383 	field = trace_find_event_field(call, field_name);
1384 	kfree(field_name);
1385 	if (!field) {
1386 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1387 		return -EINVAL;
1388 	}
1389 
1390 	/* See if the field is a user space string */
1391 	if ((len = str_has_prefix(str + i, ".ustring"))) {
1392 		ustring = true;
1393 		i += len;
1394 	}
1395 
1396 	while (isspace(str[i]))
1397 		i++;
1398 
1399 	/* Make sure this op is supported */
1400 	for (op = 0; ops[op]; op++) {
1401 		/* This is why '<=' must come before '<' in ops[] */
1402 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1403 			break;
1404 	}
1405 
1406 	if (!ops[op]) {
1407 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1408 		goto err_free;
1409 	}
1410 
1411 	i += strlen(ops[op]);
1412 
1413 	while (isspace(str[i]))
1414 		i++;
1415 
1416 	s = i;
1417 
1418 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1419 	if (!pred)
1420 		return -ENOMEM;
1421 
1422 	pred->field = field;
1423 	pred->offset = field->offset;
1424 	pred->op = op;
1425 
1426 	if (ftrace_event_is_function(call)) {
1427 		/*
1428 		 * Perf does things different with function events.
1429 		 * It only allows an "ip" field, and expects a string.
1430 		 * But the string does not need to be surrounded by quotes.
1431 		 * If it is a string, the assigned function as a nop,
1432 		 * (perf doesn't use it) and grab everything.
1433 		 */
1434 		if (strcmp(field->name, "ip") != 0) {
1435 			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1436 			goto err_free;
1437 		}
1438 		pred->fn_num = FILTER_PRED_FN_NOP;
1439 
1440 		/*
1441 		 * Quotes are not required, but if they exist then we need
1442 		 * to read them till we hit a matching one.
1443 		 */
1444 		if (str[i] == '\'' || str[i] == '"')
1445 			q = str[i];
1446 		else
1447 			q = 0;
1448 
1449 		for (i++; str[i]; i++) {
1450 			if (q && str[i] == q)
1451 				break;
1452 			if (!q && (str[i] == ')' || str[i] == '&' ||
1453 				   str[i] == '|'))
1454 				break;
1455 		}
1456 		/* Skip quotes */
1457 		if (q)
1458 			s++;
1459 		len = i - s;
1460 		if (len >= MAX_FILTER_STR_VAL) {
1461 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1462 			goto err_free;
1463 		}
1464 
1465 		pred->regex.len = len;
1466 		strncpy(pred->regex.pattern, str + s, len);
1467 		pred->regex.pattern[len] = 0;
1468 
1469 	/* This is either a string, or an integer */
1470 	} else if (str[i] == '\'' || str[i] == '"') {
1471 		char q = str[i];
1472 
1473 		/* Make sure the op is OK for strings */
1474 		switch (op) {
1475 		case OP_NE:
1476 			pred->not = 1;
1477 			fallthrough;
1478 		case OP_GLOB:
1479 		case OP_EQ:
1480 			break;
1481 		default:
1482 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1483 			goto err_free;
1484 		}
1485 
1486 		/* Make sure the field is OK for strings */
1487 		if (!is_string_field(field)) {
1488 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1489 			goto err_free;
1490 		}
1491 
1492 		for (i++; str[i]; i++) {
1493 			if (str[i] == q)
1494 				break;
1495 		}
1496 		if (!str[i]) {
1497 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1498 			goto err_free;
1499 		}
1500 
1501 		/* Skip quotes */
1502 		s++;
1503 		len = i - s;
1504 		if (len >= MAX_FILTER_STR_VAL) {
1505 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1506 			goto err_free;
1507 		}
1508 
1509 		pred->regex.len = len;
1510 		strncpy(pred->regex.pattern, str + s, len);
1511 		pred->regex.pattern[len] = 0;
1512 
1513 		filter_build_regex(pred);
1514 
1515 		if (field->filter_type == FILTER_COMM) {
1516 			pred->fn_num = FILTER_PRED_FN_COMM;
1517 
1518 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1519 			pred->fn_num = FILTER_PRED_FN_STRING;
1520 			pred->regex.field_len = field->size;
1521 
1522 		} else if (field->filter_type == FILTER_DYN_STRING) {
1523 			pred->fn_num = FILTER_PRED_FN_STRLOC;
1524 		} else if (field->filter_type == FILTER_RDYN_STRING)
1525 			pred->fn_num = FILTER_PRED_FN_STRRELLOC;
1526 		else {
1527 
1528 			if (!ustring_per_cpu) {
1529 				/* Once allocated, keep it around for good */
1530 				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1531 				if (!ustring_per_cpu)
1532 					goto err_mem;
1533 			}
1534 
1535 			if (ustring)
1536 				pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
1537 			else
1538 				pred->fn_num = FILTER_PRED_FN_PCHAR;
1539 		}
1540 		/* go past the last quote */
1541 		i++;
1542 
1543 	} else if (isdigit(str[i]) || str[i] == '-') {
1544 
1545 		/* Make sure the field is not a string */
1546 		if (is_string_field(field)) {
1547 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1548 			goto err_free;
1549 		}
1550 
1551 		if (op == OP_GLOB) {
1552 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1553 			goto err_free;
1554 		}
1555 
1556 		if (str[i] == '-')
1557 			i++;
1558 
1559 		/* We allow 0xDEADBEEF */
1560 		while (isalnum(str[i]))
1561 			i++;
1562 
1563 		len = i - s;
1564 		/* 0xfeedfacedeadbeef is 18 chars max */
1565 		if (len >= sizeof(num_buf)) {
1566 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1567 			goto err_free;
1568 		}
1569 
1570 		strncpy(num_buf, str + s, len);
1571 		num_buf[len] = 0;
1572 
1573 		/* Make sure it is a value */
1574 		if (field->is_signed)
1575 			ret = kstrtoll(num_buf, 0, &val);
1576 		else
1577 			ret = kstrtoull(num_buf, 0, &val);
1578 		if (ret) {
1579 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1580 			goto err_free;
1581 		}
1582 
1583 		pred->val = val;
1584 
1585 		if (field->filter_type == FILTER_CPU)
1586 			pred->fn_num = FILTER_PRED_FN_CPU;
1587 		else {
1588 			pred->fn_num = select_comparison_fn(pred->op, field->size,
1589 							    field->is_signed);
1590 			if (pred->op == OP_NE)
1591 				pred->not = 1;
1592 		}
1593 
1594 	} else {
1595 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1596 		goto err_free;
1597 	}
1598 
1599 	*pred_ptr = pred;
1600 	return i;
1601 
1602 err_free:
1603 	kfree(pred);
1604 	return -EINVAL;
1605 err_mem:
1606 	kfree(pred);
1607 	return -ENOMEM;
1608 }
1609 
1610 enum {
1611 	TOO_MANY_CLOSE		= -1,
1612 	TOO_MANY_OPEN		= -2,
1613 	MISSING_QUOTE		= -3,
1614 };
1615 
1616 /*
1617  * Read the filter string once to calculate the number of predicates
1618  * as well as how deep the parentheses go.
1619  *
1620  * Returns:
1621  *   0 - everything is fine (err is undefined)
1622  *  -1 - too many ')'
1623  *  -2 - too many '('
1624  *  -3 - No matching quote
1625  */
calc_stack(const char * str,int * parens,int * preds,int * err)1626 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1627 {
1628 	bool is_pred = false;
1629 	int nr_preds = 0;
1630 	int open = 1; /* Count the expression as "(E)" */
1631 	int last_quote = 0;
1632 	int max_open = 1;
1633 	int quote = 0;
1634 	int i;
1635 
1636 	*err = 0;
1637 
1638 	for (i = 0; str[i]; i++) {
1639 		if (isspace(str[i]))
1640 			continue;
1641 		if (quote) {
1642 			if (str[i] == quote)
1643 			       quote = 0;
1644 			continue;
1645 		}
1646 
1647 		switch (str[i]) {
1648 		case '\'':
1649 		case '"':
1650 			quote = str[i];
1651 			last_quote = i;
1652 			break;
1653 		case '|':
1654 		case '&':
1655 			if (str[i+1] != str[i])
1656 				break;
1657 			is_pred = false;
1658 			continue;
1659 		case '(':
1660 			is_pred = false;
1661 			open++;
1662 			if (open > max_open)
1663 				max_open = open;
1664 			continue;
1665 		case ')':
1666 			is_pred = false;
1667 			if (open == 1) {
1668 				*err = i;
1669 				return TOO_MANY_CLOSE;
1670 			}
1671 			open--;
1672 			continue;
1673 		}
1674 		if (!is_pred) {
1675 			nr_preds++;
1676 			is_pred = true;
1677 		}
1678 	}
1679 
1680 	if (quote) {
1681 		*err = last_quote;
1682 		return MISSING_QUOTE;
1683 	}
1684 
1685 	if (open != 1) {
1686 		int level = open;
1687 
1688 		/* find the bad open */
1689 		for (i--; i; i--) {
1690 			if (quote) {
1691 				if (str[i] == quote)
1692 					quote = 0;
1693 				continue;
1694 			}
1695 			switch (str[i]) {
1696 			case '(':
1697 				if (level == open) {
1698 					*err = i;
1699 					return TOO_MANY_OPEN;
1700 				}
1701 				level--;
1702 				break;
1703 			case ')':
1704 				level++;
1705 				break;
1706 			case '\'':
1707 			case '"':
1708 				quote = str[i];
1709 				break;
1710 			}
1711 		}
1712 		/* First character is the '(' with missing ')' */
1713 		*err = 0;
1714 		return TOO_MANY_OPEN;
1715 	}
1716 
1717 	/* Set the size of the required stacks */
1718 	*parens = max_open;
1719 	*preds = nr_preds;
1720 	return 0;
1721 }
1722 
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)1723 static int process_preds(struct trace_event_call *call,
1724 			 const char *filter_string,
1725 			 struct event_filter *filter,
1726 			 struct filter_parse_error *pe)
1727 {
1728 	struct prog_entry *prog;
1729 	int nr_parens;
1730 	int nr_preds;
1731 	int index;
1732 	int ret;
1733 
1734 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1735 	if (ret < 0) {
1736 		switch (ret) {
1737 		case MISSING_QUOTE:
1738 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1739 			break;
1740 		case TOO_MANY_OPEN:
1741 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1742 			break;
1743 		default:
1744 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1745 		}
1746 		return ret;
1747 	}
1748 
1749 	if (!nr_preds)
1750 		return -EINVAL;
1751 
1752 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1753 			       parse_pred, call, pe);
1754 	if (IS_ERR(prog))
1755 		return PTR_ERR(prog);
1756 
1757 	rcu_assign_pointer(filter->prog, prog);
1758 	return 0;
1759 }
1760 
event_set_filtered_flag(struct trace_event_file * file)1761 static inline void event_set_filtered_flag(struct trace_event_file *file)
1762 {
1763 	unsigned long old_flags = file->flags;
1764 
1765 	file->flags |= EVENT_FILE_FL_FILTERED;
1766 
1767 	if (old_flags != file->flags)
1768 		trace_buffered_event_enable();
1769 }
1770 
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1771 static inline void event_set_filter(struct trace_event_file *file,
1772 				    struct event_filter *filter)
1773 {
1774 	rcu_assign_pointer(file->filter, filter);
1775 }
1776 
event_clear_filter(struct trace_event_file * file)1777 static inline void event_clear_filter(struct trace_event_file *file)
1778 {
1779 	RCU_INIT_POINTER(file->filter, NULL);
1780 }
1781 
1782 struct filter_list {
1783 	struct list_head	list;
1784 	struct event_filter	*filter;
1785 };
1786 
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)1787 static int process_system_preds(struct trace_subsystem_dir *dir,
1788 				struct trace_array *tr,
1789 				struct filter_parse_error *pe,
1790 				char *filter_string)
1791 {
1792 	struct trace_event_file *file;
1793 	struct filter_list *filter_item;
1794 	struct event_filter *filter = NULL;
1795 	struct filter_list *tmp;
1796 	LIST_HEAD(filter_list);
1797 	bool fail = true;
1798 	int err;
1799 
1800 	list_for_each_entry(file, &tr->events, list) {
1801 
1802 		if (file->system != dir)
1803 			continue;
1804 
1805 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1806 		if (!filter)
1807 			goto fail_mem;
1808 
1809 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1810 		if (!filter->filter_string)
1811 			goto fail_mem;
1812 
1813 		err = process_preds(file->event_call, filter_string, filter, pe);
1814 		if (err) {
1815 			filter_disable(file);
1816 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1817 			append_filter_err(tr, pe, filter);
1818 		} else
1819 			event_set_filtered_flag(file);
1820 
1821 
1822 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1823 		if (!filter_item)
1824 			goto fail_mem;
1825 
1826 		list_add_tail(&filter_item->list, &filter_list);
1827 		/*
1828 		 * Regardless of if this returned an error, we still
1829 		 * replace the filter for the call.
1830 		 */
1831 		filter_item->filter = event_filter(file);
1832 		event_set_filter(file, filter);
1833 		filter = NULL;
1834 
1835 		fail = false;
1836 	}
1837 
1838 	if (fail)
1839 		goto fail;
1840 
1841 	/*
1842 	 * The calls can still be using the old filters.
1843 	 * Do a synchronize_rcu() and to ensure all calls are
1844 	 * done with them before we free them.
1845 	 */
1846 	tracepoint_synchronize_unregister();
1847 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1848 		__free_filter(filter_item->filter);
1849 		list_del(&filter_item->list);
1850 		kfree(filter_item);
1851 	}
1852 	return 0;
1853  fail:
1854 	/* No call succeeded */
1855 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1856 		list_del(&filter_item->list);
1857 		kfree(filter_item);
1858 	}
1859 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1860 	return -EINVAL;
1861  fail_mem:
1862 	__free_filter(filter);
1863 	/* If any call succeeded, we still need to sync */
1864 	if (!fail)
1865 		tracepoint_synchronize_unregister();
1866 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1867 		__free_filter(filter_item->filter);
1868 		list_del(&filter_item->list);
1869 		kfree(filter_item);
1870 	}
1871 	return -ENOMEM;
1872 }
1873 
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)1874 static int create_filter_start(char *filter_string, bool set_str,
1875 			       struct filter_parse_error **pse,
1876 			       struct event_filter **filterp)
1877 {
1878 	struct event_filter *filter;
1879 	struct filter_parse_error *pe = NULL;
1880 	int err = 0;
1881 
1882 	if (WARN_ON_ONCE(*pse || *filterp))
1883 		return -EINVAL;
1884 
1885 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1886 	if (filter && set_str) {
1887 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1888 		if (!filter->filter_string)
1889 			err = -ENOMEM;
1890 	}
1891 
1892 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1893 
1894 	if (!filter || !pe || err) {
1895 		kfree(pe);
1896 		__free_filter(filter);
1897 		return -ENOMEM;
1898 	}
1899 
1900 	/* we're committed to creating a new filter */
1901 	*filterp = filter;
1902 	*pse = pe;
1903 
1904 	return 0;
1905 }
1906 
create_filter_finish(struct filter_parse_error * pe)1907 static void create_filter_finish(struct filter_parse_error *pe)
1908 {
1909 	kfree(pe);
1910 }
1911 
1912 /**
1913  * create_filter - create a filter for a trace_event_call
1914  * @tr: the trace array associated with these events
1915  * @call: trace_event_call to create a filter for
1916  * @filter_string: filter string
1917  * @set_str: remember @filter_str and enable detailed error in filter
1918  * @filterp: out param for created filter (always updated on return)
1919  *           Must be a pointer that references a NULL pointer.
1920  *
1921  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1922  * @filter_str is copied and recorded in the new filter.
1923  *
1924  * On success, returns 0 and *@filterp points to the new filter.  On
1925  * failure, returns -errno and *@filterp may point to %NULL or to a new
1926  * filter.  In the latter case, the returned filter contains error
1927  * information if @set_str is %true and the caller is responsible for
1928  * freeing it.
1929  */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)1930 static int create_filter(struct trace_array *tr,
1931 			 struct trace_event_call *call,
1932 			 char *filter_string, bool set_str,
1933 			 struct event_filter **filterp)
1934 {
1935 	struct filter_parse_error *pe = NULL;
1936 	int err;
1937 
1938 	/* filterp must point to NULL */
1939 	if (WARN_ON(*filterp))
1940 		*filterp = NULL;
1941 
1942 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1943 	if (err)
1944 		return err;
1945 
1946 	err = process_preds(call, filter_string, *filterp, pe);
1947 	if (err && set_str)
1948 		append_filter_err(tr, pe, *filterp);
1949 	create_filter_finish(pe);
1950 
1951 	return err;
1952 }
1953 
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)1954 int create_event_filter(struct trace_array *tr,
1955 			struct trace_event_call *call,
1956 			char *filter_str, bool set_str,
1957 			struct event_filter **filterp)
1958 {
1959 	return create_filter(tr, call, filter_str, set_str, filterp);
1960 }
1961 
1962 /**
1963  * create_system_filter - create a filter for an event subsystem
1964  * @dir: the descriptor for the subsystem directory
1965  * @filter_str: filter string
1966  * @filterp: out param for created filter (always updated on return)
1967  *
1968  * Identical to create_filter() except that it creates a subsystem filter
1969  * and always remembers @filter_str.
1970  */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)1971 static int create_system_filter(struct trace_subsystem_dir *dir,
1972 				char *filter_str, struct event_filter **filterp)
1973 {
1974 	struct filter_parse_error *pe = NULL;
1975 	int err;
1976 
1977 	err = create_filter_start(filter_str, true, &pe, filterp);
1978 	if (!err) {
1979 		err = process_system_preds(dir, dir->tr, pe, filter_str);
1980 		if (!err) {
1981 			/* System filters just show a default message */
1982 			kfree((*filterp)->filter_string);
1983 			(*filterp)->filter_string = NULL;
1984 		} else {
1985 			append_filter_err(dir->tr, pe, *filterp);
1986 		}
1987 	}
1988 	create_filter_finish(pe);
1989 
1990 	return err;
1991 }
1992 
1993 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)1994 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1995 {
1996 	struct trace_event_call *call = file->event_call;
1997 	struct event_filter *filter = NULL;
1998 	int err;
1999 
2000 	if (!strcmp(strstrip(filter_string), "0")) {
2001 		filter_disable(file);
2002 		filter = event_filter(file);
2003 
2004 		if (!filter)
2005 			return 0;
2006 
2007 		event_clear_filter(file);
2008 
2009 		/* Make sure the filter is not being used */
2010 		tracepoint_synchronize_unregister();
2011 		__free_filter(filter);
2012 
2013 		return 0;
2014 	}
2015 
2016 	err = create_filter(file->tr, call, filter_string, true, &filter);
2017 
2018 	/*
2019 	 * Always swap the call filter with the new filter
2020 	 * even if there was an error. If there was an error
2021 	 * in the filter, we disable the filter and show the error
2022 	 * string
2023 	 */
2024 	if (filter) {
2025 		struct event_filter *tmp;
2026 
2027 		tmp = event_filter(file);
2028 		if (!err)
2029 			event_set_filtered_flag(file);
2030 		else
2031 			filter_disable(file);
2032 
2033 		event_set_filter(file, filter);
2034 
2035 		if (tmp) {
2036 			/* Make sure the call is done with the filter */
2037 			tracepoint_synchronize_unregister();
2038 			__free_filter(tmp);
2039 		}
2040 	}
2041 
2042 	return err;
2043 }
2044 
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)2045 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2046 				 char *filter_string)
2047 {
2048 	struct event_subsystem *system = dir->subsystem;
2049 	struct trace_array *tr = dir->tr;
2050 	struct event_filter *filter = NULL;
2051 	int err = 0;
2052 
2053 	mutex_lock(&event_mutex);
2054 
2055 	/* Make sure the system still has events */
2056 	if (!dir->nr_events) {
2057 		err = -ENODEV;
2058 		goto out_unlock;
2059 	}
2060 
2061 	if (!strcmp(strstrip(filter_string), "0")) {
2062 		filter_free_subsystem_preds(dir, tr);
2063 		remove_filter_string(system->filter);
2064 		filter = system->filter;
2065 		system->filter = NULL;
2066 		/* Ensure all filters are no longer used */
2067 		tracepoint_synchronize_unregister();
2068 		filter_free_subsystem_filters(dir, tr);
2069 		__free_filter(filter);
2070 		goto out_unlock;
2071 	}
2072 
2073 	err = create_system_filter(dir, filter_string, &filter);
2074 	if (filter) {
2075 		/*
2076 		 * No event actually uses the system filter
2077 		 * we can free it without synchronize_rcu().
2078 		 */
2079 		__free_filter(system->filter);
2080 		system->filter = filter;
2081 	}
2082 out_unlock:
2083 	mutex_unlock(&event_mutex);
2084 
2085 	return err;
2086 }
2087 
2088 #ifdef CONFIG_PERF_EVENTS
2089 
ftrace_profile_free_filter(struct perf_event * event)2090 void ftrace_profile_free_filter(struct perf_event *event)
2091 {
2092 	struct event_filter *filter = event->filter;
2093 
2094 	event->filter = NULL;
2095 	__free_filter(filter);
2096 }
2097 
2098 struct function_filter_data {
2099 	struct ftrace_ops *ops;
2100 	int first_filter;
2101 	int first_notrace;
2102 };
2103 
2104 #ifdef CONFIG_FUNCTION_TRACER
2105 static char **
ftrace_function_filter_re(char * buf,int len,int * count)2106 ftrace_function_filter_re(char *buf, int len, int *count)
2107 {
2108 	char *str, **re;
2109 
2110 	str = kstrndup(buf, len, GFP_KERNEL);
2111 	if (!str)
2112 		return NULL;
2113 
2114 	/*
2115 	 * The argv_split function takes white space
2116 	 * as a separator, so convert ',' into spaces.
2117 	 */
2118 	strreplace(str, ',', ' ');
2119 
2120 	re = argv_split(GFP_KERNEL, str, count);
2121 	kfree(str);
2122 	return re;
2123 }
2124 
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2125 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2126 				      int reset, char *re, int len)
2127 {
2128 	int ret;
2129 
2130 	if (filter)
2131 		ret = ftrace_set_filter(ops, re, len, reset);
2132 	else
2133 		ret = ftrace_set_notrace(ops, re, len, reset);
2134 
2135 	return ret;
2136 }
2137 
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2138 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2139 					struct function_filter_data *data)
2140 {
2141 	int i, re_cnt, ret = -EINVAL;
2142 	int *reset;
2143 	char **re;
2144 
2145 	reset = filter ? &data->first_filter : &data->first_notrace;
2146 
2147 	/*
2148 	 * The 'ip' field could have multiple filters set, separated
2149 	 * either by space or comma. We first cut the filter and apply
2150 	 * all pieces separately.
2151 	 */
2152 	re = ftrace_function_filter_re(buf, len, &re_cnt);
2153 	if (!re)
2154 		return -EINVAL;
2155 
2156 	for (i = 0; i < re_cnt; i++) {
2157 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2158 						 re[i], strlen(re[i]));
2159 		if (ret)
2160 			break;
2161 
2162 		if (*reset)
2163 			*reset = 0;
2164 	}
2165 
2166 	argv_free(re);
2167 	return ret;
2168 }
2169 
ftrace_function_check_pred(struct filter_pred * pred)2170 static int ftrace_function_check_pred(struct filter_pred *pred)
2171 {
2172 	struct ftrace_event_field *field = pred->field;
2173 
2174 	/*
2175 	 * Check the predicate for function trace, verify:
2176 	 *  - only '==' and '!=' is used
2177 	 *  - the 'ip' field is used
2178 	 */
2179 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2180 		return -EINVAL;
2181 
2182 	if (strcmp(field->name, "ip"))
2183 		return -EINVAL;
2184 
2185 	return 0;
2186 }
2187 
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2188 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2189 					   struct function_filter_data *data)
2190 {
2191 	int ret;
2192 
2193 	/* Checking the node is valid for function trace. */
2194 	ret = ftrace_function_check_pred(pred);
2195 	if (ret)
2196 		return ret;
2197 
2198 	return __ftrace_function_set_filter(pred->op == OP_EQ,
2199 					    pred->regex.pattern,
2200 					    pred->regex.len,
2201 					    data);
2202 }
2203 
is_or(struct prog_entry * prog,int i)2204 static bool is_or(struct prog_entry *prog, int i)
2205 {
2206 	int target;
2207 
2208 	/*
2209 	 * Only "||" is allowed for function events, thus,
2210 	 * all true branches should jump to true, and any
2211 	 * false branch should jump to false.
2212 	 */
2213 	target = prog[i].target + 1;
2214 	/* True and false have NULL preds (all prog entries should jump to one */
2215 	if (prog[target].pred)
2216 		return false;
2217 
2218 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2219 	return prog[i].when_to_branch == prog[target].target;
2220 }
2221 
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2222 static int ftrace_function_set_filter(struct perf_event *event,
2223 				      struct event_filter *filter)
2224 {
2225 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2226 						lockdep_is_held(&event_mutex));
2227 	struct function_filter_data data = {
2228 		.first_filter  = 1,
2229 		.first_notrace = 1,
2230 		.ops           = &event->ftrace_ops,
2231 	};
2232 	int i;
2233 
2234 	for (i = 0; prog[i].pred; i++) {
2235 		struct filter_pred *pred = prog[i].pred;
2236 
2237 		if (!is_or(prog, i))
2238 			return -EINVAL;
2239 
2240 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2241 			return -EINVAL;
2242 	}
2243 	return 0;
2244 }
2245 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2246 static int ftrace_function_set_filter(struct perf_event *event,
2247 				      struct event_filter *filter)
2248 {
2249 	return -ENODEV;
2250 }
2251 #endif /* CONFIG_FUNCTION_TRACER */
2252 
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2253 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2254 			      char *filter_str)
2255 {
2256 	int err;
2257 	struct event_filter *filter = NULL;
2258 	struct trace_event_call *call;
2259 
2260 	mutex_lock(&event_mutex);
2261 
2262 	call = event->tp_event;
2263 
2264 	err = -EINVAL;
2265 	if (!call)
2266 		goto out_unlock;
2267 
2268 	err = -EEXIST;
2269 	if (event->filter)
2270 		goto out_unlock;
2271 
2272 	err = create_filter(NULL, call, filter_str, false, &filter);
2273 	if (err)
2274 		goto free_filter;
2275 
2276 	if (ftrace_event_is_function(call))
2277 		err = ftrace_function_set_filter(event, filter);
2278 	else
2279 		event->filter = filter;
2280 
2281 free_filter:
2282 	if (err || ftrace_event_is_function(call))
2283 		__free_filter(filter);
2284 
2285 out_unlock:
2286 	mutex_unlock(&event_mutex);
2287 
2288 	return err;
2289 }
2290 
2291 #endif /* CONFIG_PERF_EVENTS */
2292 
2293 #ifdef CONFIG_FTRACE_STARTUP_TEST
2294 
2295 #include <linux/types.h>
2296 #include <linux/tracepoint.h>
2297 
2298 #define CREATE_TRACE_POINTS
2299 #include "trace_events_filter_test.h"
2300 
2301 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2302 { \
2303 	.filter = FILTER, \
2304 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2305 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2306 	.match  = m, \
2307 	.not_visited = nvisit, \
2308 }
2309 #define YES 1
2310 #define NO  0
2311 
2312 static struct test_filter_data_t {
2313 	char *filter;
2314 	struct trace_event_raw_ftrace_test_filter rec;
2315 	int match;
2316 	char *not_visited;
2317 } test_filter_data[] = {
2318 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2319 	       "e == 1 && f == 1 && g == 1 && h == 1"
2320 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2321 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2322 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2323 #undef FILTER
2324 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2325 	       "e == 1 || f == 1 || g == 1 || h == 1"
2326 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2327 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2328 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2329 #undef FILTER
2330 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2331 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2332 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2333 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2334 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2335 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2336 #undef FILTER
2337 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2338 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2339 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2340 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2341 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2342 #undef FILTER
2343 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2344 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2345 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2346 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2347 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2348 #undef FILTER
2349 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2350 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2351 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2352 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2353 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2354 #undef FILTER
2355 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2356 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2357 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2358 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2359 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2360 #undef FILTER
2361 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2362 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2363 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2364 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2365 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2366 };
2367 
2368 #undef DATA_REC
2369 #undef FILTER
2370 #undef YES
2371 #undef NO
2372 
2373 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2374 
2375 static int test_pred_visited;
2376 
test_pred_visited_fn(struct filter_pred * pred,void * event)2377 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2378 {
2379 	struct ftrace_event_field *field = pred->field;
2380 
2381 	test_pred_visited = 1;
2382 	printk(KERN_INFO "\npred visited %s\n", field->name);
2383 	return 1;
2384 }
2385 
update_pred_fn(struct event_filter * filter,char * fields)2386 static void update_pred_fn(struct event_filter *filter, char *fields)
2387 {
2388 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2389 						lockdep_is_held(&event_mutex));
2390 	int i;
2391 
2392 	for (i = 0; prog[i].pred; i++) {
2393 		struct filter_pred *pred = prog[i].pred;
2394 		struct ftrace_event_field *field = pred->field;
2395 
2396 		WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2397 
2398 		if (!field) {
2399 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2400 			continue;
2401 		}
2402 
2403 		if (!strchr(fields, *field->name))
2404 			continue;
2405 
2406 		pred->fn_num = FILTER_PRED_TEST_VISITED;
2407 	}
2408 }
2409 
ftrace_test_event_filter(void)2410 static __init int ftrace_test_event_filter(void)
2411 {
2412 	int i;
2413 
2414 	printk(KERN_INFO "Testing ftrace filter: ");
2415 
2416 	for (i = 0; i < DATA_CNT; i++) {
2417 		struct event_filter *filter = NULL;
2418 		struct test_filter_data_t *d = &test_filter_data[i];
2419 		int err;
2420 
2421 		err = create_filter(NULL, &event_ftrace_test_filter,
2422 				    d->filter, false, &filter);
2423 		if (err) {
2424 			printk(KERN_INFO
2425 			       "Failed to get filter for '%s', err %d\n",
2426 			       d->filter, err);
2427 			__free_filter(filter);
2428 			break;
2429 		}
2430 
2431 		/* Needed to dereference filter->prog */
2432 		mutex_lock(&event_mutex);
2433 		/*
2434 		 * The preemption disabling is not really needed for self
2435 		 * tests, but the rcu dereference will complain without it.
2436 		 */
2437 		preempt_disable();
2438 		if (*d->not_visited)
2439 			update_pred_fn(filter, d->not_visited);
2440 
2441 		test_pred_visited = 0;
2442 		err = filter_match_preds(filter, &d->rec);
2443 		preempt_enable();
2444 
2445 		mutex_unlock(&event_mutex);
2446 
2447 		__free_filter(filter);
2448 
2449 		if (test_pred_visited) {
2450 			printk(KERN_INFO
2451 			       "Failed, unwanted pred visited for filter %s\n",
2452 			       d->filter);
2453 			break;
2454 		}
2455 
2456 		if (err != d->match) {
2457 			printk(KERN_INFO
2458 			       "Failed to match filter '%s', expected %d\n",
2459 			       d->filter, d->match);
2460 			break;
2461 		}
2462 	}
2463 
2464 	if (i == DATA_CNT)
2465 		printk(KERN_CONT "OK\n");
2466 
2467 	return 0;
2468 }
2469 
2470 late_initcall(ftrace_test_event_filter);
2471 
2472 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2473